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Abstract

We introduce the notion of differential \-category as an extension of Blute-Cockett-Seely’s differential
Cartesian categories. We prove that differential A-categories can be used to model the simply typed versions
of: (i) the differential A-calculus, a A-calculus extended with a syntactic derivative operator; (ii) the resource
calculus, a non-lazy axiomatisation of Boudol’s A-calculus with multiplicities. Finally, we provide two
concrete examples of differential A-categories, namely, the category MRel of sets and relations, and the
category MFin of finiteness spaces and finitary relations.
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1 Introduction

The development of formal systems for proving computational properties of pro-
grams constitutes a crucial research area of contemporary computer science. Among
the vast spectrum of aspects needing to be checked, one of the most important is
the amount of resources a program will need during its execution. Resources to be
bounded can be of very different kinds, for instance memory space (especially in
presence of very small computing devices) or non-replicable data (naturally arising
in the context of quantum computing).
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In [4] Boudol designed the A-calculus with multiplicities, a paradigmatic pro-
gramming language developed for handling explicitly the problem of resource con-
sumption within the A-calculus. In this calculus two kinds of arguments are avail-
able: intuitionistic arguments that can be erased and copied as usual, and depletable
arguments that must be used exactly once. Depletable arguments impose the pres-
ence of non-deterministic choices in the language. Suppose indeed that we have
(Az.xzx)L where L is a depletable argument: what occurrence of x should receive
the only available copy of L? Another novelty with respect to A-calculus is the fact
that the arguments come in multisets called ‘bags’.

The original version of A-calculus with multiplicities was only endowed with a
(weak) head-reduction rule. This is crucial if we want to actually perform the non-
deterministic choices during the reduction. In [13] Tranquilli defined the resource
calculus which is a revisitation of Boudol’s calculus having more general forms
of reductions that have been studied in [12]. In this calculus non-determinism is
accounted for by means of formal sums of terms.

A formal system modeling this idea of ‘resource consumption’ was already
present in Girard’s quantitative semantics [11]. This semantics establishes an anal-
ogy between linearity in the sense of computer science (programs using arguments
exactly once) and algebraic linearity (commutation of sums and products with
scalars), giving a new mathematically very appealing interpretation of resource
consumption. Drawing on these insights, Ehrhard and Regnier designed a formal
programming language, called the differential \-calculus [6], that has a unique kind
of arguments but two kinds of applications: the usual one, and a linear application.
The result of applying linearly Ax.M to L is the term Ax.M where L is substituted
for x in M exactly once (we keep the A\x because one day we may want to substi-
tute the other occurrences of = in M'). The breakthrough in [6] is the fact that this
‘linear’ substitution operation can be seen as a formal derivative. Such a syntactic
derivative operator can be fruitfully used to increase control over programs executed
in environments with bounded resources (see, e.g., [8,10]).

Although the differential A-calculus is born from semantical considerations (i.e.,
the deep analysis of denotational semantics of linear logic performed by Ehrhard and
Regnier) the investigations on its denotational semantics are at the very beginning.
On the one hand, it is known in the folklore that the Cartesian closed category
(cec, for short) of finiteness spaces and finitary relations [7] and the ccc of sets and
(multi-)relations [5] are models of the simply typed differential A-calculus, but no
abstract definition of model has been provided. On the other hand, Blute, Cockett
and Seely - inspired by the works on differential A-calculus - defined the differential
categories [2] and the differential Cartesian categories [3]. In these categories a
derivative operator D(—) on morphisms is equationally axiomatized. The authors
have then proved that these categories are sound and complete to model suitable
term calculi. However, it turns out that the properties of differential categories are
too weak for modeling the full differential A-calculus.

The aim of the present paper is to provide an abstract model theory (based
on differential Cartesian categories) for the simply typed differential A-calculus and
resource calculus: a unifying categorical approach having all known semantics of
these calculi as instances. We are confident that our work in this domain will open
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the way to find mathematical tools for studying quantitative properties of programs.
The main object of our studies will be the differential A-calculus, but we will draw
conclusions also for the resource calculus.

In Section 3 we provide the formal definition of the differential A-calculus, we
define the type system characterizing its simply typed version and we recall some
basic properties of the language.

In Section 4, starting from the work of Blute et Al. [3], we introduce the notion of
differential A-category. Basically, differential A-categories are Cartesian differential
categories which are Cartesian closed and satisfy a natural condition guaranteeing
that the differential operator D(—) behaves well with the Cartesian closed struc-
ture. We then prove that every differential A-category constitutes a model of the
simply typed differential A-calculus: we first define the interpretation of (typing
judgements of) differential A-terms in the category, and secondly we prove that
such an interpretation is sound.

In Section 5 we show that - as expected - the category MFin of finiteness spaces
and finitary relations and the category MRel of sets and relations are instances of
differential A-categories.

Finally, Section 6 is devoted to recall the syntax of the simply typed resource
calculus and to prove that differential A-categories can be used to model this cal-
culus. This is done by defining a translation map from the resource calculus to
the differential A-calculus and proving that this translation is ‘faithful’. We then
define the interpretation of a (typing judgement of a) resource term in a differential
A-category as the interpretation of its translation.

The investigations in this paper fit in a more ambitious program whose research
lines are discussed in Section 7.

2 Preliminaries

To keep this article self-contained we summarize some definitions and results that
will be used in the sequel. Our main reference for category theory is [1].

2.1 Sets and Multisets

Let S be a set. We denote by P(S) the powerset of S. A multiset m over S can
be defined as an unordered list m = [aj, ag,...] with repetitions such that a; € S
for all 7. A multiset m is called finite if it is a finite list, we denote by [| the empty
multiset. If m is a multiset over S, then its support supp(S) is the set of elements
of S occurring in m. Given two multisets m; = [a1,a2,...] and mg = [by, ba, .. ]
the multi-union of my, mo is defined by my W mg = [a1, b1, ag, ba, ...]. We will write
M(S) for the set of all finite multisets over S. Moreover, given a set U C M (5)
we set supp(U) = Upeu supp(m).

2.2 Cartesian (Closed) Categories

Let C be a small Cartesian category and A, B,C be arbitrary objects of C. We
write C(A, B) for the homset of morphisms from A to B; when there is no chance
of confusion we will write f : A — B instead of f € C(A, B). We usually denote
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by A x B the product of A and B, by m; : Ax B = A, my : A X B = B the
associated projections and, given a pair of arrows f : C — A and g : C — B, by
(f,g9) : C — A x B the unique arrow such that w0 (f,g) = f and meo(f,g) = g.
If C is a Cartesian closed category (ccc, for short) we write A = B for the
exponential object and evap : (A= B) x A — B for the evaluation morphism.
Moreover, for any object C' and arrow f: C x A — B, A(f) : C — A= B stands
for the (unique) morphism such that evapo (A(f) x Idg) = f. Finally, 1 denotes
the terminal object and !4 the only morphism in C(A, 1).
We recall that in every ccc the following equalities hold:

(pair) (fig)oh=(foh,goh)  A(f)eg=A(fo(gx1d)) (Curry)
(beta-cat) evo(A(f),g) = fo(Id,g) A(ev) =1d  (Id-Curry)

Moreover, we can define A~ = evo(—xId). From (beta-cat), (Curry) and (Id-Curry)
it follows that A(A™(f)) = f and A~ (A(g)) = g.

3 The Simply Typed Differential A\-calculus

In this section we recall the definition of the simply typed version of differential -
calculus [6], together with some standard properties of the language. The set A? of
differential A-terms and the set A® of simple terms are defined by mutual induction
as follows:

AY: ST UV := 0|s|s+T A sitbu,vi= x| Ax.s|sT|Ds-t

The term Ds - t is the linear application of s to t. Intuitively, this means that s is
provided with exactly one copy of ¢.

We consider differential A-terms up to a-conversion, associativity and commu-
tativity of the sum. The term 0 is the neutral element of the sum, thus we add
S+0=2S5. We write S = T if § and T are syntactically equal up to the above
mentioned equivalences. The set FV(S) of free variables of S is defined as usual.

We will often use the following abbreviations: Az.(32F_,s;) for S8 Aa.s;,
D(Zf:l si) - (Xj=1tj) for 37, ;Ds; - t; and (Zle s;)t for Zle sit. Notice that
these are just syntactic sugar, not real terms.

We introduce two kinds of substitutions on differential A-terms: (i) the capture-
free substitution, denoted by S[T'/x] and defined as usual; (ii) the differential sub-
stitution, denoted by g—i - T and defined by induction on S as follows:

T ifzx=
.= i D(sU)-T = (4 -T)U + (Ds- (3 - T)U
0  otherwise
L(\y.s) - T=x.25.T Z(Ds-u)-T=D(2-T) - u+Ds-(3%-T)
N.T7=0 L(s+U)-T=8.T+%.T

The differential A-calculus is generated by the S-reduction (Az.s)T" —g s[1'/z] and
the linear reduction DAz.s-t — 4, )\x.% -t. We write —p for the contextual closure
of =g U —3,, and —p (resp. =p) for the transitive and reflexive (resp. transitive,

reflexive and symmetric) closure of —p.

4
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We now introduce the type system D that characterizes the simply typed differ-
ential \-calculus.
Type System D.

[(@)=0 Diz:obps:T I'tps:o—=7 I'FpU:o
m(x) I’l—D)\a:.s:U—>T( A) TrkpsU:T (D@)
: . I'kpsi:o foralll<i<k#1
I'kps:o—r Tl—Dt.a(Dd) : (D+)

I'tpDs-t:o—r7 Thp Yt sito

Note that, if s has a function type ¢ — 7 and ¢ has type o, then Ds-t has the same
function type of s, thus the derivative does not decrease the type.

Lemma 3.1 LetT;z:0bp S:7and Up T : 0. We have:
(i) T'kp S[T/x] : T,
(ii)) Tz :0Fp ‘g—i-T:T,
(111) (Subject Reduction for D) if T —p T thenT Fp T': 0.
Proof. (i) and (ii) follow by straightforward induction on the length of the proofs
of I'Fp S[T/z]:7and I';z : 0 Fp g—i T : T, respectively.
(iii) Suppose T = (Ax.s)U and T' = S[U/z], then it follows from (). Suppose

T = D(\z.s)- U and T" = Az.22 - U, then it follows from (ii). We conclude the
proof since type derivations are contextual. O

Definition 3.2 Let 7 be a collection of judgments of the shape ' S =T : ¢
such that THS:ocand T'H T : 0. T is called a (typed) differential \-theory if it is
closed under the following rules:

'+ A\z.s)T: 7 I'DMes-t:T
(8) (Bp)
' (\e.s)T =s[T/z]: 7 'DM\x.s-t= /\x.% tiT
iziobs=t:T1 © I'Fs=v:0—>T I‘I—T:T’:U(Ap)
FEXzs=Xet:o—T1 TEsT=vT":7
FFs=t:oc z:7¢T Lhs=vio—n7 Tbt=t:0 py
x:Thks=t:o (W) I'-Ds-t=Dv-t':0—71 (DAp)

plus the obvious rules for symmetry, reflexivity, transitivity and the sums.

4 A Differential Model Theory

In this section we will provide the categorical framework characterizing the models
of the simply typed differential A-calculus. The material presented in Subsection 4.1
is borrowed from [3].

4.1 Cartesian Differential Categories

A category C is left-additive whenever each homset has a structure of commutative
monoid (C(A, B),+4p,045) and (g + h)of = (gof)+ (hof) and 0o f = 0.

A morphism f in C is said to be additive if, moreover, it satisfies fo (g + h) =
(fog)+ (foh) and fo0 =0.
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A category is Cartesian left-additive if it is a left-additive category with prod-
ucts such that all projections and pairings of additive maps are additive. A ccc is
Cartesian closed left-additive if it is a Cartesian left-additive category satisfying:
(+-curry) A(f +g) = A(f) + A(g) A(0) =0 (0-curry)

Remark 4.1 From (+-curry) it also follows that A= (f + g) = A7 (f) + A (9).
Precomposing (Id, h) on both sides we get evo(f + g,h) =evo(f,h) +evo(g,h).

Definition 4.2 A Cartesian (closed) differential category is a Cartesian (closed)
left-additive category having an operator D(—) that maps a morphism f: A — B
into a morphism D(f): A x A — B and satisfies the following axioms:

D1. D(f+g) = D(f)+ D(g) and D(0) =0

D2. D(f)o(h+ k,v) = D(f)o{h,v) + D(f)o (k,v) and D(f)o(0,v) = 0
D3. D(Id) = m, D(m) = myom and D(mg) = myom

Da. D((f, ) = (D(f), D(9))

D5. D(fog) = D(f)o(D(g), goms)

D6. DD(f)) o {(g,0), (h, K}) = D(F)o (g, k)

DT, D(D(1))o ({0, h), (g, k) = D(D(F)) o (0, g), (b, )

We try to provide some intuitions on these axioms. (D1) says that the operator
D(—) is linear; (D2) says that D(—) is additive in its first coordinate; (D3) and
(D4) ask that D(—) behaves coherently with the product structure; (D5) is the
usual chain rule; (D6) requires that D(f) is linear in its first component. (D7)
states the independence of order of “partial differentiation”.

Remark 4.3 In a Cartesian differential category we obtain partial derivatives from
the full ones by “zeroing out” the components on which the differentiation is not
required. FE.g., suppose that we want to define the partial derivative Dp(f) of
f:CxA— B on its 15 component; then, it is sufficient to set Di(f) = D(f)o
((Id¢,04) x Idea): C x (CxA) — B. Similarly, we define Dy(f): Ax (CxA) — B
the partial derivative of f on its 2°d component.

This remark follows since every differential D(f) can be reconstructed from its
partial derivatives as follows:

D(f)

I
>

(f)o((

(f)o{{mom,0),m2) + D(f)o ({0, m20m), m2)

(f)o((Id,0) x Id)o(m x Id) + D(f) o ({0,Id) x Id) o (me x Id)
1(f)o(m x Id) 4+ Da(f) o (my x 1d).

o((m om,mpom), T2)

[
S O O

4.2 Differential \-Categories

Cartesian closed differential categories are not enough to interpret the differential
A-calculus, since the differential operator does not behave automatically well with
respect to the Cartesian close structure. For this reason, we now introduce the
notion of differential A-category.
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Definition 4.4 A differential A-category is a Cartesian closed differential category
such that, for all f: C x A — B:

(D-curry) DIA(S)) = A(D(f) o (m1 x 04,2 x Ida))

Intuitively, (D-curry) requires that in a A-category we have two equivalent ways
to derivate f : Cx A — B in its 15 component: we can use the trick of Remark 4.3,
or we can ‘hide’ the component A by currying f and then derive A(f).

Lemma 4.5 In every differential \-category the following axiom holds (for all h :
C—A=Bandg:C — A):
(D-eval) D(evo(h,g)) =evo(D(h),gome) + D(A™(h))o((0c,D(g)), (w2, goms)).

(D-eval) can be seen as a chain rule for denotations of terms (cf. Lemma 4.9(i)).
In differential A-categories we are able to define a binary operator x on morphisms,
that can be seen as the semantic counterpart of differential substitution:

f:CxA—-B g:C—A
fxg:CxA—B ()

This operator is defined by fxg = D(f)o <<08XA,go7r1>, Idoxa).
Definition 4.6 Let swypc = ((mom, ma), mom) : (AX B) x C — (AxC) x B.
Remark 4.7 swosw = Id(ax)xc, swo((f, ), h) = ((f,h),g) and D(sw) = swor.

The following two technical lemmas will be used in Subsection 4.3 to show that
differential A-categories are models of the simply typed differential A-calculus.
The interested reader can find the whole proofs in the technical Appendix A.

Lemma 4.8 Let f: (Cx A)x D =B andg:C — A, h: C — B'. Then:
(i) ma* g =gom
(ii) (hom)xg=0
(iii) A(f)*g=A(((fosw)*(gom))osw).
Proof. (Outline) (i) follows by applying D3. (ii) follows by applying D2, D3 and
Db5. (iii) follows by (Curry), (D-curry) and D2, D3, Db5. O
Lemma 4.9 Let f:CxA—[D=Blandg:C — A, h:C x A— D. Then:
(1) (evo(f,h))xg=evo(fxg+ ANA(f)*(hxg)),h)
(1)) AAT(f) xh)x g = AAT(f *g) * h) + AAT(f)  (hxg))
(iir) ANA™(f)*h)o(lde,g) = AMA™(fo(ldc, g)) * (ho(lde, g)))

Proof. (Outline) (i) follows by applying (D-eval) and (beta-cat).

(ii) This equation can be simplified by using the axioms of Cartesian closed
left-additive categories. Indeed, the right side can be written as A((A~(f*g)xh)+
A~ (f)*x (h*g)). By taking a morphism f’ such that f = A(f’) and by applying
Lemma 4.8(iii) the item (ii) becomes equivalent to ((f' * h)osw) x (gom)osw =
(((f'osw) x (gomy))osw) x h + f"x (hx g). This follows by (Curry) and D2-7.

(i13) follows by (Curry) and D2-5. O
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4.8 Interpreting the Differential \-calculus

In this section we define the interpretation of the simply typed differential A-calculus
in a fixed differential A-category C.

Types are interpreted as follows: |a| = A, for some object A, and |0 — 7| =
|o|=|7|. Contexts are interpreted as usual: |)] = 1 and |T';z : o] = |T'| X |o|. The
interpretation of a judgement I' - S : ¢ will be a morphism from |I'| to || denoted
by |S?|r and defined inductively as follows.

Interpretation of judgements
° ‘xa‘F;x:U =T2: |F| X ‘O-’ — |U|’

* Y Irwo = [yTIrom [T X [o] = || for z # y,

* [(sU)[r =evo([s” T|r, |U[r) : [T| = |7,

* [(Az.5)7 7" |p = A(lsT[rjai0) 2 [T] = o] =7,
|(Ds-1)777[p = AAT([s"7T|) % [t7[r)  [T| = |of=|7],
07]lp =0: [I'| = [a],

(s 4+ 8)7 |0 = [s70 + [S7|r « [T = |o].

We will sometimes omit the superscript o in |S?|r, when there is no chance of
confusion. Given a differential A-category C we can define the theory of C by:

Th(C)={'-S=T:0|TFpS:0, T'tpT:0, |S% =T}

At the end of this section we will prove that the interpretation | — | is sound for
the differential A-calculus, i.e., that Th(C) is a differential A-theory. In order to
prove this result, we need first some technical results.

The following lemma is easy to prove.

Lemma 4.10 Let S € AY, then:
(1) IfT'Fp S:7 and x ¢ FV(S) then |S7|r.p:0 = |ST|rom,
(ZZ) ‘S’F;x:o;yn' = ‘S’F;y:ﬂ';w:o‘ OSW.
Theorem 4.11 (Substitutions) Let T;z:obp S:7 and T tp T : o, then:
(i) |(S[T/z])7[r = |S7|rsa:0 0 {1y, [ T7[r).
(i) (33 - 1)
Proof. (i) By induction on S. The only interesting case is S = Ds - w.

By def. of substitution we have |(Ds-u)[T/x]|r = |Ds[T/x]-u[T/z]|r. By def. of
| — | this is equal to A(A™(|s[T'/z]|r) * |u[T'/z]|r). By induction hypothesis (IH) we
get A(A™(Is|rime o (Id, |T|r)) * (|ulre:e o (Id, |T|r))). By applying Lemma 4.9(44)
this is equal to A(A™(|8|ryz0) * [t|riz:e) 0 (Id, |T|r) = |Ds - 00 (Id, |T'|1).

(7i) By structural induction on S.

Tixio = |ST|F;90:0 * |T0|1“-

e case S = x. Then ’% : T|p;x;o = |T|p;x;o = |T|FO7T1 = T % |T‘F = |$|p;x;o * ’T|[‘
by Lemma 4.8(3).

e case S = z # x. Then ]% “Tlrg:e = |0|ryz0 = 0. By Lemma 4.8(i7) we have
0= (Jzlrom) *|T|r = |2[ra:0 * | Tr-

(Az.v)
ox

e case S = Az.v. By def. of linear substitution we have that | Trge =

8
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\)\z.a—i “Tlrge = A( % - T'|riz:0:2:v). Applying Lemma 4.10(74), this is equal to
A(|5% - T|ryzeye:0 05W). By IH we obtain A((|v|r;ziyz:0 * [T|r;2) 0 5W).  Sup-
posing wlog that z ¢ FV(T') we have |T|r,..y = |T|rom (by Lemma 4.10(%)).
Thus, by Lemma 4.8(i7i), we have that A((|v|riziyize * (|T|r 0 m)) osw) =
A(|V|r2iy:2:0 ©5W) % |T'|p, which is A(|v|ryz:0:2:y) * [T|r by Lemma 4.10(iz). We
conclude since A(|0|riz:0:2:7) * |T|r = [A2.0| 0300 % |T|1-

e case S = sU. By def. of linear substitution we have that \% Tlrge =
\(% - TYUlrsz:6 + |(Ds - (%—g - T))U|r.z:0. Let us consider the two addenda
componentwise. We have |(g—; - TYU|rg:e = evo( % Tlrzos |U|riz:0) which
is equal, by IH, to evo (|S|r.p:0 % |T|r, |U|riz:0). On the other side we have:
|(Ds - (% : T))Uh“;r:o = €vo <A(A_(|5|F;93:0) * |?9% : T|F;w:0)7 |U‘F;w:0>’ by IH
this is equal to ev o (A(A™(|s|r:0) * (|Ulrw:e % |T|1)), |T|1s2:0). By apply-
ing Remark 4.1 we can rewrite the sum of this two addenda as follows:
evo(|s|riao * [T[r + AA™(I8|0ia:0) * ([U]Dai0 * [ T1)), [Ulrse:o)- By Lemma 4.9(i)
this is (evo <’S izios |U|F;x:g>) * |T|F = ’SU‘F;ZL’:U * |T‘F.

e case S = Dv - wu. By definition, we have that |%(Dv cu) - Trge =

|D(% -T) - ulrge + |Dv - (% - T)|r.z:0. Consider the two addenda separately.

ID(%L - T) - ulrge = AMAT(ZE - Tlreio) * |ulryeo). By IH this is equal to

AA™ (Jv|rg:o*|T |1 ) *|t|ri2:6). On the other hand, we have that \Dv(%-T)\p;m, =

A~ (olrsaie) * 122+ Tlrirg). By TH this is AGA([olrso) * ([ulrme * [TIr).

By applying Lemma 4.9(i7) to the sum of the two morphisms, we obtain

AN (Jvrie:e) * |u|ra:0) * | T|r which is equal to |Dv - u|p,z.e * [Tr.

e all other cases (i.e., S =0 and S = s 4 U) are straightforward.

We are now able to prove the main theorem of this section.

Theorem 4.12 Let C be a differential \-category. Then Th(C) is a differential
A-theory.

Proof. We have to check that Th(C) is closed under the rules presented in Def. 3.2.

(8) Let |(Azx.s)T|r = ev o (A(|s|r0),|T|r). By the Theorem 4.11(i), we
have |s[T/z]|r = |s|rae © (Id,|T|r) and, by (beta-cat), |s|r..o o (Id,|T|r) =
evo (A(ls|ra:o), I Tr)-

(80) Let [DAz.5 -t = A~ (A(Islrsa:0)) % 1) = Al *tir). By applying
Theorem 4.11(ii), this is equal to |% “tlr.

For the weakening (W) we use Lemma 4.10(z). Symmetry, reflexivity and tran-
sitivity hold since Th(C) is an equivalence. The rule for sums follows from the
definition of the interpretation of sums. Finally, (£), (Ap) and (DAp) follow by
definition of the interpretation of abstraction, application and linear application
(respectively). O

5 Examples of Differential \-Categories

In this section we provide two examples of differential A-category: (i) MRel, which
is the co-Kleisli category of the functor Mf(—) over the %-autonomous category
Rel of sets and relations [11,5]; (ii) the category MFin, which is the co-Kleisli of

9
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the functor M ;(—) over the x-autonomous category of finiteness spaces and finitary
relations [7].

5.1 Relational Semantics

We provide here a direct definition of the category MRel:

e The objects of MRel are all the sets.

e A morphism from A to B is a relation from Mf(A) to B, in other words,
MRel(A, B) = P(M¢(A) x B).

* The identity of A is the relation Id4 = {([a],a) | a € A} € MRel(A4, A).

e The composition of s € MRel(A, B) and t € MRel(B, C) is defined by:

tos={(m,c)| I(mqi,b1),...,(mg,bx) € s such that
m=miW..."dmyg and ([b1,...,bg],c) € t}.
Theorem 5.1 The category MRel is a differential A-category.

Proof. (Outline) The fact that MRel is a ccc is proved, for instance, in [5]. The
categorical product® (&) is the disjoint union (U) and ) is the terminal object.
Given s; € MRel(A, B;) (for i = 1,2), the corresponding morphism (s, s2) €
MRel(A, B1 &By) is given by: (s1,s2) = {(m, (i,a)) | (m,a) € s;, for i = 1,2}.

We consider the canonical bijection between Mf(A;) x M(Az) and M¢(A1 &
Ag) as an equality, hence we will still denote by (m1, ms) the corresponding element
of M(A1&Az). Given two sets A, B we have A= B = M;(A) x B and:

evap = {(([(m,b)],m),b) | m € M(A) and b € B} € MRel((A=B)&A, B) .

Given any set A and any morphism s € MRel(A & B,C), there is exactly
one morphism A(s) = {(p,(m,b)) | ((p,m),b) € s} € MRel(A4, B=-C) such that
evpoo(A(s),Idg) = s.

MRel is a Cartesian closed left-additive category since the homsets can be en-
dowed with the following additive structure (MRel(A4, B), U, 0).

Finally, given f € MRel(A, B) we can define its derivative as follows:

D(f) ={(([a],m),b) | (mW[a],b) € f} € MRel(A&A, B).
It is not difficult to check that D(—) satisfies (D1-7) and (D-curry). O

Thus, the operation x can be directly defined in MRel as follows:
fxg=A{((miWma,m),b) | (my,a) € g, ((ma,my][a]),b) € f} : C&A — B.

5.2 Finiteness Spaces Semantics

We provide here a brief account of [7], in order to give a direct presentation of
the Cartesian closed category of finiteness spaces and finitary relations. All the
categorical constructions are tightly related to the corresponding ones in MRel.
Let X be a set and a,b C X. We say that a,b are orthogonal, written a_Lb, if
anbis a finite set. Given F C P(X), weset F- ={bc P(X)|Va < Falb}.

6 In this section the symbol x is kept to denote the usual set-theoretical Cartesian product.

10
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A finiteness space is a pair X = (X,F(X')) where X is a countable set and F(X)
is a subset of P(X) satisfying F(X)*+ = F(X). The elements of F(X) are called
the finitary sets of X.

Given a finiteness space X = (X,F(X)), define !X = (M;(X),F(!X)) where
F(LY) = {U C My (X) | supp(U) € F(X)}.

A finitary relation from X to ) is a relation R C X X Y such that:

o foralla e F(X), R(a) ={f €Y | Ja€a (a,p) € R} € F(Y), and
e forall BeY, R*(B) ={a € X | (o, 3) € R} € F(X)*.

The category MFin” can be directly defined as follows:

e The objects are the finiteness spaces.
e A morphism from X to ) is a finitary relation from !X to ).

* Identities and composition are defined as in MRel.
Theorem 5.2 The category MFin is a differential A-category.

Proof. (Outline) The categorical product X &) of the finiteness spaces X and )
is (X &Y, F(X&Y)), where X &Y = XUY and F(X&Y) = {aUd’ | a € F(X), a' €
F(Y)}. Projections and pairing are precisely like in MRel.

The exponential object X = Y = (M;(X) x Y,F(X = Y)); we refer to [7] for
the precise definition of F(X = ). The additive structure on homsets, A(—), ev
and D(—) are defined as in MRel. To conclude the proof it is sufficient to check
that ev is a finitary morphism and that for every finitary f of the correct type we
have that A(f) and D(f) are finitary.

We explicit here the case of D(f). We then want to show that for every f €
MFin(X,Y) we have D(f) = {(([a],m),B) | (mW[a],B) € f} € MFin(X&X,)).

As a preliminary remark we note that, for every X', F(X) and F(X)* contain all
finite subsets of X and are closed with respect to arbitrary intersections, finite unions
and subsets. As in the preceding subsection we will use implicitly the isomorphism
between M ;(XUY) and Mf(X) x M4(Y).

We start by proving that, given a finitary set U € F(I(X & X)), we have
(D(f))(U) € F(Y). By definition of F(!(X & X)), we have that m(supp(U)),
ma(supp(U)) € F(X), and hence 7 (supp(U)) U ma(supp(U)) € F(X). Now, defin-
ing U' = {m1 Wmgy | (m1,m2) € U}, we have that 7 (supp(U)) U ma(supp(U)) =
supp(U’), hence U’ € F(!X), and f(U’) € F()), f being finitary. Since (D(f))(U) C
f(U"), we have finished.

It remains to show that, for all 8 € Y, we have (D(f))*(8) € F((X &X))*.
Given U € F(I(X &X)), we define U' = {m1Wma | (m1,m2) € U} € F(X) as above.
We know that f+(B8) N U’ is finite, and we have to show that (D(f))*(3) N U is
finite. It is easy to see that (D(f))>(8)NU = {([a],m) | mwa] € fH(B)NTU'}, m
being a finite multiset. Hence D(f)*(B8)NU is finite, f+(8)NU’ being itself finite.O

7 We may have presented another differential A-category of finiteness spaces, which is obtained from MFin
by considering as objects the R-vector spaces (for some field R) associated to the finiteness spaces, and as

morphisms the continuous and linear maps between R-vector spaces [7, pag. 20]. However, this category is
unnecessarily complicated for our purposes.

11
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6 The Resource Calculus

6.1 Its Syntax

In this section we present the resource calculus [4] (using the formalization given
in [12]) and we show that every differential \-category is also a model of its simply
typed version. In this calculus there are three syntactical sorts: resource \-terms
(A7) that are in functional position; bags (A’) that are in argument position and
represent multisets of resources, and sums that represent the possible results of a
computation. A resource (A")) can be linear or intuitionistic, in the latter case it
is written with a ! apex. An expression (A()) is either a term or a bag.

Formally, we have:

AN M,N,L u=zx|Xe.M|MP resource A-terms
AO MO NG = M| M resources
A PQR u=[MY, M) bags
A® A B =M 1| P expressions

Concerning sums, N (A") (resp. N'(A’)) denotes the set of finite formal sums of
terms (resp. bags), with 0 referring to the neutral element.

M,NeN(ATY  P,QeN(AY A BeNA®) = N(A") UN(AD) sums

Notice that in writing V'(A(®)) we are abusing the notation, as it does not denote
the NM-module generated over A®®) = A™ U A® but rather the union of the two N-
modules. In other words, sums must be taken only in the same sort.

We will write L for Ly,..., L and N! for Ni, cees N;L. We will also abbreviate
M(Li/x)---(Li/x) in M(L/z). Moreover, given a sequence L and an integer 1 <

-

7 S k we set L_Z‘ = Ll;"'yLi—17Li+1)"'7Lk~
Every applicative term M P can be written in a unique way as M [E, N .
The reduction rule generating the resource calculus is the following:

(Az.M)[L,N'] = r M(L/z)[S?_N;/z]

where:

e A[N/z] is the usual substitution of N for x in A. It is extended to sums as in
AIN/z] by linearity in A.

* A(N/x) is the linear substitution defined inductively as follows:

y(Njmy = { T (y-M){N/z) = Ay.M (N/a)
0 otherwise (MP)(N/z) = M(N/x)P + M(P{(N/z))
[M)(N/x) = [M(N/z)] (N/z) =0

[M')(N/z) = [M(N/z), M'] (PwR)(N/z)=P(N/x)w R+ PWw R(N/x)

It is extended to A(N/x) by bilinearity® in both A and N.

8 [F(A, B) is extended by bilinearity by setting F\(£;4;,%,B;) = %, jF(A;, Bj).

12
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The operation M (N/x) on resource A-terms is roughly equivalent to the opera-
tion 6—5 T on differential A-terms (cf. Lemma 6.2 below).
We introduce the type system R characterizing the simply typed resource calcu-

lus.

Type System R.

INz)=0 Fe:obrM:T
o (Rx) _ (R
'Frx:o I'trAXzM:0—T1
'brRM:o—r7 F"RP:U(R@) PFrRN:0o FFRP:U(Rb)
TR MP:7 IFr [NOwP: o
I'kFrA:0 T'FrRB:o B#0
FI—R[]:U(RH) 'R A+B:o (R+)

0.2 Its Semantics

In this subsection we show that differential A-categories are models also of the
simply typed resource calculus. This result is achieved by first translating the
resource calculus in the differential A-calculus, and then applying the machinery of
Section 4.3.

We add the permutative equality to differential A-calculus, i.e., we consider dif-
ferential A-terms up to the following equivalence D(Ds-u)-v=D(Ds-v)-u. This
is useful for the translation since, in the resource calculus, bags are considered as
multisets (thus they are equal up to permutation of resources).

Remark 6.1 It is not difficult to check that in every differential A-category the
interpretations of D(Ds - u)-v and D(Ds - v) - u coincide.

We can now easily translate the resource calculus into the differential A-calculus
as follows:
o 1% =1,
e (Ax.M)° = Xx.M?,
o (M[L,N')° = (D*Me - L°)(S1, NY),
where DF M© . L° is an abbreviation for D(--- (DM? - L?) - - --L?). The translation
is then extended to elements in N'(A") by setting (X" M;)° = X' | M?.
Lemma 6.2 Let M, N € A" and x be a variable. Then:
(i) (M(N/x))* = 25 - N°,
(ii) (M[N/x])* = MO[N"/D«“]-

Proof. (i) By structural induction on M. The only difficult case is M = M’[I_:, ]\7']
By definition of (—)° and of linear substitution we have:

_’l

((M'[L, N'))(N/x))° = (M'(N/x)[L, N'|)° + (M'([L, N'|(N/x)))° =
(M'(N/x)[L, N')° + (S5, M[Lj(N/x), L, N')° + (7= M'[N;(N/x), L
(1) (2) 3)

N

—

13
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Let us consider the three addenda separately.

(1) By definition of the translation (—)° we have that (M'(N/z)[L, N'))° =
(D¥(M'(N/z))° - EO)(E?:lNZ-"). By applying the induction hypothesis, this is equal
to (DF (%57 - N°) - LO) (S, ).

(2) By definition of the map (—)° we have (E?ZIM/[LJKN/;@,E,j,]\_f!])o =
Z)?Zl(Dk*1 (DM’ - (Lj(N/xz))°) - Eij)(Eﬁlef). By the induction hypothesis, this
is equal to E?Zl(Dk_1 (DM - (% -N?)) - Eij)(E?ZINf).

(3) By definition of the map (—)° we have (X7_;M'[N;(N/z), L,N)° =
21 (M'[Nj(N/x), L, N'))° = £7_, (DF (DM - (N;(N/))°) - L°)(S7_; Nf). By in-
duction hypothesis, this is equal to E;L:l(Dk(DM’O . % - N°) - I_:O)(E,L’.L:lNi"). By
permutative equality this is equal to Egzl(D(DkM“’ - L) - % - N°)(ZP_{N?).

To conclude the proof it is sufficient to check that %((Dk Me. Eo)(Elnleio)) -N°
is equal to the sum of (1), (2) and (3).

(74) By straightforward induction on M. O

Proposition 6.3 For all M € A" we have:
(i) M —gr N implies M° —p N°.
(i) TFrM:0 < I'Fp M°: 0
(iii) (Subject Reduction for R) T'Fr M : 0 and M —r N impliesT' g N : 0.

Proof. (i) Let M = (Az.M')[L,N'] and N = M'(L/z)[£"  N;/z]. By def-
inition of (=)° we have ((Az.M')[L,N'])° = (DF(Az.M") - L°)(XP_ N?) —p
M'°(L°/z)[2 N? /x] which is equal to N° by Lemma 6.2.

(ii) follows by induction on the length of the proofs of I' kg M : o0 and T Fp
M°:o.

(7i1) SupposeI' Fr M : 0 and M — i N. Then by (ii) we have that I' -p M° : 0.
By (i) we know that M° —p N° and since System D enjoys the subject reduction
we get I' =p N°: 0. We conclude by (7). O

Remark 6.4 The two results above generalize easily to sums of terms (i.e., to
elements M € N(A")).

Resource A-terms can be interpreted in any differential A-category trough their
translation (—)°. Indeed, it is sufficient to set |[I' Fr M : o| = [(M°)?|r. From this
fact, Proposition 6.3 and Remarks 6.1,6.4 it follows that differential A-categories are
models of the simply typed resource calculus.

7 Conclusions and Further Works

In this paper we have provided sufficient conditions on Cartesian closed differential
categories for being models of the simply typed differential A-calculus. We have
also shown that they can also be used for interpreting the simply typed resource
calculus, by providing a faithful translation between the two calculi.

However, differential A-categories may also provide general mathematical frame-
works in which many models of the untyped differential A-calculus may live. This

14



BucciARELLI, EHRHARD, MANZONETTO

is the case of the category MRel, while it is not the case of MFin since it does
not contain any reflexive object. In a forthcoming paper we will provide suitable
conditions on the reflexive objects of a differential A-category for being models of
the untyped differential A-calculus (intuitively the retraction should be ‘linear’, in a
sense to be specified). We will then show that the reflexive object D we have built
in [5] satisfies these conditions.

Another interesting line of research is to characterize categorical models of the
differential A-calculus at the level of SMCC’s (symmetric monoidal closed cate-
gories). In [3] Blute et al. show that (monoidal) differential categories [2] give rise
to Cartesian differential categories via the co-Kleisli construction. In the same spirit,
we would like to provide sufficient and necessary conditions on SMCC’s for giving
rise to differential A-categories (indeed, the examples of differential A-categories we
gave in Section 5 may be generated in such a way).

Notice that, in monoidal frameworks, categorical proofs become often awkward
due to the symmetric properties of the tensor product ® . It would be then interest-
ing to define a graphical formalism allowing to represent in a pleasant and intuitive
way the morphisms of these categories. This formalism could be inspired by differ-
ential proofnets or interaction nets [9], but should satisfy (at least) the following
properties: there should be a 1-to-1 correspondence between a morphism and its
graphical representation (maybe up to some well chosen equivalence on morphisms);
the formalism should not ask for extra properties of the category, like the presence
of the operator % or the dualizing object L.

Acknowledgements. Many thanks to Guy McCusker, Michele Pagani and
Paolo Tranquilli for helpful comments and suggestions.
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A Technical Appendix
This technical appendix is devoted to provide the full proofs of the three main lemmas in Subsection 4.2. These proofs
are not particularly difficult but quite long and require some preliminary notations.

Notation 1 We will adopt the following notations:
e (Gliven a sequence of indices i= i1,...,15 with i; € {1,2} we write mz for mi; 0- oM, .

e For brevity, when writing a Cartesian product of objects as subscript of 0 or Id, we will replace the operator X by simple
Juztaposition. For instance, the morphism 1d(ax Byx(cxp) will be written Id s py(cD)-

Hereafter “(proj)” will refer to the rules w1 o(f,g) = f and m20(f, g) = g that hold in every Cartesian category.

Lemma A.1 (Lemma 4.5) In every differential \-category the following axiom holds (for all h : C — A= B and
g:C— A):

(D-eval) D(evo(h,g)) =evo(D(h),gom2) + D(A™(h))o((0c, D(g)), (w2, gom2)).

Proof. Let B’ = A~ (h) : C x A — B.

D(evo(h,g)) = by def. of '/
D(evo(A(h),g)) = by (beta-cat)
D(h'o(ldc, 9)) = by (D5)
D(h')o(D({(Id¢, 9)), (Idc, g) oma) = by (D4) and (D3)
D(h')o((m1, D(g)), (w2, goma)) = since pairing is additive
D(h')o{{m1,04) + (0c; D(9)), (2, gom2)) = by (D2)
D(h/)o((m1,04), (w2, goma)) + D(h')o((0c, D(g)), (2, gom2)) = by (proj)

D(h')o(m1 X 04,m2 X Ida)o(Idcc, gom2) + D(h')o{{0c, D(g)), (w2,gom2)) = by (beta-cat)

evo(A(D(h)o(m x 04,m2 X Ida)),gome) + D(h')o((0c, D(g)), (w2, goma2)) = by (D-curry)
evo(D(A(R')),goma) + D(A™ (A(R')))o{{0c, D(g)), (w2, goma)) = by def. of h’
(

We recall that swapc = (<7r1,1,7r2>,7r2,1> : (A X B) x C — (A X C) X B.

Lemma A.2 (Lemma 4.8) Let f: (Cx A)xD —-B,g:C — A, h:C — B'.

(i) T2 x g = gomi,
(i) (homi)xg =0,
(i69) A(f) % g = A((fosw) x (gomr)) osw).

Proof. (i)

D(m2)o((0¢,gom),Idca) by def. of x
meomio{{0c,gomi),Idca) by D3
m20(0¢, gom) by (proj)
= gomy by (proj)

T2 x g

(i)

(hom) *g= D(homi)o{{0c,gom),Idca) by def. of %
(h)o(D(m1),71,2){{0¢c,gom),Idca) by D5
(h)o(momy,m,2)0((0c,gom),Idcxa) by D3
(h)o(0¢, m1) by (proj)

by D2

Il
S goU

(iii) We first prove the following claim.

Claim A.3 Let g: C — A, then the following diagram commutes:

w1,Id d R d d
(CxA)xD (ritdoxapddp (Cx(CxA)xD (Oc0)Moxa) XD iy AYx (C'x A)) x D

(1 x1dp,sw) (r1X0p,meXIdp)

(0cxp,gom1)XId(oxp)xa (D(sw),swomg)

(CxD)x((CxD)xA) ((CxA)xD)x ((CxA))xD)

((CxD)xA)x ((CxD)xA)
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Sub-proof.

T X OD,7T2 X IdD> ((<Oc,g> X Ich) X IdD)O(<7r1,IdCA> X IdD) =
0c,gom1,1),0p), (2,1, m2)) o ({71, (1, T2)) oMy, T2) =

0c,gom1,1),0p), (2,1, m2)) o (71,1, (71,1, 72,1)), T2) =

0c,gomi, 1),0p), <<7r1,1,7r2,1>,7f2>> =

Oc,goﬂ‘l 1) 0D>: <<7T1’1’2,7T272>,7T2’1,2>>0<7T1 XIdD,SW> =

1,1,1,72,1), 72,1,1), {{71,1,2, 72,2),72,1,2)) 0 ({Ocp, gom1,1), m2) o (m1 X Idp,sw) =
(sw),swoma)o((0cp,gom) X Id(cpya)o(m X Ildp,sw)

AN

(
(
(
(
(
(
(D

We can now conclude the proof as follows:

A(f)*g= D(A(f))o{(0c,gom),Idca) by def. of x
= A(D(f)o(m1 x 0p,m2 X Idp))o{((0c,gom1),Idca) by (D-curry)
= A(D(f)o(m x 0p,m2 x Idp)o((((0c, gomi),Idca)) x 1dp)) by (Curry)
= A(D(f)o(D(sw),swoma)o({0cp,gomi) X Id(CD)A)o<7r1 x Idp,sw)) by Claim A.3
= A(D(fosw)o({Ocp,gom) x Id(cpya)o(m,Id)osw) by D5
= A(((fosw) x (gom1))osw) by def. of

Lemma A.4 (Lemma 4.9) Let f: C x A— [D=B], g
(i) (evo(f,h)) x g =evo(fxg+AAT(f)x(hxg)),h)
(i) AAT(f) xh) g = AAT(f % g) x h) + AA(f) x (h*g))
(iir) A(A™(f) x h)o(lde, g) = A(A™(fo(lde, g)) * (ho(ldc, 9)))

Proof.
(i) Let us set ¢ = ({(0c,gom1),Idca). Then we have:

:C— A h:CxA—D

(evo(f,h)) xg = by def. of %
D(evo(f,h))op = by (D-eval)
(evo(D(f), homs) + DA~ (£))o ((0c.a, D(R), (3, homa)))op = by Det. 4.2
evo (D(f), homa)ow + DA~ (£))o ((0ca, D(h) o), (Idc.a, h)) = by def. of +
evo(D(f)op,h) + D(A™(f))o{(0ca, (hxg)om),Id(cayp)o{ldca,h) = by def. of *
evo(fxg,h) + (A(f) *(hxg))o(ld,h) = by (beta-cat)
evo(f*g,h) +evo(AAT(f)*x(hxg)),h) = by Rem. 4.1
( *

) *
evo(fxg+AAT(f)*(h*g)),h)

(it) We first simplify the equation A(A=(f) x h) x g = A(AT(f xg) x h) + AAT(f) = (h x g)) to get rid of the Cartesian
closed structure. The right side can be rewritten as A((A~(f xg) x h) + A= (f) » (h x g)). By taking a morphism
f':(C x A) x D — B such that f = A(f’) and by applying Lemma 4.8(ii¢) we discover that it is equivalent to show
that:

((f" x h)osw) x (gomy)osw = (((f' osw) % (gom1))osw) x h + f' x (h % g).
By definition of x we have:

((f' * h)osw) % (gomi)osw = D(D(f")o((0ca,ho(m,1,m2)),sw))o((0cp,gomi,1),sw)

Let us call now ¢ = ((0cp,gom1,1),sw) and write D?(f) for D(D(f)). Then we have:

2(f)o{(0ca,ho(m1 1, m2)),sw))op = by D5
2(f")o(D({{0ca, ho(mi,1,m2)),5w)), ((0ca, ho(mi,1,m2)),sw)omz) 0 = by (pair)
w))op, ((0ca, ho(m,1,m2)),sw)oma0p) = by D4

D2(f") o
D2(f") o ),s
D2(f")o(D({{0ca,ho(mi,1,m2)),s
D2(f") o ({D({0ca,ho(m1,1,m2)))op, D(sw)op), ({(0ca,ho(m,1,m2)),sw)osw) = by Rem. 4.7
D2(f") o ({D((0ca, ho{m,1,72))) o, D(sw)op), {((0ca, homi),Id(cayp))

!

Since (D({(0ca,ho(m1,1,m2)))op, D(sw)oyp) = (0, D(sw)op) + (D({0ca,ho(mi,1,m2)))op,0) we can apply D2 and
rewrite the expression above as a sum of two morphisms:

1) D2(f")o({0¢cayp> D(sw) o), ((0ca, homi),1dcayp)) +
(2)  D2(f)o({D({0ca,ho(m,1,m2)))ow,0cayp), ((Oca,homi),Id(cayp))
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We now show that (1) = (((f’ osw) * (gom1))osw) x h. Indeed, we have:

D2(f")o{{0(cayp, D(sw)ow), {((0ca, homi),Id(ca)p)) = by Rem. 4.7
D2(f")o{{0(caypsswomiop), {(0ca, hom),ld(cayp)) = by (proj)
D2(f")o{{0(cayp>swo(0cp,gom1,1)), {(0ca, homi),ld(cayp)) = by Rem. 4.7
D2(f")o{{0(cayp, {{0c,g0m1,1),0D)), {(0ca, homi),Id(cayp)) = by D7
D2(f")o({{{0c,04),0p), (0ca, homi)), {{(0c, gom1,1),0p),Id(cayp)) = by D2
D2(f")o({{{(0c, D(g)0(0¢,m1,1)),0p), (0ca, hom)), {{({0c,gom1,1),0p),Id(ca)p))-

Let us set ¥ = ((O¢c a, ho7r1>,Id(cA)D>. Then we have:
D(D(f))o{({{0c, D(g)o(0c,m1,1)),0p), (0ca, hom)), {{{0c,gom1,1),0p),Id(cayp)) = by (proj)
D(D(f))o{{{{0c, D(g)o(m1,1,1,71,1,2)),0p), 71), {{{0c;gom1,1,2),0p), m2)) 0tp = by D3
D(D(f))o{{{{0c, D(g)o(D(m1,1),71,1,2)):0p), 1), {({{0c, gom1,1,2),0p), T2)) 0¥p = by D5
D(D(f))o{{{{0c, D(gom1,1)),0p), m1),{{(0c,gom1,1,2),0p), 72)) 09 = by D1
D(D(f))o{({{({D(0c), D(gom1,1)), D(0p)), D(d(ca)p)), {{{0c,gom1,1,2),0p), m2)) 0p = by D4
D(D(f))o(D({{{0c,gom1,1),0p),1d(ca)p)), {{{0c,go71,1),0p),Id(cayp)om2)op = by D5
D(D(f)o({(0c,gom,1),0p),1d(cayp)) ot = by Rem. 4.7
D(D(f)o(swo{0cp,gomi,1),swosw))ot) = by (proj)
D(D(f)o(swomi,swomg)o((0cp,gom,1),sw))op = by Rem. 4.7
D(D(f)o(D(sw),swoma)o((0cp,gomi,i),sw))or) = by D5
D(D(fosw)o({(0cp,gomi,1),1d(cpya)osw)o{{0ca,hom),ldcayp) = by def. of x

(((fosw) x (gom1))osw) x h

We will now show that (2) = f x (h % g), and this will conclude the proof.

D2(f)o({D((0¢a,ho(m1,1,7m2)))09p,0(cayp), ((0ca, hom),Id(cayp)) = by D1+4
D2(f)o{{{0ca, D(ho(m1,1,m2)))0p,0(cayp), ((0ca, homi),Id(cayp)) = by D5
D2(f)o{{({0ca, D(h)o(D((m1,1,m2)), (71,1,2,72,2))) 00, 0(c.a)p)s ({0ca, hom),Id(cayp)) = by D4+D3
D2(f)o({{0ca, D(h)o{((D(m1,1), D(m2)), {m1,1,2,72,2))) 00, 0(cayp), {(0ca, hom1),1d(c ayp)) = by D5+D3
D2(£)o{{{(0ca, D(h)o{{m1,1,1,72,1), (71,1,2,72,2))) 0©,0(c ayp), {({0c A, homi), Id(c.ayp)) = by (proj)
D2(f)o{{({0ca, D(h)o{(0c,gom,1),m1)),0cayp), {{Oca, hom),ld(cayp)) = by D6

D(f)o({0ca, D(h)o({0c,gomi,1),m)),1d(cayp) = by (proj)

( )o{{0ca, D(h)o((0c,gom),Idca)om), Id(cayp) = by def. of x

* (hxg)
(it3) By (Curry) we have A(A=(f) » h) o (Idc,9) = A(A(f) » h) o ({Id¢,g) x Idp)), thus if we show that

(A= (f)*h)o((Ide, g) x Idp) = A~ (fo(Idc, g)) * (ho(Idc, g)) we have finished.

We proceed then as follows:

(A= (f) *h)o((Id¢c, g) x Idp) = by def. of x
DA™ (f))o({0ca,hom),Id(cayp)o({Idc,g) x Idp) = by def. of A~
D(evo(fomi,m2))o{{(0ca,hom),Id(cayp)o((Idc,g) X Idp) = by D5+D4
D(ev)o({(D(fom1),D(m2)),(fom1,2,m2,2))0({0ca,h)o{ni,gom),(Idc,g) x Idp) = by D5+D3
D(ev)o{((D(f)o(m1,1,m1,2),m2,1), (fom,2,m2,2))0((0ca,ho(m,gom1)),(Idc,g) x Idp) = by (proj)
D(ev)o({D(f)o(0ca, (m1,gom)), ho(m,gom)),{fo(m,gom), m2)) = by D2

D(ev)o {{D(f)o({0c, D(g9)o(0¢c,1dc)),(Idc, ), ho(m1,gom)), (fo(ldc, g),1dp)) =
by setting ¢ = ((0¢, ho(mi,gom)),Idep)
D(ev)o{({D(f)o({m1,1,D(g)o(m1,1,71,2)),{T1,2,9071,2)),m2,1), (fo(m1,2,g90m1,2),m2,2)) op = by D5

D(ev)o{((D(fo(m1,gom)), D(m2)), (fo(m1,2,g0m1,2),72,2))0p = by D4
D(ev)o(D((fo(m,gom),m2)), (fo(m,2,gom 2),m22))0p = by D5
D(evo(fo(m,gom), m2))op = by def. of A~
D(A™(fo(ldg, g)))op = by def. of x
AT (fo{ldc, g)) x (ho(ldc, g))
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