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Abstract

We define and study a non deterministic extension of Call-By-Push-Value (CBPV) for which
we prove an Adequacy and Full Abstraction theorem with respect to a Scott semantics of classical
Linear Logic (LL). We also consider an extension of CBPV with a general notion of global state for
which we propose a simple LL-based Scott denotational semantics and prove an adequacy result.

Introduction

The Call-By-Push-Value (CBPV) lambda-calculus was introduced in [10] as a a common framework for
call-by-name (CBN) and call-by-value (CBV). CBPV takes place in a line of research mainly inspired by
Moggi’s computational lambda-calculus [14].

We propose to view CBPV as a refinement of CBN and CBV lambda-calculus factorizing the standard
encodings of these calculi in Linear Logic (LL). Girard’s CBN and CBV translation1 of lambda-calculus
into LL mainly differ by the way the exponential promotion rule is used. In CBN, an application (s)t is
defined as the linear application of s to the promotion of t and the abstraction λx s is simply interpreted
as an abstraction, whereas in CBV, (s)t is the linear application of the dereliction of s to t and λx s
is interpreted as the promotion of the abstraction of s. In CBN a β-redex can be immediately reduced
(the argument, being promoted, is freely discardable and duplicable) whereas in CBV one needs first to
reduce the argument to a “value”, that is, to a term whose translation is a promotion (abstraction or
variable).

This suggests to understand a value as a term which can be freely duplicated and discarded. A
way to implement this idea is to require values to have types which are interpreted in LL by formulas
equipped with structural rules. This idea is used in [5] for representing classical logic in LL, identifying
two dual classes of LL formulas: the positive and the negative formulas. A positive formula is equipped
with a structure of !-coalgebra as explained in [9] (and a negative one is the linear negation of a positive
formula) and morphisms of !-coalgebras are duplicable and discardable. !A is a positive formula, and
these formulas are closed under ⊗ and ⊕ (remark: products and sums are basic data type constructions
and “!” can be used as a lazy type constructor). More precisely, given a categorical model L of LL, the
Eilenberg-Moore category L! of the “!” comonad is cartesian (with ⊗ as product) and cocartesian (with
⊕ as coproduct).

We base our version of CBPV on that idea: the type system features positive types ϕ,ψ . . . and
general types σ, τ . . . . If σ is a general type then !σ is a positive types and if ϕ1, ϕ2 are positive types,
then ϕ1 ⊗ ϕ2 and ϕ1 ⊕ ϕ2 are positive types (we also admit a recursive positive type construction).
Any positive type is a general type and if ϕ is a positive type and σ is a general type then ϕ ( σ is a
general type. Given a model L of LL, positive types are interpreted as objects of L! and general types
are interpreted in L. We can define many data types as recursive types: unary natural number (ι = 1⊕ ι
where 1 is a unit type which is also definable), streams of natural numbers (ρ = ι ⊗ !ρ) etc. Since we
allow only to form function types of shape ϕ ( σ with ϕ positive, even though this type is interpreted
as a linear implication, there are no linearity restrictions on the use of variables in the calculus. It is not

1The CBN translation is central in [4] and the CBV translation is only alluded to and rejected as “boring”.
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true that all terms of positive types are interpreted as coalgebra morphisms, but this property holds for
a particular class of terms: the values. So β-reduction can be performed only if the argument term is a
value. Similar restrictions apply to the other reduction rules. The rewriting rules allow in particular to
reduce terms of positive types to values.

This calculus, as well as its LL-based denotational semantics, is presented in [3]. We also refer to this
paper for more references to related works. Our purpose here is to study its extensions with two kinds
of effects.

The first effect we consider is non-determinism.
We extend the language with a construction choose(M,N) which reduces to M or N , non determinis-

tically. We define an operational semantics by reducing terms to finite multisets of terms (corresponding
to the various non-deterministic choices). We provide a denotational semantics for this calculus based
on a Scott model of LL where types are interpreted as pre-ordered sets (such a pre-ordered set induces
a complete lattice: the set of its downwards-closed subsets, and morphisms are the linear maps, that
is the maps which commute with arbitrary unions). Interpreting multisets of terms as the union of
their interpretations, one can prove a soundness property. By a realizability technique one proves a
“sensibility” result, showing that if a term has a non-empty semantics then one of its non-deterministic
reductions terminates. This property implies adequacy: if two terms have the same semantics then
they are observationally equivalent. We prove then the converse (Full Abstraction), associating a term
a− : !σ ( 1 with any element a of the pre-ordered set [σ] interpreting a type σ in such a way that, if u
is a downwards-closed subset in [σ], one has a ∈ u iff the term 〈a−〉u! terminates.

Last we consider a global states effect. We define a notion of “transition system with parameters”
(TSP) which is a transition system where transitions are labeled by instructions applied to integer
parameters, yielding integer results. A typical example is global memory: a state is a store and there
is a read operations which takes one integer parameter (the address to be read) and yields the stored
value, and a write operation which takes two integers (address and value to be stored) and returns 0.

Given a TSP Q, we extend our CBPV with monadic type and term construction and with instructions
associated with the transitions of Q. We define a concrete denotational model for this extension of CBPV
by considering the set of states of Q as an object of the Scott model of LL. We extend the sensibility
result to this new syntax by extending our realizability method to states.

This collection of results shows that, though they are particular cases of the general notion of ad-
junction models of CBPV [11], the LL-based models are quite expressive.

1 Purely functional CBPV

We introduce our version of CBPV called ΛHP (HP stands for “half-polarized”). Types are given by the
following BNF syntax. We define by mutual induction two kinds of types: positive types and general
types, given type variables ζ, ξ. . . :

positive ϕ,ψ, . . . := !σ | ϕ⊗ ψ | ϕ⊕ ψ | ζ | Fix ζ · ϕ (1)

general σ, τ . . . := ϕ | ϕ( σ | > (2)

More constructions could be added for general types, as in CBPV (such as products or recursive types),
we do not so here by lack of space. We consider the types up to the equation Fix ζ ·ϕ = ϕ [(Fix ζ · ϕ)/ζ].

Terms are given by the following BNF syntax, given variables x, y, . . . :

M,N . . . := x | M ! | 〈M,N〉 | in1M | in2M

| λxϕM | 〈M〉N | case(M,x1 ·N1, x2 ·N2)

| pr1M | pr2M | der(M) | fixx!σM

This calculus can be seen as a version of Levy’s CBPV [11] in which the type constructor F is kept
implicit (and U is “!”). It is close to SFPL [13]. We use LL inspired notations; M ! corresponds to
thunk(M) and der(M) to force(M).

Figure 1 provides the typing rules for these terms. A typing context is an expression P = (x1 :
ϕ1, . . . , xk : ϕk) where all types are positive and the xis are pairwise distinct variables.
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P `M : σ

P `M ! : !σ

P `M1 : ϕ1 P `M2 : ϕ2

P ` 〈M1,M2〉 : ϕ1 ⊗ ϕ2

P `M : ϕi
P ` iniM : ϕ1 ⊕ ϕ2

P, x : ϕ ` x : ϕ

P, x : ϕ `M : σ

P ` λxϕM : ϕ( σ

P `M : ϕ( σ P ` N : ϕ

P ` 〈M〉N : σ

P `M : !σ
P ` der(M) : σ

P, x : !σ `M : σ

P ` fixx!σM : σ

P `M : ϕ1 ⊕ ϕ2 P, x1 : ϕ1 `M1 : σ P, x2 : ϕ2 `M2 : σ

P ` case(M,x1 ·M1, x2 ·M2) : σ

P `M : ϕ1 ⊗ ϕ2

P ` priM : ϕi

Figure 1: Typing system for ΛHP

der(M !)→w M 〈λxϕM〉V →w M [V/x] pri〈V1, V2〉 →w Vi

fixx!σM →w M
[
(fixx!σM)!/x

] M →w M
′

der(M)→w der(M ′)

M →w M
′

〈M〉N →w 〈M ′〉N

N →w N
′

〈M〉N →w 〈M〉N ′
M →w M

′

priM →w priM
′

M1 →w M
′
1

〈M1,M2〉 →w 〈M ′1,M2〉

M2 →w M
′
2

〈M1,M2〉 →w 〈M1,M
′
2〉

case(iniV, x1 ·M1, x2 ·M2)→w Mi [V/xi]
M →w M

′

iniM →w iniM
′

M →w M
′

case(M,x1 ·M1, x2 ·M2)→w case(M ′, x1 ·M1, x2 ·M2)

Figure 2: Weak reduction axioms and rules for ΛHP

We define now a weak reduction relation on terms, meaning that we never reduce within a “box” M !

or under a λ. Values are particular ΛHP terms (they are not a new syntactic category) defined by the
following BNF syntax:

V,W . . . := x | M ! | 〈V,W 〉 | in1V | in2V .

Figure 2 defines weak reduction →w. It clearly enjoys subject reduction and confluence (actually the
diamond property holds).

Proposition 1 Any value is →w-normal. If ϕ is a positive type, ` M : ϕ and M is →w-normal, then
M is a value.

1.1 LL-based denotational semantics, in a nutshell

The kind of denotational models we are interested in in this paper are those induced by a model of LL, as
explained in [3]. We record the basic definitions and notations, referring to that paper for more details.

1.1.1 Models of Linear Logic. A model of LL consists of the following data.
A symmetric monoidal closed category (L,⊗, 1, λ, ρ, α, σ). We use X ( Y for the object of linear

morphisms from X to Y , ev ∈ L((X ( Y ) ⊗X,Y ) for the evaluation morphism and cur for the linear
curryfication map L(Z ⊗ X,Y ) → L(Z,X ( Y ). For convenience, and because it is the case in the
concrete models we consider, we assume this SMCC to be a ∗-autonomous category with dualizing object
⊥. We use X⊥ for the object X ( ⊥ of L (the dual, or linear negation, of X).
L is cartesian with terminal object >, product &, projections pri. By ∗-autonomy L is cocartesian

with initial object 0, coproduct ⊕ and injections ini.
We are given a comonad ! : L → L with counit derX ∈ L(!X,X) (dereliction) and comultiplication

digX ∈ L(!X, !!X) (digging) together with a strong symmetric monoidal structure (Seely isos m0 and
m2) for the functor ! , from the symmetric monoidal category (L,&) to the symmetric monoidal category
(L,⊗) satisfying an additional coherence condition wrt. dig.
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We use ? for the “De Morgan dual” of ! : ?X = (!(X⊥))⊥ and similarly for morphisms. It is a
monad on L.

1.1.2 The Eilenberg-Moore category. It is then standard to define the category L! of !-coalgebras.
An object of this category is a pair P = (P ,hP ) where P ∈ Obj(L) and hP ∈ L(P , !P ) is such that
derP hP = Id and digP hP = !hP hP . Then f ∈ L!(P,Q) iff f ∈ L(P ,Q) such that hQ f = !f hP .

The functor ! can be seen as a functor from L to L! mapping X to (!X,digX) and f ∈ L(X,Y ) to
!f . It is right adjoint to the forgetful functor U : L! → L. Given f ∈ L(P ,X), we use f ! ∈ L!(P, !X)
for the morphism associated with f by this adjunction, one has f ! = !f hP . If g ∈ L!(Q,P ), we have
f ! g = (f g)!.

Then L! is cartesian (with product of shape P ⊗Q = (P ⊗Q,hP⊗Q) and terminal object (1,h1), still
denoted as 1). This category is also cocartesian with coproduct of shape P⊕Q = (P⊕Q,hP⊕Q) and initial

object (0,h0) still denoted as 0. The complete definitions can be found in [3]. We use cP ∈ L!(P, P ⊗P )
(contraction) for the diagonal and wP ∈ L!(P, 1) (weakening) for the unique morphism to the terminal
object.

1.1.3 Fix-points. For any object X, we assume to be given a morphism fixX ∈ L(!(!X ( X), X)
such that2 ev (der!X(X ⊗ fix!

X) ◦ c(!!X(X) which will allow to interpret term fix-points.
In order to interpret fix-points of types, we assume that the category L is equipped with a notion

of embedding-retraction pairs, following a standard approach. We denote as L⊆ for the corresponding
category. It is equipped with a functor F : L⊆ → Lop × L such that F(X) = (X,X) and for which we
use the notation (ϕ−, ϕ+) = F(ϕ) and assume that ϕ− ϕ+ = IdX . We assume furthermore that L⊆ has
all countable directed colimits and that the functor E = pr2 F : L⊆ → L is continuous. We also assume
that all the basic operations on objects (⊗, ⊕, ( )⊥ and ! ) are continuous functors from L⊆ to itself3.

Then it is easy to carry this notion of embedding-retraction pairs to L!, to show that this category
has all countable directed colimits and that the functors ⊗ and ⊕ are continuous on this category. One
checks also that ! define a continuous functor from L⊆ to L!

⊆. This allows to interpret recursive types.

1.1.4 Interpreting types and terms. We simply outline the way types and terms of ΛHP are
interpreted in this kind of model. Again, we refer to [3] for precise definitions.

With any positive type ϕ and any repetition-free list ~ζ = (ζ1, . . . , ζn) of type variables containing all
free variables of ϕ we associate a continuous functor [ϕ]!~ζ : (L!

⊆)n → L!
⊆ and with any general type σ and

any list ~ζ = (ζ1, . . . , ζn) of pairwise distinct type variables containing all free variables of σ we associate
a continuous functor [σ]~ζ : (L!

⊆)n → L⊆.

When we write [σ] or [ϕ]! (without subscript), we assume implicitly that the types σ and ϕ have no
free type variables. Then [σ] is an object of L and [ϕ]! is an object of L!. We have [ϕ] = [ϕ]! that is,

considered as a generalized type, the semantics of a positive type ϕ is the carrier of the coalgebra [ϕ]!.
Given a typing context P = (x1 : ϕ1, . . . , xk : ϕk), we define [P]! = [ϕ1]! ⊗ · · · ⊗ [ϕk]! ∈ L!.
From now on, we assume that the only isos of L⊆ are the identity maps. This implies that the types

Fix ζ · ϕ and ϕ [(Fix ζ · ϕ)/ζ] are interpreted as the same object (or functor). It will be the case in the
models we consider in this paper and in many other models.

Using these categorical structures, given a term M such that P ` M : σ, one defines a morphism
[M ]P ∈ L([P], [σ]) in such a way that, if σ is a positive type ϕ and if M is a value V , then [V ]P ∈
L!([P]!, [ϕ]!).

One can prove that this interpretation is sound: if P `M : σ and M →w M
′ then [M ]P = [M ′]P . The

proof relies on a Substitution Lemma which uses in an essential way the fact that values are interpreted
as coalgebra morphisms.

2It might seem natural to require the stronger uniformity conditions of Conway operator [16]. This does not seem to
be necessary as far as soundness of our semantics is concerned even if the fix-point operators arising in concrete models
satisfy these further properties.

3This is a rough statement; one has to say that e.g. that if ϕi ∈ L⊆(Xi, Yi) for i = 1, 2 then (ϕ1 ⊗ ϕ2)− = ϕ−
1 ⊗ ϕ−

2
etc. The details can be found in [3].
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λxσM =

k∑
i=1

λxσMi 〈M〉N =

k∑
i=1

n∑
j=1

〈Mi〉Nj der(M) =

k∑
i=1

der(Mi) prlM =

k∑
i=1

prlMi

〈M,N〉 =

k∑
i=1

n∑
j=1

〈Mi, Nj〉 inlM =

k∑
i=1

inlMi case(M, x1 ·R1, x2 ·R2) =

k∑
i=1

case(Mi, x1 ·R1, x2 ·R2)

Figure 3: Non-deterministic extended syntax

der(M !)→1
m M 〈λxϕM〉V →1

m M [V/x] pri〈V1, V2〉 →1
m Vi

fixx!σM →1
m M

[
(fixx!σM)!/x

] M →1
mM

der(M)→1
m der(M)

M →1
mM

〈M〉N →1
m 〈M〉N

N →1
m N

〈M〉N →1
m 〈M〉N

M →1
mM

priM →1
m priM

M1 →1
mM1

〈M1,M2〉 →1
m 〈M1,M2〉

M2 →1
mM2

〈M1,M2〉 →1
m 〈M1,M2〉 case(iniV, x1 ·M1, x2 ·M2)→1

m Mi [V/xi]
M →1

mM
iniM →1

m iniM

M →1
mM

case(M,x1 ·M1, x2 ·M2)→1
m case(M, x1 ·M1, x2 ·M2)

choose(M1,M2)→1
m M1 +M2

Figure 4: Definition of the reduction relation →1
m for Λnd

HP

2 Non-deterministic CBPV

The first effect we want to deal with is non determinism. We do not extend the typing system, we simply
extend the syntax of ΛHP by adding the following construct, where “· · · ” stands for the constructions
introduced in Section 1.

M := · · · | choose(M1,M2)

Accordingly, we add one typing rule

P `M1 : σ P `M2 : σ

P ` choose(M1,M2) : σ

2.1 Operational semantics

We use letters M,N , . . . to denote finite multisets of terms. In this context, given a term M , we also
denote as M the multiset consisting of 1 copy of M . We use additive notations to deal with these
multisets that we consider as finite formal sums of terms.

We extend the term syntax to these multisets: given multisets M =
∑k
i=1Mi and N =

∑n
j=1Nj of

terms, we use the notations of Figure 3. Using these notations, we define in Figure 4 a rewriting relation
→1

m from terms to multisets of terms.
We define then a rewriting relation →m on multisets of terms.

M→mM
M →1

mM
M →mM

M1 →mM′1 M2 →mM′2
M1 +M2 →mM′1 +M′2

The usual non-deterministic reduction →nd can now be defined as follows: M →nd M ′ means that
M→mM

′ +M for some multiset of terms M (observe that M→mM
′ +M iff M →1

m M ′ +M). It is
clear that M →∗nd M ′ iff M→∗mM ′ +M for some multiset of terms M.
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Given a multiset of terms M =
∑k
i=1Mi, we write P `M : σ if we have P `Mi : σ for i = 1, . . . , k.

Then Subject Reduction extends easily to this non-deterministic setting: if P ` M : σ and M→m M′
then P `M′ : σ.

Let M be such that P `M : ϕ for some positive type ϕ. We say that M converges (notation M ↓nd)
if M →∗m V +M for some value V and some multiset of terms M.

2.2 Scott semantics

Usually, in a model L of LL, an object X of L can be endowed with several different structures of !-
coalgebras which makes the category L! difficult to describe simply (in contrast with the Kleisli category
used for interpreting PCF; its objects are those of L). In the Scott model of LL however, every object of
the linear category has exactly one structure of !-coalgebra as we shall see. This is a distinctive feature
of this model. A nice outcome of these observations will be a very simple intersection typing system.

Remark : As explained in [1], this semantics of LL has been independently discovered by several au-
thors [7, 18]. The same model is also considered in [12] Section 5.5.4 to interpret may non-determinism
in CBPV. This is essentially this model that we are considering here.

2.2.1 Objects and morphisms. We introduce a “linear” category Polr of preorders and relations.
A preorder is a pair X = (|X|,≤X) where |X| is a countable set and ≤X is a preorder relation on |X|.
A morphism from X to Y is a f ⊆ |X| × |Y | such that, if (a, b) ∈ f and a ≤X a′ and b′ ≤Y b, then
(a′, b′) ∈ f . The relational composition of two morphisms is still a morphism and the identity morphism
at X is IdX = {(a, a′) | a′ ≤X a}.

Given an object X in Polr, the set Ini(X) of downwards closed subsets of |X|, ordered by inclusion,
is a complete lattice which is ω-prime-algebraic (and all such lattices are of that shape up to iso). Polr is
equivalent to the category of ω-prime algebraic complete lattices and linear maps (functions preserving
all lubs).

2.2.2 Monoidal structure and cartesian product. The tensor unit 1 is ({∗},=) and X ⊗ Y =
(|X| × |Y |,≤X × ≤Y ). The tensor product of morphisms is defined in the obvious way, as well as the
coherence isos. Then one defines X ( Y by |X ( Y | = |X|× |Y | and (a′, b′) ≤X(Y (a, b)) if a ≤ a′ and
b′ ≤ b. The linear evaluation morphism ev ∈ Polr((X ( Y )⊗X,Y ) is given by ev = {(((a′, b), a), b′) |
b′ ≤ b and a′ ≤ a}. If f ∈ Polr(Z ⊗ X,Y ) then cur(f) ∈ Polr(Z,X ( Y ) is defined by moving
parentheses. This shows that Polr is closed. It is *-autonomous, with ⊥ = 1 as dualizing object.
Observe that X⊥ is simply |X| equipped with ≥X as preorder relation ≤X⊥ .

Given a countable family of objects (Xi)i∈I , the cartesian productX is defined by |X| =
⋃
i∈I{i}×|Xi|

with (i, a) ≤ (j, b) if i = j and a ≤ b. Projections are defined by pri = {((i, a), a′) | a′ ≤ a}. Tupling of
morphisms is defined as in Rel. Coproducts are defined similarly.

2.2.3 Exponential. One sets !X = (Pfin(|X|),≤) with u ≤ u′ if ∀a ∈ u∃a′ ∈ u′ a ≤X a′ (where
Pfin(E) is the set of all finite subsets of E). Given f ∈ Polr(X,Y ), one defines !f as {(u, v) ∈ |!X|×|!Y | |
∀b ∈ v ∃a ∈ u (a, b) ∈ f}. This defines a functor Polr → Polr. Then one sets derX = {(u, a) | ∃a′ ∈
u a ≤ a′} ∈ Polr(!X,X) and digX = {(u, {u1, . . . , un}) | u1 ∪ · · · ∪ un ≤!X u} ∈ Polr(!X, !!X).
This defines a comonad Polr → Polr. The Seely isos are given by m0 = {(∗, ∅)} ∈ Polr(1, !>) and
m2
X,Y = {((u, v), w) | w ≤!(X&Y ) {1} × u ∪ {2} × v} ∈ Polr(!X ⊗ !Y , !(X & Y )).

Each X has a fix-point operator fixX ∈ Polr(!(!X ( X), X) which is defined as a least fix-point:
fixX = {(w, a) | ∃(u′, a′) ∈ w a ≤ a′ and ∀a′′ ∈ u′ (w, a′′) ∈ fixX}.

2.3 The category of !-coalgebras

The first main observation is that each object of Polr has exactly one structure of !-coalgebra. Proofs:
see [3].

Theorem 2 Let X be an object of Polr. Then (X,pX) is a !-coalgebra, where pX = {(a, u) ∈ |X|×|!X| |
∀a′ ∈ u a′ ≤ a}. Moreover, if P is a !-coalgebra, then hP = pP .
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2.3.1 Morphisms of !-coalgebras. So we consider the objects of Polr! as simple preorders. When
we consider X as an object of Polr!, we always mean the object (X,pX) described above.

With any preorder X we associate an ω-algebraic cpo Idl(X) which is its ideal completion: an element
of Idl(X) is a ξ ⊆ |X| such that ξ 6= ∅, ξ is downwards closed and directed. We equip Idl(X) with the
inclusion partial order relation.

Lemma 3 The poset Idl(X) is a cpo which has countably many compact elements. For any ξ ∈ Idl(X),
the set of compact elements ξ0 ∈ Idl(X) such that ξ0 ⊆ ξ is directed and ξ is the lub of that set. In
general, Idl(X) has no minimum element.

Theorem 4 There is a bijective and functorial correspondence between Polr!(X,Y ) and the set of Scott
continuous functions from Idl(X) → Idl(Y ). This correspondence is an order isomorphism when Scott-
continuous functions are equipped with the pointwise order and Polr!(S, T ) is equipped with inclusion.

Let Predom be the category whose objects are the preorders and where a morphism from X to Y is
a Scott continuous function from Idl(X) to Idl(Y ). We have seen that Polr! and Predom are equivalent
categories (isomorphic indeed). It is easy to retrieve directly the fact that Predom has products and
sums: the product of X and Y is X⊗Y (and indeed, it is easy to check that Idl(X⊗Y ) ' Idl(X)× Idl(Y ))
and their sum is X ⊕ Y and indeed Idl(X ⊕ Y ) ' Idl(X) + Idl(Y ), the disjoint union of the predomains
Idl(X) and Idl(Y ). This predomain has no minimum element as soon as |X| and |Y | are non-empty.
Observe also that Idl(!X) = Ini(X): one retrieves the fact that the Kleisli category of the ! comonad is
the category of preorders and Scott continuous functions between the associated lattices4.

2.3.2 Inclusions and embedding-retraction pairs. We define a category Polr⊆ as follows: the
objects are those of Polr and Polr⊆(X,Y ) is a singleton {ϕX,Y } if |X| ⊆ |Y | and ∀a, a′ ∈ |X| a ≤X
a′ ⇔ a ≤Y a′ (and then we write X ⊆ Y ) and is empty otherwise. So Polr⊆ is a partially ordered class.

The functor F : Polr⊆ → Polrop × Polr is defined as follows: if X ⊆ Y then ϕ+
X,Y = {(a, b) ∈

|X| × |Y | | b ≤Y a} and ϕ−X,Y = {(b, a) ∈ |Y | × |X| | a ≤Y b}; this definition is functorial and

ϕ−X,Y ϕ
+
X,Y = IdX . The partially ordered class Polr⊆ is complete in the sense that any countable directed

family of objects. (Xi)i∈J has a lub X given by |X| = ∪i∈J |Xi| and a ≤X a′ if a ≤Xi a′ for some i;
we denote this preorder as ∪i∈JXi. The operations ⊗, ⊕ and ! are monotone and Scott-continuous
operations on this partially ordered class.

2.3.3 Interpreting types and terms. As explained in Section 1.1.4, with any closed type σ we
associate an object [σ] of Polr and with any positive type ϕ we associate an object [ϕ]! of Polr! (of
which Theorem 4 offers a simple presentation). With any typing context P = (x1 : ϕ1, . . . , xk : ϕk) we
associate an object [P]! = [ϕ1]! ⊗ · · · ⊗ [ϕk]! of Polr!.

Given a term M such that P ` M : σ we associate a morphism [M ]P ∈ Polr([P], [σ]). If σ is a
positive type ϕ and if M is a value V , we have moreover [V ]P ∈ Polr!([P]!, [ϕ]!) (this hom-set indeed is
a subset of Polr([P], [ϕ])).

This interpretation extends easily to our non-deterministic primitive: if P ` Mi : σ for i = 1, 2 then
we set

[choose(M1,M2)]P = [M1]P ∪ [M2]P ∈ Polr([P], [σ]) .

Remark : It is crucial to observe that if P ` Vi : ϕ for i = 1, 2 and the Vi’s are values, then we have
P ` choose(V1, V2) : ϕ but this term choose(V1, V2) is not a value. And indeed, if f1, f2 ∈ Polr!([P]!, [ϕ]!)
(which means that the fi’s are continuous maps Idl([P]) → Idl([ϕ])) then f1 ∪ f2 is not a coalgebra
morphism in general simply because ideals are not closed under unions.

We extend this semantics straightforwardly to multisets of terms: given terms (Mi)
k
i=1 such that

P ` Mi : σ for each i, we set [
∑k
i=1Mi]P =

⋃k
i=1[Mi]P . Then we can express the soundness of our

calculus.

4We retrieve as an Eilenberg-Moore category of a model of LL the cartesian and cocartesian category of predomains
and continuous functions singled out in [17] as a canonical category on top of which a continuation semantics for classical
lambda calculi can be built. This is perfectly compatible with [9] where it is shown that this continuation semantics can
be performed on top of any Eilenberg-Moore category of a model of LL.
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a′ ≤[ϕ] a

Φ, x : a : ϕ ` x : a′ : ϕ

u ∈ Pfin(|[σ]|) ∀a ∈ u Φ `M : a : σ

Φ `M ! : u : !σ

Φ `M1 : a1 : ϕ1 Φ `M2 : a2 : ϕ2

Φ ` 〈M1,M2〉 : (a1, a2) : ϕ1 ⊗ ϕ2

Φ `M : {a} : !σ

Φ ` der(M) : a : σ

Φ `M : a : ϕi
Φ ` iniM : (i, a) : ϕ1 ⊕ ϕ2

Φ `M : (a, b) : ϕ( σ Φ ` N : a : ϕ

Φ ` 〈M〉N : b : σ

Φ `M : (1, a) : ϕ1 ⊕ ϕ2 Φ, x1 : a : ϕ1 ` N1 : b : σ Φ, x2 : ϕ2 ` N2 : σ

Φ ` case(M,x1 ·N1, x2 ·N2) : b : σ

Φ `M : (2, a) : ϕ1 ⊕ ϕ2 Φ, x1 : ϕ1 ` N1 : σ Φ, x2 : a : ϕ2 ` N2 : b : σ

Φ ` case(M,x1 ·N1, x2 ·N2) : b : σ

Φ `M : (a1, a2) : ϕ1 ⊗ ϕ2

Φ ` priM : ai : ϕi

Φ, x : u : !σ `M : a : σ ∀b ∈ u Φ ` fixx!σM : b : σ

Φ ` fixx!σM : a : σ

Φ `Mi : a : σ Φ `M2−i : σ

Φ ` choose(M1,M2) : a : σ

Figure 5: Scott Semantics as a Typing System

Theorem 5 If P `M : σ and M→∗mM′ then [M]P = [M′]P .

It is interesting to present this Scott semantics of terms as a typing system, in the spirit of Coppo-
Dezani Intersection Types, see [8]. A semantic context is a sequence Φ = (x1 : a1 : ϕ1, . . . , xn : an : ϕn)
where ai ∈ [ϕi] for each i, its underlying typing context is Φ = (x1 : ϕ1, . . . , xn : ϕn) and its underlying
tuple is 〈Φ〉 = (a1, . . . , ak) ∈ [Φ]. The typing rules are given in Figure 5, the intended meaning of these
rules is made clear in Proposition 7.

A simple induction on typing derivation trees shows that this typing system is “monotone” as usually
for intersection type systems. We write Φ ≤ Φ′ if Φ = (x1 : a1 : ϕ1, . . . , xn : an : ϕn), Φ′ = (x1 : a′1 :
ϕ1, . . . , xn : a′n : ϕn) and ai ≤[ϕi] a

′
i for i = 1, . . . , n.

Proposition 6 If Φ `M : a : σ, a′ ≤[σ] a and Φ ≤ Φ′ then Φ′ `M : a′ : σ.

Using this property, one can prove that this deduction system describes exactly the Scott denotational
semantics of ΛHP.

Proposition 7 Given a1 ∈ [ϕ1],. . . ,an ∈ [ϕn] and a ∈ [σ], one has (a1, . . . , an, a) ∈ [M ]x1:σn,...,x1:σn iff
x1 : a1 : ϕ1, . . . , xn : an : ϕn `M : a : σ.

The proof also uses crucially the fact that all structural operations (weakening, contraction, dereliction,
promotion) admit a very simple description in terms of the preorder relation on objects by Theorem 2;
for instance the contraction morphism of X (seen as an object of Polr!) is cX = {(a, (a1, a2)) | ai ≤X
a for i = 1, 2}.

2.3.4 Adequacy. Our goal now is to prove that, if a closed term M of positive type ϕ has a non-
empty interpretation, that is, if there is a ∈ |[ϕ]| such that `M : a : ϕ, then the reduction →m starting
from M terminates in the sense that one of the “branches” of the non-deterministic reduction of M
reaches a value.

We use a semantic method adapted from the presentation of the reducibility method in [8].
Given a type σ and an a ∈ [σ], we define a set |a|σ of terms M such that `M : σ (so these terms are

all closed). The definition is by induction on the structure of the point a.
Given a positive type ϕ and a ∈ [ϕ], we define |a|ϕv as a set of closed values V such that ` V : ϕ and

given a general type σ and a ∈ [σ], we define |a|σ as a set of closed terms M such that ` M : σ. The

8



|u|!σv = {N ! | N ∈
⋂
a∈u
|a|σ}

|(a1, a2)|ϕ1⊗ϕ2
v = {〈V1, V2〉 | Vi ∈ |ai|ϕiv for i = 1, 2}

|(i, a)|ϕ1⊕ϕ2
v = {iniV | V ∈ |a|ϕiv }
|a|ϕ = {M | `M : ϕ and ∃V ∈ |a|ϕv M →∗nd V }

|(a, b)|ϕ(σ = {M | `M : ϕ( σ and ∀V ∈ |a|ϕv 〈M〉V ∈ |b|σ}

Figure 6: Interpretation of points as sets of terms in ΛHP

definitions are by mutual induction and are given in Figure 6. Observe that if ` V : ϕ and if a ∈ [ϕ], the
statements V ∈ |a|ϕ and V ∈ |a|ϕv are equivalent because V is →m-normal.

Lemma 8 Assume that `M : σ. If M →∗nd M ′ and M ′ ∈ |a|σ then M ∈ |a|σ.

Proof. By induction on the structure of a. If σ = ϕ, the property follows readily from the definition.
Assume that σ = ϕ( τ and a = (b, c). Assume that M →m M ′ +M with M ′ ∈ |a|σ. Let V ∈ |b|ϕv , we
have 〈M〉V →m 〈M ′〉V + 〈M〉V and 〈M ′〉V ∈ |c|τ by definition of |ϕ( τ |(b,c). The announced property
follows by inductive hypothesis. 2

Lemma 9 Let σ be a type and let a, a′ ∈ |[σ]| be such that a ≤[σ] a
′. Then |a|σ ⊇ |a′|σ. If σ is positive,

we have |a|σv ⊇ |a′|σv

Theorem 10 (Interpretation Lemma) Let Φ = (x1 : a1 : ϕ1, . . . , xk : ak : ϕk) and assume that
Φ `M : a : σ. Then for any family of closed values (Vi)

k
i=1 such that Vi ∈ |ai|ϕi one has

M [V1/x1, . . . , Vk/xk] ∈ |a|σ .

Proof. By induction on the Scott typing derivation of M . Let Vi be values such that Vi ∈ |ai|ϕi for
i = 1, . . . , k. For any term R, we use R′ for R [V1/x1, . . . , Vk/xk]. This proof uses the definition of →nd

in Section 2.1. The basic notion of reduction in this non-deterministic context is→m defined in the same
section, the reduction→nd is only a derived notion, but a convenient one. We deal only with a few cases.

Assume that M = N ! with σ = !τ , a = u ∈ Pfin(|[τ ]|), Φ ` N : b : τ for each b ∈ u. By inductive
hypothesis, we have N ′ ∈

⋂
b∈u |b|τ . Since M ′ = N ′!, and hence M ′ →∗nd N ′! in 0 steps, the announced

property holds.
Assume that M = case(N, x1 ·N1, x2 ·N2) with Φ ` N : (1, b) : ϕ1 ⊕ϕ2 and Φ, x1 : b : ϕ1 ` N1 : a : σ

(and also Φ, x2 : ϕ2 ` N2 : σ). By inductive hypothesis we have N ′ ∈ |(1, b)|ϕ1⊕ϕ2 . This means that
there is V ∈ |b|ϕ1

v such that N ′ →∗nd in1V . Therefore we have M ′ = case(N ′, x1 · N ′1, x2 · N ′2) →∗nd
case(in1V, x1 ·N ′1, x2 ·N ′2)→nd N

′
1 [V/x1]. By inductive hypothesis applied to N1, and because V ∈ |b|ϕ1

v ,
we have N ′1 [V/x1] ∈ |a|σ and hence M ′ ∈ |a|σ as expected.

Assume that M = 〈N〉R with Φ ` N : (b, a) : ϕ ( σ and Φ ` R : b : ϕ. By inductive hypothesis
we have N ′ ∈ |(b, a)|ϕ(σ and R′ ∈ |b|ϕ. Therefore there is V ∈ |b|ϕv such that R′ →∗nd V . Hence
M ′ = 〈N ′〉R′ →∗nd 〈N ′〉V ∈ |a|σ by definition of |(b, a)|ϕ(σ and hence M ′ ∈ |a|σ by Lemma 8.

Assume that M = λxϕN with σ = ϕ( τ , a = (b, c) and Φ, x : b : ϕ ` N : c : τ . We must prove that
λxϕN ′ ∈ |(b, c)|ϕ(τ . So let V ∈ |b|ϕv , we must check that 〈λxϕN ′〉V ∈ |c|τ which results from the fact
that 〈λxϕN ′〉V →nd N

′ [V/x] ∈ |c|τ by inductive hypothesis and from Lemma 8.
Assume last that M = choose(M1,M2) with Φ `M1 : a : ϕ and Φ `M2 : σ. By inductive hypothesis

we have M ′1 ∈ |a|ϕ and hence by Lemma 8 M ′ ∈ |a|ϕ since, clearly, M ′ = choose(M ′1,M
′
2)→ndM

′
1. 2

Let 1 = !>, which is a positive type. One has ` (Ω>)! : 1. This type is similar to the type unit of ML
and (Ω>)! is similar to (), we use it as our basic type of observations (what we observe is termination).
We have [1] = 1 (up to trivial iso) and [(Ω>)!] = {∅}. If ` M : ϕ and [M ] 6= ∅ we have M →∗w V for a
value V by Theorem 10.

Let us say that two closed terms M1, M2 such that `Mi : σ for i = 1, 2 are observationally equivalent,
notation M1 ∼M2, if for all closed term C of type !σ ( 1, 〈C〉M !

1→∗w() iff 〈C〉M !
2→∗w().

9



Theorem 11 (Adequacy) If `Mi : σ for i = 1, 2 satisfy [M1] = [M2] then M1 ∼M2.

Easy consequence of Theorems 10 and 5.
Another important consequence of Theorem 10 is a “completeness” property of the weak reduction

of Figure 2 which can be stated as follows, for the language ΛHP (it is not completely clear what the
analogue statement for the non-deterministic extension of ΛHP should be). Let ' be an equivalence
relation on terms which contains →∗w and is compatible with the semantics of Section 1.1.4 in the sense
that, if P `Mi : σ for i = 1, 2 and M1 'M2, then [M1]P = [M2]P in any model L. Assume that `M : ϕ
and ` V : ϕ for a closed term M and a closed value V , and assume that M ' V . Then M →∗w V ′ where
V ′ is a value such that V ' V ′.

2.4 Full Abstraction

We prove now the converse of Theorem 11. For this purpose we associate terms with points of the model.
The proof use a technique similar to the one developed in [15]. More precisely:

• Given a positive type ϕ and a ∈ |[ϕ]|, we define a term a0 such that ` a0 : ϕ( 1.

• Given a general type σ and a ∈ |[σ]|, we define terms a− such that ` a− : !σ ( 1 and a+ such that
` a+ : σ. Moreover if σ is positive, the term a+ is a value.

We give the definition of these terms, by induction on the structure of the point a. For this we use
the term conjϕ such that ` conj : 1 ( ϕ( ϕ defined by conj = λx1 λyϕ y. It is easy to check that
[conjϕ] = {(∅, (a, a′)) | a′ ≤[ϕ] a}. Given terms Mi such that ` Mi : 1 for i = 1, . . . , k, we use the
notation M1 ∧ · · · ∧Mk for the term M = 〈conj1〉M1 · · · 〈conj1〉Mk−1Mk so that `M : 1. For k = 0, we
set M = () = (Ω>)!.

For terms M1, . . . ,Mk such that `Mi : σ for i = 1, . . . , k, we set

M1 ∨ · · · ∨Mk = choose(M1, . . . , choose(Mk−1,Mk)) .

If ϕ = !σ and a = [b1, . . . , bk] with bi ∈ |[σ]|. By inductive hypothesis, we have terms ` b−i : ϕ ( 1
and ` b+i : σ. Then we set

a0 = λxϕ 〈b−1 〉x ∧ · · · ∧ 〈b
−
k 〉x a+ = (b+1 ∨ · · · ∨ b

+
k )! .

If ϕ = ϕ1 ⊗ ϕ2 and a = (b1, b2) with bi ∈ |[ϕi]| for i = 1, 2, then we set

a0 = λxϕ1⊗ϕ2 〈b01〉pr1x ∧ 〈b02〉pr2x a+ = 〈b+1 , b
+
2 〉 .

If ϕ = ϕ1 ⊕ ϕ2 and a = (1, b) with b ∈ |[ϕ1]| then we set

a0 = λxϕ1⊕ϕ2 case(x, y1 · 〈b0〉y1, y2 · Ω1) a+ = in1b
+

and when a = (2, b) the definition is similar.
For a general type σ and a ∈ |[σ]|, we define now a− and a+. If σ = ϕ is positive, then we have

defined a0 and we set

a− = λx!ϕ 〈a0〉der(x)

and a+ is already defined. If σ = ϕ( τ and a = (b, c) with b ∈ |[ϕ]| and c ∈ |[τ ]| then we set

a− = λf !(ϕ(τ) 〈c−〉(〈der(f)〉b+)!

a+ = λxϕ der(conj!τ (〈b0〉x, (c+)!)) .

It is easy to check that these terms satisfy the announced typing judgments. It is also clear that the
term a+ is always a value.

Given an object X of Polr, an element u of Ini(X) is the same thing as a morphism in Polr(1, X)
and an element of Idl(X) is the same thing as a morphism in Polr!(1, X) (X being equipped with
its unique structure of !-coalgebra). Remember also that morphisms f ∈ Polr(X,Y ) are in bijective
correspondence with linear functions Ini(X) → Ini(Y ); the function associated with f is defined by
f(u) = {b | ∃a (a, b) ∈ f}.

Proposition 12 Let σ be a type and a ∈ |[σ]|, then [a+] = ↓[σ]a and, given u ∈ Ini([σ]), one has

[a−](u!) 6= 0 iff a ∈ u. If σ is a positive type ϕ and if u ∈ Idl([ϕ]), then [a0](u) 6= ∅ iff a ∈ u.
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Proof. By mutual induction on the structure of a. If ϕ = !σ and a = {b1, . . . , bk}, we have

[a+] = [(b+1 ∨ · · · ∨ b
+
k )!] = ([b+1 ] ∪ · · · ∪ [b+k ])!

= Pfin(( ↓
[σ]

b1 ∪ · · · ∪ ↓
[σ]

bk)) = ↓
![σ]

{b1, . . . , bk} .

Let u ∈ Idl([ϕ]), that is u ∈ Polr!(1, [ϕ]!), then

[a0](u) = [b−1 ](u) ∩ · · · ∩ [b−k ](u)

because u commutes with contraction and weakening on [ϕ], as a morphism of Polr!. For the same
reason we know that u = v! where v = der[σ](u) =

⋃
u (using the definition of der in Polr and the

downwards closure of u). By inductive hypothesis it follows that [a0](u) 6= ∅ holds iff ∀i bi ∈ v, that is
∀i ∃ai ∈ u bi ∈ ai and since u is an ideal for the preorder of ![σ] this latter condition is equivalent to
{b1, . . . , bk} ∈ u, that is a ∈ u as contended.

If ϕ = ϕ1 ⊗ ϕ2 and a = (a1, a2) with ai ∈ |[ϕi]|, then

[a+] = [〈a+
1 , a

+
2 〉] = [a+

1 ]× [a+
2 ] = ↓

[ϕ2]

a1 × ↓
[ϕ1]

a2 = ↓
[ϕ]

a .

If u ∈ Idl([ϕ]), then u = u1×u2 where ui = pri(u) ∈ Idl([ϕi]) for i = 1, 2 because u is an ideal. Therefore

[a0](u) = [λxϕ1⊗ϕ2 〈b01〉pr1x ∧ 〈b02〉pr2x](u)

= [a0
1](u1) ∩ [a0

2](u2)

and hence by inductive hypothesis [a0](u) 6= ∅ holds iff ai ∈ ui for i = 1, 2, that is, iff a ∈ u.
If ϕ = ϕ1 ⊕ ϕ2 and a = (1, a1) with a1 ∈ |[ϕ1]| (the case a = (2, a2) being similar), then we have

[a+] = [in1a
+
1 ] = {1} × [a+

1 ] = {1} × ↓
[ϕ1]

a1 = ↓
[ϕ]

a .

Let u ∈ Idl([ϕ]). Then there is i ∈ {1, 2} such that u = {i} × ui with ui ∈ Idl([ϕi]). If i = 1 we have

[a0](u) = [λxϕ1⊕ϕ2 case(x, y1 · 〈a0
1〉y1, y2 · Ω1)](u) = [a0

1](u1)

and if i = 2 then [a0](u) = [Ω1] = ∅ by Theorem 10. If follows that [a0](u) 6= ∅ holds iff a1 ∈ u1.
Let now ϕ be a positive type and let a ∈ |[ϕ]|. Let u ∈ Ini([ϕ]), we have

[a−](u!) = [λx!ϕ 〈a0〉der(x)](u!) = [a0](u)

so that [a−](u!) 6= ∅ iff a ∈ u by what we have seen above.
Last, let σ = ϕ ( τ and let a = (b, c) ∈ |[σ]|. Then a+ = λxϕ der(conj!τ (〈b0〉x, (c+)!)) satisfies by

inductive hypothesis, for each u ∈ Idl([ϕ]),

[a+](u) =

{
↓[τ ]c if b ∈ u
∅ otherwise .

It follows that [a+] = ↓[ϕ(τ ](b, c). Let now u ∈ Ini([σ]), we have

[a−](u!) = [λf !(ϕ(τ) 〈c−〉(〈der(f)〉b+)!](u!) = [c−](u([b+])!)

so that [a−](u!) 6= ∅ holds iff c ∈ u(↓[ϕ]b) and this latter property is equivalent to (b, c) ∈ u (identifying
elements of Polr([ϕ], [σ]) with linear functions as explained above). 2

Theorem 13 (Full Abstraction) If `Mi : σ for i = 1, 2 satisfy M1 ∼M2 then [M1] = [M2].

Proof. Towards a contradiction, assume that [M1] 6= [M2]. Wlog assume that a is an element of [M1]
such that a /∈ [M2]. Then by Proposition 12 we have [〈a−〉M !

1] = [a−]([M1]!) = {∅} and [〈a−〉M !
2] =

[a−]([M2]!) = ∅. By Theorem 10 it follows that 〈a−〉M !
1 ↓nd and we have not 〈a−〉M !

2 ↓nd. It follows that
M1 6∼M2. 2
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3 Global states

3.1 Transition system with parameters

We base our CBPV with global states on a very general enriched notion notion of transition system. A
transition system with parameters (TSP) is a tuple

Q = (SQ, IQ, arQ,TQ)

where SQ is a countable set of states, IQ is a countable set of instructions, arQ : IQ → N is an arity
map and TQ is a transition relation. More precisely, setting IQ(k) = {θ ∈ IQ | arQ(θ) = k} (the set of
instructions or arity k), we have

TQ ⊆
⋃
k∈N

(SQ × Nk)× IQ(k)× (SQ × N) .

Intuitively, ((q, ~n), θ, (q′, n)) ∈ TQ with θ ∈ IQ(k) means that, at state q and given k parameters ~n =
(n1, . . . , nk), the instruction θ leads to state q′ with output n. The fact that TQ is a relation and not
a function means that we also admit non-deterministic and partial behaviors. For such a transition we

also use the more familiar notation (q, ~n)
θ→Q (q′, n).

Example. There are of course many useful instances of such general structures. Let us mention two of
them.

• Global memory. Given N ∈ N, we define a TSP Q as follows. We set SQ = N{0,...,N−1}, IQ =
{rd,wr}, arQ(rd) = 1, arQ(wr) = 2 and

(q, i)
rd→Q (q′, n) if 0 ≤ i < N , q(i) = n and q′ = q

(q, i, n)
wr→Q (q′, n′) if 0 ≤ i < N , q′ = q [n/i] and n′ = 0

where q′ = q [n/i] is the function {0, . . . , N − 1} → N such that q′(j) = n if j = i and q′(j) = q(j)
otherwise. The choice taken that the output integer n′ is 0 for the write instruction is of course
arbitrary. We could modify these instructions for allowing them to yield error messages in case of
out of range error, here we have decided that the instruction would not return in such a case.

• Non determinism. We define a TSP Q as follows: SQ = {0, 1}<∞ (the set of finite sequences of
booleans), IQ = {or} with arQ(or) = 0 (this should be understood as an oracle delivering a new
boolean (or nothing) each time it is called. Then

q
or→Q (q′, n) if q = nq′ .

Such TSP’s Q and R can easily combined when they have disjoint sets of instructions: one defines
Q +R by SQ+R = SQ × SR , IQ+R = IQ ∪ IR, arQ+R defined in the obvious way, and given θ ∈ IQ(k),

we have (q, r, ~n)
θ→Q+R (q′, r′, n) if (q, ~n)

θ→Q (q′, n) and r = r′, and symmetrically for θ ∈ IR.

3.2 Syntax

Given a TSP Q, we define a CBPV lambbda-calculus ΛQHP on top of it. More precisely, we extend the
syntax of Section 1 as follows.

The definition of positive types is unchanged, for general types, we set:

σ, τ . . . := · · · | T(ϕ) (3)

So we add a monadic construction for dealing with effects, in the spirit of Moggi’s computational lambda
calculus [14]. From a semantical viewpoint one could admit a more general type T(σ) but actually only
T(ϕ) seems syntactically useful.

Concerning terms, the syntax is extended as follows:

M,N . . . := · · · | e(M) | seq(M,x ·N) | θ(M1, . . . ,Mk)

12



P `M : ϕ

P ` e(M) : T(ϕ)

P `M : T(ϕ) P, x : ϕ ` N : T(ψ)

P ` seq(M,x ·N) : T(ψ)

θ ∈ IQ(k) P `Mi : ι for i = 1, . . . , k

P ` θ(M1, . . . ,Mk) : T(ι)

Figure 7: Typing system for ΛQHP

seq(e(V ), x ·N)→w N [V/x]
M →w M

′

e(M)→w e(M ′)

Mi →w M
′
i ∀j 6= i M ′i = Mi

(q, θ(M1, . . . ,Mk))→w (q, θ(M ′1, . . . ,M
′
k))

M →w M
′

(q,M)→s (q,M ′)

(q,M)→s (q′,M ′)

(q, seq(M,x ·N))→s (q′, seq(M ′, x ·N))

θ ∈ IQ(k) (q, n1, . . . , nk)
θ→Q (q′, n)

(q, θ(n1, . . . , nk))→s(q
′, e(n))

Figure 8: Stateful reduction rules

for k ∈ N and θ ∈ IQ(k). Our construction seq(M,x ·N) is similar to the more usual letx = M inN , but
we prefer a notation which stresses the order of evaluation.

We define the type ι of flat (unary) natural numbers by ι = 1⊕ι (by this we mean that ι = Fix ζ·(1⊕ζ)).
We define 0 = in1() and n+ 1 = in2n. Observe that P ` n : ι for each n ∈ N.

Figure 7 provides the additional typing rules.

3.3 Operational semantics

As in Section 1 we define a weak reduction on terms based on a notion of value; the definitions are
exactly the same and we use the same notational conventions so we do not repeat them here, although
they apply now to an extended syntax. So our calculus is equipped with the weak reduction relation→w

defined in Figure 2.
Concerning the “stateful” part of the calculus, we introduce a notion of computation→s which applies

to pairs (q,M) where q ∈ SQ and M is a term. The rules are given in Figure 8.

Proposition 14 (Stateful Subject Reduction) Assume that P ` M : σ. If M →w M ′ then P `
M ′ : σ. If (q,M)→s (q′,M ′) then σ = T(ϕ) for some positive type ϕ, and we have P `M ′ : σ.

The proof is quite easy (again, a substitution lemma is needed).

Remark : The second statement of Proposition 14 is particularly important as it justifies the definition
of →w for ΛQHP. It is absolutely crucial to observe that, in all of the deduction rules defining →w in
Figure 2 the terms occurring in the premises have types which are not of shape T(ϕ). For instance, in
the 6th rule, if P `M : σ, we must have σ = ϕ( τ for some types ϕ and τ and hence σ is not of shape
T(ψ). In the 7th rule, if P ` N : σ then σ must be positive and is therefore not of shape T(ψ). Similar
considerations apply to all deduction rules of Figure 2. It is only for this reason that the definition of→w

does not involve states since the only terms whose “reduction modify states” have type of shape T(ϕ).

3.4 Denotational semantics

We first explain how to interpret the purely monadic constructions e(M) and seq(M,x ·N) in the general
categorical setting of Section 1.1. So we assume to be given a category L equipped with all the structures
and satisfying all the properties outlined in that section.
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P ⊗X P ⊗ T (X)

T (P ⊗X)

P ⊗ T 2(X) T (P ⊗ T (X)) T 2(P ⊗X)

P ⊗ T (X) T (P ⊗X)

P ⊗ εX

strP,X
εP⊗X

strP,T (X) T (strP,X)

P ⊗ τX τP⊗X

strP⊗X

Figure 9: Two commutations satisfied by a computational monad

3.4.1 Computational monad. Like [6], we assume furthermore to be given a monad T : L → L
with unit ε and multiplication τ . Moreover we assume this monad to be equipped with a natural
transformation str : T1 → T2 where T1, T2 : L! × L → L are the functors defined by: T1 = U ⊗ T and
T2 = T (U ⊗ L) where U : L! → L is the forgetful functor. This natural transformation is called the
strength of T . In other words, for each P object of L! and each X object of L, we have a morphism
strP,X ∈ L(P ⊗ T (X), T (P ⊗X)), natural in P and X. As usual this natural transformation is subject
to coherence diagrams of which we give two examples in Figure 9 (the other ones involve the symmetric
monoidal structure of L).

Remark : Requiring the strength strP,X only for “contexts” P taken in L! (we do not ask for a general
strength X ⊗ T (Y ) → T (X ⊗ Y )) is important as it allows the monad ? : L → L to have a strength
in our sense whereas it wouldn’t have with the stronger definition. Remember that “?” is the monad of
linear continuations, used non-linearly.

We also assume that the functor T acts as a functor L⊆ → L⊆ in such a way that, if ϕ ∈ L⊆(X,Y ),
then (Tϕ)+ = T (ϕ+) and (Tϕ)− = T (ϕ−), and that T : L⊆ → L⊆ is continuous. In most cases, this
condition will trivially be satisfied because T will be defined using basic LL constructs (⊗, (, ! etc).

We extend the inductive definitions of types and term interpretation of [3] to these monadic construc-
tions. Concerning types, we set of course [T(ϕ)] = T ([ϕ]).

Assume first that P ` M : ϕ, so that by inductive hypothesis [M ]P ∈ L([P], [ϕ]), we set [e(M)]P =
ε[ϕ] [M ]P . Assume next that P, x : ϕ ` M : T(ψ) and P ` N : T(ϕ). By inductive hypothesis we
have [M ]P,x:ϕ ∈ L([P]⊗ [ϕ], T [ψ]) and [N ]P ∈ L([P], T [ϕ]). We define [seq(N, x ·M)]P as the following
composition of morphisms in L.

[P] [P]⊗ [P] [P]⊗ T ([ϕ])

T ([P]⊗ [ϕ])T 2([ψ])T ([ψ])

c[P] [P]⊗ [N ]P

str
[P]!,[ϕ]

T ([M ]P,x:ϕ)τ[ψ]

This interpretation is sound wrt. our operational semantics:

Proposition 15 If P, x : ϕ `M : T(ψ) and P ` V : ϕ, then [seq(e(V ), x ·M)]P = [M [V/x]]P .

This is a direct consequence of the axioms of strong monad, and of the Substitution Lemma which states
that [M [V/x]]P = [M ]P,x:ϕ ([P] ⊗ [V ]P) c[P]! , and holds because [V ]P is a coalgebra morphism. This
lemma is proven by induction on M .

3.4.2 States in the Scott model of LL. Given an object S in L, it is standard to define a linear
state monad (T, ε, τ) on L which satisfies T (X) = S ( S ⊗X. We will recall the precise definition in a
special case.

From now on we take for L the category Polr of Section 2.2. Let S be the object of Polr such
that |S| = SQ and ≤S is the diagonal (that is q ≤S q′ iff q = q′). The corresponding linear state
monad is described in Figure 10. Remember that the objects of Polr! can be identified with those of
Polr. For this particular monad, the strength can be seen as a natural transformation T ′1 → T ′2 where
T ′1, T

′
2 : Polr2 → Polr are defined by T ′1(X,Y ) = X ⊗ T (Y ) and T ′2(X,Y ) = T (X ⊗ Y ) and similarly for

morphisms.
To avoid considering multisets of terms as in Section 2.1, we assume that the TSP Q is deterministic

in the sense that if θ ∈ IQ(k), the relation
θ→Q is a partial function from TQ × Nk to TQ × N.
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|TX| = S2
Q × |X|

T (f) = {((q, q′, a), (q, q′, b)) | q, q′ ∈ SQ and (a, b) ∈ f} if f ∈ Polr(X,Y )

εX = {(a, (q, q, a′)) | q ∈ SQ and a′ ≤X a}
τX = {(q, q′, (q′, q′′, a)), (q, q′′, a′)) | q, q′, q′′ ∈ SQ and a′ ≤X a}

strX,Y = {((a, (q, q′, b)), (q, q′, (a′, b′))) | q, q′ ∈ SQ and a′ ≤X a, b′ ≤Y b}

Figure 10: The linear state monad in Polr

Φ `M : a : ϕ

Φ ` e(M) : (q, q, a) : T(ϕ)

Φ, x : a : ϕ `M : (q′, q′′, b) : T(ψ) Φ ` N : (q, q′, a) : T(ϕ)

Φ ` seq(N, x ·M) : (q, q′′, b) : T(ψ)

Φ `Mi : ni : ι for i = 1, . . . , k (q, n1, . . . , nk)
θ→Q (q′, n)

Φ ` θ(M1, . . . ,Mk) : (q, q′, n) : T(ι)

Figure 11: Scott typing rules for states

Up to isomorphism we have [ι] = N where N = (N,=) is the object of “flat natural numbers” in

Polr. With θ ∈ IQ(k) we associate θ ∈ Polr(N⊗k, T (N)) given by θ = {(~n, (q, q′, n)) | (q, ~n)
θ→Q (q′, n)}.

Then, given terms Mi such that P ` Mi : ι for i = 1, . . . , k, we set [θ(M1, . . . ,Mk)]P = θ ([M1]P ⊗
· · ·⊗ [Mk]P) ◦ c where c ∈ Polr!([ϕ]!, ([ϕ]!)⊗k) is the diagonal morphism in the cartesian category Polr!

(k-ary contraction).
As explained in Section 2.2, the interpretation of terms can be represented as a typing system, see

Figure 5. We extend this typing system5 with the rules of Figure 11 which are quite intuitive if we
interpret M : (q, q′, a) : T(ϕ) as “in state q, M reduces to the value a in the new state q′”. Then
Proposition 7 extends easily to these new constructions: the typing system of Figure 5 and 11 describes
exactly the Scott semantics of ΛQHP.

This interpretation is sound wrt. the operational semantics of Section 3.3. To express this property
we need an auxiliary notation. Let f ∈ Polr(X,T (Y )) and let q ∈ SQ, we set f (q) = {(a, (q′, b)) |
(a, (q, q′, b)) ∈ f} ∈ Polr(X,S ⊗ Y ).

Proposition 16 If P `M : σ and M →w M
′ then [M ]P = [M ′]P . If σ = T(ϕ) and (q,M)→s (q′,M ′)

then [M ]
(q)
P = [M ′]

(q′)
P .

The proof is easy and uses our hypothesis that Q is deterministic to deal with the case where M =
θ(n1, . . . , nk). Using multisets of terms and states as in Section 2.1, it could easily be extended to the
non-deterministic case.

To prove adequacy, we extend first the definition given in Section 2.3.4 for the interpretation of points
of the model as sets of terms, see Figure 6. We set

|(q, q′, a)|T(ϕ) = {M | `M : T(ϕ) and ∃V ∈ |a|ϕv (q,M)→∗s (q′, e(V ))}

Then we can adapt the reasoning of that section. Since our operational semantics is deterministic (thanks
to our hypothesis on Q) we can replace everywhere→nd with→w. Lemma 9 is easily extended. Lemma 8
is rephrased as follows:

Lemma 17 Assume that ` M : σ. If M →w M ′ and M ′ ∈ |a|σ then M ∈ |a|σ. If σ = T(ϕ),
(q,M)→s (q′,M ′) and M ′ ∈ |(q′, q′′, a)|T(ϕ) then M ∈ |(q, q′′, a)|T(ϕ).

Again, the proof is easy. Last one has to prove Theorem 10 for this extended language. The statement
of the Theorem is unchanged, one has just to consider a few more cases in the proof. They are all easy,
we just deal with one of them to give a flavor of the reasoning, using the same notational conventions.

5Of course, we drop the rules for choose(M,N) which is not part of our syntax.
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Assume that σ = T(ψ), a = (q, q′′, c), M = seq(N, x · R) with Φ ` N : (q, q′, b) : T(ϕ) and Φ, x : b : ϕ `
R : (q′, q′′, c) : T(ψ). By inductive hypothesis we have N ′ ∈ |(q, q′, b)|T(ϕ), so let V ∈ |b|ϕv be such that
(q,N) →∗s (q′, e(V )). By the reduction rules of Figure 8 we have (q,M ′) →∗s (q′, seq(e(V ), x · R′)) →s

(q′, R′ [V/x]). By inductive hypothesis applied to R (using the fact that V ∈ |a|ϕv ) we have R′ [V/x] ∈
|(q′, q′′, c)|T(ψ), that is (q′, R′ [V/x])→∗s (q′′, e(W )) for some W ∈ |c|ψv . Therefore (q,M ′)→∗s (q′′, e(W ))
which shows that M ′ ∈ |(q, q′′, c)|T(ψ) as contended.

3.4.3 Consequences. Assume that ` M : T(ϕ) and let q ∈ SQ. By Theorem 10 for ΛQHP and by
soundness, we have that (q,M)→s (q′, e(V )) for some value V and some state q′ (that is, the computation
of M in state q terminates on some value) iff [M ](q) 6= ∅. This provides us with a purely denotational
characterization of termination (independent of any choice of reduction rules) which shows in particular
that our definition of →w and →s is sufficient for evaluating all terminating programs.

One can also derive from this theorem an adequacy theorem similar to Theorem 11. This will be
presented in a further paper.

Conclusion. These global state constructions can be performed in many other models of LL: relational
semantics, coherence spaces, probabilistic coherence spaces etc. This offers interesting perspectives for
combining states with differential LL [2] and probabilistic computing.
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