What is Linear Logic?

Thomas Ehrhard, IRIF, CNRS and Université de Paris ehrhard@irif.fr https://www.irif.fr/~ehrhard

February 15, 2021

Linear Logic seems to be everywhere.

How I met LL: as a natural structure of a model of sequential computations (strong stability \rightsquigarrow hypercoherences in 1992).

The same thing happened

- earlier for Berry's stable semantics (stability → *coherence spaces*): this is how Girard discovered LL
- later for Scott semantics (Scott continuity → prime algebraic complete lattices, Krivine, Huth, Winskel).

We know now dozens of models of programming languages which can nicely be described as models of LL.

In what does it differ from usual logic?

- Logic is usually thought of as a formalism to express and prove properties of things.
- In the 20th century one understood that proofs *are* programs (Gentzen cut-elimination, Gödel Dialectica, Curry Howard correspondence). Logical formulas become types.
- Linear logic is a Curry Howard logic: LL formulas are types.
- LL shows up when one builds universes (categories) of spaces and morphisms representing computations between them.

This talk: illustration on the example of probabilistic coherence spaces.

The category of substochastic matrices

Example

For some reason, we want to build a simple theory of subprobabilistic distributions and substochastic matrices acting on them.

It can be described as a category:

- objects are sets *I*, *J*,...
- a morphism $I \to J$ is a matrix $s \in (\mathbb{R}_{\geq 0})^{I \times J}$ such that $\forall i \in I \ \sum_{j \in J} s_{i,j} \leq 1$.

So a matrix $s: I \rightarrow I$ is a submarkovian chain (we accept loss of mass: possibly diverging computations).

As a category

This simply means that we have objects (sets), morphisms (matrices), a way of composing them:

If $s: I \rightarrow J$ and $t: J \rightarrow K$ then $ts: I \rightarrow K$ is the product of matrices

$$(t\,s)_{i,k}=\sum_{j\in J}s_{i,j}t_{j,k}$$

And identity matrices $Id_I : I \to I$, $(Id_I)_{i,i'} = \delta_{i,i'}$.

Matrices and vectors (distributions)

This seems very stupid, but there are interesting structures behind...

The singleton set $\mathbb{1} = \{*\}$.

- A matrix x : 1 → I is just a subprobability distribution on I, x ∈ D(I).
- up to trivial iso $x \in D(I)$ simply means $x \in (\mathbb{R}_{\geq 0})^I$ with $\sum_{i \in I} x_i \leq 1$.
- If $s: I \to J$ then $s x \in D(J)$ is the image distribution of x:

$$(s x)_j = \sum_{i \in I} s_{i,j} x_i$$

Codistributions and transpose

What is a matrix $x' : I \to 1$, say $x' \in D'(I)$?

- It means $x' \in (\mathbb{R}_{\geq 0})^l$ with $\forall i \in I \ x'_i \leq 1$
- If $s: J \to I$ then the transpose $s^{\perp} \in (\mathbb{R}_{\geq 0})^{J \times I}$ of s, defined by $s_{j,i}^{\perp} = s_{i,j}$ satisfies $s^{\perp} x' \in \mathsf{D}'(J)$
- If $x \in D(I)$, that is $x : \mathbb{1} \to I$, then $x'x : \mathbb{1} \to \mathbb{1}$ is just an element of [0, 1], notation

$$\langle x,x'
angle=(x'x)=\sum_{i\in I}x_ix'_i\in [0,1]$$
 (NB: / can be ∞)

Adjunction

Fact

$$\langle s x, x' \rangle = \langle x, s^{\perp} x' \rangle = \sum_{i \in I, j \in J} x_i s_{i,j} x'_j.$$

Duality and linear negation

There is a duality between D(I) and D'(I) similar to the duality between ℓ^1 and ℓ^{∞} in Banach spaces.

Fact

$$D'(I) = \left\{ x' \in (\mathbb{R}_{\geq 0})^{I} \mid \forall x \in D(I) \ \langle x, x' \rangle \leq 1 \right\}$$
$$D(I) = \left\{ x \in (\mathbb{R}_{\geq 0})^{I} \mid \forall x' \in D'(I) \ \langle x, x' \rangle \leq 1 \right\}$$

A space of substochastic matrices

Let I and J be two sets.

Let Stoc(*I*, *J*) be the set of all $s : I \to J$, so $Stoc(I, J) \subseteq (\mathbb{R}_{\geq 0})^{I \times J}$.

Definition

If $u \in (\mathbb{R}_{\geq 0})^l$ and $v \in (\mathbb{R}_{\geq 0})^J$ let $u \otimes v \in (\mathbb{R}_{\geq 0})^{l \times J}$ be defined by $(u \otimes v)_{i,j} = u_i v_j$.

Fact

$$\begin{aligned} \mathsf{Stoc}(I,J) &= \\ \left\{ s \in (\mathbb{R}_{\geq 0})^{I \times J} \mid \forall x \in \mathsf{D}(I) \ y' \in \mathsf{D}'(J) \quad \langle s, x \otimes y' \rangle \leq 1 \right\} \end{aligned}$$

Indeed

$$s \in \text{Stoc}(I, J) \Leftrightarrow \forall x \in D(I) \ s \ x \in D(J)$$

$$\Leftrightarrow \forall x \in D(I) \ \forall y' \in D'(J) \ \langle s \ x, \ y' \rangle \le 1$$

$$\Leftrightarrow \forall x \in D(I) \ \forall y' \in D'(J) \ \langle s, x \otimes y' \rangle \le 1$$

since

$$\langle s \, x, y' \rangle = \sum_{j \in J} \left(\sum_{i \in I} s_{i,j} x_i \right) y'_j$$

=
$$\sum_{i \in I, j \in J} s_{i,j} x_i y'_j$$

=
$$\langle s, x \otimes y' \rangle$$

A common pattern!

In all these cases we have defined a $\mathcal{P} \subseteq (\mathbb{R}_{\geq 0})^{l}$ for some set l. This \mathcal{P} is characterized by

$$\mathcal{P} = \left\{ x \in \left(\mathbb{R}_{\geq 0}
ight)^{l} \mid orall x^{\prime} \in \mathcal{P}^{\prime} \, \left\langle x, x^{\prime}
ight
angle \leq 1
ight\} = \mathcal{P}^{\prime \perp}$$

for some $\mathcal{P}' \subseteq (\mathbb{R}_{\geq 0})^l$. A predual of \mathcal{P} .

Fact

The existence of such a \mathcal{P}' is equivalent to $\mathcal{P} = \mathcal{P}^{\perp \perp}$.

For all $\mathcal{P}, \mathcal{Q} \subseteq (\mathbb{R}_{\geq 0})^l$

•
$$\mathcal{P} \subseteq \mathcal{Q} \Rightarrow \mathcal{Q}^{\perp} \subseteq \mathcal{P}^{\perp}$$

• $\mathcal{P} \subseteq \mathcal{P}^{\perp \perp}$

So $\mathcal{P}^{\perp} = \mathcal{P}^{\perp \perp \perp}$ always holds.

Probabilistic coherence spaces (PCS)

A PCS is a pair X = (|X|, PX) where

- |X| is a set (the web)
- $\mathsf{P} X \subseteq (\mathbb{R}_{\geq 0})^{|X|}$ such that $\mathsf{P} X = \mathsf{P} X^{\perp \perp}$
- we also assume

$$\forall a \in |X| \quad 0 < \sup \{x_a \mid x \in \mathsf{P}X\} < \infty$$

so that all coeffs remain finite.

$$X^{\perp} = (|X|, \mathsf{P}X^{\perp})$$
 is also a PCS.

Of course (I, D(I)) and (I, D'(I)) are PCS simply denoted D(I) and D'(I). We have $D'(I) = D(I)^{\perp}$.

Stoc(I, J) is an instance of a more general construction:

Definition

If X and Y are PCS, we define a PCS $X \multimap Y$ by $|X \multimap Y| = |X| \times |Y|$ and

$$\mathsf{P}(X \multimap Y) = \left\{ s \in (\mathbb{R}_{\geq 0})^{|X \multimap Y|} \mid \forall x \in \mathsf{P}X \ s \ x \in \mathsf{P}Y \right\}$$
$$= \left\{ x \otimes y' \mid x \in \mathsf{P}X \ \text{and} \ y' \in \mathsf{P}Y^{\perp} \right\}^{\perp}.$$

Just as in the special case of Stoc(I, J). By construction, it is a PCS.

So we have $Stoc(I, J) = (D(I) \multimap D(J))$.

LL multiplicative constructs

- 1 unit object, P1 = [0, 1], and $1^{\perp} = 1$.
- $X \multimap Y$ is linear implication.
- X[⊥] = (|X|, PX[⊥]), *linear negation*, and we have X^{⊥⊥} = X as in classical logic.
- $X \otimes Y = (X \multimap Y^{\perp})^{\perp}$, multiplicative conjuction, tensor product, *times*. Then $|X \otimes Y| = |X| \times |Y|$ and

$$\mathsf{P}(X\otimes Y) = \{x\otimes y \mid x\in \mathsf{P}X \text{ and } y\in \mathsf{P}Y\}^{\perp\perp}$$

Think of $A \wedge B = \neg (A \rightarrow \neg B)$ in classical logic.

• $X \ \mathfrak{P} \ Y = X^{\perp} \multimap Y = (X^{\perp} \otimes Y^{\perp})^{\perp}$, multiplicative disjunction, cotensor product, *par*. Think of $A \lor B = \neg A \to B$.

A category

We have now also a generalization of substochastic matrices: the elements s of $P(X \multimap Y)$.

Remember: they are characterized by a simple property. Given $s \in (\mathbb{R}_{\geq 0})^{|X| \times |Y|}$, one has

$$s \in \mathsf{P}(X \multimap Y) \Leftrightarrow \forall x \in \mathsf{P}X \ s \ x \in \mathsf{P}Y$$

so $Id_{|X|} \in P(X \multimap X)$ and if $s \in P(X \multimap Y)$ and $t \in P(Y \multimap Z)$ then $ts \in P(X \multimap Z)$. Because (ts)x = t(sx).

Matrices are linear maps

An element s of $P(X \multimap Y)$ is a *linear morphism* from X to Y. And it is really linear (and continuous) in the sense that if $(x(i))_{i \in \mathbb{N}}$ are elements of PX such that $\sum_{i \in \mathbb{N}} x(i) \in PX$, one has

$$s\left(\sum_{i\in\mathbb{N}}x(i)\right)=\sum_{i\in\mathbb{N}}sx(i)$$

and also $s(\lambda x) = \lambda(s x)$ for $\lambda \in [0, 1]$.

 $X^{\perp} \simeq (X \multimap 1)$ so X^{\perp} is the space of linear continuous forms on X, exactly like E^* (linear dual) in linear algebra. And here we have $X^{\perp\perp} \simeq X$ exactly like $E^{**} \simeq E$ in finite dimensional vector spaces.

Here this reflexivity holds also in infinite dimension (when |X| is infinite). Very difficulte to achieve with vector spaces.

Tensor product and multilinear maps

We have them for free: let $s \in P(X_1 \otimes \cdots \otimes X_k \multimap Y)$. Then the map

$$\widehat{s}:\prod_{i=1}^{k}\mathsf{P}X_{i}
ightarrow\mathsf{P}Y$$

 $(x(1),\ldots,x(k))\mapsto s(x(1)\otimes\cdots\otimes x(k))$

is k-linear, that is, separately linear in each argument.

A bilinear map

For instance, we can internalize matrix composition as a bilinear map:

$$\gamma \in \mathsf{P}(((Y \multimap Z) \otimes (X \multimap Y)) \multimap (X \multimap Y))$$

such that

$$orall t \in \mathsf{P}(Y \multimap Z)$$
 , $orall s \in \mathsf{P}(X \multimap Y) \quad \widehat{\gamma}(t,s) = \gamma \, (t \otimes s) = t \, s$

namely $\gamma_{(b,c),(a,b')} = \delta_{b,b'}$.

Categories

The right categorical setting for describing the situation is that of a *symmetric monoidal category* (SMC), here the category **Pcoh**:

- objects are the PCS X
- morphisms from X to Y (Pcoh(X, Y)) are the elements of P(X → Y), identities and composition as described
- together with \otimes which is a functor $\textbf{Pcoh}^2 \rightarrow \textbf{Pcoh}$
- and additional structures expressing that \otimes has 1 as neutral element, is associative, commutative
- and moreover it is *closed*, meaning that we have X → Y such that Pcoh(Z ⊗ X, Y) ≃ Pcoh(Z, X → Y)

• and $X^{\perp} = (X \multimap 1)$ with $X^{\perp \perp} \simeq X$ (*-autonomy).

Cartesian product

Warning

 $X\otimes Y$ is not the "cartesian product" (or categorical product) of X_1 and X_2

- there are no projections $p_i \in \mathbf{Pcoh}(X_1 \otimes X_2, X_i)$ such that $p_i(x(1) \otimes x(2)) = x(i)$ in general.
- and there is no duplication $d \in \mathbf{Pcoh}(X, X \otimes X)$ such that $dx = x \otimes x$.

Take $X_1 = 1$. Then for each $x \in PX_2$ and $\lambda \in PX_1 = [0, 1]$ we should have $p_1(\lambda \otimes x) = p_1(\lambda x) = \lambda$. This contradicts linearity in x (take x = 0).

Projection as marginalization

In some cases, there are projections, for instance, we have a linear morphisme $\theta_l \in \mathbf{Pcoh}(D(l), 1)$ given by $(\theta_l)_{i,*} = 1$

$$egin{aligned} heta_l &: \mathsf{D}(I) o \mathbb{1} \ & x \mapsto \sum_{i \in I} x_i \end{aligned}$$

Does not work for D'(I)!

So by functoriality of \otimes we have $\pi_2 = \theta_I \otimes \operatorname{Id} \in \operatorname{Pcoh}(\operatorname{D}(I) \otimes \operatorname{D}(J), \operatorname{D}(J)).$

We have $D(I) \otimes D(J) = D(I \times J)$. Given $z \in D(I \times J)$, we have

$$\pi_2 z = \left(\sum_{i \in I} z_{i,j}\right)_{j \in J}$$

the marginal distribution.

The existence of θ_l is related to a crucial logical structure of D(*l*): positivity.

Similarity with vector spaces

Again, strong similarity with vector spaces: there is a cartesian product of vector space, the so-called *direct product* of vector spaces $E \times F$ (which coincides with *direct sum* $E \oplus F$).

direct product vs. tensor product

But $E \times F$ does not coincide with the tensor product $E \otimes F!$ A linear map $E \times F \rightarrow G$ is not the same thing as a bilinear map $E \times F \rightarrow G$. Also dim $E \otimes F = \dim E \dim F$ whereas dim $E \times F = \dim E + \dim F$.

We also have a direct product $X \And Y$ and a direct sum $X \oplus Y$ in PCS, but they do not coincide.

If $(X_i)_{i \in I}$ is a family of PCS we can define $X = \&_{i \in I} X_i$ by

- $|X| = \bigcup_{i \in I} \{i\} \times |X_i|$
- and, for $z \in (\mathbb{R}_{\geq 0})^{|X|}$, $z \in PX$ if for all $i \in I$ one has $\pi_i z \in PX_i$ where $\pi_i \in (\mathbb{R}_{\geq 0})^{|X \multimap X_i|}$, the *i*th projection is

$$(\pi_i)_{(j,a),a'} = \delta_{i,j}\delta_{a,a'}$$

• so that $\mathsf{P}X \simeq \prod_{i \in I} \mathsf{P}X_i$ by $z \mapsto (\pi_i z)_{i \in I}$ and $(x(i))_{i \in I} \mapsto \langle x(i) \rangle_{i \in I}$ given by $z_{(i,a)} = x(i)_a$.

By construction we do have now linear projections $\pi_i \in \mathbf{Pcoh}(\&_{j \in J} X_j, X_i).$

We can use duality to define the coproduct:

$$\bigoplus_{i\in I} X_i = (\underset{i\in I}{\&} X_i^{\perp})^{\perp}$$

then we have

$$\mathsf{P}(\bigoplus_{i\in I} X_i) = \left\{ \langle \lambda_i x(i) \rangle_{i\in I} \mid \vec{\lambda} \in \mathsf{D}(I) \text{ and } \forall i \ x(i) \in \mathsf{P}X_i \right\} \subseteq \mathsf{P}(\underbrace{\&}_{i\in I} X_i).$$

Beyond linearity: the exponential

A polynomial function on matrices

Given $k \in \mathbb{N}$ imagine we want to consider the function

$$f: \mathsf{P}(X \multimap X) \to \mathsf{P}(X \multimap X)$$
$$t \mapsto t^{k} = \overbrace{t \cdots t}^{k \times k}$$

so that

$$f(t)_{a,c} = \sum_{\substack{b_0,...,b_k \in |X| \ b_0 = a, \ b_k = c}} t_{b_0,b_1} \cdots t_{b_{k-2},b_{k-1}} t_{b_{k-1},b_k} \, .$$

This is not a linear function when k > 1: $f(\lambda s) = \lambda^k f(s)$.

An analytic function on matrices

Or even the function

$$g: \mathsf{P}(X \multimap X) \to \mathsf{P}(X \multimap X)$$
$$t \mapsto e^{-1} \sum_{k=0}^{\infty} \frac{1}{k!} t^{k}$$

If $m \in \mathcal{M}_{\operatorname{fin}}(I)$ (finite multiset) and $u \in (\mathbb{R}_{\geq 0})^{I}$ we set

$$u^m = \prod_{i \in I} u_i^{m(i)}$$

and $u^{(!)} \in (\mathbb{R}_{\geq 0})^{\mathcal{M}_{\operatorname{fin}}(l)}$ is defined by $u_m^{(!)} = u^m$. Then we define a PCS $|X| = \mathcal{M}_{\operatorname{fin}}(|X|)$ and

$$\mathsf{P}(!X) = \left\{ x^{(!)} \mid x \in \mathsf{P}X \right\}^{\perp \perp}$$

Fact

If $t \in (\mathbb{R}_{\geq 0})^{|!X \multimap Y|}$, one has

$$t \in \mathbf{Pcoh}(!X, Y) \Leftrightarrow \forall x \in \mathsf{P}X \ t \ x^{(!)} \in \mathsf{P}Y$$

The function

$$\widehat{t} : \mathsf{P}X \to \mathsf{P}Y \\ x \mapsto t x^{(!)}$$

is an "analytic function", t (the powerseries) is completely determined by this function.

Examples of analytic functions

Let $k \in \mathbb{N}$. Take $f \in (\mathbb{R}_{\geq 0})^{!(X \multimap X) \multimap (X \multimap X)}$ given by

$$f_{m,(a,c)} = \begin{cases} 1 & \text{if } \exists b_0, \dots, b_k \in |X| \ b_0 = a, \ b_k = c \text{ and} \\ & m = [(b_0, b_1), (b_1, b_2), \dots, (b_{k-1}, b_k)] \\ 0 & \text{otherwise.} \end{cases}$$

Then given $s \in P(X \multimap X)$ we have $\hat{f}(s) = s^k$.

Let
$$g \in (\mathbb{R}_{\geq 0})^{!(X \to X) \to (X \to X)}$$
 given by

$$g_{m,(a,c)} = \begin{cases} \frac{e^{-1}}{k!} & \text{if } \exists b_0, \dots, b_k \in |X|, \ b_0 = a, \ b_k = c \text{ and} \\ & m = [(b_0, b_1), (b_1, b_2), \dots, (b_{k-1}, b_k)] \\ 0 & \text{otherwise.} \end{cases}$$

Let
$$s \in \mathsf{P}(X \multimap X)$$
 and $t = \widehat{g}(s) \in \overline{\mathbb{R}_{\geq 0}}^{|X \multimap X|}$, we have

$$\forall x \in \mathsf{P}X \quad \widehat{t}(x) = \sum_{k=0}^{\infty} \frac{e^{-1}}{k!} \widehat{s}^k(x) \in \mathsf{P}X$$

because $\forall k \in \mathbb{N} \ \hat{s}^k(x) \in \mathsf{P}X \text{ and } \sum_{k=0}^{\infty} \frac{e^{-1}}{k!} = 1.$ Hence $\hat{g}(s) \in \mathsf{P}(X \multimap X).$

Since this holds for all $s \in P(X \multimap X)$, we have $g \in \mathbf{Pcoh}(!(X \multimap X), X \multimap X)$.

Example: stochastic automata

Let A (alphabet) and Q (states) be sets.

 $D(A) \otimes D(Q) \multimap D(Q)$ is the space of stochastic automata.

The space of words is the "least" solution W of $W = \mathbb{1} \oplus (D(A) \otimes W)$. Then it is easy to see that $W = D(A^{<\omega})$.

There is an analytic "iteration" function $r \in \mathbf{Pcoh}(W \otimes !(\mathsf{D}(A) \otimes \mathsf{D}(Q) \multimap \mathsf{D}(Q)), \mathsf{D}(Q) \multimap \mathsf{D}(Q)).$

$$r_{w,m,(a,c)} = \begin{cases} 1 & \text{if } w = \langle \alpha_1, \dots, \alpha_k \rangle, \\ & m = [(\alpha_1, b_0, b_1), \dots, (\alpha_k, b_{k-1}, b_k)] \\ & b_0 = a, \ b_k = c \\ 0 & \text{otherwise.} \end{cases}$$

So r defines a function

$$\widehat{r} : \mathsf{PD}(W) \times \mathsf{P}(\mathsf{D}(A) \otimes \mathsf{D}(Q) \multimap \mathsf{D}(Q)) \to \mathsf{P}(\mathsf{D}(Q) \multimap \mathsf{D}(Q))$$
$$(z, s) \mapsto r\left(z \otimes s^{(!)}\right)$$

linear in its first argument but not in the second argument.

Given

- z ∈ PD(W), that is z is a subprobability distribution on words
- $s \in P(D(A) \otimes D(Q) \multimap D(Q))$ is a stochastic automaton

$$\widehat{r}(z,s) = \sum_{k \in \mathbb{N}} \sum_{\alpha_1, \dots, \alpha_k \in A} z_{\langle \alpha_1, \dots, \alpha_k \rangle} s(\alpha_k) \cdots s(\alpha_1)$$

where $s(\alpha) \in P(D(Q) \multimap D(Q))$ is given by $s(\alpha)_{q,q'} = s_{\alpha,q,q'}$: the transition matrix associated with letter α .

If $i, f \in Q$ (initial and finite state), $\hat{r}(z, s)_{i,f} \in [0, 1]$ is the probability that we can reach f starting from i.
Pcoh is a very expressive setting

Fact

If $s \in P(!X \multimap X)$ then $\hat{s} : PX \to PX$ is Scott continuous, that is

- $x \le y \Rightarrow \widehat{s}(x) \le \widehat{s}(y)$ (where $x \le y$ simply means $\forall a \in |X| \ x_a \le y_a$)
- and if $(x(n))_{n \in \mathbb{N}}$ is a monotone sequence in PX, we have

$$\widehat{s}(\sup_{n\in\mathbb{N}}x(n))=\sup_{n\in\mathbb{N}}\widehat{s}(x(n)).$$

As a consequence \hat{s} has a least fixed point $\sup_{n \in \mathbb{N}} \hat{s}^n(0) \in \mathsf{P}X$.

And better, we have $\mathcal{Y} \in \mathbf{Pcoh}(!(!X \multimap X), X)$ such that $\forall s \in \mathsf{P}(!X \multimap X) \quad \widehat{\mathcal{Y}}(s) = \sup_{n \in \mathbb{N}} \widehat{s}^n(0).$

So we have general recursion in **Pcoh**.

A simple example of fixed point

For instance consider

$$t \in \mathsf{Pcoh}((\mathbb{1} \oplus \mathbb{1}) \otimes (!\mathbb{1} \multimap \mathbb{1}), !\mathbb{1} \multimap \mathbb{1})$$

such that, for $x \in P(\mathbb{1} \oplus \mathbb{1})$, $s \in P(!\mathbb{1} \multimap \mathbb{1})$, $s' = \hat{t}(x, s) \in P(!\mathbb{1} \multimap \mathbb{1})$ is characterized by

$$\widehat{s'}(y) = x_{\mathbf{t}}y + x_{\mathbf{f}}\widehat{s}(y)^2$$

For each $x \in P(1 \oplus 1)$, the function $s \mapsto s'$ has a least fixed point s which satisfies

$$\forall y \in [0, 1] \quad \widehat{s}(y) = x_{\mathbf{t}}y + x_{\mathbf{f}}\widehat{s}(y)^2$$

We can solve this equation:

$$\widehat{s}(y) = \begin{cases} x_{t}y & \text{if } x_{f} = 0\\ \frac{1 - \sqrt{1 - 4x_{t}x_{f}y}}{2x_{f}} & \text{otherwise} \end{cases}$$

This can be written as a power series with ≥ 0 coefficients in y, x_t and x_f .

Using \mathcal{Y} we have defined an element $f \in \mathbf{Pcoh}((\mathbb{1} \oplus \mathbb{1}) \otimes !\mathbb{1}, \mathbb{1})$ such that

$$\widehat{f}(x, y) = x_{\mathbf{t}}y + x_{\mathbf{f}}\widehat{f}(x, y)^2$$

We can also solve general "recursive systems of type equations", for instance find a unique "minimal" PCS D such that

$$D = 1 \& (!D \multimap D) = 1 \& (?D^{\perp} \Re D)$$

that is, a model of the pure λ -calculus.

A simpler example of recursive type

There is a "minimal solution" to the equation

$$S = \mathbb{1} \& (S \oplus S)$$

|S| is obtained by iteration from \emptyset of the following operation on sets:

$$E \mapsto \{(1, *)\} \cup \{(2, (1, a)) \mid a \in E\} \cup \{(2, (2, a)) \mid a \in E\}$$

so up to renaming

$$|S| = \{0, 1\}^{<\omega}$$

An antichain is a subset u' of |S| such that $\forall a, b \in u' \ a \leq b \Rightarrow a = b$ where \leq is the prefix order. Then $x \in (\mathbb{R}_{\geq 0})^{|S|}$ is in PS iff for any antichain u' one has $\sum_{a \in u'} x_a \leq 1$.

For instance, if $s \in \{0, 1\}^{\omega}$ then the $x \in (\mathbb{R}_{\geq 0})^{|S|}$ such that

$$x_a = \begin{cases} 1 & \text{if } a \text{ is a prefix of } s \\ 0 & \text{otherwise} \end{cases}$$

is in PS.

More generally if μ is a sub-probability measure wrt. the Borelian σ -algebra of the Cantor space $\{0, 1\}^{\omega}$, we can define $x \in (\mathbb{R}_{\geq 0})^{|S|}$ by

$$x_a = \mu\left\{s \in \{\mathsf{0},\mathsf{1}\}^\omega \mid a ext{ prefix of } s
ight\}$$

and then $x \in PS$. Let us set $x = r(\mu)$.

Idea: antichains \simeq open subsets of the Cantor space.

Let $t \in (\mathbb{R}_{\geq 0})^{|S \multimap S|}$ be defined by

$$t_{a,b} = \begin{cases} 1 & \text{if } a = b0 \text{ or } a = b1 \\ 0 & \text{otherwise} \end{cases}$$

We have $t \in \mathbf{Pcoh}(S, S)$.

Simply because if u' is an antichain then $\{b0, b1 \mid a \in u'\}$ is again an antichain.

Then for $x \in PS$, we have $t \cdot x = x$ iff

$$\forall b \in |S| \quad x_b = x_{b0} + x_{b1}$$

which is equivalent to the existence of a subprobability distribution μ on the Cantor space such that $x = r(\mu)$.

What is so special about ! , logically?

If we have $s \in \mathbf{Pcoh}(X \otimes X, Y)$, which induces the bilinear function

$$\widehat{s} : \mathsf{P}X \times \mathsf{P}X \to \mathsf{P}Y$$
$$(x(1), x(2)) \mapsto s(x(1) \otimes x(2))$$

we cannot "diagonalize": the map $f : PX \to PY$ defined by $f(x) = \hat{s}(x, x)$ is not linear (it is quadratic).

We obtain the "cone" of measures on the Cantor space as the equalizer of t and the identity.

In contrast if $s \in \mathbf{Pcoh}(!X \otimes !X, Y)$, which represents the two-parameter analytic function

$$\widehat{s} : \mathsf{P}X \times \mathsf{P}X \to \mathsf{P}Y$$

 $(x(1), x(2)) \mapsto s(x(1)^{(!)} \otimes x(2)^{(!)})$

then we can diagonalize: there is a $t \in \mathbf{Pcoh}(!X, Y)$ such that

$$\widehat{t}(x) = \widehat{s}(x, x)$$

The deep reason is that we have c_X : **Pcoh**($!X, !X \otimes !X$) such that

$$c_X x^{(!)} = x^{(!)} \otimes x^{(!)}$$

namely $(c_X)_{m,(l,r)} = \delta_{m,l+r}$. Then $t = s c_X$. This is Contraction, allows to duplicate data.

Similarly if $y \in PY$, the constant function

$$\begin{array}{c} \mathsf{P}X \to \mathsf{P}Y \\ x \mapsto y \end{array}$$

is not linear (unless y = 0). But there is $s \in \mathbf{Pcoh}(!X, Y)$ such that $\hat{s}(x) = s \cdot x^{(!)} = y$.

The deep reason is that we have $w_X \in \mathbf{Pcoh}(!X, 1)$ such that $w_X x^{(!)} = 1$. This is *Weakening*, allows to erase data.

 $(\mathsf{w}_X)_{m,*} = \delta_{m,[]}$

And now, what is LL?

A possible answer

A logical formalization of this kind of situation, that is, of an idealized multi-linear algebra with the following features:

- It is non degenerate in the sense that ⊗ and its dual 𝔅 are different operations, and similarly for direct product & and direct sum ⊕.
- All objects are reflexive, in the sense that $A^{\perp\perp} = A$.
- There is an exponential !_ allowing to write non-linear proofs/programs.

LL can be split in 3 fragments:

- multiplicative: constants 1 (true), ⊥ (false), binary connectives ⊗ (conjunction) and 𝔅 (disjunction)
- additive: constants ⊤ (true), 0 (false), binary connectives & (conjuction) and ⊕ (disjunction)
- exponentials: unary connectives ! and ?.

Linear negation is defined by induction

$$1^{\perp} = \perp \qquad \qquad \perp^{\perp} = 1$$
$$(A \otimes B)^{\perp} = A^{\perp} \Im B^{\perp} \qquad (A \Im B)^{\perp} = A^{\perp} \otimes B^{\perp}$$
$$0^{\perp} = \top \qquad \qquad \top^{\perp} = 0$$
$$(A \oplus B)^{\perp} = A^{\perp} \& B^{\perp} \qquad (A \& B)^{\perp} = A^{\perp} \oplus B^{\perp}$$
$$(!A)^{\perp} = ?(A^{\perp}) \qquad \qquad (?A)^{\perp} = !(A^{\perp})$$

so that

$$A^{\perp\perp} = A$$

We define $A \multimap B = A^{\perp} \mathfrak{N} B$.

Interpretation of formulas in Pcoh

Then we define in an obvious way $\llbracket A \rrbracket$ as a PCS for each formula *A*:

- $\llbracket 1 \rrbracket = \llbracket \bot \rrbracket = 1$ as indeed $1^{\perp} = 1$ in **Pcoh**
- $\llbracket \top \rrbracket = \llbracket 0 \rrbracket = \mathbb{T}$ the PCS such that $|\mathbb{T}| = \emptyset$.
- $\llbracket A \otimes B \rrbracket = \llbracket A \rrbracket \otimes \llbracket B \rrbracket$ etc

Example

$$\begin{split} \llbracket 1 \oplus 1 \rrbracket &= \mathbb{1} \oplus \mathbb{1} = (\{0, 1\}, \{(x_0, x_1) \in (\mathbb{R}_{\geq 0})^2 \mid x_0 + x_1 \leq 1\}) \\ \llbracket 1 \& 1 \rrbracket &= \mathbb{1} \& \mathbb{1} = (\{0, 1\}, \{(x_0, x_1) \in (\mathbb{R}_{\geq 0})^2 \mid x_0, x_1 \leq 1\}) \\ \llbracket (1 \& 1) \oplus (1 \& 1) \rrbracket &= \{(x_0, x_1, x_2, x_3) \in (\mathbb{R}_{\geq 0})^4 \\ &= |x_0 + x_2, x_0 + x_3, x_1 + x_2, x_1 + x_3 \leq 1\} \end{split}$$

The *LL* sequent calculus is a logical system which allows to prove sequents $\vdash \Gamma$ where Γ is a list (A_1, \ldots, A_n) of formulas.

Intuitively, the "," is a "meta" \Re connective. As in Gentzen LK, where the "," in the sequent $\vdash F_1, \ldots, F_k$ stands for a \lor .

A proof is a tree whose nodes are labeled by *logical rules*, written in the format

$$\frac{-\Gamma_1 \quad \cdots \quad \vdash \Gamma_k}{\vdash \Delta}$$

If π is a proof of $\vdash A_1, \ldots, A_k$, one defines (by induction on the tree π)

$$\llbracket \pi \rrbracket \in \mathsf{Pcoh}(\mathbb{1}, \llbracket A_1 \rrbracket \mathfrak{V} \cdots \mathfrak{V} \llbracket A_k \rrbracket)$$

or equivalently

$$\llbracket \pi \rrbracket \in \mathsf{Pcoh}(\llbracket A_1^{\perp} \rrbracket \otimes \cdots \otimes \llbracket A_{i-1}^{\perp} \rrbracket \otimes \llbracket A_{i+1}^{\perp} \rrbracket \otimes \cdots \otimes \llbracket A_k^{\perp} \rrbracket, \llbracket A_i \rrbracket)$$

Multiplicative rules

Multiplicative constants:

$$\frac{1}{\vdash 1} \qquad \frac{\vdash \Gamma}{\vdash \Gamma, \bot}$$

Multiplicative connectives:

$$\frac{\vdash \Gamma_1, A_1 \vdash \Gamma_2, A_2}{\vdash \Gamma_1, \Gamma_2, A_1 \otimes A_2} \qquad \qquad \frac{\vdash \Gamma, A_1, A_2}{\vdash \Gamma, A_1 \Im A_2}$$

Juxtaposition of contexts

Additive rules

Additive constants:

no rule for 0 $\overline{\vdash \Gamma, \top}$ Additive connectives: $\vdash \Gamma A_i \qquad \vdash \Gamma A_1 \qquad \vdash \Gamma A_1$

 $\frac{\vdash \Gamma, A_i}{\vdash \Gamma, A_1 \oplus A_2} \qquad \frac{\vdash \Gamma, A_1 \vdash \Gamma, A_2}{\vdash \Gamma, A_1 \& A_2}$

Superposition of contexts

Example

The "and" function of type $(1 \oplus 1) \otimes (1 \oplus 1) \multimap 1 \oplus 1 = ((\perp \& \bot) \Im (\bot \& \bot)) \Im (1 \oplus 1)$

Interpreted by $t \in \mathbf{Pcoh}((1 \oplus 1) \otimes (1 \oplus 1), 1 \oplus 1)$ such that $\widehat{t}(x, y) = x_{\mathbf{t}}y_{\mathbf{t}}e_{\mathbf{t}} + (x_{\mathbf{f}}y_{\mathbf{t}} + x_{\mathbf{t}}y_{\mathbf{f}} + x_{\mathbf{f}}y_{\mathbf{f}})e_{\mathbf{f}}$ $e_i \in (\mathbb{R}_{\geq 0})^l$ defined by $(e_i)_j = \delta_{i,j}$.

Exponential rules

Weakening and contraction:

$\vdash \Gamma$	⊢ Г, ?А, ?А
⊢ Г, ?А	⊢ Г, ?А

Dereliction and promotion:

$$\frac{\vdash \Gamma, A}{\vdash \Gamma, ?A} \qquad \frac{\vdash ?A_1, \dots, ?A_k, B}{\vdash ?A_1, \dots, ?A_k, !B}$$

The axiom

$$\vdash A^{\perp}, A$$

There is also an echange rule

$$\frac{\vdash A_1,\ldots,A_k}{\vdash A_{f(1)},\ldots,A_{f(k)}}$$

where $f : \{1, \ldots, k\} \rightarrow \{1, \ldots, k\}$ is a bijection. We keep its use implicit.

The cut rule

$$\frac{\vdash \mathsf{\Gamma}, \mathsf{A} \quad \vdash \mathsf{A}^{\perp}, \Delta}{\vdash \mathsf{\Gamma}, \Delta}$$

Theorem (Hauptsatz)

Any proof π of $\vdash \Gamma$ can be transformed (by rewriting) into a cut-free proof π_0 of $\vdash \Gamma$.

Moreover $[\![\pi]\!] = [\![\pi_0]\!]$.

We have built a proof π (the *and* function on booleans) of

 $\vdash \perp \& \perp, \perp \& \perp, 1 \oplus 1$

We can "diagonalize" it as follows:

$$\frac{ \vdash \bot \& \bot, \bot \& \bot, 1 \oplus 1}{\vdash ?(\bot \& \bot), \bot \& \bot, 1 \oplus 1} der
\frac{ \vdash ?(\bot \& \bot), ?(\bot \& \bot), 1 \oplus 1}{der} der
\downarrow ?(\bot \& \bot), ?(\bot \& \bot), 1 \oplus 1 contr$$

This is a proof ρ and $\llbracket \rho \rrbracket = s \in \mathsf{Pcoh}(!(1 \oplus 1), 1 \oplus 1)$ such that

$$\widehat{s}(x) = \widehat{t}(x, x) = x_{\mathbf{t}}^2 e_{\mathbf{t}} + (2x_{\mathbf{t}}x_{\mathbf{f}} + x_{\mathbf{f}}^2)e_{\mathbf{f}}$$

A simple use of promotion

This proof ρ represents a non-linear (actually quadratic) function $1 \oplus 1 \rightarrow 1 \oplus 1$.

We should be able to "compose it with itself", this is exactly the purpose of the promotion rule (combined with cut):

$$\frac{\begin{array}{c} & \rho \\ & \downarrow ?(\bot \& \bot), 1 \oplus 1 \\ & \vdash ?(\bot \& \bot), !(1 \oplus 1) \end{array} \quad prom \\ & \vdash ?(\bot \& \bot), 1 \oplus 1 \end{array} \quad cut$$

getting an "homogeneous polynomial of degree 4" on booleans:

$$x_{t}^{4}e_{t} + (4x_{t}^{3}y_{f} + 6x_{t}^{2}y_{f}^{2} + 4x_{t}y_{f}^{3} + y_{f}^{4})e_{f}$$

The Girard translation: representing the CBN λ -calculus in LL

Types

Let ι be a ground type.

$$\sigma, \tau, \cdots := \iota \mid \sigma \Rightarrow \tau$$

We choose a formula ι of LL and we define σ^* as a formula of LL by

$$(\sigma \Rightarrow \tau)^* = (!\sigma^* \multimap \tau^*)$$

Terms

$$M, N, \cdots := x \mid \lambda x^{\sigma} M \mid (M) N$$

Given a term M, a context $\Sigma = (x_1 : \sigma_1, \dots, x_k : \sigma_k)$ and a type τ such that $\Sigma \vdash M : \tau$, we can define M_{Σ}^* , a proof of

$$\vdash ?(\sigma_1^*)^{\perp}, \ldots, ?(\sigma_k^*)^{\perp}, \tau^*$$

The translation is by induction on M.

If $M = x_i$, so that $\tau = \sigma_i$, M^* is

$$\frac{\overline{\left(\begin{array}{c} \overline{\sigma_{i}}^{*} \right)^{\perp}, \sigma_{i}^{*}}}{\overline{\left(\begin{array}{c} \overline{\sigma_{i}}^{*} \right)^{\perp}, \sigma_{i}^{*}}} \operatorname{der} \\ \overline{\left(\begin{array}{c} \overline{\sigma_{i}}^{*} \right)^{\perp}, \sigma_{i}^{*}} \\ \overline{\left(\begin{array}{c} \overline{\sigma_{i}}^{*} \right)^{\perp}, \ldots, \overline{\gamma(\sigma_{i}^{*})^{\perp}, \ldots, \overline{\gamma(\sigma_{k}^{*})^{\perp}, \sigma_{i}^{*}}} \end{array}} \end{array}} \operatorname{weak} \\ \end{array} \right)$$

If $M = \lambda x^{\sigma} N$ so that $\tau = \sigma \Rightarrow \varphi$ and hence $\tau^* = ?(\sigma^*)^{\perp} \Re \varphi^*$, then by inductive hypothesis we have a proof

$$\frac{ \stackrel{}{\overset{}_{\overset{}_{\sum},x:\sigma}}{\overset{}_{\overset{}_{\sum},x:\sigma}}}{\overset{}_{\overset{}_{\overset{}_{\sum}}?(\sigma_{1}^{*})^{\perp},\ldots,?(\sigma_{k}^{*})^{\perp},?(\sigma^{*})^{\perp},\varphi^{*}}{\overset{}_{\overset{}_{\sum}}?(\sigma_{1}^{*})^{\perp},\ldots,?(\sigma_{k}^{*})^{\perp},?(\sigma^{*})^{\perp} \mathfrak{V}\varphi^{*}} \mathfrak{P}$$

If M = (N) P with $\Sigma \vdash N : \varphi \Rightarrow \tau$ and $\Sigma \vdash P : \varphi$. Let $\Gamma = (?(\sigma_1^*)^{\perp}, \ldots, ?(\sigma_k^*)^{\perp})$ then M_{Σ}^* is

because all formulas of Γ are of shape ?A. It is only for this reason that we can use promotion and contraction.

This translation preserves β -reduction: if $M \beta M'$ then M_{Σ}^* reduces to M'_{Σ}^* by cut elimination.

The converse is morally true.
What can we compute in LL?

Nothing more than in the simply typed λ -calculus...

But we can extend LL so as to make it more expressive:

- 2nd order (or more)
- least and greatest fixed points of types
- extension allowing non-terminating "proofs": "untyped" LL à la Danos-Regnier, LL with a ground type of integers and general recursion analog to PCF etc.

Conclusion (provisional)

LL allows to embed functional computations in a more symmetric world, where the input/output or program/environment dichotomy is transformed.

LL *polarities* are exactly about this dichotomy.

Polarities

To be continued!