Derivatives and distances in probabilistic coherence spaces

Second PIHOC Meeting, Bologna

Thomas Ehrhard, IRIF, CNRS and Univ Paris Diderot

7 Feb 2019

This talk

Try to use the regularity of morphisms in the cartesian closed category Pcoh! (they are power series with coefficients ≥ 0 with >0 radius of convergence).

In particular: these functions have differentials. What is their probabilistic operational meaning? Two (related) answers:

- Expected computation time
- Operational distance
in a probabilistic functional programming language: pPCF.

Syntax of probabilistic pPCF

Syntax:

$$
\begin{aligned}
\sigma, \tau, \ldots & :=\iota \mid \sigma \Rightarrow \tau \\
M, N, P \ldots & :=\underline{n}|\operatorname{succ}(M)| \operatorname{pred} M|x| \operatorname{coin}(r) \mid \operatorname{let}(x, M, N) \\
& |\operatorname{if}(M, N, P)|(M) N\left|\lambda x^{\sigma} M\right| \operatorname{fix}(M)
\end{aligned}
$$

with $r \in[0,1]$.

Typing rules

$$
\begin{array}{cc}
\Gamma \vdash \underline{n}: \iota & \Gamma, x: \sigma \vdash x: \sigma \\
\frac{\Gamma \vdash M: \iota}{\Gamma \vdash \operatorname{succ}(M): \iota} & \frac{\Gamma \vdash M: \iota}{\Gamma \vdash \operatorname{pred} M: \iota}
\end{array}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash M: \iota \quad \Gamma, x: \iota \vdash N: \sigma}{\Gamma \vdash \operatorname{let}(x, M, N): \sigma} \quad \text { Only for } M \text { of type } \iota! \\
\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash \lambda x^{\sigma} M: \sigma \Rightarrow \tau} \quad \frac{\Gamma \vdash M: \sigma \Rightarrow \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash(M) N: \tau} \\
\frac{\Gamma \vdash M: \sigma \Rightarrow \sigma}{\Gamma \vdash \operatorname{fix}(M): \sigma} \quad \frac{r \in[0,1]}{\Gamma \vdash \operatorname{coin}(r): \iota}
\end{gathered}
$$

Intuitions on pPCF

$\vdash M: \iota$ means that M represents a subprobability distribution on the integers.

Example: coin(1/3) weights $\underline{0}$ with probability $1 / 3, \underline{1}$ with probability $2 / 3$ and $\underline{n+2}$ with probability 0 .
let (x, M, N) : samples an integer according to M and feeds N through x with the obtained value (a \underline{n} for some $n \in \mathbb{N}$).
$\vdash M: \iota \Rightarrow \iota$ means that M is an (generally non linear) sub-probability distribution transformer.

Reduction rules

We define a weak head reduction strategy.
Deterministic reduction rules

$$
\begin{aligned}
& \overline{\left(\lambda x^{\sigma} M\right) N \rightarrow_{\mathrm{d}} M[N / x]} \overline{\operatorname{fix}(M) \rightarrow_{\mathrm{d}}(M) \mathrm{fix}(M)} \\
& \overline{\operatorname{succ}(\underline{n}) \rightarrow_{\mathrm{d}} \underline{n+1}} \overline{\mathrm{if}(\underline{0}, M, N) \rightarrow_{\mathrm{d}} M} \\
& \hline \operatorname{if}(\underline{n+1}, M, N) \rightarrow_{\mathrm{d}} N \\
& \operatorname{let}(x, \underline{n}, N) \rightarrow_{\mathrm{d}} N[\underline{n} / x]
\end{aligned}
$$

Probabilistic reductions

$$
\begin{gathered}
\frac{M \rightarrow_{\mathrm{d}} M^{\prime}}{M \xrightarrow{1} M^{\prime}} \underset{\operatorname{coin}(p) \xrightarrow{p} \underline{0}}{(M \xrightarrow[\rightarrow]{\operatorname{coin}(p)} \xrightarrow{1-p} \underline{1}} \\
\frac{M}{(M) N} M^{\prime}\left(M^{\prime}\right) N
\end{gathered} \frac{M \xrightarrow{p} M^{\prime}}{\operatorname{succ}(M) \xrightarrow{p} \operatorname{succ}\left(M^{\prime}\right)} .
$$

Probability of reduction

Given M such that $\vdash M: \iota$, we can consider all possible reductions from M to a given integer constant \underline{n} :

$$
M=M_{0} \xrightarrow{p_{1}} M_{1} \xrightarrow{p_{2}} \cdots \xrightarrow{p_{k}} M_{k}=\underline{n}
$$

Summing up the probabilities $\prod_{i=1}^{k} p_{i}$ of all these paths we get the probability that M reduces to \underline{n}, denoted $\operatorname{Pr}(M \downarrow \underline{n})$.

Observational distance

Given M and N such that $\vdash M: \sigma$ and $\vdash N: \sigma$, one defines the observational distance $\mathrm{d}_{\mathrm{obs}}(M, N)$ between M and N as the sup of all

$$
|\operatorname{Pr}((C) M \downarrow \underline{0})-\operatorname{Pr}((C) N \downarrow \underline{0})|
$$

for all possible "contexts" which are closed terms C such that $\vdash C: \sigma \Rightarrow \iota$.
M and N are observationally equivalent if this "distance" is 0 .
$\mathrm{d}_{\text {obs }}\left({ }_{-},{ }_{-}\right)$is a distance on the observational classes of closed terms of type σ (for any type σ).

Part I

Reminder - Probabilistic coherence spaces: an "analytic" denotational model

If $u, u^{\prime} \in\left(\mathbb{R}_{\geq 0}\right)^{\prime}$ then $\left\langle u, u^{\prime}\right\rangle=\sum_{i \in I} u_{i} u_{i}^{\prime} \in \overline{\mathbb{R}_{\geq 0}}$.
If $P \subseteq \overline{\mathbb{R}}_{\geq 0}$ I then

$$
P^{\perp}=\left\{u^{\prime} \in \overline{\mathbb{R}} \geq 0^{\prime} \mid \forall u \in P\left\langle u, u^{\prime}\right\rangle \leq 1\right\}
$$

A probabilistic coherence space (PCS) is a pair $X=(|X|, \mathrm{P} X)$ where $P X \subseteq \overline{\mathbb{R}} \geq 0|X|$ such that

- $\mathrm{P} X^{\perp \perp}=\mathrm{P} X$
- $\forall a \in|X| \exists x \in \mathrm{PX} x_{a}>0$
- $\forall a \in|X| \exists m \in \mathbb{R}_{\geq 0} \forall x \in \mathrm{PX} x_{a} \leq m$

So actually $\mathrm{P} X \subseteq\left(\mathbb{R}_{\geq 0}\right)^{|X|}$.

Dual of $X: X^{\perp}=\left(|X|, P X^{\perp}\right)$ so that $X^{\perp \perp}=X$.
Examples of PCS's.

- $1=(\{*\},[0,1])$ with $1^{\perp}=1$ for $0<r<\infty$.
- Bool $=1 \oplus 1=\left(\{\mathbf{t}, \mathbf{f}\},\left\{\left(x_{\mathbf{t}}, x_{\mathbf{f}}\right) \in \mathbb{R}_{\geq 0}^{2} \mid x_{\mathbf{t}}+x_{\mathbf{f}} \leq 1\right\}\right)$
- Bool $^{\perp}=1 \& 1=\left(\{\mathbf{t}, \mathbf{f}\},\left\{\left(x_{\mathbf{t}}, x_{\mathbf{f}}\right) \in \mathbb{R}_{\geq 0}^{2} \mid x_{\mathbf{t}}, x_{\mathbf{f}} \leq 1\right\}\right)$
- $N=\left(\mathbb{N},\left\{x \in\left(\mathbb{R}_{\geq 0}\right)^{\mathbb{N}} \mid \sum_{i=0}^{\infty} x_{i} \leq 1\right\}\right)$

Linear morphisms in PCS's

Linear morphisms from X to Y : if $t \in(\mathbb{R} \geq 0)^{|X| \times|Y|}$ (a matrix) and $x \in \mathrm{PX}$ (a vector) then we can apply the matrix to the vector:

$$
t x \in\left(\mathbb{R}_{\geq 0}\right)^{|Y|} \text { with }(t x)_{b}=\sum_{a \in|X|} t_{a, b} x_{a}
$$

Then t is a linear morphism from X to $Y(t \in \operatorname{Pcoh}(X, Y))$ if $\forall x \in \mathrm{P} X \quad t x \in \mathrm{P} Y$. This defines a category Pcoh, a model of LL (with all fixpoints of types and term fixpoint operators at all types).

Fact

$\operatorname{Pcoh}(X, Y)$ is a $P C S$ structure, that is $\operatorname{Pcoh}(X, Y)=P(X \multimap Y)$ for a PCS $X \multimap Y$ with $|X \multimap Y|=|X| \times|Y|$.
$\mathrm{P}(\mathrm{N} \multimap \mathrm{N})$: sub-stochastic matrices on $\mathbb{N} \times \mathbb{N}$.

Non-linear morphisms in PCS's

The non-linear morphisms $X \rightarrow Y$ are the elements of $\mathrm{P}(!X \multimap Y)$ where $!X$ is a PCS with $|!X|=\mathcal{M}_{\text {fin }}(|X|)$ (finite multisets). If $x \in \mathrm{P} X$ and $m \in|!X|$ define

$$
x^{m}=\prod_{a \in|X|} x_{a}^{m(a)}
$$

Then $t \in \mathrm{P}(!X \multimap Y)=\operatorname{Pcoh}_{!}(X, Y)$ is characterized by

$$
\forall x \in \mathrm{PX} \widehat{t}(x)=\left(\sum_{m \in|!X|} t_{m, b} x^{m}\right)_{b \in|Y|} \in \mathrm{PY}
$$

Pcoh ${ }_{1}$ is a model of probabilistic pPCF. Morphisms are functions: $\widehat{t \circ s}=\widehat{t} \circ \widehat{s}$ and $(\forall x \in P X \widehat{s}(x)=\widehat{t}(x)) \Rightarrow s=t$.

pPCF interpretation

Fact

Pcoh! is a cartesian closed category with an object of integers N and least fixpoints operators $(X \Rightarrow X) \rightarrow X$ for all X. An thus it is a model of pPCF.
$\llbracket \iota \rrbracket=\mathrm{N}$ and $\llbracket \sigma \Rightarrow \tau \rrbracket=!\llbracket \sigma \rrbracket \multimap \llbracket \tau \rrbracket$
If $\Gamma \vdash M: \sigma$ with $\Gamma=\left(x_{1}: \sigma_{1}, \ldots, x_{k}: \sigma_{k}\right)$ then

$$
\llbracket M \rrbracket_{\Gamma} \in \operatorname{Pcoh}_{!}\left(\llbracket \sigma_{1} \rrbracket \& \cdots \& \llbracket \sigma_{k} \rrbracket, \llbracket \sigma \rrbracket\right)
$$

so $\llbracket M \rrbracket_{\Gamma}$ can be seen as a function $\prod_{i=1}^{k} \mathrm{P} \llbracket \sigma_{i} \rrbracket \rightarrow \mathrm{P} \llbracket \sigma \rrbracket$.

Why no negative coefficients in power series?

Seems crucial for combining fixpoints and power series. Assume e.g. that we admit the "weak parallel or" function

$$
\text { wpor : }[0,1] \times[0,1] \rightarrow[0,1] \quad(u, v) \mapsto u+v-u v
$$

Spawns two threads, stops as soon as one of them stops.
Add it to pPCF. Then we can define $\vdash P: 1 \Rightarrow 1$ by

$$
P=\operatorname{fix}\left(\lambda f^{\iota \Rightarrow \iota} \lambda x^{\iota} \operatorname{wpor}(x,(f) x)\right) .
$$

Spawns an unbounded number of copies of x, stops as soon as one of them does. Then $\llbracket P \rrbracket(0)=0$ and $\llbracket P \rrbracket(u)=1$ for $u>0$. Scott continuous, but far from being analytic!

Les devises Shadok

EN ESSAYANT CONTINUELLEMENT ON FINIT PAR REUSSIR. DONC: PLUS GA RATE, PLUS ON A DECHANCES QUE GA MARCHE.

Example of term interpretations

- $\llbracket x_{i} \rrbracket_{\Gamma}(\vec{u})=u_{i}$
- $\llbracket \underline{\eta} \rrbracket\left\ulcorner(\vec{u})=e_{n}\right.$ where $\left(e_{n}\right)_{j}=\delta_{n, j} \in \mathrm{PN}$.
- $\llbracket i f(M, N, P) \rrbracket_{\Gamma}=$ $\llbracket M \rrbracket_{\Gamma}(\vec{u})_{0} \llbracket N \rrbracket_{\Gamma}(\vec{u})+\left(\sum_{n=1}^{\infty} \llbracket M \rrbracket_{\Gamma}(\vec{u})_{n}\right) \llbracket P \rrbracket_{\ulcorner }(\vec{u})$
- $\llbracket \operatorname{coin}(p) \rrbracket\left\ulcorner(\vec{u})=p e_{0}+(1-p) e_{1}\right.$
- $\llbracket \operatorname{let}(x, M, N) \rrbracket_{\Gamma}(\vec{u})=\sum_{n=0}^{\infty} \llbracket M \rrbracket_{\Gamma}(\vec{u})_{n} \llbracket N \rrbracket_{\Gamma, x: L}\left(\vec{u}, e_{n}\right)$

Main properties of this interpretation

Fact

For all M with $\vdash M: \iota$ and $n \in \mathbb{N}$, we have $\operatorname{Pr}(M \downarrow \underline{n})=\llbracket M \rrbracket_{n}$.
As a consequence

Fact (adequacy, Danos and E.)

For all M, N such that $\vdash M: \sigma$ and $\vdash N: \sigma$, we have $\llbracket M \rrbracket=\llbracket N \rrbracket \Rightarrow \mathrm{~d}_{\mathrm{obs}}(M, N)=0$

And also

Fact (full abstraction, Pagani, Tasson and E.)

The converse implication.

Part II

Derivatives and execution (on an example)

In a pPCF extension with unit type 1 , for $r \in[0,1]$

$$
M_{r}=\operatorname{fix}\left(\lambda f^{1 \Rightarrow 1} \lambda x^{1} \text { if }(\operatorname{coin}(r),(f) x ;(f) x, x ; x)\right)
$$

where () is the unique value of type 1 and ";" is the "unit conditional" ($M ; N$ reduces to () if both M and N do).

Then $\llbracket M_{r} \rrbracket$ is a monotonic function $\varphi_{r}:[0,1] \rightarrow[0,1]$ minimal such that $\varphi_{r}(u)=(1-r) u^{2}+r \varphi_{r}(u)^{2}$. Hence

$$
\varphi_{r}(u)= \begin{cases}\frac{1-\sqrt{1-4 r(1-r) u^{2}}}{2 r} & \text { if } u>0 \\ u^{2} & \text { if } r=0\end{cases}
$$

NB: by adequacy, $\varphi_{r}(1)$ is $\operatorname{Pr}\left(\left(M_{r}\right)() \downarrow()\right)$
$r=0.2-$ graph of $\varphi_{0.2}(u)=\left(1-\sqrt{1-0.64 u^{2}}\right) / 0.4$

$r=0.3-$ graph of $\varphi_{0.3}(u)=\left(1-\sqrt{1-0.84 u^{2}}\right) / 0.6$ (steeper slope at $u=1$)

$r=0.5-$ graph of $\varphi_{0.5}(u)=1-\sqrt{1-u^{2}}$ (vertical slope at $u=1$)

$r=0.6$ - graph of $\varphi_{0.6}(u)=\left(1-\sqrt{1-0.96 u^{2}}\right) / 1.2\left(\varphi_{0.6}(u)<1\right.$ but less steep slope at $u=1$)

Probability of termination of $\left(M_{r}\right)()$ for $r \in[0,1]$:

$$
\begin{aligned}
\varphi_{r}(1) & =\frac{1-\sqrt{1-4 r(1-r)}}{2 r} \\
& =\frac{1-|1-2 r|}{2 r} \\
& = \begin{cases}1 & \text { if } r \leq 1 / 2 \\
\frac{1-r}{r} & \text { if } r>1 / 2\end{cases}
\end{aligned}
$$

Graph of $\varphi_{r}(1)$ for $0 \leq r \leq 1$: probability of termination of $\left(M_{r}\right)()$.

$$
\varphi_{r}(u)=\sum_{n=0}^{\infty} a_{n}(r) u^{n}
$$

Fact

$a_{n}(r) \in[0,1]$ is the probability that the execution of $\left(M_{r}\right)()$ uses n times the argument () in its reduction to ().

$$
\varphi_{r}^{\prime}(1)=\lim _{u \rightarrow 1^{-}} \frac{\varphi_{r}(1)-\varphi_{r}(u)}{1-u}=\sum_{n=0}^{\infty} n a_{n}(r)
$$

Fact

$\varphi_{r}^{\prime}(1) / \varphi_{r}(1)$ is the conditional expectation of this execution time, under the condition that the computation terminates.

In the example we can compute this derivative. We have

$$
\varphi_{r}(u)=(1-r) u^{2}+r \varphi_{r}(u)^{2}
$$

SO

$$
\varphi_{r}^{\prime}(u)=2(1-r) u+2 r \varphi_{r}(u) \varphi_{r}^{\prime}(u)
$$

The conditional expectation of execution time is

$$
\frac{\varphi_{r}^{\prime}(1)}{\varphi_{r}(1)}=\frac{2(1-r)}{\left(1-2 r \varphi_{r}(1)\right) \varphi_{r}(1)}= \begin{cases}\frac{2(1-r)}{1-2 r} & \text { if } 0 \leq r<1 / 2 \\ \frac{2 r}{2 r-1} & \text { if } 1 / 2<r \leq 1\end{cases}
$$

Graph of $\varphi_{r}^{\prime}(1) / \varphi_{r}(1)$: conditional expectation of the number of steps in the reduction of $\left(M_{r}\right)()$ for $0 \leq r \leq 1$.

Part III

Lipschitz property and distances

Amplification of probabilities

Fact

$$
\forall \varepsilon \in[0,1] \quad \varepsilon>0 \Rightarrow \mathrm{~d}_{\text {obs }}(\operatorname{coin}(0), \operatorname{coin}(\varepsilon))=1
$$

Take $C=\operatorname{fix}\left(\lambda f^{\iota \Rightarrow \iota} \lambda x^{\iota}\right.$ if $\left.(x, \underline{0},(f) x)\right)$ then

$$
\begin{aligned}
& \operatorname{Pr}((C) \operatorname{coin}(0) \downarrow \underline{0})=0 \\
& \operatorname{Pr}((C) \operatorname{coin}(\varepsilon) \downarrow \underline{0})=1 \quad \forall \varepsilon>0
\end{aligned}
$$

The denotational distance

There is a "norm" on PX:

$$
\|x\|_{x}=\sup \left\{\left\langle x, x^{\prime}\right\rangle \mid x^{\prime} \in \mathrm{P} X^{\perp}\right\} \in[0,1]
$$

For instance $\|x\|_{N}=\sum_{n=0}^{\infty} x_{n}$.
Also $P X$ is a lattice: $x \wedge y \in P X$ defined pointwise. Then

$$
\mathrm{d}_{x}(x, y)=\|x-(x \wedge y)\| x+\|y-(x \wedge y)\| x
$$

defines a distance on PX .

Remember that $\mathrm{d}_{\mathrm{obs}}(\operatorname{coin}(0), \operatorname{coin}(\varepsilon))=1$ if $\varepsilon>0$.
On the other hand $\llbracket \operatorname{coin}(0) \rrbracket=e_{1}$ and $\llbracket \operatorname{coin}(\varepsilon) \rrbracket=\varepsilon e_{0}+(1-\varepsilon) e_{1}$. Also $e_{1} \wedge\left(\varepsilon e_{0}+(1-\varepsilon) e_{1}\right)=(1-\varepsilon) e_{1}$.

$$
\begin{aligned}
\mathrm{d}_{\mathrm{N}}(\llbracket \operatorname{coin}(0) \rrbracket, \llbracket \operatorname{coin}(\varepsilon) \rrbracket) & =\left\|e_{1}-(1-\varepsilon) e_{1}\right\|_{\mathrm{N}} \\
& +\left\|(1-\varepsilon) e_{1}+\varepsilon e_{0}-(1-\varepsilon) e_{1}\right\|_{\mathrm{N}} \\
& =2 \varepsilon
\end{aligned}
$$

Remember that by Full Abstraction, if $\vdash M: \sigma$ and $\vdash N: \sigma$,

$$
\mathrm{d}_{\llbracket \sigma \rrbracket}(\llbracket M \rrbracket, \llbracket N \rrbracket)=0 \Leftrightarrow \mathrm{~d}_{\text {obs }}(M, N)=0
$$

we would like to say something not completely trivial in the case $\mathrm{d}_{\text {obs }}(M, N) \neq 0$ by limiting the space of observation contexts (in the spirit of the work of Dal Lago and al. on probabilistic distances).

The local PCS

Given $x \in \mathrm{P} X$, there is a $\mathrm{PCS} X_{x}$ such that

$$
\mathrm{P}\left(X_{x}\right)=\{u \in \mathrm{P} X \mid x+u \in \mathrm{P} X\}
$$

We have $\left|X_{x}\right|=\left\{a \in|X| \mid \exists \varepsilon>0 x+\varepsilon e_{a} \in \mathrm{PX}\right\}$.
It is a PCS (not completely obvious).
This is the local PCS of X at x.
$\left[e_{a} \in\left(\mathbb{R}_{\geq 0}\right)^{|X|}\right.$ defined by $\left.\left(e_{a}\right)_{a^{\prime}}=\delta_{a, a^{\prime}}.\right]$

Local derivatives

Let $t \in \operatorname{Pcoh}_{!}(X, Y)$ and $x \in \mathrm{P} X$
Given $u \in \mathrm{P}\left(X_{x}\right)$, we know that $x+u \in \mathrm{P} X$ and hence we can compute $\widehat{t}(x+u) \in \mathrm{P} Y$:

$$
\begin{aligned}
\widehat{t}(x+u)_{b} & =\sum_{m \in|!X|} t_{m, b}(x+u)^{m} \\
& =\sum_{m \in|!X|} t_{m, b} \sum_{p \leq m}\binom{m}{p} x^{m-p} u^{p}
\end{aligned}
$$

where

So keeping only the terms which are constant (p empty) and linear (p singleton) in u :

$$
\widehat{t}(x)+\sum_{a \in|X|} u_{a} \sum_{m \in|!X|}(m(a)+1) t_{m+[a], b} x^{m} \leq \widehat{t}(x+u) \in \mathrm{PY}
$$

that is

$$
\sum_{a \in|X|}\left(\sum_{m \in|!X|}(m(a)+1) t_{m+[a], b} x^{m}\right) u_{a} \in \mathrm{P}\left(X_{\widehat{t}(x)}\right)
$$

So we define the "Jacobian matrix" of t at x by

$$
t^{\prime}(x)_{a, b}=\sum_{m \in|!X|}(m(a)+1) t_{m+[a], b} x^{m}
$$

and we have seen that

$$
t^{\prime}(x) \in \mathrm{P}\left(X_{x}, Y_{\widehat{t}(x)}\right)
$$

Fact (chain rule)

Let $s \in \operatorname{Pcoh}_{!}(X, Y)$ and $t \in \operatorname{Pcoh}_{!}(Y, Z)$. Let $x \in \mathrm{P} X$ and $u \in P X_{x}$. Then we have $(t \circ s)^{\prime}(x) u=t^{\prime}(\widehat{s}(x)) s^{\prime}(x) u$.

A Lipschitz propery

We take some $p \in[0,1)$. Let $t \in \operatorname{Pcoh}_{!}(X, 1)$.

Fact (basic observation)

If $x \in \mathrm{PX}$ and $\|x\|_{x} \leq p$, then $\forall u \in \mathrm{PX}$, one has

$$
\|x+(1-p) u\|_{x} \leq\|x\|_{x}+(1-p)\|u\|_{x} \leq 1
$$

so $(1-p) u \in \mathrm{P}\left(X_{x}\right)$.
So if $w \in \mathrm{P}\left(X_{X} \multimap Y\right)$, we have $\forall u \in \mathrm{P} X\|w(1-p) u\|_{Y} \leq 1$ and hence

$$
(1-p) w \in \mathrm{P}(X \multimap Y)
$$

In particular

$$
(1-p) t^{\prime}(x) \in \mathrm{P}(X \multimap 1)
$$

Let $x \leq y \in \mathrm{PX}$ such that $\|y\|_{x} \leq p$. Observe that $2-p>1$.
Then $x+(2-p)(y-x)=y+(1-p)(y-x) \in \mathrm{PX}$ since $\|y-x\|_{x} \leq\|y\|_{x} \leq p \leq 1$.

Since $x+(2-p)(y-x) \in \mathrm{P} X$ we can define

$$
\begin{aligned}
h:[0,2-p] & \rightarrow[0,1] \\
\theta & \mapsto \widehat{t}(x+\theta(y-x))
\end{aligned}
$$

We have $h \in \operatorname{Pcoh}_{!}([0,2-p],[0,1])$ by compositionality.
Remember that $2-p>1$ so $1 \in[0,2-p)$. By Chain Rule $\forall \theta \in[0,1], h^{\prime}(\theta)=t^{\prime}(x+\theta(y-x))(y-x)$.

Since $\|x+\theta(y-x)\|_{x} \leq\|y\|_{x} \leq p$ we have

$$
\forall \theta \in[0,1] \quad(1-p) t^{\prime}(x+\theta(y-x)) \in \mathrm{P}(X \multimap 1)
$$

Hence

$$
\forall \theta \in[0,1] \quad h^{\prime}(\theta)=t^{\prime}(x+\theta(y-x))(y-x) \leq \frac{\|y-x\|_{x}}{1-p} .
$$

We have

$$
\begin{aligned}
0 \leq \widehat{t}(y)-\widehat{t}(x) & =h(1)-h(0) \\
& =\int_{0}^{1} h^{\prime}(\theta) d \theta \leq \frac{\|y-x\| x}{1-p} .
\end{aligned}
$$

From this we deduce easily

Fact (Lipschitz property of non-linear morphisms)

Let $p \in[0,1)$ and $t \in \operatorname{Pcoh}_{!}(X, 1)$. Let $x, y \in \mathrm{PX}$ with $\|x\|_{x},\|y\|_{x} \leq p$. Then

$$
|\widehat{t}(x)-\widehat{t}(y)| \leq \frac{\mathrm{d}_{X}(x, y)}{1-p}
$$

A syntactic consequence

If $\Gamma \vdash C: \sigma \Rightarrow 1$ let $C^{\langle p\rangle}$ with $\vdash C^{\langle p\rangle}: \sigma \Rightarrow 1$ be

$$
C^{\langle p\rangle}=\lambda x^{\sigma}(C) \operatorname{if}\left(\operatorname{coin}(p), M, \Omega^{\sigma}\right) .
$$

So that $\llbracket\left(C^{\langle p\rangle}\right) M \rrbracket=\widehat{\llbracket C \rrbracket}(p \llbracket M \rrbracket)$ when $\vdash M: \sigma$. If $\vdash M: \sigma$ and $\vdash N: \sigma$.

Definition (p-tamed observational distance)

$$
\begin{aligned}
\mathrm{d}_{\mathrm{obs}}^{\langle p\rangle}(M, N)=\sup \left\{\mid \operatorname{Pr}\left(\left(C^{\langle p\rangle}\right) M \downarrow \underline{0}\right)-\operatorname{Pr}\left(\left(C^{\langle p\rangle}\right)\right.\right. & N \downarrow \underline{0}) \mid \\
\mid & \vdash C: \sigma \Rightarrow \iota\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{obs}}^{\langle p\rangle}(M, N) \\
& =\sup \left\{\left|\widehat{\llbracket C \rrbracket}(p \llbracket M \rrbracket)_{0}-\widehat{\llbracket C \rrbracket}(p \llbracket N \rrbracket)_{0}\right| \mid \vdash C: \sigma \Rightarrow \iota\right\} \\
& \leq \sup \{|\widehat{t}(p \llbracket M \rrbracket)-\widehat{t}(p \llbracket N \rrbracket \mid)| t \in \mathrm{P}(!\llbracket \sigma \rrbracket-1)\} \\
& \leq \frac{\mathrm{d}_{\llbracket \sigma \rrbracket}(p \llbracket M \rrbracket, p \llbracket N \rrbracket)}{1-p}=\frac{p}{1-p} \mathrm{~d}_{\llbracket \sigma \rrbracket}(\llbracket M \rrbracket, \llbracket N \rrbracket) .
\end{aligned}
$$

We have proven:

Fact (metric adequacy of PCS's)

If $\vdash M: \sigma, \vdash N: \sigma$ and $0 \leq p<1$, then

$$
\mathrm{d}_{\mathrm{obs}}^{\langle p\rangle}(M, N) \leq \frac{p}{1-p} \mathrm{~d}_{\llbracket \sigma \rrbracket}(\llbracket M \rrbracket, \llbracket N \rrbracket)
$$

So for instance

$$
\mathrm{d}_{\mathrm{obs}}^{\langle p\rangle}(\operatorname{coin}(0), \operatorname{coin}(\varepsilon)) \leq \frac{2 \varepsilon p}{1-p}
$$

Perspectives

- Understand better what happens on the border of PCS's (elements such that $\|x\|=1$)
- Extend to "continuous types" (using positive cones and Crubillé's Theorem on stable functions on positive cones)
- A differential pPCF and probabilistic LL? What is the proof-theoretic status of these local derivatives?

