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Abstract

We introduce a probabilistic version of coherence spaces and show that these objects provide

a model of linear logic. We build a model of the pure lambda-calculus in this setting and show

how to interpret a probabilistic version of the functional language PCF. We give a probabilistic

interpretation of the semantics of probabilistic PCF closed terms of ground type.

Introduction

There are various motivations for introducing probabilistic features in the denotational semantics of
programming languages, such as giving a systematic account of program execution in an environment
subject to random evolution or providing a denotational understanding of randomized algorithms.

For designing such models, two main directions have been explored so far.

• In the �standard� domain-theoretic approach, the idea has been to de�ne a probabilistic analogue of
the powerdomain constructions previously introduced in [Plo76] for interpreting non-deterministic
languages. Such a probabilistic powerdomain construction has been �rst considered by Saheb-
Djahrmi [SD80] and further studied by Jones and Plotkin in [JP89] where it is used as a com-
putational monad in the sense of [Mog89]. In this setting, one associates a domain with each
type, and a program from type A to type B is interpreted as a continuous function f from the
domain X associated with A to the powerdomain of the domain Y associated with B. The in-
tuition is clear: f maps any value of X to a (sub-)probability distribution (or, more generally, a
(sub-)probability measure) describing the probability of obtaining a given result in Y . Composing
such maps and interpreting programming constructs is possible, thanks to the additional structure
of the powerdomain functor (as already mentioned, it is a computational monad).

• In the game-theoretic framework, a probabilistic version of Hyland-Ong [HO00] and Nickau [Nic94]
game semantics has been introduced by the �rst author and Harmer in [DH00]. The low-level
description1 of interactions provided by games allows indeed to view probabilistic strategies inter-
preting probabilistic programs of a given type A as stochastic processes on the plays of the game
associated with A. This probabilistic intuition is perfectly compatible with the standard game in-
terpretation and its non-deterministic version developed in [HM99], and the factorization and full
abstraction properties of deterministic and non-deterministic game models have been successfully
extended to this probabilistic setting.

There is however another tradition in the denotational semantics of functional programming languages
and logical systems, dating back to the coherence space model introduced by Girard in [Gir86, Gir87],
and similar models such as hypercoherences, developed by the second author [Ehr93], or Loader's totality
spaces [Loa94]. The object interpreting a type A in these models can often be seen as a domain whose
elements are certain subsets (the cliques) of a given set (the web) associated with the type, these cliques

1The very idea of game semantics is to give an account of execution at all types in terms of ground type elementary
interactions, just as compilation consists in transforming an abstract program into a sequence of basic operations acting
on elementary tokens. This operational viewpoint on games is illustrated in [DHR96].
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being ordered under inclusion. This web is usually endowed with an additional structure (a binary graph
structure for coherence spaces, a hypergraph structure for hypercoherences. . . ) which is used for de�ning
which subsets of the web are cliques.

These web-based models provide interpretations of functional languages and intuitionistic logic proofs,
of course, but also of linear logic [Gir87]. Though much less successful than game models in terms of full
completeness, they have been powerful tools for discovering new syntaxes: coherence spaces played an
essential role in the discovery of linear logic.

Adding numerical coe�cients to such webbed objects by replacing subsets (cliques) by scalar valued
functions de�ned on the web is a natural step to take. . . and it has been taken by Girard even before
he discovered qualitative and coherence spaces. In [Gir88], he interpreted each type A as a set (a web),
and each closed program of type A as a map from that web to sets, to be understood as possibly in�nite
numerical coe�cients. Adding structures to these webs, it is possible to keep these coe�cients �nite, as
shown in [Ehr02, Ehr05]. The principle of these latter constructions is pervasive in linear logic: everything
is de�ned in terms of a fundamental linear duality. For instance, for de�ning real Köthe spaces, given a
set I (a web), one says that x ∈ RI and x′ ∈ RI are in duality if

∑
i∈I |xix′i| < ∞. And then a Köthe

space of web I is a set of elements of RI which is equal to its bidual.
As brie�y explained in [Gir04], it is quite natural to give a probabilistic �avour to the de�nition above

by slightly modifying the duality. Since probabilities are non-negative numbers it is reasonable to restrict
to xs belonging to (R+)I , and to say that x ∈ (R+)I and x′ ∈ (R+)I are in duality if

∑
i∈I xix

′
i ≤ 1. This

appears as a natural �fuzzy� generalization of coherence spaces, if one keeps in mind that a coherence
space of web I can equivalently be de�ned as a set of subsets of I which is equal to its bidual for the
following notion of duality: u ⊆ I and u′ ⊆ I are in duality if u∩u′ has at most one element. Therefore,
these new objects are called probabilistic coherence spaces (PCSs for short). The multiplicative (⊗ and
�) and additive (⊕ and &) constructions on PCSs are presented in [Gir04]. We show that PCSs, with
suitably de�ned morphisms, provide a model of full classical linear logic, and hence a cartesian closed
category (the Kleisli category of the exponential comonad).

Although the de�nitions of PCSs and of Köthe spaces are formally similar, we shall see that the two
notions have quite di�erent properties, in particular:

• Just as in the powerdomain and game approaches, each PCS can be seen as a continuous domain,
and morphisms in the cartesian closed category of PCSs are Scott-continuous and admit therefore
�xpoints. So, general recursion can be interpreted in PCSs, whereas this is impossible in the CCC
of Köthe spaces.

• On the other hand, the cocontraction rule of di�erential linear logic [Ehr02, ER06] can be inter-
preted in Köthe spaces whereas it cannot in PCSs.

It is therefore possible to interpret a probabilistic version PPCF of PCF [Plo77], where the language is
extended with a programming primitive, which randomly yields a non-negative integer with a prescribed
probability distribution. For this purpose, the ground type of integers is interpreted as the set of natural
numbers, together with all the families x ∈ (R+)N such that

∑
n∈N xn ≤ 1, that is, all sub-probability

distributions on N. This is, mutatis mutandis, the same interpretation of natural numbers as in the
probabilistic game model of [DH00]. But, in sharp contrast with that probabilistic game interpretation,
in PCSs, the simple probabilistic intuition is lost at higher types2: the families of non-negative real
numbers interpreting terms at higher types are no more sub-probability distributions in general.

We choose the leftmost-outermost reduction strategy as operational semantics for PPCF. We show
�rst that, in some precise sense, the semantics of terms is invariant under reduction. This result could
easily be generalized to arbitrary reductions (not only those of our strategy), with the proviso however
that the probabilistic reduction rule should be applied only when the probabilistic redex stands in linear
position (typically in head position). This is quite di�erent from the situation in other probabilistic
lambda-calculi, such as the one considered in [DPHW05], where the probabilistic reduction can be
performed at any place in a term.

2This phenomenon is not new. For instance, in the hypercoherence model of [Ehr93], strongly stable functions between
products of ground types are sequential, whereas at higher types, there is no simple interpretation of strong stability in
terms of sequentiality. On the other hand, in game-theoretic models, such as the sequential algorithms model of Berry and
Curien [BC82], the sequentiality intuitions are preserved at all types, but these models are �less abstract� in the sense that
they keep more informations on the interpreted programs.
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Next, we show that PCSs have nevertheless a clear probabilistic meaning. We prove that the inter-
pretation of a closed PPCF term M of type integer is the sub-probability distribution on the integers
mapping n to the probability that M reduces to n (the integer n of the language), in our leftmost out-
ermost strategy, presented in a small step way, as a stochastic matrix on terms, that is, as a Markov
process3. The proof is an adaptation of Plotkin's logical relation proof of adequation for the Scott's
semantics of PCF in [Plo77]. It is certainly an exciting challenge to try to understand the probabilistic
meaning of PCSs at higher types. One could probably address this issue by de�ning a logical relation
between the probabilistic game model and the present PCS model, but this is postponed to future work.

Introducing a notion of substructure for PCSs, a very restrictive notion of morphisms for which PCSs
are closed under directed colimits, and showing that the logical constructions are continuous wrt. these
colimits, we show that all types admit least �xpoints. In particular, we exhibit a PCS structure on a
relational model of the pure lambda-calculus that the second author recently introduced with Bucciarelli
and Manzonetto [BEM07, BEM08].

Last, we suggest an intrinsic4 version of this semantics, associating a Banach space with any PCS, and
showing that PCS morphisms give rise to linear and continuous maps between the associated Banach
spaces. This de�nes a functor from the category of PCSs to the category of coherent Banach spaces
of [Gir99]5. We show however that this functor is not full, and propose to consider ordered Banach
spaces (an ordered Banach space is a Banach space together with a positive cone thereof) as a possible
intrinsic version of PCSs. These objects indeed combine the algebraic and topological features of Banach
spaces with the order-theoretic features of cpos, but the corresponding theoretical investigations are
postponed to further work.

Notations

We use N for the set of non-negative integers, N+ for the set of positive integers (N+ = N\{0}). If A is a
set,Mfin(A) denotes the set of �nite multisets on A. We use [a1, . . . , an] for the multiset whose elements
are a1, . . . , an, taking multiplicities into account and we use m +m′ for the disjoint union of multisets
m and m′. We denote by δa,b the Kronecker symbol, whose value is 1 if a = b, and 0 otherwise.

We extend the ordinary operations and notations on real numbers to families of real numbers, point-
wise. For instance, if x ∈ RA, we use |x| for the family (|xa|)a∈A of absolute values.

We denote by R+ the set of non-negative real numbers, and by R+ = R+ ∪ {∞} the completed
non-negative real half-line, which is a rig. Remember that, in that rig, 0×∞ = 0.
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1 Probabilistic coherence spaces

1.1 General de�nitions

1.1.1 Basic duality. Let A be a set. We denote by ea the element of (R+)A de�ned by (ea)a′ = δa,a′ .
Given a ∈ A, we de�ne πa : (R+)A → R+ by πa(x) = xa.

If x, x′ ⊆ (R+)A, we set
〈x, x′〉 =

∑
a∈A

xax
′
a ∈ R+ .

If P ⊆ (R+)A, let
P⊥ = {x′ ∈ (R+)A | ∀x ∈ P 〈x, x′〉 ≤ 1} .

This set could be called the polar of P .
One checks easily that P ⊆ Q⇒ Q⊥ ⊆ P⊥ and that P ⊆ P⊥⊥. Therefore P⊥⊥⊥ = P⊥.
Let Q ⊆ (R+)A and let P = Q⊥. Observe �rst that

∀x ∈ P ∀y ∈ (R+)A y ≤ x⇒ y ∈ P .

Given a ∈ A, the set πa(P ) ⊆ R+ is therefore an initial segment of the non-negative real half-line, and
we de�ne cP (a) ∈ R+ as the lub of πa(P ). For any λ ∈ R+ such that λ < cP (a), one can �nd x ∈ P such
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that xa = λ, and hence λea ∈ P (since λea ≤ x). It follows that cP (a)ea ∈ P . Indeed, for any x′ ∈ Q,
and any λ < cP (a) we have 1 ≥ 〈λea, x′〉 = λx′a and therefore cP (a)x′a ≤ 1. Moreover, by de�nition of
cP (a), we must have λ ≤ cP (a) for any λ such that λea ∈ P . We have shown that

cP (a) = sup{λ > 0 | λea ∈ P} and cP (a)ea ∈ P .

1.1.2 Probabilistic coherence spaces. A probabilistic coherence space (PCS) is a pairX = (|X|,PX)
where |X| is a countable set and PX ⊆ (R+)|X| is such that

1. PX⊥⊥ ⊆ PX (that is, PX⊥⊥ = PX)

2. ∀a ∈ |X|∃λ > 0 λea ∈ PX, that is cX(a) > 0 (where we set cX(a) = cPX(a))

3. and ∀a ∈ |X|, the set πa(PX) ⊆ R+ is bounded, that is cX(a) <∞.

Remark : We do not require PX ⊆ [0, 1]|X|, which might seem a desirable (or at least intuitively
appealing) condition. We shall understand why when the exponentials will come in. Conditions (2)
and (3) are there for keeping �nite all the real numbers involved; they are not explicitly stated in the
de�nition of PCSs in [Gir04].

Lemma 1 If X is a PCS, then X⊥ = (|X|,PX⊥) is also a PCS and cX⊥(a) = cX(a)−1, for any a ∈ |X|.

Proof. We only have to prove conditions (2) and (3) for X⊥, which will follow if we show that cX⊥(a) =
cX(a)−1. We have cX(a) ∈ PX and cX⊥(a) ∈ PX⊥, hence cX(a)cX⊥(a) ≤ 1, that is cX⊥(a) ≤ cX(a)−1.
Moreover, for any x′ ∈ PX⊥, we have x′a ≤ cX⊥(a), that is x′acX⊥(a)−1 ≤ 1, hence cX⊥(a)−1ea ∈ PX.
Therefore cX⊥(a)−1 ≤ cX(a). 2

We de�ne the norm of x ∈ PX as

‖x‖X = sup
x′∈PX⊥

〈x, x′〉 ≤ 1 ,

see Section 4 for more details.

1.2 Morphisms of PCSs

1.2.1 Tensor product. Let X and Y be PCSs. If x ∈ PX and y ∈ PY , we de�ne x⊗y ∈ (R+)|X|×|Y |

by (x⊗ y)a,b = xayb. Let

• |X ⊗ Y | = |X| × |Y |

• and P(X ⊗ Y ) = {x⊗ y | x ∈ PX and y ∈ PY }⊥⊥.

Then X ⊗ Y = (|X ⊗ Y |,P(X ⊗ Y )) is a PCS. Condition (1) is obvious, because P(X ⊗ Y ) is of the
shape P⊥. Conditions (2) and (3) will follow from the fact that

cX⊗Y (a, b) = cX(a)cY (b) .

Since cX(a)ea ∈ PX and cY (b)eb ∈ PY , we have (cX(a)ea) ⊗ (cY (b)eb) = cX(a)cY (b)ea,b ∈ P(X ⊗ Y ),
therefore cX(a)cY (b) ≤ cX⊗Y a, b.

On the other hand, given x′ ∈ PX⊥ and y′ ∈ PY ⊥, and x ∈ PX and y ∈ PY , one checks easily that

〈x⊗ y, x′ ⊗ y′〉 = 〈x, x′〉〈y, y′〉 ≤ 1

and hence x′⊗y′ ∈ P(X ⊗ Y )⊥ (this means that the MIX rule holds in our model). In particular, we have

cX(a)−1cY (b)−1ea,b ∈ P(X ⊗ Y )⊥ and hence ∀z ∈ P(X ⊗ Y ) za,b ≤ cX(a)cY (b), that is cX⊗Y (a, b) ≤
cX(a)cY (b).
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1.2.2 The PCS of morphisms. Let X ( Y = (X ⊗ Y ⊥)⊥. A morphism u from X to Y is, by
de�nition, an element of P(X ( Y ). So u can be seen as a matrix with |Y | lines and |X| columns (since
u ∈ (R+)|X|×|Y |).

Given any matrix u ∈ (R+)|X|×|Y |, we can de�ne the map (R+)|X| → R+
|Y |

fun(u) : (R+)|X| → R+
|Y |

x 7→ u · x =

 ∑
a∈|X|

ua,bxa


b∈|Y |

Also, we de�ne the transpose tu ∈ (R+)|Y |×|X| of such a matrix u in the usual way: (tu)b,a = ua,b.

Lemma 2 Let u ∈ (R+)|X|×|Y |, x ∈ PX and y′ ∈ PY ⊥. Then

〈u, x⊗ y′〉 = 〈u · x, y′〉 = 〈tu · y′, x〉 = 〈tu, y′ ⊗ x〉 .

Straightforward computation in the rig R+.

Lemma 3 Let u ∈ R+
|X|×|Y |

. The following conditions are equivalent.

1. u ∈ P(X ( Y ),

2. tu ∈ P(Y ⊥ ( X⊥),

3. ∀x ∈ PX u · x ∈ PY

4. and ∀y′ ∈ PX⊥ tu · y′ ∈ PX⊥

Proof. The proof is essentially a direct application of Lemma 2. For instance, let us prove that (1)⇒(3).
With the notations of the lemma, we must show that u · x ∈ PY = PY ⊥⊥. So let y′ ∈ PY ⊥. We have
〈u · x, y′〉 = 〈u, x⊗ y′〉 ∈ [0, 1] by assumption.

Let us check also that (3)⇒(1). One must show �rst that u ∈ (R+)|X|×|Y |, that is, ua,b <∞ for each
a, b. So let a ∈ |X| and b ∈ |Y | and let λ > 0 be such that λea ∈ PX. One has u · λea ∈ PY . Let µ > 0
be such that µeb ∈ PY ⊥, we have 〈u · λea, µeb〉 ∈ [0, 1], that is λµua,b ∈ [0, 1], so ua,b ∈ R+. Next, let
x ∈ PX and y′ ∈ PY ⊥. We have 〈u, x⊗ y′〉 = 〈u · x, y′〉 by Lemma 2 again, and so 〈u, x⊗ y′〉 ∈ [0, 1]
since u · x ∈ PY . 2

1.2.3 Identity, composition and isomorphisms. So the identity matrix Id ∈ (R+)|X|×|X| de�ned

by Ida,a′ = δa,a′ belongs to P(X ( X). If u ∈ P(X ( Y ) and v ∈ P(Y ( Z), we de�ne vu ∈ R+
|X|×|Z|

as usual by

(vu)a,c =
∑
b∈|Y |

vb,cua,b

Given x ∈ PX, we have vu · x = v · (u · x). But u · x ∈ PY since u ∈ P(X ( Y ) and so v · (u · x) ∈ PZ
since v ∈ P(Y ( Z). This shows that vu ∈ P(X ( Z) by Lemma 3.

Lemma 4 Let X and Y be PCSs. We have P(X ⊗ Y )⊥ = P(X ( Y ⊥).

Immediate consequence of Lemma 3.
LetPcoh be the category whose objects are the PCSs and wherePcoh(X,Y ) = P(X ( Y ), identities

and morphism composition being de�ned in the above matricial way.
As in any category, we have a canonical notion of isomorphism. Among these isomorphisms, some of

them will be quite important, we call them web-isomorphisms. A web-isomorphism from X to Y is an
isomorphism f ∈ Pcoh(X,Y ) such that there is a (obviously unique) bijection ϕ : |X| → |Y | such that
fa,b = δϕ(a),b. In other words, the underlying bijection ϕ has the following property: for any y ∈ (R+)|Y |,
one has y ∈ PY i� (yϕ(a))a∈|X| ∈ PX.

Of course, if f ∈ Pcoh(X,Y ) is a web-isomorphism, then tf ∈ Pcoh(Y ⊥, X⊥) is a web-isomorphism.
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1.3 Order-theoretic considerations.

Let X be a PCS. It will be useful to consider R+
|X|

as a partially ordered set, with the usual pointwise
order: x ≤ y if xa ≤ ya for all a ∈ |X|. The main property of PX from this viewpoint is the following.

Proposition 5 PX is bounded-complete and ω-continuous cpo and, for any x′ ∈ PX⊥, the map x 7→
〈x, x′〉 is Scott-continuous from PX to [0, 1].

Proof. We prove �rst that PX is a cpo. Let D ⊆ PX be directed. The pointwise lub y = supD belongs
to (R+)|X| since all sets πa(PX) are bounded. We show that y ∈ PX, so let x′ ∈ PX⊥. It is clear that

sup
x∈D

〈x, x′〉 ≤ 〈y, x′〉

so let us prove the converse inequation. Assume, towards a contradiction, that supx∈D〈x, x′〉 < 〈y, x′〉.
Let λ ∈ R+ be such that supx∈D〈x, x′〉 < λ < 〈y, x′〉. We can �nd a �nite subset I of |X| such that∑
a∈I yax

′
a > λ. But since I is �nite, we have

∑
a∈I yax

′
a = supx∈D

∑
a∈I xax

′
a ≤ supx∈D〈x, x′〉 < λ (by

continuity of addition and multiplication on the real numbers); contradiction. This shows also that the
map x 7→ 〈x, x′〉 is Scott-continuous.

Next, given x, y, z ∈ PX such that x, y ≤ z, de�ning max(x, y) ∈ (R+)|X| by max(x, y)a =
max(xa, ya), we have max(x, y) ≤ z and hence max(x, y) ∈ PX, so PX is bounded-complete. Remember
that x, y � z ⇒ max(x, y) � z.

Last we observe that there is a countable set B ⊆ PX such that, for any x ∈ PX, the set {y ∈ B |
y � x} is directed and has x as lub. It su�ces to take for B the elements of PX which have a �nite
support and take rational values. Indeed, for any r ∈ Q such that 0 ≤ r < xa, one has rea � x and
x = sup{rea | a ∈ |X| and r ∈ Q ∩ [0, xa)}. 2

Proposition 6 Let u ∈ P(X ( Y ). Then the function fun(u) is a Scott-continuous function from PX
to PY .

Proof. Given a directed set D ⊆ PX, we must show that u · supD = supx∈D(u · x). So let b ∈ |Y |, we
have to show that (u · supD)b = supx∈D(u · x)b. Let µ > 0 be such that µeb ∈ PY ⊥. We have

µ(u · supD)b = 〈u · supD,µeb〉
= 〈supD, tu · (µeb)〉
= sup

x∈D
〈x, tu · (µeb)〉 by Proposition 5

= µ sup
x∈D

〈u · x, eb〉

and we conclude. 2

1.4 Tensor product

1.4.1 Preliminary properties. We have already de�ned the PCS X ⊗ Y in 1.2.1. The next pre-
liminary lemmas will be quite useful.

Lemma 7 Let X, Y and Z be PCSs. The matrix α ∈ (R+)|((X⊗Y )(Z)((X((Y(Z))| de�ned by
α((a,b),c),(a′,(b′,c′)) = δa,a′δb,b′δc,c′ is a web-isomorphism from (X ⊗ Y ) ( Z to X ( (Y ( Z).

Proof. Let w ∈ P((X ⊗ Y ) ( Z). We prove that α · w ∈ P(X ( (Y ( Z)). Let x ∈ PX, we have to
show that (α · w) · x ∈ P(Y ( Z). But this is clear since, for any y ∈ PY , one has ((α · w) · x) · y =
w · (x⊗ y).

Conversely, let w ∈ P(X ( (Y ( Z)) and let β be the transpose of the matrix α. We must show
that β · w ∈ P((X ⊗ Y ) ( Z), that is t(β · w) ∈ P(Z⊥ ( (X ( Y ⊥)). So let z′ ∈ PZ⊥, x ∈ PX and
y ∈ PY . We have

〈(t(β · w) · z′) · x, y〉 = 〈(w · x) · y, z′〉
as shown by an easy computation, and we conclude since, by assumption, 〈(w · x) · y, z′〉 ∈ [0, 1]. 2
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Lemma 8 Let w ∈ (R+)|(X⊗Y )(Z|. Then w ∈ P((X ⊗ Y ) ( Z) i�

∀x ∈ PX∀y ∈ PY w · (x⊗ y) ∈ PZ .

Proof. Assume that w · (x⊗ y) for each x ∈ PX and y ∈ PY . By Lemma 7, for proving that w ∈
P((X ⊗ Y ) ( Z), it su�ces to show that α · w ∈ P(X ( (Y ( Z)). But this is clear since

∀x ∈ PX∀y ∈ PY ((α · w) · x) · y = w · (x⊗ y) ∈ PZ .

2

1.4.2 The tensor product as a functor. Let u ∈ Pcoh(X1, X2) and v ∈ Pcoh(Y1, Y2), we de�ne
u⊗ v ∈ (R+)|(X1⊗Y1)((X2⊗Y2)| by (u⊗ v)(a1,b1),(a2,b2) = ua1,a2vb1,b2 ∈ R+.

Let x1 ∈ PX1 and y1 ∈ PY1, we have u · x1 ∈ PX2 and v · y1 ∈ PY2, hence (u · x1) ⊗ (v · y1) ∈
P(X2 ⊗ Y2). But (u⊗ v) · (x1 ⊗ y1) = (u · x1)⊗ (v · y1), so (u⊗ v) · (x1 ⊗ y1) ∈ P(X2 ⊗ Y2). Therefore,
by Lemma 8, one has u⊗ v ∈ P((X1 ⊗ Y1) ( (X2 ⊗ Y2)).

A standard computation shows that, if u1 ∈ P(X1 ( X2), u2 ∈ P(X2 ( X3), v1 ∈ P(Y1 ( Y2), and
v2 ∈ P(Y2 ( Y3), then

(u2u1)⊗ (v2v1) = (u2 ⊗ v2)(u1 ⊗ v1) .

One has also IdX ⊗ IdY = IdX⊗Y and so ⊗ is a functor. Moreover, if f ∈ Pcoh(X1, X2) and g ∈
Pcoh(Y1, Y2) are web-isomorphisms, then f ⊗ g : Pcoh(X1 ⊗ Y1, X2 ⊗ Y2) is a web-isomorphism.

1.4.3 Pcoh as a monoidal category. This endows the category Pcoh with a monoidal structure.
The neutral object is 1 = ({∗}, [0, 1]) (identifying (R+){∗} with R+).

Let α ∈ (R+)|(X⊗(Y⊗Z))(((X⊗Y )⊗Z)| be de�ned by α(a,(b,c)),((a′,b′),c′) = δa,a′δb,b′δc,c′ . By Lemmas 7

and 4, tα is a web-isomorphism from ((X ⊗ Y )⊗Z)⊥ to (X ⊗ (Y ⊗ Z))⊥ and so α is a web-isomorphism
from X ⊗ (Y ⊗ Z) to (X ⊗ Y )⊗ Z.

One shows immediately that σ ∈ (R+)|(X⊗Y )((Y⊗X)| de�ned by σ(a,b),(b′,a′) = δa,a′δb,b′ is a web-
isomorphism from X ⊗Y to Y ⊗X. One exhibits similarly isomorphisms expressing that 1 is neutral for
⊗. It is routine to check that all these data endow Pcoh with the structure of a symmetric monoidal
category.

Monoidal closeness results immediately from Lemma 7.
Last, ?-autonomy, with respect to the dualizing object ⊥ = 1⊥ = 1 is obvious when one observes that

the PCSs X⊥ and X ( ⊥ are isomorphic.
The De Morgan dual of ⊗ is the cotensor, also called par ; it is de�ned by X � Y = (X⊥ ⊗ Y ⊥)⊥ =

X⊥ ( Y . If a ∈ |X| and b ∈ |Y |, we have cX�Y (a, b) = cX(a)cY (b). The identity matrix de�nes a
morphism in Pcoh(X ⊗ Y,X � Y ). Indeed, given x ∈ PX, y ∈ PY , x′ ∈ PX⊥ and y′ ∈ PY ⊥, we have
〈(x⊗ y) · x′, y′〉 = 〈x, x′〉〈y, y′〉 ≤ 1. This means that the MIX rule of linear logic (see e.g. [Gir87]) holds
(in the strongest sense actually, because 1 = ⊥).

1.5 Additive structure

It will play a crucial role in the construction of our model of the pure lambda-calculus. Let (Xi)i∈I be a
countable family of PCSs. We de�ne a PCS X = &i∈I Xi by taking |&i∈I Xi| = ∪i∈I({i}× |Xi|). Given
x ∈ (R+)|X|, we de�ne πi(x) ∈ (R+)|Xi| by πi(x)a = xi,a. We set PX = {x ∈ (R+)|X| | ∀i ∈ I, πi(x) ∈
PXi}.

The fact that PX so de�ned satis�es PX⊥⊥ ⊆ PX results from the following:

PX⊥ = {x′ ∈ (R+)|X| |
∑
i∈I

‖πi(x′)‖X⊥
i
≤ 1} .

Also, it is clear that condition (2) and (3) hold, since cX(i, a) = cXi
(a) for each i ∈ I and a ∈ |Xi|.

For each i ∈ I, we de�ne pri ∈ (R+)|X|×|Xi| by

pri(j,a),b =

{
1 if i = j and a = b

0 otherwise

8



Proposition 9 For each i ∈ I, one has pri ∈ Pcoh(&i∈I Xi, Xi) and pri · x = πi(x) for each x ∈
P(&i∈I Xi). The PCS &i∈I Xi, equipped with the projections pri is the cartesian product of the family
(Xi)i∈I in the category Pcoh.

Proof. The �rst part, which expresses the properties of the pris is clear from the de�nition of &i∈I Xi.
So let Y be a PCS and let ti ∈ Pcoh(Y,Xi), for each i ∈ I. Let t ∈ (R+)|Y |×|&i∈I Xi| be de�ned by

tb,(i,a) = (ti)b,a for b ∈ |Y | and i ∈ I and a ∈ |Xi|. Given y ∈ PY , on has πi(t · y) = ti · y ∈ PXi for
each i ∈ I. Therefore t · y ∈ P(&i∈I Xi). Hence t ∈ P(Y ( &i∈I Xi), that is, t ∈ Pcoh(Y,&i∈I Xi). It
is obvious that pri · t = ti for each i and that t is the unique morphism from Y to &i∈I Xi with this
property. 2

Therefore, the operation (Xi)i∈I 7→ &i∈I Xi is a functor. Explicitely, given a collection of morphisms
ui ∈ Pcoh(Xi, Yi), there is a uniquely determined morphism &i ui : Pcoh(&i∈I Xi,&i∈I Yi) which
satis�es pri(&i∈I ui) = uipr

i. Given (i, a) ∈ |&i∈I Xi| and (j, b) ∈ |&j∈I Yj |, one has

(&
i
ui)(i,a),(j,b) =

{
(ui)a,b if i = j

0 otherwise.

Observe that, if the uis are web isomorphisms, then &i∈I ui is a web-isomorphism.
One sets of course ⊕i∈I Xi = (&i∈I X

⊥
i )⊥, this is the sum of the family (Xi)i∈I with injections ini

obtained by transposing the pris.

1.5.1 Special cases. Let X be a PCS and let I be a countable set. We denote by XI the PCS

&i∈I Xi and by X(I) the PCS ⊕i∈I Xi, where Xi = X for each i. Hence (XI)⊥ = (X⊥)(I).
In particular, 1(N+) = {x ∈ (R+)N+ |

∑∞
i=1 xi ≤ 1} will be used for interpreting the type of integers;

it is an analogue of the �at domain of integers.

1.6 Exponentials

1.6.1 Multinomial coe�cients. Let I be a set and m ∈ Mfin(I) (the set of all �nite multisets
of elements of I; if m is such a multiset, m(i) is the number of occurrences of i in m). Let #m =∑
i∈I m(i) ∈ N. We set m! =

∏
i∈I m(i)! ∈ N, which is well de�ned since the multiset m is �nite.

Let m ∈Mfin(I). We de�ne the multinomial coe�cient [m] ∈ N as

[m] =
#m!∏
i∈I m(i)!

.

If M ∈Mfin(Mfin(I)), we de�ne ΣM ∈Mfin(I) by

ΣM(i) =
∑

m∈Mfin(I)

M(m)m.

Since M is a �nite multiset, this sum is �nite.
Let J be another set and let m ∈ Mfin(I) and p ∈ Mfin(J). We de�ne L(m, p) as the set of all

r ∈Mfin(I × J) such that

∀i ∈ I
∑
j∈J

r(i, j) = m(i)

and ∀j ∈ J
∑
i∈I

r(i, j) = p(j)

Observe that ∀r ∈ L(m, p) #r = #m = #p, and therefore, L(m, p) 6= ∅ ⇒ #m = #p. Observe also that
the set L(m, p) is always �nite, since it is a subset of {r ∈ Mfin(supp(m)× supp(p)) | #r = #m = #p}
which is a �nite set.

Given r ∈ L(m, p), we set [
p

r

]
=

∏
j∈J

p(j)!∏
i∈I r(i, j)!

which is an integer ≥ 1 since, for each j, one has p(j) =
∑
i∈I r(i, j).
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1.6.2 The exponential. We de�ne now a PCS !X. First, |!X| is Mfin(|X|), the set of all �nite
multisets of elements of |X|.

Given x ∈ R|X| and m ∈ |!X|, we set xm =
∏
a∈|X| x

m(a)
a (this a �nite product since m is a �nite

multiset). Next, one sets x! = (xm)m∈|!X| ∈ R|!X|. Then, the PCS !X is de�ned by setting

P(!X) = {x! | x ∈ PX}⊥⊥ .

Let m ∈ |!X|, k = #m and {a1, . . . , an} = supp(m).
Let λ > 0 be such that λeai

∈ PX for each i = 1, . . . , n. If n > 0 then x = λ
n

∑n
i=1 eai

∈ PX and

hence x! ∈ P(!X). But xm = (λn )k and hence (λn )kem ∈ P(!X). Since 0 ∈ PX, we have 0! ∈ P(!X). But
0!
[] = 1 and hence e[] ∈ P(!X). This shows that condition (2) holds for !X.

For each x ∈ PX, we have xai
≤ cX(ai) for i = 1, . . . , n. We have xm ≤

∏n
i=1 cX(ai)m(ai), so

condition (3) holds for !X.

Remark : We have given a rough lower bound for c!X(m). But there is an easy better one, based on the
following simple fact.

Lemma 10 Let p1, . . . , pn be positive integers. The maximal value of the function

f : [0, 1]n → [0, 1]
(z1, . . . , zn) 7→ zp11 · · · zpn

n

on the set {(z1, . . . , zn) ∈ [0, 1]n | z1 + · · ·+ zn = 1} is

pp11 · · · ppn
n

(p1 + · · ·+ pn)p1+···+pn

and is reached at point (p1 + · · ·+ pn)−1(p1, . . . , pn).

From this, we derive that

m(a1)m(a1) · · ·m(an)m(an)

#m#m

n∏
i=1

cX(ai)
m(ai) ≤ c!X(m) ≤

n∏
i=1

cX(ai)
m(ai) .

Let I be a countable set. For X = 1(I), the lower bound is reached and for X = 1I , the upper bound
is reached. Consider for instance the case where I = {t, f}, then X is the PCS of booleans. The
corresponding coherence space Bool has I as web, with t and f incoherent. Let m = [t, t, f ], then
c!X(m) = 22/33 = 4/27. The fact that this number is < 1 corresponds to the fact that m does not
belong to the web of the coherence space !Bool in Girard's model of coherence space (because the
support of m is not a clique).

Let t ∈ Pcoh(X,Y ), we de�ne !t ∈ (R+)|!X|×|!Y | by setting

(!t)m,p =
∑

r∈L(m,p)

[
p

r

]
tr .

This sum is �nite since L(m, p) is �nite.

Lemma 11 For any x ∈ PX, one has !t · x! = (t · x)!.

Proof. Let x ∈ PX and let p ∈ |!Y |. Let L(p) be the set of all l ∈ Mfin(|X|)|Y | such that ∀b ∈
|Y | #l(b) = p(b). Given such an l, we set l1 =

∑
b∈|Y | l(b) ∈ Mfin(|X|). Then, we identify l with the

element l′ of L(l1, p) de�ned by l′(a, b) = l(b)(a). Observe that, with these notations,
[
p
l′

]
=

∏
b∈|Y | [l(b)].
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One has, computing in R+,

(t · x)!p =
∏
b∈|Y |

 ∑
a∈|X|

ta,bxa

p(b)

(remember that this product is �nite)

=
∏
b∈|Y |

 ∑
l(b)∈Mfin(|X|)

#l(b)=p(b)

[l(b)]

 ∏
a∈|X|

t
l(b)(a)
a,b

xl(b)


=

∑
l∈L(p)

 ∏
b∈|Y |

[l(b)]

 tl
′
xl1

=
∑

m∈Mfin(|X|)

 ∑
r∈L(m,p)

[
p

r

]
tr

xm

= (!t · x!)p

2

Lemma 12 Let u ∈ (R+)|!X(Y |. Then one has u ∈ P(!X ( Y ) as soon as ∀x ∈ P(!X) u · x! ∈ PY .

Proof. It su�ces to show that tu ∈ P(Y ⊥ ( (!X)⊥), that is ∀y′ ∈ PY ⊥ tu · y′ ∈ P(!X)⊥. But this is
clear, since ∀x ∈ PX 〈tu · y′, x!〉 = 〈y′, u · x!〉 ∈ [0, 1] by assumption. 2

Lemma 13 For any t ∈ Pcoh(X,Y ), one has !t ∈ Pcoh(!X, !Y ).

Direct consequence of Lemma 12 and of the fact that !t · x! = (t · x)!.

1.6.3 Entire functions.

Lemma 14 Let S, T ∈ Pcoh(!X,Y ). If, for all x ∈ PX, one has S · x! = T · x!, then S = T .

Proof. Let b ∈ |Y |. Let µ > 0 be such that µeb ∈ PY ⊥.
Let m ∈ |!X|. Let {a1, . . . , an} = supp(m). Let λ > 0 be such that λeai

∈ PX for i = 1, . . . , n. Let
θ : [0, λn ]n → (R+)|X| be de�ned by θ(z) =

∑n
i=1 zieai

, then ∀z θ(z) ∈ PX. We consider the map

ϕ :
[
0,
λ

n

]n
→ [0, 1]

z 7→ 〈S · θ(z)!, µeb〉 = 〈T · θ(z)!, µeb〉

Let M = Mfin({a1, . . . , an}). We have, for all z ∈
[
0, λn

]n
,

ϕ(z) = µ
∑
m′∈M

Sm′,bz
m′

= µ
∑
m′∈M

Tm′,bz
m′

Since
(
0, λn

)n
is open in Rn, we have Sm′,b = Tm′,b for each m

′ ∈ M and in particular for m′ = m. So
S = T . 2

Given S ∈ P((!X) ( Y ), let Fun(S) : PX → PY be de�ned by Fun(S)(x) = S · x! = fun(S)(x!). We
have seen that if Fun(S) = Fun(T ) then S = T .

Let us say that a function f : PX → PY is entire if there exists S ∈ P((!X) ( Y ) such that
f(x) = S · x! for all x ∈ PX. As we have seen, there is only one such S (this S is analogue to the trace
of a stable function in [Gir87]).
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1.6.4 Functoriality of the exponential

Proposition 15 The operation X 7→ !X and t 7→ !t is a functor from Pcoh to Pcoh.

Proof. We use Lemma 14. We have !IdX · x! = x! and hence !IdX = Id!X . Given s ∈ Pcoh(X,Y ) and
t ∈ Pcoh(Y,Z), for any x ∈ PX, one has

!(ts) · x! = (ts · x)!

= (t · (s · x))!

= !t · (s · x)!

= !t · !s · x!

= !t!s · x!

and hence !(ts) = !t!s by Lemma 14. 2

Observe that, if t ∈ Pcoh(X,Y ) is a web-isomorphism, then !t is also a web-isomorphism.
The comonad structure of the exponential is de�ned as usual. One has a dereliction map dX ∈

Pcoh(!X,X) given by dXm,a = δm,[a]. We check that indeed tdX ∈ Pcoh(X⊥, (!X)⊥). So let x′ ∈ PX⊥.

We have to show that tdX · x′ ∈ P(!X)⊥. So let x ∈ PX. We have 〈tdX · x′, x!〉 = 〈x′,dX · !x〉 = 〈x′, x〉 ∈
[0, 1]. Observe that the reasoning is simply based on the fact that ∀x ∈ PX, dX · x! = x.

One has also a digging morphism pX ∈ Pcoh(!X, !!X) given by pXm,M = δm,ΣM . We check that,

indeed, pX ∈ Pcoh(!X, !!X). As above, it su�ces to check that, if x ∈ PX, then pX ·x! ∈ P(!!X). Given
M ∈ |!!X|, we have (pX · x!)M = xΣM = ((x!)!)M since indeed ((x!)!)M = (x!)M =

∏
m∈|!X|(x

!
m)M(m) =∏

m∈|!X|(x
m)M(m) = xΣM . We have seen that pX · x! = (x!)! ∈ P(!!X), as required.

Checking that the three comonad equations are satis�ed, namely

• d!X pX = Id!X

• !(dX) pX = Id!X

• and p!X pX = !(pX) pX

can be done using again Lemma 14. For instance, for the last equation, we have p!X pX ·x! = p!X ·(x!)! =

((x!)!)
!
and !(pX) pX · x! = !(pX)x! = (pX · x!)! = ((x!)!)

!
.

The naturality of dX and pX is proved in the same way.

1.6.5 Cartesian closeness of the Kleisli category. Remember that this Kleisli category Pcoh!

is de�ned as follows:

• its objects are the PCSs,

• Pcoh! = Pcoh(!X,Y ),

• the identity map is dX ∈ Pcoh!(X,X)

• and last, given S ∈ Pcoh!(X,Y ) and T ∈ Pcoh!(Y,Z), composition is given by T ◦ S = T !S pX .

One has Fun(dX)(x) = dX · x! = x and Fun(T ◦ S)(x) = (T !S pX) · x! = T · (!S · (x!)!) = T · (S · x!)! =
(Fun(T ) ◦ Fun(S))(x). So any morphism S ∈ Pcoh!(X,Y ) can be identi�ed with the associated entire
map Fun(S), and this identi�cation is compatible with composition. We identify therefore Pcoh! with
the category whose objects are the PCSs and where a morphism from X to Y is an entire function from
PX to PY .

This Kleisli category Pcoh! is cartesian closed, because the PCSs !(X & Y ) and !X⊗ !Y are naturally
isomorphic. This isomorphism is the web-isomorphism induced by the usual bijection between the webs

f : |!X ⊗ !Y | → |!(X & Y )|
([a1, . . . , ap], [b1, . . . , bq]) 7→ [(1, a1), . . . , (1, ap), (2, b1), . . . , (2, bq)]
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Let us denote by ϕ the corresponding matrix, ϕ ∈ (R+)|(!X⊗!Y )(!(X&Y )|, given by ϕ(m,p),q = δf(m,p),q.
We check that ϕ is indeed an isomorphism. Let ψ be the inverse (or transpose, in this case the notions
coincide) of ϕ.

Given x ∈ PX and y ∈ PY , we have ψ · (x⊕ y)! = x! ⊗ y! and since all the elements of P(!(X & Y ))
are of the shape x ⊕ y with x ∈ PX and y ∈ PY , this shows that ψ ∈ Pcoh(!(X & Y ), !X ⊗ !Y ). We
want now to show that ϕ ∈ Pcoh(!X ⊗ !Y , !(X & Y )).

By Lemma 4, and using the notations of that lemma, it su�ces to show that

α · ϕ ∈ P(!X ( (!Y ( !(X & Y ))) .

This is easy to prove, using twice Lemma 12, and the fact that

((α · ϕ) · x!) · y! = ψ · (x! ⊗ y!) = (x⊕ y)! .

The object of morphisms from X to Y is then X ⇒ Y = (!X ⊗ Y ⊥)⊥ = !X ( Y . By the
above isomorphism, we have as usual Pcoh!(Z & X,Y ) = Pcoh(!(Z & X), Y ) ' Pcoh(!Z ⊗ !X,Y ) '
Pcoh(!Z, !X ( Y ) = Pcoh!(Z,X ⇒ Y ), showing that Pcoh! is cartesian closed.

We can identify P(X & Y ) with PX × PY and P(X ⇒ Y ) with the set of entire functions from PX
to PY . Under these identi�cations, the cartesian structure is standard in the sense that the evaluation
map ev : P((X ⇒ Y ) & X) → PY is given by ev(f, x) = f(x), and, if f : P(Z & X) → PY is entire, the
curry�cation Cur(f) : PZ → P(X ⇒ Y ), which is an entire map, is given by Cur(f)(z)(x) = f(z, x).

1.6.6 Scott-continuity of morphisms.

Lemma 16 The function from PX to P(!X) which maps x to x! is Scott-continuous.

Proof. Let m ∈ |!X|. If x ≤ y are elements of PX, then xm ≤ ym, so the map x 7→ x! is monotone. Let
D ⊆ PX be directed. Then supx∈D xm = (supD)m, by continuity of the map

Rsupp(m) → R
z 7→ zm

2

Proposition 17 Any entire map is Scott-continuous.

Proof. Use Lemmas 6 and 16. 2

In particular, any entire f : PX → PX admits a least �xpoint which is supn∈N f
n(0) ∈ PX.

We apply this observation to a particular morphism. Let X be a PCS. Let

Y : P((X ⇒ X) ⇒ X) → (PX)P(X⇒X)

F 7→ λfX⇒X f(F (f))

By cartesian closeness of Pcoh!, this function is an entire endomap on P((X ⇒ X) ⇒ X). Let FixX ∈
P((X ⇒ X) ⇒ X) be the least �xpoint of Y. Observe that Yn(0)(f) = fn(0). Therefore we have the
following result.

Proposition 18 For any entire map f : PX → PX, the value FixX(f) is the least �xpoint of f .

So the operation which sends an entire endomap to its least �xpoint is itself entire. It will be used for
interpreting the �xpoint construction of our probabilistic version of PCF.
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2 Fixpoints of types

Our main goal here is to show that the category Pcoh contains a re�exive object, that is, a model of the
pure lambda-calculus. We shall de�ne this object as the least �xpoint of the operation X 7→ (!(XN+

))⊥.
This operation however is not a covariant functor with respect to entire maps or even to linear maps,
so, just as in [Gir86], we shall restrict our attention to embedding-projection pairs, and more precisely,
to �inclusions� of PCSs. This is clearly quite a restrictive notion of morphism between PCSs.

Given two sets S, T with S ⊆ T , we de�ne ζS,T ∈ (R+)S×T and ρS,T ∈ (R+)T×S by (ζS,T )a,b =
(ρS,T )b,a = δa,b for a ∈ S and b ∈ T .

2.1 Substructures and limits of directed systems of PCSs

Let X and Y be PCSs. We say that X is a sub-PCS of Y or that X is included in Y , and write X ⊆ Y ,
if |X| ⊆ |Y | and

∀x ∈ PX ζ|X|,|Y | · x ∈ PY

∀y ∈ PY ρ|X|,|Y | · y ∈ PX .

So
X ⊆ Y ⇔ |X| ⊆ |Y |, ζ|X|,|Y | ∈ Pcoh(X,Y ) and ρ|X|,|Y | ∈ Pcoh(Y,X) (1)

If X1 ⊆ X2 ⊆ X3, then X1 ⊆ X3 with

ζ|X2|,|X3|ζ|X1|,|X2| = ζ|X1|,|X3| and ρ|X1|,|X2|ρ|X2|,|X3| = ρ|X1|,|X3| . (2)

Lemma 19 If X ⊆ Y , then X⊥ ⊆ Y ⊥.

This is due to the following obvious facts:

tζ|X|,|Y | = ρ|X⊥|,|Y ⊥| and tρ|X|,|Y | = ζ|X⊥|,|Y ⊥| .

Lemma 20 If X ⊆ Y and a ∈ |X|, then cX(a) = cY (a).

Proof. Since cX(a)ea ∈ PX ⊆ PY , we have cX(a) ≤ cY (a). For the same reason, since X⊥ ⊆ Y ⊥, we
have cX⊥(a) ≤ cY ⊥(a). But remember that cX⊥(a) = cX(a)−1 and cY ⊥(a) = cY (a)−1. 2

We denote by Pcoh⊆ the category whose objects are the PCSs and whose morphisms are the in-
clusions of PCSs, so that Pcoh⊆ is actually a partially ordered class, whose least element is 0, the
empty-web PCS. Of course, inclusions of PCSs are a very restrictive notion of morphism, su�cient how-
ever for our purpose. An immediate generalization would be to consider maps which are composites of
inclusions and web-isomorphisms, corresponding to the notion of embedding-retraction pairs of [Gir86].
This is not necessary here and the bene�t of this simpli�cation is that we can consider the class of PCSs
as a �cpo�.

2.1.1 Inductive limits of directed families in Pcoh⊆. Let Γ be a directed set. Let (Xγ)γ∈Γ be
a directed family of PCSs, with Xγ ⊆ Xδ for each γ, δ ∈ Γ with γ ≤ δ (such a family will be called a
directed family of PCSs).

Let S = ∪γ∈Γ|Xγ |. Let ζγ = ζ|Xγ |,S ∈ (R+)|Xγ |×S and ργ = ρ|Xγ |,S ∈ (R+)S×|Xγ |. If γ ≤ δ, we set
ζγ,δ = ζ|Xγ |,|Xδ| and ργ,δ = ρ|Xγ |,|Xδ|.

Then, we de�ne a PCS ∪γ∈ΓXγ by setting

• |∪γ∈ΓXγ | = S = ∪γ∈Γ|Xγ |

• and P(∪γ∈ΓXγ) = {ζγ · x | γ ∈ Γ and x ∈ PXγ}⊥⊥.

We check that ∪γ∈ΓXγ so de�ned is a PCS. The inclusion P(∪γ∈ΓXγ)
⊥⊥ ⊆ P(∪γ∈ΓXγ) results

from the de�nition of P(∪γ∈ΓXγ) as a dual. So we are left with checking conditions (2) and (3) of the
de�nition of PCSs. Let a ∈ S and let γ ∈ Γ be such that a ∈ |Xγ |. Observe �rst that, for any δ ∈ Γ such
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that a ∈ |Xδ|, one can �nd a η ∈ Γ such that γ, δ ≤ η, and therefore we have cXγ
(a) = cXη

(a) = cXδ
(a)

by Lemma 20.
Since cXγ

(a)ea ∈ PXγ , we have ζγ · cXγ
(a)ea ∈ P(∪δ∈ΓXδ) and therefore c∪δ∈ΓXδ

(a) ≥ cXγ
(a) > 0.

Conversely, we have cX(a)−1ea ∈ (PXγ)⊥. We show that cX(a)−1ea ∈ (∪δ∈Γ PXδ)⊥. Let δ ∈ Γ and let
y ∈ PXδ. We have (ζδ · y)a = ya ≤ cXδ

(a) = cXγ (a). Therefore 〈cX(a)−1ea, ζδ · y〉 ≤ 1 as required.
This shows that ∪γ∈ΓXγ is a PCS, which has a countable web as soon as Γ and the |Xγ |s are

countable.
Let γ ∈ Γ. We check that Xγ ⊆ ∪δ∈ΓXδ. Obviously, for any x ∈ PXγ , we have ζγ ·x ∈ P(∪δ∈ΓX Xγ).

Let x′ ∈ PX⊥
γ and let y ∈ PXδ for some δ ∈ Γ. Let η ∈ Γ be such that γ, δ ≤ η. We have

〈tργ · x′, ζδ · y〉 = 〈tρηtργ,η · x′, ζηζδ,η · y〉
= 〈tργ,η · x′, ρηζηζδ,η · y〉
= 〈tργ,η · x′, ζδ,η · y〉 ∈ [0, 1]

since tργ,η · x′ ∈ PX⊥
η and ζδ,η · y ∈ PXη.

Proposition 21 (∪γ∈ΓXγ , (ζγ)γ∈Γ) is the colimit cocone of the diagram ((Xγ)γ∈Γ, (ζγ,δ)γ≤δ) in the
category Pcoh.

Proof. Let Y be a PCS and let (uγ)γ∈Γ be a cocone to Y based on that diagram, that is, a family of
matrices with uγ ∈ Pcoh(Xγ , Y ) for each γ ∈ Γ and such that

∀γ, δ ∈ Γ γ ≤ δ ⇒ uδζγ,δ = uγ . (3)

Given γ, δ ∈ Γ such that γ ≤ δ and given a ∈ |Xγ | and c ∈ |Y |, by (3), we have (uδ)a,c = (uγ)a,c.
Therefore, we can de�ne a matrix u ∈ (R+)|∪γ∈ΓXγ |×|Y | by setting ua,c = (uγ)a,c where γ ∈ Γ is such
that a ∈ |Xy| (the value of (uγ)a,c does not depend on the choice of γ since Γ is directed). Observe that
uζγ = uγ for all γ ∈ Γ.

Let y′ ∈ PY ⊥, we prove that tu · y′ ∈ P(∪γ∈ΓXγ)⊥. So let γ ∈ Γ and let x ∈ PXγ . We have
〈tu · y′, ζγ · x〉 = 〈y′, uζγ · x〉 = 〈y′, uγ · x〉 ∈ [0, 1]. This shows that u ∈ Pcoh(∪γ∈ΓXγ , Y ). Moreover, it
is clear that u is the unique element of u ∈ Pcoh(∪γ∈ΓXγ , Y ) such that uζγ = uγ for all γ ∈ Γ. 2

We give now a �projective� account of this colimit. This is based on the order-theoretic considerations
of Section 1.3.

Proposition 22 Let y ∈ (R+)|∪γ∈ΓXγ |. One has

y ∈ P( ∪
γ∈Γ

Xγ) ⇔ ∀γ ∈ Γ ργ · y ∈ PXγ

Proof. Assume �rst that y ∈ P(∪γ∈ΓXγ). Let x′ ∈ PX⊥
γ . We have tργ · x′ ∈ P(∪δ∈ΓXδ)⊥ because

Xγ ⊆ ∪δ∈ΓXδ, and hence X⊥
γ ⊆ (∪δ∈ΓXδ)⊥. Therefore, 〈y, tργ · x′〉 ∈ [0, 1], that is 〈ργ · y, x′〉 ∈ [0, 1].

Since this holds for all x′ ∈ PXγ , we have shown that ργ · y ∈ PXγ .
Conversely, assume that ργ ·y ∈ PXγ for each γ ∈ Γ. Let y(γ) = ζγργ ·y. We have y(γ) ∈ P(∪δ∈ΓXδ).

Moreover, for a ∈ |∪δ∈ΓXδ|, we have y(γ)a = ya if a ∈ |Xγ | and y(γ)a = 0 otherwise. So the family
(y(γ))γ∈Γ is directed in P(∪δ∈ΓXδ) and its lub is y. By Proposition 5, we conclude that y ∈ P(∪δ∈ΓXδ).

2

Proposition 23 If Y is a PCS and if we have Xγ ⊆ Y for all γ ∈ Γ, then ∪γ∈ΓXγ ⊆ Y . That is,
∪γ∈ΓXγ ⊆ Y is the colimit of (Xγ)γ∈Γ in the category (partially ordered class) Pcoh⊆.

Proof. Let X = ∪γ∈ΓXγ . By assumption, we have |X| ⊆ |Y |. Let ζ ∈ (R+)|X|×|Y | be the matrix of
this inclusion and ρ ∈ (R+)|Y |×|X| be its transpose.

By Proposition 21, there is a unique θ ∈ Pcoh(X,Y ) such that θζγ = ζ|Xγ |,|Y | for each γ ∈ Γ. By
these equations, we have θ = ζ. Let y ∈ PY , for concluding, we must show that ρ · y ∈ PX. We apply
Proposition 22, so let γ ∈ Γ. We have ργ · (ρ · y) = ρXγ ,Y · y, and we know that ρXγ ,Y · y ∈ PXγ because
Xγ ⊆ Y . Since this holds for all γ ∈ Γ, we have ρ · y ∈ PX. 2
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Proposition 24 The construction ∪γ∈Γ is autodual. More precisely, given a directed system (Xγ)γ∈Γ

of PCSs, one has
( ∪
γ∈Γ

Xγ)⊥ = ∪
γ∈Γ

X⊥
γ .

Proof. Let δ ∈ Γ. We have Xδ ⊆ ∪γ∈ΓXγ , hence X
⊥
δ ⊆ (∪γ∈ΓXγ)⊥, and therefore ∪γ∈ΓX

⊥
γ ⊆

(∪γ∈ΓXγ)⊥ by Proposition 23. Therefore, since these two PCSs have the same web, they are equal. 2

2.1.2 Continuous functors on Pcoh⊆. Let k ∈ N. We denote by Pcohk⊆ the k-fold product
partially ordered class (considered as a category). We use a vector notation ~_ for denoting the objects
of this class, and ⊆ for the partial order of this class.

A functor F : Pcohk⊆ → Pcoh⊆ is continuous if it commutes with directed colimits of PCSs, that is

F (∪γ∈Γ
~Xγ) = ∪γ∈ΓF ( ~Xγ).

Let 0 be the empty-web PCS. Given a continuous functor G : Pcoh⊆ → Pcoh⊆, the sequence
(Gn(0))n∈N is a directed system of PCSs, whose colimit FIX(G) = ∪n∈NG

n(0) satis�es

G(FIX(G)) = FIX(G) , (4)

by continuity of G. More generally, given a continuous functor F : Pcohk+1
⊆ → Pcoh⊆, the operation

~X 7→ FIX(F ( ~X,_)) is easily shown to be a continuous functor Pcohk⊆ → Pcoh⊆, using the universal
property of the colimit in Pcoh⊆.

2.1.3 Continuity of logical functors. We show that the various operations on objects we have
introduced are continuous functors.

Lemma 25 If X1 ⊆ X2 and Y1 ⊆ Y2, then X1 ⊗ Y1 ⊆ X2 ⊗ Y2, and one has

ζ|X1⊗Y1|,|X2⊗Y2| = ζ|X1|,|X2| ⊗ ζ|Y1|,|Y2| and ρ|X1⊗Y1|,|X2⊗Y2| = ρ|X1|,|X2| ⊗ ρ|Y1|,|Y2| .

Moreover, if (Xγ)γ∈Γ is a directed systems of PCSs and Y is a PCS, then

∪
γ∈Γ

(Y ⊗Xγ) = Y ⊗ ( ∪
γ∈Γ

Xγ) .

Proof. By functoriality of⊗, we know that ζX1,X2⊗ζY1,Y2 ∈ Pcoh(X1⊗Y1, X2⊗Y2) and ρX1,X2⊗ρY1,Y2 ∈
Pcoh(X2⊗Y2, X1⊗Y1). So, by (1), it su�ces to check that the two announced equations hold, and this
is very easy.

As to the second part of the lemma, we could use a simple categorical argument: as a left adjoint,
the functor Y ⊗_ commutes with arbitrary colimits in Pcoh. More concretely, we know that

∪
γ∈Γ

(Y ⊗Xγ) ⊆ Y ⊗ ( ∪
γ∈Γ

Xγ)

by Proposition 23. But the web of these PCSs are equal, so the PCSs are equal. 2

The next two lemmas are proved in the same way.

Lemma 26 If X1 ⊆ X2, then !X1 ⊆ !X2, with

ζ!X1,!X2 = !ζX1,X2 and ρ!X1,!X2 = !ρX1,X2 .

Moreover, if (Xγ)γ∈Γ is a directed system of PCSs, then

!( ∪
γ∈Γ

Xγ) = ∪
γ∈Γ

!Xγ .

Lemma 27 If X1 ⊆ X2, then X
I
1 ⊆ XI

2 , with

ζXI
1 ,X

I
2

= ζIX1,X2
and ρXI

1 ,X
I
2

= ρIX1,X2
.

Moreover, if (Xγ)γ∈Γ is a directed system of PCSs, then

( ∪
γ∈Γ

Xγ)I = ∪
γ∈Γ

XI
γ .

Last, remember that the operation X 7→ X⊥ is a continuous functor on Pcoh⊆ by Proposition 24.
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2.2 A model of the pure lambda-calculus in Pcoh

Let us write X 'w Y if the PCSs X and Y are web-isomorphic. Given any PCS X,

X & XN 'w X
N . (5)

This web-isomorphism s is given by

s(1,a),(j,b) = δj,0δa,b and s(2,(i,a)),(j,b) = δj,i+1δa,b .

Let F : Pcoh⊆ → Pcoh⊆ be the continuous functor de�ned by F (X) = (!(XN))⊥. LetD∞ = FIX(F ).

Proposition 28 There is a web-isomorphism of PCSs ϕ : D∞ → (D∞ ⇒ D∞).

Proof. We have

D∞ ⇒ D∞ = (!D∞ ⊗D⊥
∞)⊥ by de�nition of _⇒ _

= (!D∞ ⊗ !DN
∞)⊥ by de�nition of D∞ and by (4)

'w (!(D∞ & DN
∞))⊥ by the iso of 1.6.5

'w (!DN
∞)⊥ by (5) .

2

In [BEM07], we showed that |D∞| is an extensional model of the pure lambda-calculus in the cartesian
closed category Rel! (the Kleisli category of the comonad S → !S = Mfin(S) on the category Rel of
sets and relations, which is a well known model of linear logic). We have just extended that result,
showing that D∞, which is just |D∞| equipped with a canonical PCS structure, is a model of the pure
lambda-calculus in the cartesian closed category Pcoh!.

Therefore, it is also a model of the pure probabilistic lambda-calculus which is the pure lambda-
calculus extended, e.g. with an operation ran(λ,M,N) where λ ∈ [0, 1] and M and N are terms. The

reduction rule associated with this construction is that λ~ζ (ran(λ, P,Q)) ~R reduces to λ~ζ (P ) ~R with

probability λ and to λ~ζ (Q) ~R with probability 1 − λ; this probabilistic reduction can be performed
only if the probabilistic redex ran(λ,M,N) is in head position (or, more generally, in linear position).
The precise connection between the probabilistic operational semantics of this lambda-calculus and its
denotational semantics in D∞ will be addressed in future work.

For the time being, we consider the same problem, in the setting of PCF, which is simpler thanks to
the presence of a ground type for which the probabilistic interpretation of the semantics is clear.

3 Probabilistic PCF

We introduce the language PPCF, a probabilistic extension of the functional language PCF [Plo77].
The language is simply typed:

• ι is a type

• and if σ and τ are types, so is σ ⇒ τ .

Terms are de�ned by the following syntax. We are given an in�nite countable set of variables.

• Any variable ζ is a term;

• if P is a term, ζ is a variable and σ is a type, then λζσ P is a term;

• if P and Q are terms, so is (P )Q;

• if P is a term then so is fix(P );

• if n ∈ N then n is a term;

• if P is a term then succ(P ) and pred(P ) are terms;
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• if P , Q and R are terms, so is if(P,Q,R);

• for any ~λ ∈ [0, 1]N with
∑∞
n=0 λn = 1, ran(~λ) is a term.

This latter construction is of course too in�nitary for a �real� programming language; it can be made
more realistic (without loss of expressive power, as shown in [DH00]) by replacing N by {0, 1} and [0, 1]
by {1/2}.

A typing context is a sequence Γ = (ζ1 : σ1, . . . , ζk : σk) where the variables ζi are distinct. The
typing rules are as follows.

Γ, ζ : σ ` ζ : σ
Γ `M : σ ⇒ τ Γ ` N : σ

Γ ` (M)N : τ
Γ, x : σ `M : τ

Γ ` λxσM : σ ⇒ τ

Γ `M : σ ⇒ σ
Γ ` fix(M) : σ

Γ `M : ι Γ ` P : ι Γ ` Q : ι
Γ ` if(M,P,Q) : ι

Γ ` n : ι Γ ` ran(~λ) : ι
Γ `M : ι

Γ ` succ(M) : ι
Γ `M : ι

Γ ` pred(M) : ι

In the conditional construction, the restriction that the two branches should be of type ι is convenient
for the forthcoming proofs, and is not restrictive from an expressivity viewpoint.

3.1 Denotational semantics in Pcoh

The category Pcoh is a model of PCF in which the additional probabilistic construction ran(~λ) can also
be interpreted. Since the morphisms of this category are functions, this interpretation is quite easy to
describe.

With any type σ, we associate a PCS [σ], by induction on σ. We set [ι] = N = 1(N). Remember
that this PCS is given by |N| = N and PN = {x ∈ [0, 1]N |

∑∞
i=0 xi ≤ 1}. Next, we set of course

[σ ⇒ τ ] = [σ] ⇒ [τ ]. Given a context Γ = (ζ1 : σ1, . . . , ζn : σn), we set [Γ] = [σ1] & · · · & [σn].
Given a term M , a context Γ and a type σ such that Γ `M : σ, we de�ne [M ]Γ ∈ Pcoh!([Γ], [σ]), by

induction on M .

• [ζi]Γ(~x) = xi;

• [(P )Q]Γ(~x) = [P ]Γ(~x)([Q]Γ(~x));

• [λζσ P ]Γ(~x) ∈ P([σ] ⇒ [τ ]) (where τ is such that Γ, ζ : σ ` P : τ) is the entire function Cur([P ]Γ,ζ:σ);

• if Γ ` P : σ ⇒ σ, then [fix(P )]Γ = Fix[σ]([P ]Γ);

• y = [succ(P )]Γ ∈ PN is given by y0 = 0 and yi+1 = xi, where x = [P ]Γ;

• y = [pred(P )]Γ ∈ PN is given by yi = xi+1, where x = [P ]Γ;

• if Γ ` R : ι, Γ ` P : ι and Γ ` Q : ι, setting x = [R]Γ, y = [P ]Γ and z = [Q]Γ, then

[if(R,P,Q)]Γ = x0y + x>0z

where x>0 =
∑∞
i=1 xi, and we have [if(R,P,Q)]Γ ∈ P([ι]) since

∑∞
i=0 xi ≤ 1 (because x ∈ P([ι]))

and y, z ∈ P([ι]);

• last [ran(~λ)]Γ = ~λ ∈ PN.

So, for instance, [if(ran(~λ), P,Q)]Γ = λ0[P ]Γ + (1− λ0)[Q]Γ.
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3.2 Reduction strategy

We restrict our attention to a particular reduction strategy, which is the leftmost-outermost strategy; we

describe it in a small step way. Given termsM andM ′ and given λ ∈ [0, 1], we writeM λ→M ′ (meaning
that M reduces to M ′ in one step, with probability λ) in one of the following situations:

• M = pred(0), M ′ = 0 and λ = 1,

• M = pred(n+ 1), M ′ = n and λ = 1,

• M = pred(N), M ′ = pred(N ′) and N λ→ N ′,

• M = succ(n), M ′ = n+ 1 and λ = 1,

• M = succ(N), M ′ = succ(N ′) and N λ→ N ′,

• M = ran(~λ), M ′ = n and λ = λn (the probabilistic reduction rule),

• M = if(0, L,R), M ′ = L and λ = 1,

• M = if(n+ 1, L,R), M ′ = R and λ = 1,

• M = if(N,L,R), M ′ = if(N ′, L,R) and N λ→ N ′,

• M = λζ N , M ′ = λζ N ′ and N
λ→ N ′,

• M = fix(N), M ′ = (N)M and λ = 1,

• M = (λζ N)L, M ′ = N [L/ζ] and λ = 1,

• M = (N)L, M ′ = (N ′)L, N λ→ N ′ and N is not of the shape N = λζ P (we say that N is not an
abstraction).

We say that M is in head normal form if it is not reducible for this strategy.

We write M →d M
′ if M

λ→ M ′ without using the probabilistic reduction rule (and hence λ = 1).
Observe that, if M →d M

′ and M →d M
′′, then M ′ = M ′′, and so →d is a deterministic reduction.

Lemma 29 (subject reduction) If Γ `M : σ and M
λ→M ′ then Γ `M ′ : σ.

Lemma 30 (invariance of the interpretation) If Γ ` M : σ, then the following holds in the PCS
Pcoh([Γ], [σ])

[M ]Γ =
∑

M
λ→M ′

λ[M ′]Γ .

Both results are proved by a straightforward induction on M .
The next substitution lemma will be important in the proof of Proposition 39, and crucially uses the

de�nition of the reduction strategy.

Lemma 31 Assume that Γ, ζ : σ ` M : τ , that Γ ` P : σ and that M →d M ′. Then M [P/ζ] →d

M ′ [P/ζ].

Proof. By induction on M . The only non straightforward case is when M = (N)L, the term N does
not start with an abstraction and N →d N

′; in that case, we have M ′ = (N ′)L. Then N cannot be a
variable (since N →d N

′), and hence N [P/ζ] cannot be an abstraction since N is not an abstraction. By
inductive hypothesis, we have N [P/ζ] →d N

′ [P/ζ] and hence (N [P/ζ])L [P/ζ] →d (N ′ [P/ζ])L [P/ζ]
since N [P/ζ] is not an abstraction. 2

19



3.3 A few words about stochastic matrices

Stochastic matrices are used for describing discrete time Markov processes. Let S be a set. A stochastic
matrix on S is an element P of [0, 1]S×S such that

∀s ∈ S
∑
t∈S

Ps,t = 1

Intuitively, S is a set of states, and Ps,t is the probability of evolving from state s to state t in one step.
If µ ∈ [0, 1]S is a probability distribution on S (that is

∑
s∈S µs = 1) considered as a row vector

(with possibly in�nitely many components), then µS = (
∑
s∈S µsPs,t)t∈S is a probability distribution

on S (also a row vector), which describes the probability of states after one step of evolution starting
from the probability of states described by µ. If s ∈ S, let rs be the probability distribution de�ned by
(rs)t = δs,t. We use the notation cs, when the same vector is considered as a column vector, and more
generally cU for the characteristic vector of the set U ⊆ S, considered as a column vector.

If P and Q are stochastic matrices on S, then the usual matricial product PQ is well de�ned and is
a stochastic matrix on S. In particular, Pn is a stochastic matrix, and Pns,t is the probability of evolving
from state s to state t in n steps.

3.3.1 Absorbing states. A state t ∈ S is absorbing if Pt,t = 1 (so Pt,u = 0 for u 6= t), that is
rt P = rt. Let S0 is the set of all absorbing states of S.

Lemma 32 Let t ∈ S0. Then, for any s ∈ S, the sequence (Pns,t)n∈N is monotone. Let P∞s,t = sup∞n=0 P
n
s,t,

one has ∑
t∈S0

P∞s,t ≤ 1 .

The proof is straightforward.

3.3.2 Transition paths. Let us call transition path any sequence w = (t1, . . . , tk) of elements of S
such that none of the tis is an absorbing state, but possibly the last one, and such that Pti,ti+1 > 0 for
all i = 1, . . . , k − 1. Then we write w : t1 ; tk, and we de�ne the probability of w as

p(w) =
k−1∏
i=1

Pti,ti+1 ∈ (0, 1] .

The length lg(w) of w is k − 1. In particular, for any s ∈ S, the one-element sequence (s) is the
only transition path of length 0 from s to s, and it satis�es p((s)) = 1. If w = (s = s1, . . . , sk+1 =
s′) : s ; s′ and w′ = (s′ = sk+1, . . . , sk+l+1 = s′′) : s′ ; s′′, then ww′ : s ; s′′ is the sequence
(s1, . . . , sk+1, . . . , sk+l). Observe that p(ww′) = p(w) p(w′) and that lg(ww′) = lg(w) + lg(w′) = k + l.

Lemma 33 Let s, u ∈ S with u non absorbing. Then

P ks,u =
∑
w:s;u
lg(w)=k

p(w) .

The hypothesis that u is not absorbing is essential since, when u is absorbing, one has P ku,u = 1 for all
k, whereas the only transition path from u to u is (u), of length 0.

Proof. By induction on k, the base case being obvious. By inductive hypothesis, we have

P k+1
s,t =

∑
v∈S
Ps,v>0

∑
w:v;u
lg(w)=k

Ps,v p(w)

=
∑
v∈S0
Ps,v>0

∑
w:v;u
lg(w)=k

Ps,v p(w) +
∑

v∈S\S0
Ps,v>0

∑
w:v;u
lg(w)=k

Ps,v p(w) .
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Since u is not absorbing, w : v ; u implies that v is not absorbing (even when lg(w) = 0), and so the
value of the �rst of these two sums is 0. We conclude because all transition paths of length k+ 1 from s
to u are of the shape (s, v)w with w : v ; u, lg(w) = k and Ps,v > 0 and v /∈ S0. 2

We can now establish the main result of this section.

Lemma 34 Let s ∈ S and t ∈ S0. Then

P∞s,t =
∑
w:s;t

p(w) .

Proof. By Lemma 32, it su�ces to show that

P ks,t =
∑
w:s;t

lg(w)≤k

p(w)

and this is done by induction on k. The base case k = 0 is clear because then both sides of the equation
are equal to δs,t. For the inductive step, we have

P k+1
s,t = (P kP )s,t

=
∑
u∈S

P ks,uPu,t

=
∑
u∈S0

P ks,uPu,t +
∑

u∈S\S0

P ks,uPu,t

=
∑
w:s;t

lg(w)≤k

p(w) +
∑

u∈S\S0
w:s;u, lg(w)=k

p(w)Pu,t

by inductive hypothesis, and by Lemma 33. The result follows easily. 2

3.4 The stochastic matrix of terms

We organize the set of all PPCF terms as a Markov process: let S be the set of all PPCF terms, we
de�ne a matrix Red ∈ [0, 1]S× S by

RedM,M ′ =


λ if M

λ→M ′

1 if M = M ′ is in head normal form

0 otherwise.

It is straightforward to check that this matrix is stochastic. If M is a head normal form, then M is an
absorbing state for Red.

Lemma 35 Assume that Γ ` M : σ. Then, for any M ′ such that RedM,M ′ > 0, one has Γ ` M ′ : σ.
Moreover, one has

[M ]Γ =
∑
M ′∈S

RedM,M ′ [M ′]Γ .

This is just a rephrasement of Lemma 30. Iterating this property, we have [M ]Γ =
∑
M ′∈S RedkM,M ′ [M ′]Γ

for all k ∈ N. Assume that `M : ι and let n ∈ N. We have therefore

([M ])n ≥ sup
k∈N

RedkM,n = Red∞M,n .

Remember that, by Lemma 32, (RedkM,n)k∈N is a monotone sequence in [0, 1], since n is an absorbing state
in S, and that the lub of that sequence is Red∞M,n. Observe also that, in the present setting, a transition
path w : M ; M ′ (where M ′ is in head normal form), is a sequence w = (M = M1, . . . ,Mk = M ′), with
Mi

λi→Mi+1 for i = 1, . . . , k − 1, and p(w) = λ1 · · ·λk−1 > 0.
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3.4.1 A logical relation. Our goal is now to prove the converse inequation. For this purpose, we
adapt the logical relation technique of [Plo77] (see also [AC98]). By induction on σ, we de�ne a relation
Rσ from [σ] to the set of all closed terms M of type σ.

• x Rι M if, for all n ∈ N, one has xn ≤ Red∞M,n = supk∈N RedkM,n =
∑
w:M;n p(w);

• f Rσ⇒τ M if, for all x ∈ [σ] and all P such that ` P : σ, if x Rσ P then f(x) Rτ (M)P .

3.4.2 Closure properties of the logical relation. We �rst need to prove, by induction on types,
a few closure properties of this relation.

Lemma 36 Assume that `M : σ and that M →d M
′. Then x Rσ M ′ ⇔ x Rσ M .

Proof. For σ = ι, the result follows from the fact that RedkM ′,n = Redk+1
M,n (this equation holds because,

for all N ∈ S, one has RedM,N = δN,M ′ ; indeed, if M
λ→ N , then λ = 1, M →d N and N = M ′).

Assume that σ = ϕ ⇒ ψ. Assume �rst that f Rσ M and let us show that f Rσ M ′. So let x ∈ [ϕ]
and let P with ` P : ϕ be such that x Rϕ P ; we must show that f(x) Rψ (M ′)P . We have to consider
two cases.

• M is an abstraction, that is M = λζϕN for some N with ζ : ϕ ` N : ψ. Then we have N →d

N ′ with M ′ = λζ N ′. We have (M)P →d N [P/ζ] and, by Lemma 31, we have N [P/ζ] →d

N ′ [P/ζ]. So, applying twice the inductive hypothesis at type ψ (in the left to right direction of
the implication), we get f(x) Rψ N ′ [P/ζ]. We conclude, applying the inductive hypothesis (in the
right to left direction of the implication) thanks to the fact that (M ′)P →d N

′ [P/ζ].

• M is not an abstraction. In that case, (M)P →d (M ′)P and we apply straightforwardly the
inductive hypothesis.

Conversely, assume that f Rσ M ′ and let us show that f Rσ M . We have the same two cases to
consider, the second (M is not an abstraction) being quite easy. So let us assume that M = λζϕN , as
above. With the same notations, since we have assumed that f Rσ λζ N ′, we get f(x) Rψ (λζ N ′)P ,
but (λζ N ′)P →d N

′ [P/ζ], so by inductive hypothesis, we have f(x) Rψ N ′ [P/ζ], and since N [P/ζ] →d

N ′ [P/ζ] by Lemma 31, we get f(x) Rψ N [P/ζ], and hence f(x) Rψ (λζ N)P by inductive hypothesis
again, since we have (λζ N)P →d N [P/ζ]. 2

Lemma 37 Assume that ` M : σ. Then 0 RσM . And let (xn)n∈N be an increasing sequence of
elements of [σ] such that xn Rσ M for all n ∈ N. Then supn∈N xn Rσ M .

Proof. The base case of the induction is clear, and the inductive hypothesis is based on the fact that
the order relation in [ϕ⇒ ψ] is the pointwise order on functions. 2

Lemma 38 Let x, y, z ∈ [ι] and let M,L,R be closed terms of type ι. Assume that x Rι M , y Rι L and
z Rι R. Then we have

x0y + x>0z Rι if(M,L,R) .

Proof. Let n ∈ N, we must show that

x0yn + x>0zn ≤
∑

w:if(M,L,R);n

p(w) .

Given the transition path u = (L = L1
λ1→ · · · λl−1→ Ll = n), let us denote by u0 the transition path

(if(0, L,R) 1→ L = L1
λ1→ · · · λl−1→ Ll = n). Similarly, given the transition path v = (R = R1

µ1→ · · · µr−1→
Rr = n) and k ∈ N, we denote by vk+1 the transition path (if(k + 1, L,R) 1→ R = R1

µ1→ · · · µr−1→ Rr = n).
We have of course p(u0) = p(u) and p(vk+1) = p(v).

Given any transition path w : if(M,L,R) ; n, we can �nd, in an unique way

22



• either a transition path t : M ; 0 and a transition path u : L ; n, such that w = tu0

• or k ∈ N and two transition paths t : M ; k + 1 and v : R ; n, such that w = tvk+1.

Therefore, we have

∑
w:if(M,L,R);n

p(w) =
∑

t:M;0
u:L;n

p(t) p(u) +
∞∑
k=0

∑
t:M;k+1
v:R;n

p(t) p(v)

=

 ∑
t:M;0

p(t)

  ∑
u:L;n

p(u)

 +

 ∞∑
k=0

∑
t:M;k+1

p(t)

  ∑
v:R;n

p(v)

 .

and we conclude, applying our hypotheses x Rι M , y Rι L and z Rι R. 2

3.4.3 Adequation Lemma. We can prove now the Adequation Lemma for this logical relation, also
known as Logical Relation Lemma. In the present setting, it reads as follows.

Proposition 39 Assume that Γ `M : τ , where Γ = (ζ1 : σ1, . . . , ζq : σq). Let P1, . . . , Pq be closed terms
such that ` Pi : σi. Let xi ∈ [σi] for i = 1, . . . , q. Then we have

[M ]Γ(~x) Rτ M
[
~P/~ζ

]
.

Proof. By induction on M . Let us just deal with a few cases, the other ones being straightforward.
The cases M = ζi and M = l are left to the reader (for the second case, observe that there is exactly

one transition path l ; l, which is the path of length 0 and probability 1).
Assume thatM = ran(~λ), with ~λ ∈ [0, 1]N such that

∑
n∈N λn = 1. Let n ∈ N, we have [M ]Γ(~x)n = λn

and there is exactly one transition path w : M
[
~P/~ζ

]
= M ; n; this path consists of one application of

the probabilistic rules, and one has p(w) = λn.
The cases M = pred(N) and M = succ(N) are left to the reader.
Assume that M = if(N,L,R). Let x = [M ]Γ(~x), y = [L]Γ(~x) and z = [R]Γ(~x). By inductive hypoth-

esis, we have x Rι N
[
~P/~ζ

]
, y Rι L

[
~P/~ζ

]
and z Rι R

[
~P/~ζ

]
and we conclude, applying Lemma 38.

When M = (N)L, with Γ ` N : σ ⇒ τ and Γ ` L : σ, one applies straightforwardly the de�nition of
Rσ⇒τ ans the inductive hypotheses.

Assume that σ = ϕ ⇒ ψ, M = λζϕN with Γ, ζ : ϕ ` N : ψ. Given any x ∈ [ϕ] and any

term P such that ` P : ϕ and x Rϕ P , we must show that [λζ N ]Γ(~x)(x) Rψ
(
λζ N

[
~P/~ζ

])
P ,

that is [N ]Γ,ζ:ϕ(~x, x) Rψ
(
λζ N

[
~P/~ζ

])
P . By inductive hypothesis, we know that [N ]Γ,ζ:ϕ(~x, x) Rψ

N
[
~P/~ζ, P/ζ

]
and we conclude by Lemma 36 since

(
λζ N

[
~P/~ζ

])
P →d N

[
~P/~ζ, P/ζ

]
by the very

de�nition of →d.
Assume last that M = fix(N), with Γ ` N : τ ⇒ τ . Let f = [N ]Γ(~x), it is an entire function

P([τ ]) → P([τ ]), and we have [M ]Γ(~x) = sup∞k=0 f
k(0). By Lemma 37, it su�ces to prove that ∀k ∈

N fk(0) Rτ M
[
~P/~ζ

]
= fix(N

[
~P/~ζ

]
), and this is done by induction on k. The base case k = 0 results

from Lemma 37. For the inductive step, let N ′ = N
[
~P/~ζ

]
, we assume that fk(0) Rτ fix(N ′). By

inductive hypothesis (in the �external� induction, on terms), we have f Rτ⇒τ N ′. Hence fk+1(0) Rτ

(N ′) fix(N ′) and we conclude by Lemma 36 since we have fix(N ′) →d (N ′) fix(N ′). 2

From this, we derive easily the following result.

Theorem 40 Let M be a closed term of type ι. Then [M ] ∈ PN is the sub-probability distribution on
N such that [M ]n = Red∞M,n =

∑
w:M;n p(w).

In other words, [M ]n is the probability that M reduces to n in our leftmost outermost strategy.
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4 Conclusion: towards intrinsic PCSs

We consider now the possibility of getting rid of the webs of PCSs. Indeed, PCSs are similar to vector
spaces, and from this viewpoint, the webs are like choices of a particular bases. We would like to
understand if the idea of PCS can be carried to a geometrical �intrinsic�, and therefore mathematically
nicer and more �exible setting, where this choice of bases is no more necessary.

The �rst observation in this direction is that a Banach space can naturally be associated with any
PCS.

4.1 Associating a Banach space with a PCS

4.1.1 A normed vector space. Remember that, if x, y ∈ PX and λ, µ ∈ R+ are such that λ+µ ≤ 1,
then λx + µy ∈ PX. In particular, if x ∈ PX and λ ∈ [0, 1], then λx ∈ PX. Also, it is obvious that
0 ∈ PX.

Given a PCS X, let B1X = {u ∈ R|X| | |u| ∈ PX}. This is an absolutely convex subset of R|X|, that
is, if x, y ∈ B1X and λ, µ ∈ R are such that |λ|+ |µ| ≤ 1, then λx+ µy ∈ B1X. In other words, B1X is

• convex, that is ∀u, v ∈ B1X ∀λ, µ ∈ R+ λ+ µ = 1 ⇒ λu+ µv ∈ B1X

• and balanced, that is, ∀u ∈ B1X ∀λ ∈ R |λ| ≤ 1 ⇒ λu ∈ B1X.

Let
eX =

⋃
λ>0

λB1X .

This set is an R-vector space. Observe that

eX = {u ∈ R|X| | ∃λ > 0∀u′ ∈ PX⊥ 〈|u|, u′〉 < λ} .

If u ∈ eX, we set
‖u‖X = inf{λ > 0 | |u| ∈ λB1X} ∈ R+ .

This number is �nite by the very de�nition of eX (B1X is absorbing in eX). The function ‖_‖X , also
known as the Minkowski functional (or gauge) of B1X, is a semi-norm, again because B1X is absolutely
convex. We have

‖ea‖X = cX(a)−1 .

Indeed, cX(a)ea ∈ PX, that is ea ∈ cX(a)−1PX and hence cX(a)−1 ≥ ‖ea‖X . Conversely, if λ > ‖ea‖X ,
then ea ∈ λPX, that is λ−1ea ∈ PX, and hence λ−1 ≤ cX(a). Therefore cX(a)−1 ≤ ‖ea‖X .

Observe also that ‖_‖X is a norm on eX. Indeed, let u ∈ eX and assume that ‖u‖X = 0, that is
∀λ > 0 |u| ∈ λPX. Let a ∈ |X|. Since πa(PX) ⊆ R+ is upper-bounded by cX(a), we have |ua| ≤ λcX(a)
for all λ > 0. So u = 0. Hence (eX, ‖_‖X) is a normed space and the unit ball of ‖_‖X is B1X.

Let u′ ∈ B1X
⊥. Let u ∈ eX and let λ > ‖u‖X . We have u ∈ λB1X and hence the sum

∑
a∈|X| |uau′a|

converges to a value which is ≤ λ. So the sum

〈u, u′〉 =
∑
a∈|X|

uau
′
a

is well de�ned and satis�es |〈u, u′〉| ≤ ‖u‖X . Moreover, we have

‖u‖X = sup
u′∈B1X⊥

|〈u, u′〉| . (6)

More generally, given u ∈ eX and u′ ∈ eX⊥, one has
∑
a∈|X| |uau′a| < ∞ and so the sum 〈u, u′〉 =∑

a∈|X| uau
′
a converges and we have

|〈u, u′〉| ≤ ‖u‖X‖u′‖X⊥ . (7)

Therefore, for any given u′ ∈ eX⊥, the map u 7→ 〈u, u′〉 is a continuous linear map from eX to R
(and so it is uniformly continuous). The map u 7→ |u| = (|ua|)a∈|X| from eX to eX is also uniformly
continuous, because ‖|v| − |u|‖X ≤ ‖v − u‖X for any u, v ∈ eX.
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4.1.2 Completeness. We show that eX is complete. So let (u(n))n∈N be a Cauchy sequence in eX.
For any a ∈ |X|, the map πa is uniformly continuous, and hence the sequence (u(n)a)n∈N is Cauchy in
R and converges to some ua ∈ R. Let u = (ua)a∈|X|.

Since v 7→ ‖v‖X is uniformly continuous, the sequence ‖u(n)‖X is Cauchy and is therefore upper-
bounded by some λ > 0.

We want �rst to show that u ∈ eX, that is, |u| ∈ eX. Let u′ ∈ PX⊥. Then (|u(n)|u′)n∈N converges
pointwise to |u|u′ in R|X| and since (|u(n)|)n∈N is Cauchy, the sequence (〈|u(n)|, u′〉)n∈N converges to
some λ(u′) ∈ R+. But ∀n 〈|u(n)|, u′〉 ≤ ‖u(n)‖X ≤ λ and hence λ(u′) ≤ λ. Applying Fatou's Lemma
to the sequence of families (|u(n)|u′)n∈N (considered as measurable functions on |X| equipped with
the discrete measure), we have λ(u′) = limn∈N〈|u(n)|, u′〉 = 〈|u|, u′〉 and hence ∀u′ ∈ PX⊥ one has
〈|u|, u′〉 ≤ λ. This shows that u ∈ eX.

One proves last that u(n) → u. Let w(n) = u(n)− u, we must check that ‖w(n)‖X → 0. We have

• ∀a ∈ |X| limn→∞ w(n)a = 0

• and (w(n))n∈N is Cauchy.

So the sequence (‖w(n)‖X)n∈N is Cauchy in R and therefore converges to some λ ∈ R+. Assume towards
a contradiction that λ > 0. Upon cutting o� an initial segment of the sequence (w(n))n∈N, we can
assume that ∀n ∈ N ‖w(n)‖X ≥ λ/2. Therefore

∀n ∈ N ∃u′ ∈ PX⊥ 〈|w(n)|, u′〉 ≥ λ/3 .

Since (w(n))n∈N is Cauchy, there exists N ∈ N such that ∀n ≥ N ‖w(N)− w(n)‖X ≤ λ/6, that is

∀n ≥ N ∀u′ ∈ PX⊥ 〈|w(N)− w(n)|, u′〉 ≤ λ/6 .

Let u′ ∈ PX⊥ be such that 〈|w(N)|, u′〉 ≥ λ/3. For n ≥ N , we have

〈|w(N)|, u′〉 − 〈|w(N)− w(n)|, u′〉 ≥ λ/6 .

Let I ⊆ |X| be �nite and such that
∑
a∈|X|\I |w(N)a|u′a ≤ λ/12. Then we have∑

a∈I
|w(N)a|u′a − 〈|w(N)− w(n)|, u′〉 ≥ λ/12

and hence
hn =

∑
a∈I

(|w(N)a| − |w(N)a − w(n)a|)u′a ≥ λ/12 .

But since I is �nite and ∀a ∈ I limn→∞ w(n)a = 0, we have limn→∞ hn = 0, contradiction.
To summarize, we can state the following result.

Theorem 41 For any PCS X, the normed vector space (eX, ‖_‖X) is a Banach space.

The Banach space e(1N+
) is l∞ and e(1(N+)) is l1. Of course, we would expect e(X⊥) to be the

topological dual of eX, but these two examples show that this is hopeless since the dual of l∞ is much
larger than l1. The solution to this problem is well known and consists in considering �dual pairs� of
Banach spaces instead of Banach spaces. We adopt the presentation of [Gir99], but this idea is already
developed in the work of Barr and Chu [Bar79], in a more general setting (without the exponential
construction however).

4.2 The associated coherent Banach space

In [Gir99], coherent Banach space (CBS) is de�ned as a triple E = (E+, E−, 〈_,_〉E) where E+ and E−

are Banach spaces (each of them is given with an explicit choice of norm, ‖_‖+E and ‖_‖−E respectively)
and 〈_,_〉E is a bilinear form E+ × E− → R which satis�es

∀x ∈ E+ ‖x‖+E = sup
‖x′‖−E≤1

|〈x, x′〉E |

∀x′ ∈ E− ‖x‖−E = sup
‖x‖+E≤1

|〈x, x′〉E | .
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We have shown that, for any PCS X, the triple cbs(X) = (eX, eX⊥, 〈_,_〉) is a CBS.
Given two CBSs E and F , a linear morphism from E to F is a bounded linear map f : E+ → F+

such that there exists a map g : F− → E− satisfying

∀x ∈ E+ ∀y′ ∈ F− 〈f(x), y′〉F = 〈x, g(y′)〉E .

The map g is then easily seen to be uniquely determined by this property, and to be a bounded linear
map F− → E−; it is called the transpose of f and denoted as tf .

Given two PCSs X and Y and a matrix w ∈ e(X ( Y ), it is clear that the map fun(w) : eX → eY is a
BCS morphism from cbs(X) to cbs(Y ). It is clear moreover that the operation w 7→ fun(w) is functorial.
A natural question is whether this functor is full, and the answer is negative, as shown by the following
counter-example derived from [Ehr02].

4.2.1 A counter-example. Let X = 1N+
and Y = 1(N+) = X⊥, so that eX = l∞(N+) and eY =

l1(N+).
For each p ∈ N, let (P (p)

j )j=1,...,4p be an enumeration of P({1, . . . , 2p}). Let ϕ : N → N+ be the

function de�ned by ϕ(p) = 40 + · · ·+ 4p = 4p+1−1
3 . We extend this function as a function from N− 1 to

N by setting ϕ(−1) = 0. Then we have, for all p ∈ N,

ϕ(p)− ϕ(p− 1) = #P({1, . . . , 2p}) .

For any j ∈ N+, there is a uniquely determined p ∈ N− 1 such that ϕ(p) + 1 ≤ j < ϕ(p+ 1). This p
will be denoted as ψ(j). We have ψ(1) = 0, ψ(2) = · · · = ψ(5) = 1, ψ(6) = · · · = ψ(21) = 2 etc.

Let A ∈ RN+×N+
be the matrix de�ned by

Ai,j =


1

p24p if 1 ≤ i ≤ 2p and i ∈ P (p)
j , where p = ψ(j)

−1
p24p if 1 ≤ i ≤ 2p and i /∈ P (p)

j , where p = ψ(j)
0 otherwise

Then |A| /∈ P(X ( Y ) since, denoting by u the element of PX = PY ⊥ which is de�ned by ∀i ui = 1, we
have

〈|A| · u, u〉 =
∞∑
j=1

1
ψ(j)24ψ(j)

∑
1≤i≤2ψ(j)

1

=
∞∑
j=1

2
ψ(j)4ψ(j)

=
∞∑
p=1

∑
ψ(j)=p

2
ψ(j)4ψ(j)

=
∞∑
p=1

4p
2
p4p

= ∞

since #{j | ψ(j) = p} = 4p. This shows that εA /∈ e(X ( Y ), for all ε > 0.
On the other hand, let u ∈ B1X, that is u ∈ RN+

with ∀i |ui| ≤ 1. Then we have

‖A · u‖Y =
∞∑
j=1

∣∣∣∣∣
∞∑
i=1

Ai,jui

∣∣∣∣∣
=

∞∑
p=1

∑
ψ(j)=p

∣∣∣∣∣
∞∑
i=1

Ai,jui

∣∣∣∣∣
=

∞∑
p=1

1
p24p

∑
ψ(j)=p

∣∣∣∣∣
2p∑
i=1

η(i, j, p)ui

∣∣∣∣∣
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where η(i, j, p) = 1 if i ∈ P (p)
j and η(i, j, p) = −1 if i /∈ P (p)

j . Let Ip = {1, . . . , 2p} and let

Sp =
∑

ψ(j)=p

∣∣∣∣∣
2p∑
i=1

η(i, j, p)ui

∣∣∣∣∣
=

∑
J⊆Ip

∣∣∣∣∣∣
∑
i∈J

ui −
∑

i∈Ip\J

ui

∣∣∣∣∣∣ .
Using the fact that, for any a ∈ R, the function x 7→ |x− a|+ |x+ a| is monotone on R+, we get

Sp ≤
∑
J⊆Ip

|#J −#Ip \ J |

=
2p∑
k=0

(
2p
k

)
|2k − 2p| = 4

p∑
k=0

(p− k)
(

2p
k

)
= 2p

(
2p
p

)
.

The last equality can be proved using e.g. the fact that k
(
2p
k

)
= (2p− k + 1)

(
2p
k−1

)
for k = 1, . . . , 2p. By

Stirling formula, there is a constant C > 0 such that p
(
2p
p

)
∼ C4p

√
p and hence there is a constant C > 0

such that ∀p p
(
2p
p

)
≤ C4p

√
p. Let D =

∑∞
p=1

1
p
√
p < ∞. We have ‖A · u‖Y ≤ CD for all u ∈ B1X. Let

f : eX → eY be the map de�ned by f(u) = A · u, we have shown that f is a bounded linear map, and
that f is a morphism from cbs(X) to cbs(Y ).

If there were some w ∈ e(X ( Y ) such that f = fun(w), we would necessarily have w = A, so such
a w cannot exist, and we have shown that the mapping w 7→ fun(w) is not surjective onto the space of
morphisms from cbs(X) to cbs(Y ).

4.2.2 Using partially ordered Banach spaces? This counter-example shows that positivity must
play an essential role if we want to have a more abstract characterization of morphisms of PCSs, as
bounded linear maps between Banach spaces. Fortunately, there are fairly standard notions of partially
ordered Banach space that seem quite suitable to this goal. Another approach could consist in using the
notion of Riesz space, which are partially ordered real vector spaces where any two elements have a lub.

A partially ordered Banach space is a Banach space E equipped with a positive cone, that is, a set
C ⊆ E such that

• 0 ∈ C;

• λx+ µy ∈ C as soon as x, y ∈ C and λ, µ ∈ R+;

• and if x, y ∈ C and x+ y = 0, then x = y = 0.

The reason for the terminology is that one de�nes a partial order relation on E by setting x ≤ y i�
y − x ∈ C. Of course, a positive linear map from a partially ordered Banach space E to a partially
ordered Banach space F is a linear map which sends the positive cone of E in the positive cone of F .

It is clear that, for any PCS X, the Banach space eX is equipped with such a cone C (the elements
x of eX such that ∀a ∈ |X|xa ≥ 0), which is moreover closed and generating (that is C −C = eX), and
additional properties are satis�ed, relating the norm of eX and the cone.

The next step would be now to introduce partially ordered CBSs (CBSs where both Banach spaces
are equipped with positive cones, satisfying suitable axioms, still to be discovered) so that the obtained
category be a model of linear logic, and so that the PCS morphisms from a PCS X to a PCS Y be
in bijective correspondence with the positive continuous linear maps between the associated partially
ordered CBSs.

These investigations are postponed to furher work.
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