
What is Linear Logic?

Thomas Ehrhard, IRIF, CNRS and Université de Paris
ehrhard@irif.fr

https://www.irif.fr/~ehrhard

February 15, 2021

ehrhard@irif.fr
https://www.irif.fr/~ehrhard


Linear Logic seems to be everywhere.

How I met LL: as a natural structure of a model of sequential
computations (strong stability ; hypercoherences in 1992).

The same thing happened

• earlier for Berry's stable semantics (stability ; coherence

spaces): this is how Girard discovered LL

• later for Scott semantics (Scott continuity ; prime algebraic

complete lattices, Krivine, Huth, Winskel).

We know now dozens of models of programming languages which
can nicely be described as models of LL.



In what does it di�er from usual logic?

• Logic is usually thought of as a formalism to express and
prove properties of things.

• In the 20th century one understood that proofs are programs
(Gentzen cut-elimination, Gödel Dialectica, Curry Howard
correspondence). Logical formulas become types.

• Linear logic is a Curry Howard logic: LL formulas are types.

• LL shows up when one builds universes (categories) of spaces
and morphisms representing computations between them.

This talk: illustration on the example of probabilistic coherence
spaces.



The category of substochastic matrices

Example

For some reason, we want to build a simple theory of
subprobabilistic distributions and substochastic matrices acting on
them.

It can be described as a category:

• objects are sets I , J,. . .

• a morphism I → J is a matrix s ∈ (R≥0)I×J such that
∀i ∈ I

∑
j∈J si ,j ≤ 1.

So a matrix s : I → I is a submarkovian chain (we accept loss of
mass: possibly diverging computations).



As a category

This simply means that we have objects (sets), morphisms
(matrices), a way of composing them:

If s : I → J and t : J → K then t s : I → K is the product of
matrices

(t s)i ,k =
∑
j∈J

si ,j tj ,k

And identity matrices IdI : I → I , (IdI )i ,i ′ = δi ,i ′ .



Matrices and vectors (distributions)

This seems very stupid, but there are interesting structures
behind. . .

The singleton set 1 = {∗}.
• A matrix x : 1→ I is just a subprobability distribution on I ,
x ∈ D(I ).

• up to trivial iso x ∈ D(I ) simply means x ∈ (R≥0)I with∑
i∈I xi ≤ 1.

• If s : I → J then s x ∈ D(J) is the image distribution of x :

(s x)j =
∑
i∈I

si ,jxi .



Codistributions and transpose

What is a matrix x ′ : I → 1, say x ′ ∈ D′(I )?

• It means x ′ ∈ (R≥0)I with ∀i ∈ I x ′i ≤ 1

• If s : J → I then the transpose s⊥ ∈ (R≥0)J×I of s, de�ned
by s⊥j ,i = si ,j satis�es s

⊥ x ′ ∈ D′(J)

• If x ∈ D(I ), that is x : 1→ I , then x ′ x : 1→ 1 is just an
element of [0, 1], notation

〈x , x ′〉 = (x ′ x) =
∑
i∈I

xix
′
i ∈ [0, 1] (NB: I can be ∞)



Adjunction

Fact

〈s x , x ′〉 = 〈x , s⊥ x ′〉 =
∑

i∈I , j∈J
xisi ,jx

′
j .



Duality and linear negation

There is a duality between D(I ) and D′(I ) similar to the duality
between `1 and `∞ in Banach spaces.

Fact

D′(I ) =
{
x ′ ∈ (R≥0)I | ∀x ∈ D(I ) 〈x , x ′〉 ≤ 1

}
D(I ) =

{
x ∈ (R≥0)I | ∀x ′ ∈ D′(I ) 〈x , x ′〉 ≤ 1

}



A space of substochastic matrices

Let I and J be two sets.

Let Stoc(I , J) be the set of all s : I → J, so
Stoc(I , J) ⊆ (R≥0)I×J .

De�nition

If u ∈ (R≥0)I and v ∈ (R≥0)J let u ⊗ v ∈ (R≥0)I×J be de�ned by
(u ⊗ v)i ,j = uivj .

Fact

Stoc(I , J) ={
s ∈ (R≥0)I×J | ∀x ∈ D(I ) y ′ ∈ D′(J) 〈s, x ⊗ y ′〉 ≤ 1

}



Indeed

s ∈ Stoc(I , J)⇔ ∀x ∈ D(I ) s x ∈ D(J)

⇔ ∀x ∈ D(I ) ∀y ′ ∈ D′(J) 〈s x , y ′〉 ≤ 1

⇔ ∀x ∈ D(I ) ∀y ′ ∈ D′(J) 〈s, x ⊗ y ′〉 ≤ 1

since

〈s x , y ′〉 =
∑
j∈J

(∑
i∈I

si ,jxi

)
y ′j

=
∑

i∈I , j∈J
si ,jxiy

′
j

= 〈s, x ⊗ y ′〉



A common pattern!

In all these cases we have de�ned a P ⊆ (R≥0)I for some set I .

This P is characterized by

P =
{
x ∈ (R≥0)I | ∀x ′ ∈ P ′ 〈x , x ′〉 ≤ 1

}
= P ′⊥

for some P ′ ⊆ (R≥0)I . A predual of P.

Fact

The existence of such a P ′ is equivalent to P = P⊥⊥.

For all P,Q ⊆ (R≥0)I

• P ⊆ Q ⇒ Q⊥ ⊆ P⊥

• P ⊆ P⊥⊥

So P⊥ = P⊥⊥⊥ always holds.



Probabilistic coherence spaces (PCS)

A PCS is a pair X = (|X |,PX ) where

• |X | is a set (the web)

• PX ⊆ (R≥0)|X | such that PX = PX⊥⊥

• we also assume

∀a ∈ |X | 0 < sup {xa | x ∈ PX} <∞

so that all coe�s remain �nite.

X⊥ = (|X |,PX⊥) is also a PCS.



Of course (I ,D(I )) and (I ,D′(I )) are PCS simply denoted D(I )
and D′(I ). We have D′(I ) = D(I )⊥ .

Stoc(I , J) is an instance of a more general construction:

De�nition

If X and Y are PCS, we de�ne a PCS X ( Y by
|X ( Y | = |X | × |Y | and

P(X ( Y ) =
{
s ∈ (R≥0)|X(Y | | ∀x ∈ PX s x ∈ PY

}
=
{
x ⊗ y ′ | x ∈ PX and y ′ ∈ PY⊥

}⊥
.

Just as in the special case of Stoc(I , J). By construction, it is a
PCS.

So we have Stoc(I , J) = (D(I )( D(J)).



LL multiplicative constructs

• 1 unit object, P1 = [0, 1], and 1⊥ = 1.

• X ( Y is linear implication.

• X⊥ = (|X |,PX⊥), linear negation, and we have X⊥⊥ = X as
in classical logic.

• X ⊗ Y = (X ( Y⊥)⊥ , multiplicative conjuction, tensor
product, times. Then |X ⊗ Y | = |X | × |Y | and

P(X ⊗ Y ) = {x ⊗ y | x ∈ PX and y ∈ PY }⊥⊥

Think of A ∧ B = ¬(A→ ¬B) in classical logic.

• X ` Y = X⊥ ( Y =
(
X⊥ ⊗ Y⊥

)⊥
, multiplicative

disjunction, cotensor product, par. Think of
A ∨ B = ¬A→ B.



A category

We have now also a generalization of substochastic matrices: the
elements s of P(X ( Y ).

Remember: they are characterized by a simple property. Given
s ∈ (R≥0)|X |×|Y |, one has

s ∈ P(X ( Y )⇔ ∀x ∈ PX s x ∈ PY

so Id|X | ∈ P(X ( X ) and if s ∈ P(X ( Y ) and t ∈ P(Y ( Z )
then t s ∈ P(X ( Z ). Because (t s) x = t (s x).



Matrices are linear maps

An element s of P(X ( Y ) is a linear morphism from X to Y .
And it is really linear (and continuous) in the sense that if
(x(i))i∈N are elements of PX such that

∑
i∈N x(i) ∈ PX , one has

s (
∑
i∈N

x(i)) =
∑
i∈N

s x(i)

and also s (λx) = λ(s x) for λ ∈ [0, 1].

X⊥ ' (X ( 1) so X⊥ is the space of linear continuous forms on
X , exactly like E ∗ (linear dual) in linear algebra. And here we have
X⊥⊥ ' X exactly like E ∗∗ ' E in �nite dimensional vector spaces.

Here this re�exivity holds also in in�nite dimension (when |X | is
in�nite). Very di�culte to achieve with vector spaces.



Tensor product and multilinear maps

We have them for free: let s ∈ P(X1 ⊗ · · · ⊗ Xk ( Y ).

Then the map

ŝ :

k∏
i=1

PXi → PY

(x(1), . . . , x(k)) 7→ s (x(1)⊗ · · · ⊗ x(k))

is k-linear, that is, separately linear in each argument.



A bilinear map

For instance, we can internalize matrix composition as a bilinear
map:

γ ∈ P(((Y ( Z )⊗ (X ( Y ))( (X ( Y ))

such that

∀t ∈ P(Y ( Z ) ,∀s ∈ P(X ( Y ) γ̂(t, s) = γ (t ⊗ s) = t s

namely γ(b,c),(a,b′) = δb,b′ .



Categories

The right categorical setting for describing the situation is that of
a symmetric monoidal category (SMC), here the category Pcoh:

• objects are the PCS X

• morphisms from X to Y (Pcoh(X ,Y )) are the elements of
P(X ( Y ), identities and composition as described

• together with ⊗ which is a functor Pcoh2 → Pcoh

• and additional structures expressing that ⊗ has 1 as neutral
element, is associative, commutative

• and moreover it is closed, meaning that we have X ( Y

such that Pcoh(Z ⊗ X ,Y ) ' Pcoh(Z ,X ( Y )

• and X⊥ = (X ( 1) with X⊥⊥ ' X (∗-autonomy).



Cartesian product

Warning

X ⊗ Y is not the �cartesian product� (or categorical product) of
X1 and X2

• there are no projections pi ∈ Pcoh(X1 ⊗ X2,Xi) such that
pi (x(1)⊗ x(2)) = x(i) in general.

• and there is no duplication d ∈ Pcoh(X ,X ⊗ X ) such that
d x = x ⊗ x .

Take X1 = 1. Then for each x ∈ PX2 and λ ∈ PX1 = [0, 1] we
should have p1 (λ⊗ x) = p1 (λx) = λ. This contradicts linearity
in x (take x = 0).



Projection as marginalization

In some cases, there are projections, for instance, we have a linear
morphisme θI ∈ Pcoh(D(I ),1) given by (θI )i ,∗ = 1

θI : D(I )→ 1

x 7→
∑
i∈I

xi

Does not work for D′(I )!



So by functoriality of ⊗ we have
π2 = θI ⊗ Id ∈ Pcoh(D(I )⊗D(J),D(J)).

We have D(I )⊗D(J) = D(I × J). Given z ∈ D(I × J), we have

π2 z =

(∑
i∈I

zi ,j

)
j∈J

the marginal distribution.

The existence of θI is related to a crucial logical structure of
D(I ): positivity.



Similarity with vector spaces

Again, strong similarity with vector spaces: there is a cartesian
product of vector space, the so-called direct product of vector
spaces E × F (which coincides with direct sum E ⊕ F ).

direct product vs. tensor product

But E × F does not coincide with the tensor product E ⊗ F ! A
linear map E × F → G is not the same thing as a bilinear map
E × F → G . Also dimE ⊗ F = dimE dimF whereas
dimE × F = dimE + dimF .

We also have a direct product X & Y and a direct sum X ⊕ Y in
PCS, but they do not coincide.



If (Xi)i∈I is a family of PCS we can de�ne X = &i∈I Xi by

• |X | =
⋃

i∈I {i} × |Xi |
• and, for z ∈ (R≥0)|X |, z ∈ PX if for all i ∈ I one has
πi z ∈ PXi where πi ∈ (R≥0)|X(Xi |, the ith projection is

(πi)(j ,a),a′ = δi ,jδa,a′ .

• so that PX '
∏

i∈I PXi by z 7→ (πi z)i∈I and
(x(i))i∈I 7→ 〈x(i)〉i∈I given by z(i ,a) = x(i)a.

By construction we do have now linear projections
πi ∈ Pcoh(&j∈J Xj ,Xi).



We can use duality to de�ne the coproduct:

⊕
i∈I

Xi = ( &
i∈I

X⊥i )⊥

then we have

P(⊕
i∈I

Xi) =
{
〈λix(i)〉i∈I | ~λ ∈ D(I ) and ∀i x(i) ∈ PXi

}
⊆ P( &

i∈I
Xi) .



Beyond linearity: the exponential

A polynomial function on matrices

Given k ∈ N imagine we want to consider the function

f : P(X ( X )→ P(X ( X )

t 7→ tk =

k×︷ ︸︸ ︷
t · · · t

so that

f (t)a,c =
∑

b0,...,bk∈|X |
b0=a, bk=c

tb0,b1 · · · tbk−2,bk−1tbk−1,bk
.

This is not a linear function when k > 1: f (λs) = λk f (s).



An analytic function on matrices

Or even the function

g : P(X ( X )→ P(X ( X )

t 7→ e−1
∞∑
k=0

1

k!
tk



If m ∈M�n(I ) (�nite multiset) and u ∈ (R≥0)I we set

um =
∏
i∈I

u
m(i)
i

and u(!) ∈ (R≥0)M�n(I ) is de�ned by u
(!)
m = um.

Then we de�ne a PCS !X by |!X | =M�n(|X |) and

P(!X ) =
{
x (!) | x ∈ PX

}⊥⊥
.



Fact

If t ∈ (R≥0)|!X(Y |, one has

t ∈ Pcoh(!X ,Y )⇔ ∀x ∈ PX t x (!) ∈ PY

The function

t̂ : PX → PY

x 7→ t x (!)

is an �analytic function�, t (the powerseries) is completely
determined by this function.



Examples of analytic functions

Let k ∈ N. Take f ∈ (R≥0)!(X(X )((X(X ) given by

fm,(a,c) =


1 if ∃b0, . . . , bk ∈ |X | b0 = a, bk = c and

m = [(b0, b1), (b1, b2), . . . , (bk−1, bk)]

0 otherwise.

Then given s ∈ P(X ( X ) we have f̂ (s) = sk .



Let g ∈ (R≥0)!(X(X )((X(X ) given by

gm,(a,c) =


e−1

k! if ∃b0, . . . , bk ∈ |X |, b0 = a, bk = c and

m = [(b0, b1), (b1, b2), . . . , (bk−1, bk)]

0 otherwise.



Let s ∈ P(X ( X ) and t = ĝ(s) ∈ R≥0
|X(X |

, we have

∀x ∈ PX t̂(x) =

∞∑
k=0

e−1

k!
ŝk(x) ∈ PX

because ∀k ∈ N ŝk(x) ∈ PX and
∑∞

k=0

e−1

k! = 1.

Hence ĝ(s) ∈ P(X ( X ).

Since this holds for all s ∈ P(X ( X ), we have
g ∈ Pcoh(!(X ( X ),X ( X ).



Example: stochastic automata

Let A (alphabet) and Q (states) be sets.

D(A)⊗D(Q)( D(Q) is the space of stochastic automata.

The space of words is the �least� solution W of
W = 1⊕ (D(A)⊗W ). Then it is easy to see that W = D(A<ω).

There is an analytic �iteration� function
r ∈ Pcoh(W ⊗ !(D(A)⊗D(Q)( D(Q)),D(Q)( D(Q)).

rw ,m,(a,c) =


1 if w = 〈α1, . . . , αk〉,

m = [(α1, b0, b1), . . . , (αk , bk−1, bk)]

b0 = a, bk = c

0 otherwise.



So r de�nes a function

r̂ : PD(W )× P(D(A)⊗D(Q)( D(Q))→ P(D(Q)( D(Q))

(z , s) 7→ r
(
z ⊗ s(!)

)
linear in its �rst argument but not in the second argument.



Given

• z ∈ PD(W ), that is z is a subprobability distribution on
words

• s ∈ P(D(A)⊗D(Q)( D(Q)) is a stochastic automaton

r̂(z , s) =
∑
k∈N

∑
α1,...,αk∈A

z〈α1,...,αk 〉s(αk) · · · s(α1)

where s(α) ∈ P(D(Q)( D(Q)) is given by s(α)q,q′ = sα,q,q′ : the
transition matrix associated with letter α.

If i , f ∈ Q (initial and �nite state), r̂(z , s)i ,f ∈ [0, 1] is the
probability that we can reach f starting from i .



Pcoh is a very expressive setting

Fact

If s ∈ P(!X ( X ) then ŝ : PX → PX is Scott continuous, that is

• x ≤ y ⇒ ŝ(x) ≤ ŝ(y) (where x ≤ y simply means

∀a ∈ |X | xa ≤ ya)

• and if (x(n))n∈N is a monotone sequence in PX, we have

ŝ(sup
n∈N

x(n)) = sup
n∈N

ŝ(x(n)) .

As a consequence ŝ has a least �xed point supn∈N ŝ
n(0) ∈ PX.



And better, we have Y ∈ Pcoh(!(!X ( X ),X ) such that

∀s ∈ P(!X ( X ) Ŷ(s) = sup
n∈N

ŝn(0) .

So we have general recursion in Pcoh.



A simple example of �xed point

For instance consider

t ∈ Pcoh((1⊕ 1)⊗ (!1( 1), !1( 1)

such that, for x ∈ P(1⊕ 1), s ∈ P(!1( 1),
s ′ = t̂(x , s) ∈ P(!1( 1) is characterized by

ŝ ′(y) = xty + xf ŝ(y)2

For each x ∈ P(1⊕ 1), the function s 7→ s ′ has a least �xed point
s which satis�es

∀y ∈ [0, 1] ŝ(y) = xty + xf ŝ(y)2



We can solve this equation:

ŝ(y) =

xty if xf = 0

1−
√
1− 4xtxfy

2xf
otherwise

This can be written as a power series with ≥ 0 coe�cients in y ,
xt and xf .

Using Y we have de�ned an element f ∈ Pcoh((1⊕ 1)⊗ !1,1)
such that

f̂ (x , y) = xty + xf f̂ (x , y)2



We can also solve general �recursive systems of type equations�,
for instance �nd a unique �minimal� PCS D such that

D = 1 & (!D ( D) = 1 & (?D⊥ ` D)

that is, a model of the pure λ-calculus.



A simpler example of recursive type

There is a �minimal solution� to the equation

S = 1 & (S ⊕ S)

|S | is obtained by iteration from ∅ of the following operation on
sets:

E 7→ {(1, ∗)} ∪ {(2, (1, a)) | a ∈ E} ∪ {(2, (2, a)) | a ∈ E}

so up to renaming
|S | = {0, 1}<ω



An antichain is a subset u′ of |S | such that
∀a, b ∈ u′ a ≤ b ⇒ a = b where ≤ is the pre�x order.

Then x ∈ (R≥0)|S| is in PS i� for any antichain u′ one has∑
a∈u′ xa ≤ 1.

For instance, if s ∈ {0, 1}ω then the x ∈ (R≥0)|S| such that

xa =

{
1 if a is a pre�x of s

0 otherwise

is in PS .



More generally if µ is a sub-probability measure wrt. the Borelian
σ-algebra of the Cantor space {0, 1}ω, we can de�ne
x ∈ (R≥0)|S| by

xa = µ
{
s ∈ {0, 1}ω | a pre�x of s

}
and then x ∈ PS . Let us set x = r(µ).

Idea: antichains ' open subsets of the Cantor space.



Let t ∈ (R≥0)|S(S| be de�ned by

ta,b =

{
1 if a = b0 or a = b1

0 otherwise

We have t ∈ Pcoh(S ,S).

Simply because if u′ is an antichain then {b0, b1 | a ∈ u′} is again
an antichain.



Then for x ∈ PS , we have t · x = x i�

∀b ∈ |S | xb = xb0 + xb1

which is equivalent to the existence of a subprobability
distribution µ on the Cantor space such that x = r(µ).



What is so special about !_, logically?

If we have s ∈ Pcoh(X ⊗ X ,Y ), which induces the bilinear
function

ŝ : PX × PX → PY

(x(1), x(2)) 7→ s (x(1)⊗ x(2))

we cannot �diagonalize�: the map f : PX → PY de�ned by
f (x) = ŝ(x , x) is not linear (it is quadratic).

We obtain the �cone� of measures on the Cantor space as the
equalizer of t and the identity.



In contrast if s ∈ Pcoh(!X ⊗ !X ,Y ), which represents the
two-parameter analytic function

ŝ : PX × PX → PY

(x(1), x(2)) 7→ s
(
x(1)(!) ⊗ x(2)(!)

)
then we can diagonalize: there is a t ∈ Pcoh(!X ,Y ) such that

t̂(x) = ŝ(x , x) .



The deep reason is that we have cX : Pcoh(!X , !X ⊗ !X ) such
that

cX x (!) = x (!) ⊗ x (!)

namely (cX )m,(l ,r) = δm,l+r . Then t = s cX . This is Contraction,
allows to duplicate data.



Similarly if y ∈ PY , the constant function

PX → PY

x 7→ y

is not linear (unless y = 0). But there is s ∈ Pcoh(!X ,Y ) such
that ŝ(x) = s · x (!) = y .

The deep reason is that we have wX ∈ Pcoh(!X ,1) such that
wX x (!) = 1. This is Weakening, allows to erase data.

(wX )m,∗ = δm,[ ]



And now, what is LL?

A possible answer

A logical formalization of this kind of situation, that is, of an
idealized multi-linear algebra with the following features:

• It is non degenerate in the sense that ⊗ and its dual ` are
di�erent operations, and similarly for direct product & and
direct sum ⊕.
• All objects are re�exive, in the sense that A⊥⊥ = A.

• There is an exponential !_ allowing to write non-linear
proofs/programs.



LL can be split in 3 fragments:

• multiplicative: constants 1 (true), ⊥ (false), binary
connectives ⊗ (conjunction) and ` (disjunction)

• additive: constants > (true), 0 (false), binary connectives &
(conjuction) and ⊕ (disjunction)

• exponentials: unary connectives ! and ?.



Linear negation is de�ned by induction

1⊥ = ⊥ ⊥⊥ = 1

(A⊗ B)⊥ = A⊥ ` B⊥ (A ` B)⊥ = A⊥ ⊗ B⊥

0⊥ = > >⊥ = 0

(A⊕ B)⊥ = A⊥ & B⊥ (A & B)⊥ = A⊥ ⊕ B⊥

(!A)⊥ = ?(A⊥) (?A)⊥ = !(A⊥)

so that

A⊥⊥ = A

We de�ne A( B = A⊥ ` B.



Interpretation of formulas in Pcoh

Then we de�ne in an obvious way JAK as a PCS for each formula
A:

• J1K = J⊥K = 1 as indeed 1⊥ = 1 in Pcoh

• J>K = J0K = >> the PCS such that |>>| = ∅.
• JA⊗ BK = JAK⊗ JBK etc

Example

J1⊕ 1K = 1⊕ 1 = ({0, 1} ,
{

(x0, x1) ∈ (R≥0)2 | x0 + x1 ≤ 1
}

)

J1 & 1K = 1 & 1 = ({0, 1} ,
{

(x0, x1) ∈ (R≥0)2 | x0, x1 ≤ 1
}

)

J(1 & 1)⊕ (1 & 1)K = {(x0, x1, x2, x3) ∈ (R≥0)4

| x0 + x2, x0 + x3, x1 + x2, x1 + x3 ≤ 1}



The LL sequent calculus is a logical system which allows to prove
sequents ` Γ where Γ is a list (A1, . . . ,An) of formulas.

Intuitively, the �,� is a �meta� ` connective. As in Gentzen LK,
where the � ,� in the sequent ` F1, . . . ,Fk stands for a ∨.

A proof is a tree whose nodes are labeled by logical rules, written
in the format

` Γ1 · · · ` Γk

` ∆



If π is a proof of ` A1, . . . ,Ak , one de�nes (by induction on the
tree π)

JπK ∈ Pcoh(1, JA1K` · · ·`JAkK)

or equivalently

JπK ∈ Pcoh(JA⊥
1

K⊗ · · · ⊗ JA⊥i−1K⊗ JA⊥i+1
K⊗ · · · ⊗ JA⊥k K, JAiK)



Multiplicative rules

Multiplicative constants:

` 1
` Γ

` Γ,⊥

Multiplicative connectives:

` Γ1,A1 ` Γ2,A2

` Γ1, Γ2,A1 ⊗ A2

` Γ,A1,A2

` Γ,A1 ` A2

Juxtaposition of contexts



Additive rules

Additive constants:

no rule for 0 ` Γ,>

Additive connectives:

` Γ,Ai

` Γ,A1 ⊕ A2

` Γ,A1 ` Γ,A2

` Γ,A1 & A2

Superposition of contexts



Example

The �and� function of type
(1⊕ 1)⊗ (1⊕ 1)( 1⊕ 1 = ((⊥&⊥) ` (⊥&⊥)) ` (1⊕ 1)

` 1

` ⊥, 1
` ⊥,⊥, 1

(l)
` ⊥,⊥, 1⊕ 1

` 1

` ⊥, 1
` ⊥,⊥, 1

(r)
` ⊥,⊥, 1⊕ 1

` ⊥,⊥&⊥, 1⊕ 1

` 1

` ⊥, 1
` ⊥,⊥, 1

(r)
` ⊥,⊥, 1⊕ 1

` 1

` ⊥, 1
` ⊥,⊥, 1

(r)
` ⊥,⊥, 1⊕ 1

` ⊥,⊥&⊥, 1⊕ 1

` ⊥&⊥,⊥&⊥, 1⊕ 1

` (⊥&⊥) ` (⊥&⊥), 1⊕ 1

` ((⊥&⊥) ` (⊥&⊥)) ` (1⊕ 1)



Interpreted by t ∈ Pcoh((1⊕ 1)⊗ (1⊕ 1), 1⊕ 1) such that

t̂(x , y) = xtytet + (xfyt + xtyf + xfyf)ef

ei ∈ (R≥0)I de�ned by (ei)j = δi ,j .



Exponential rules

Weakening and contraction:

` Γ

` Γ, ?A

` Γ, ?A, ?A

` Γ, ?A

Dereliction and promotion:

` Γ,A

` Γ, ?A

` ?A1, . . . , ?Ak ,B

` ?A1, . . . , ?Ak , !B



The axiom

` A⊥ ,A

There is also an echange rule

` A1, . . . ,Ak

` Af (1), . . . ,Af (k)

where f : {1, . . . , k} → {1, . . . , k} is a bijection. We keep its use
implicit.



The cut rule

` Γ,A ` A⊥ ,∆
` Γ,∆

Theorem (Hauptsatz)

Any proof π of ` Γ can be transformed (by rewriting) into a

cut-free proof π0 of ` Γ.

Moreover JπK = Jπ0K.



We have built a proof π (the and function on booleans) of

` ⊥&⊥,⊥&⊥, 1⊕ 1

We can �diagonalize� it as follows:

.... π

` ⊥&⊥,⊥&⊥, 1⊕ 1
der

` ?(⊥&⊥),⊥&⊥, 1⊕ 1
der

` ?(⊥&⊥), ?(⊥&⊥), 1⊕ 1
contr

` ?(⊥&⊥), 1⊕ 1

This is a proof ρ and JρK = s ∈ Pcoh(!(1⊕ 1), 1⊕ 1) such that

ŝ(x) = t̂(x , x) = x2t et + (2xtxf + x2f )ef .



A simple use of promotion

This proof ρ represents a non-linear (actually quadratic) function
1⊕ 1→ 1⊕ 1.

We should be able to �compose it with itself�, this is exactly the
purpose of the promotion rule (combined with cut):

....
ρ

` ?(⊥&⊥), 1⊕ 1
prom

` ?(⊥&⊥), !(1⊕ 1)

....
ρ

` ?(⊥&⊥), 1⊕ 1
cut

` ?(⊥&⊥), 1⊕ 1

getting an �homogeneous polynomial of degree 4� on booleans:

x4t et + (4x3t yf + 6x2t y
2

f + 4xty
3

f + y4f )ef



The Girard translation: representing the CBN
λ-calculus in LL



Types

Let ι be a ground type.

σ, τ, · · · := ι | σ ⇒ τ

We choose a formula ι of LL and we de�ne σ∗ as a formula of LL
by

(σ ⇒ τ)∗ = (!σ∗( τ∗)



Terms

M,N, · · · := x | λxσM | (M)N

Given a term M, a context Σ = (x1 : σ1, . . . , xk : σk) and a type
τ such that Σ ` M : τ , we can de�ne M∗Σ, a proof of

` ?(σ1
∗)⊥ , . . . , ?(σk

∗)⊥ , τ∗



The translation is by induction on M.

If M = xi , so that τ = σi , M
∗ is

ax
` (σi

∗)⊥ , σi
∗

der
` ?(σi

∗)⊥ , σi
∗

weak
` ?(σ1

∗)⊥ , . . . , ?(σi
∗)⊥ , . . . , ?(σk

∗)⊥ , σi
∗



If M = λxσ N so that τ = σ ⇒ ϕ and hence τ∗ = ?(σ∗)⊥ ` ϕ∗,
then by inductive hypothesis we have a proof

.....
M∗Σ,x :σ

` ?(σ1
∗)⊥ , . . . , ?(σk

∗)⊥ , ?(σ∗)⊥ , ϕ∗ `
` ?(σ1

∗)⊥ , . . . , ?(σk
∗)⊥ , ?(σ∗)⊥ ` ϕ∗



If M = (N)P with Σ ` N : ϕ⇒ τ and Σ ` P : ϕ. Let
Γ = (?(σ1

∗)⊥ , . . . , ?(σk
∗)⊥) then M∗Σ is

.....
N∗Σ

` Γ, ?(ϕ∗)⊥ ` τ∗

.....
P∗Σ

` Γ, ϕ∗
prom

` Γ, !ϕ∗
ax

` τ∗, (τ∗)⊥
⊗

` Γ, τ∗, !ϕ∗ ⊗ (τ∗)⊥
cut

` Γ, Γ, τ∗
contr

` Γ, τ∗

because all formulas of Γ are of shape ?A. It is only for this
reason that we can use promotion and contraction.



This translation preserves β-reduction: if M β M ′ then M∗Σ
reduces to M ′∗Σ by cut elimination.

The converse is morally true.



What can we compute in LL?

Nothing more than in the simply typed λ-calculus. . .

But we can extend LL so as to make it more expressive:

• 2nd order (or more)

• least and greatest �xed points of types

• extension allowing non-terminating �proofs�: �untyped� LL à

la Danos-Regnier, LL with a ground type of integers and
general recursion analog to PCF etc.



Conclusion (provisional)

LL allows to embed functional computations in a more symmetric
world, where the input/output or program/environment
dichotomy is transformed.

LL polarities are exactly about this dichotomy.



Polarities



To be continued!


	The Girard translation: representing the CBN -calculus in LL
	Polarities

