Derivatives and distances in probabilistic coherence spaces

Second PIHOC Meeting, Bologna

Thomas Ehrhard, IRIF, CNRS and Univ Paris Diderot

7 Feb 2019

This talk

Try to use the regularity of morphisms in the cartesian closed category \textbf{Pcoh}_1 (they are power series with coefficients ≥ 0 with > 0 radius of convergence).

In particular: these functions have differentials. What is their probabilistic operational meaning? Two (related) answers:

- Expected computation time
- Operational distance

in a probabilistic functional programming language: pPCF.

Syntax of probabilistic pPCF

Syntax:

$$\sigma, \tau, \ldots := \iota \mid \sigma \Rightarrow \tau$$

$$M, N, P \ldots := \underline{n} \mid \text{succ}(M) \mid \text{pred } M \mid x \mid \text{coin}(r) \mid \text{let}(x, M, N)$$

$$\mid \text{if}(M, N, P) \mid (M) N \mid \lambda x^{\sigma} M \mid \text{fix}(M)$$

with $r \in [0, 1]$.

Typing rules

$$\begin{array}{cccc}
\overline{\Gamma \vdash \underline{n}:\iota} & \overline{\Gamma, x: \sigma \vdash x:\sigma} \\
\hline & \overline{\Gamma \vdash Succ(M):\iota} & \overline{\Gamma \vdash M:\iota} \\
\hline & \overline{\Gamma \vdash Succ(M):\iota} & \overline{\Gamma \vdash pred M:\iota} \\
\hline & \overline{\Gamma \vdash let(x, M, N):\sigma} \\
\hline & \overline{\Gamma \vdash let(x, M, N):\sigma} & \text{Only for } M \text{ of type } \iota! \\
\hline & \overline{\Gamma \vdash \lambda x^{\sigma} M:\sigma \Rightarrow \tau} & \overline{\Gamma \vdash M:\sigma} \\
\hline & \overline{\Gamma \vdash \lambda x^{\sigma} M:\sigma \Rightarrow \tau} & \overline{\Gamma \vdash M:\sigma} \\
\hline & \overline{\Gamma \vdash fix(M):\sigma} & \overline{\Gamma \vdash Coin(r):\iota} \\
\end{array}$$

Intuitions on pPCF

 $\vdash M : \iota$ means that M represents a subprobability distribution on the integers.

Example: coin(1/3) weights <u>0</u> with probability 1/3, <u>1</u> with probability 2/3 and <u>n+2</u> with probability 0.

let(x, M, N): samples an integer according to M and feeds N through x with the obtained value (a <u>n</u> for some $n \in \mathbb{N}$).

 $\vdash M : \iota \Rightarrow \iota$ means that M is an (generally non linear) sub-probability distribution transformer.

Reduction rules

We define a weak head reduction strategy.

Deterministic reduction rules

$$\begin{array}{c}
\overline{(\lambda x^{\sigma} M) N \rightarrow_{d} M [N/x]} & \overline{\operatorname{fix}(M) \rightarrow_{d} (M) \operatorname{fix}(M)} \\
\overline{\operatorname{succ}(\underline{n}) \rightarrow_{d} \underline{n+1}} & \overline{\operatorname{if}(\underline{0}, M, N) \rightarrow_{d} M} \\
\overline{\operatorname{if}(\underline{n+1}, M, N) \rightarrow_{d} N} & \overline{\operatorname{let}(x, \underline{n}, N) \rightarrow_{d} N [\underline{n}/x]}
\end{array}$$

Probabilistic reductions

$$\frac{M \rightarrow_{d} M'}{M \xrightarrow{1} M'} \quad \overline{\operatorname{coin}(p) \xrightarrow{p} \underline{0}} \quad \overline{\operatorname{coin}(p) \xrightarrow{1-p} \underline{1}}$$

$$\frac{M \xrightarrow{p} M'}{(M) N \xrightarrow{p} (M') N} \quad \frac{M \xrightarrow{p} M'}{\operatorname{succ}(M) \xrightarrow{p} \operatorname{succ}(M')}$$

$$\frac{M \xrightarrow{p} M'}{\operatorname{let}(x, M, N) \xrightarrow{p} \operatorname{let}(x, M', N)}$$

$$\frac{M \xrightarrow{p} M'}{\operatorname{if}(M, N, P) \xrightarrow{p} \operatorname{if}(M', N, P)}$$

Probability of reduction

Given *M* such that $\vdash M : \iota$, we can consider all possible reductions from *M* to a given integer constant <u>*n*</u>:

$$M = M_0 \stackrel{p_1}{\rightarrow} M_1 \stackrel{p_2}{\rightarrow} \cdots \stackrel{p_k}{\rightarrow} M_k = \underline{n}$$

Summing up the probabilities $\prod_{i=1}^{k} p_i$ of all these paths we get the probability that M reduces to \underline{n} , denoted $\Pr(M \downarrow \underline{n})$.

Observational distance

Given M and N such that $\vdash M : \sigma$ and $\vdash N : \sigma$, one defines the *observational distance* $d_{obs}(M, N)$ between M and N as the sup of all

$|\Pr((C) M \downarrow \underline{0}) - \Pr((C) N \downarrow \underline{0})|$

for all possible "contexts" which are closed terms C such that $\vdash C : \sigma \Rightarrow \iota$.

M and N are observationally equivalent if this "distance" is 0.

d_{obs}(_,_) is a distance on the observational classes of closed terms of type σ (for any type σ).

Part I

Reminder — Probabilistic coherence spaces: an "analytic" denotational model

If
$$u, u' \in (\mathbb{R}_{\geq 0})^{I}$$
 then $\langle u, u' \rangle = \sum_{i \in I} u_{i}u'_{i} \in \overline{\mathbb{R}_{\geq 0}}$.
If $P \subseteq \overline{\mathbb{R}_{\geq 0}}^{I}$ then

$${\mathcal P}^\perp = \{ u' \in \overline{\mathbb{R}_{\geq 0}}' \mid orall u \in {\mathcal P} \; \langle u, u'
angle \leq 1 \}$$
 .

A probabilistic coherence space (PCS) is a pair X = (|X|, PX)where $PX \subseteq \overline{\mathbb{R}_{\geq 0}}^{|X|}$ such that

• $\mathsf{P}X^{\perp\perp} = \mathsf{P}X$

•
$$\forall a \in |X| \exists x \in \mathsf{P}X \ x_a > 0$$

• $\forall a \in |X| \exists m \in \mathbb{R}_{\geq 0} \forall x \in \mathsf{P}X \ x_a \leq m$

So actually $\mathsf{P} X \subseteq (\mathbb{R}_{\geq 0})^{|X|}$.

Dual of X: $X^{\perp} = (|X|, PX^{\perp})$ so that $X^{\perp\perp} = X$. Examples of PCS's.

- $1 = (\{*\}, [0, 1])$ with $1^{\perp} = 1$ for $0 < r < \infty$.
- Bool = 1 \oplus 1 = ({t, f}, {(x_t, x_f) \in \mathbb{R}^2_{\geq 0} | x_t + x_f \leq 1})
- $\operatorname{Bool}^{\perp} = 1 \& 1 = (\{t, f\}, \{(x_t, x_f) \in \mathbb{R}^2_{\geq 0} \mid x_t, x_f \leq 1\})$
- $N = (N, \{x \in (\mathbb{R}_{\geq 0})^{\mathbb{N}} \mid \sum_{i=0}^{\infty} x_i \leq 1\})$

Linear morphisms in PCS's

Linear morphisms from X to Y: if $t \in (\mathbb{R}_{\geq 0})^{|X| \times |Y|}$ (a matrix) and $x \in \mathsf{P}X$ (a vector) then we can apply the matrix to the vector:

$$t \, x \in (\mathbb{R}_{\geq 0})^{|Y|}$$
 with $(t \, x)_b = \sum_{a \in |X|} t_{a,b} x_a$

Then t is a linear morphism from X to Y ($t \in Pcoh(X, Y)$) if $\forall x \in PX \ t x \in PY$. This defines a category **Pcoh**, a model of LL (with all fixpoints of types and term fixpoint operators at all types).

Fact

Pcoh(X, Y) is a PCS structure, that is $Pcoh(X, Y) = P(X \multimap Y)$ for a PCS $X \multimap Y$ with $|X \multimap Y| = |X| \times |Y|$.

 $P(N \multimap N)$: sub-stochastic matrices on $\mathbb{N} \times \mathbb{N}$.

Non-linear morphisms in PCS's

The non-linear morphisms $X \to Y$ are the elements of $P(!X \multimap Y)$ where !X is a PCS with $|!X| = \mathcal{M}_{fin}(|X|)$ (finite multisets). If $x \in PX$ and $m \in |!X|$ define

$$x^m = \prod_{a \in |X|} x_a^{m(a)}$$

Then $t \in \mathsf{P}(!X \multimap Y) = \mathsf{Pcoh}_!(X, Y)$ is characterized by

$$\forall x \in \mathsf{P}X \ \widehat{t}(x) = \left(\sum_{m \in |!X|} t_{m,b} x^m\right)_{b \in |Y|} \in \mathsf{P}Y$$

Pcoh₁ is a model of probabilistic pPCF. Morphisms are functions: $\widehat{t \circ s} = \widehat{t} \circ \widehat{s}$ and $(\forall x \in \mathsf{P}X \ \widehat{s}(x) = \widehat{t}(x)) \Rightarrow s = t$.

pPCF interpretation

Fact

Pcoh₁ is a cartesian closed category with an object of integers N and least fixpoints operators $(X \Rightarrow X) \rightarrow X$ for all X. An thus it is a model of pPCF.

$$\llbracket \iota \rrbracket = \mathsf{N} \text{ and } \llbracket \sigma \Rightarrow \tau \rrbracket = !\llbracket \sigma \rrbracket \multimap \llbracket \tau \rrbracket$$

If $\Gamma \vdash M : \sigma$ with $\Gamma = (x_1 : \sigma_1, \dots, x_k : \sigma_k)$ then
$$\llbracket M \rrbracket_{\Gamma} \in \mathbf{Pcoh}_!(\llbracket \sigma_1 \rrbracket \And \cdots \And \llbracket \sigma_k \rrbracket, \llbracket \sigma \rrbracket)$$

so $\llbracket M \rrbracket_{\Gamma}$ can be seen as a function $\prod_{i=1}^k \mathsf{P}\llbracket \sigma_i \rrbracket \to \mathsf{P}\llbracket \sigma \rrbracket$

Why no negative coefficients in power series?

Seems crucial for combining fixpoints and power series. Assume e.g. that we admit the "weak parallel or" function

 $\mathsf{wpor}: [0,1]\times [0,1] \to [0,1] \qquad (u,v) \mapsto u+v-uv$

Spawns two threads, stops as soon as one of them stops.

Add it to pPCF. Then we can define $\vdash P : 1 \Rightarrow 1$ by

$$P = \operatorname{fix}(\lambda f^{\iota \Rightarrow \iota} \lambda x^{\iota} \operatorname{wpor}(x, (f) x)).$$

Spawns an unbounded number of copies of x, stops as soon as one of them does. Then $\llbracket P \rrbracket(0) = 0$ and $\llbracket P \rrbracket(u) = 1$ for u > 0. Scott continuous, but far from being analytic!

EN ESSAYANT CONTINUELLEMENT ON FINIT PAR REUSSIR. DONC: PLUS GA RATE, PLUS ON A DE CHANCES QUE GA MARCHE.

Example of term interpretations

- $\llbracket x_i \rrbracket_{\Gamma}(\vec{u}) = u_i$
- $\llbracket \underline{n} \rrbracket_{\Gamma} (\vec{u}) = e_n$ where $(e_n)_j = \delta_{n,j} \in \mathsf{PN}$.
- $\begin{bmatrix} \operatorname{if}(M, N, P) \end{bmatrix}_{\Gamma} = \\ \begin{bmatrix} M \end{bmatrix}_{\Gamma}(\vec{u})_{0} \begin{bmatrix} N \end{bmatrix}_{\Gamma}(\vec{u}) + (\sum_{n=1}^{\infty} \llbracket M \rrbracket_{\Gamma}(\vec{u})_{n}) \llbracket P \rrbracket_{\Gamma}(\vec{u})$
- $[[coin(p)]]_{\Gamma}(\vec{u}) = pe_0 + (1-p)e_1$
- $\llbracket \operatorname{let}(x, M, N) \rrbracket_{\Gamma}(\vec{u}) = \sum_{n=0}^{\infty} \llbracket M \rrbracket_{\Gamma}(\vec{u})_n \llbracket N \rrbracket_{\Gamma, \times :\iota}(\vec{u}, e_n)$

Main properties of this interpretation

Fact

For all M with $\vdash M : \iota$ and $n \in \mathbb{N}$, we have $Pr(M \downarrow \underline{n}) = \llbracket M \rrbracket_n$.

As a consequence

Fact (adequacy, Danos and E.)

For all M, N such that $\vdash M : \sigma$ and $\vdash N : \sigma$, we have $\llbracket M \rrbracket = \llbracket N \rrbracket \Rightarrow d_{obs}(M, N) = 0$

And also

Fact (full abstraction, Pagani, Tasson and E.)

The converse implication.

Part II

Derivatives and execution (on an example)

In a pPCF extension with unit type 1, for $r \in [0, 1]$

$$M_r = \operatorname{fix}(\lambda f^{1 \Rightarrow 1} \lambda x^1 \operatorname{if}(\operatorname{coin}(r), (f) x; (f) x, x; x))$$

where () is the unique value of type 1 and ";" is the "unit conditional" (M; N reduces to () if both M and N do).

Then $\llbracket M_r \rrbracket$ is a monotonic function $\varphi_r : [0, 1] \to [0, 1]$ minimal such that $\varphi_r(u) = (1 - r)u^2 + r\varphi_r(u)^2$. Hence

$$\varphi_r(u) = \begin{cases} \frac{1 - \sqrt{1 - 4r(1 - r)u^2}}{2r} & \text{if } u > 0\\ u^2 & \text{if } r = 0 \end{cases}$$

NB: by adequacy, $\varphi_r(1)$ is $Pr((M_r)() \downarrow ())$

r = 0.6 — graph of $\varphi_{0.6}(u) = (1 - \sqrt{1 - 0.96u^2})/1.2 \ (\varphi_{0.6}(u) < 1$ but less steep slope at u = 1)

Probability of termination of $(M_r)()$ for $r \in [0,1]$:

$$\varphi_r(1) = \frac{1 - \sqrt{1 - 4r(1 - r)}}{2r}$$
$$= \frac{1 - |1 - 2r|}{2r}$$
$$= \begin{cases} 1 & \text{if } r \le 1/2 \\ \frac{1 - r}{r} & \text{if } r > 1/2 \end{cases}$$

Graph of $\varphi_r(1)$ for $0 \le r \le 1$: probability of termination of $(M_r)()$.

$$\varphi_r(u) = \sum_{n=0}^{\infty} a_n(r) u^n$$

Fact

 $a_n(r) \in [0,1]$ is the probability that the execution of $(M_r)()$ uses n times the argument () in its reduction to ().

$$\varphi_r'(1) = \lim_{u \to 1^-} \frac{\varphi_r(1) - \varphi_r(u)}{1 - u} = \sum_{n=0}^\infty n \, a_n(r)$$

Fact

 $\varphi'_r(1)/\varphi_r(1)$ is the conditional expectation of this execution time, under the condition that the computation terminates.

In the example we can compute this derivative. We have

$$\varphi_r(u) = (1-r)u^2 + r\varphi_r(u)^2$$

so

$$\varphi_r'(u) = 2(1-r)u + 2r\varphi_r(u)\varphi_r'(u)$$

The conditional expectation of execution time is

$$\frac{\varphi_r'(1)}{\varphi_r(1)} = \frac{2(1-r)}{(1-2r\varphi_r(1))\varphi_r(1)} = \begin{cases} \frac{2(1-r)}{1-2r} & \text{if } 0 \le r < 1/2\\ \frac{2r}{2r-1} & \text{if } 1/2 < r \le 1 \end{cases}$$

Graph of $\varphi'_r(1)/\varphi_r(1)$: conditional expectation of the number of steps in the reduction of (M_r) () for $0 \le r \le 1$.

Part III

Lipschitz property and distances

Amplification of probabilities

$\forall \varepsilon \in [0,1] \quad \varepsilon > 0 \Rightarrow \mathsf{d}_{\mathsf{obs}}(\mathsf{coin}(0),\mathsf{coin}(\varepsilon)) = 1$

Take $C = \operatorname{fix}(\lambda f^{\iota \Rightarrow \iota} \lambda x^{\iota} \operatorname{if}(x, \underline{0}, (f) x))$ then

Fact

$$\begin{aligned} & \mathsf{Pr}((C)\operatorname{coin}(0)\downarrow\underline{0}) = 0 \\ & \mathsf{Pr}((C)\operatorname{coin}(\varepsilon)\downarrow\underline{0}) = 1 \quad \forall \varepsilon > 0 \end{aligned}$$

The denotational distance

There is a "norm" on PX:

$$\|x\|_X = \sup\{\langle x, x' \rangle \mid x' \in \mathsf{P}X^{\perp}\} \in [0, 1]$$

For instance $||x||_{\mathbb{N}} = \sum_{n=0}^{\infty} x_n$.

Also PX is a lattice: $x \land y \in PX$ defined pointwise. Then

$$d_X(x,y) = ||x - (x \wedge y)||_X + ||y - (x \wedge y)||_X$$

defines a distance on PX.

Remember that $d_{obs}(coin(0), coin(\varepsilon)) = 1$ if $\varepsilon > 0$.

On the other hand $\llbracket \operatorname{coin}(0) \rrbracket = e_1$ and $\llbracket \operatorname{coin}(\varepsilon) \rrbracket = \varepsilon e_0 + (1 - \varepsilon) e_1$. Also $e_1 \wedge (\varepsilon e_0 + (1 - \varepsilon) e_1) = (1 - \varepsilon) e_1$.

$$\begin{split} \mathsf{d}_{\mathsf{N}}(\llbracket \mathsf{coin}(0) \rrbracket, \llbracket \mathsf{coin}(\varepsilon) \rrbracket) &= \| e_1 - (1 - \varepsilon) e_1 \|_{\mathsf{N}} \\ &+ \| (1 - \varepsilon) e_1 + \varepsilon e_0 - (1 - \varepsilon) e_1 \|_{\mathsf{N}} \\ &= 2\varepsilon \,. \end{split}$$

Remember that by Full Abstraction, if $\vdash M : \sigma$ and $\vdash N : \sigma$,

$$\mathsf{d}_{\llbracket \sigma \rrbracket}(\llbracket M \rrbracket, \llbracket N \rrbracket) = 0 \Leftrightarrow \mathsf{d}_{\mathsf{obs}}(M, N) = 0$$

we would like to say something not completely trivial in the case $d_{obs}(M, N) \neq 0$ by limiting the space of observation contexts (in the spirit of the work of Dal Lago and *al.* on probabilistic distances).

The local PCS

Given $x \in PX$, there is a PCS X_x such that

$$\mathsf{P}(X_x) = \{ u \in \mathsf{P}X \mid x + u \in \mathsf{P}X \}$$

We have $|X_x| = \{a \in |X| \mid \exists \varepsilon > 0 \ x + \varepsilon e_a \in \mathsf{P}X\}.$

It is a PCS (not completely obvious). This is the *local PCS* of X at x.

[
$$e_a \in (\mathbb{R}_{\geq 0})^{|X|}$$
 defined by $(e_a)_{a'} = \delta_{a,a'}$.]

Local derivatives

Let $t \in \mathbf{Pcoh}_{!}(X, Y)$ and $x \in \mathsf{P}X$ Given $u \in \mathsf{P}(X_x)$, we know that $x + u \in \mathsf{P}X$ and hence we can compute $\hat{t}(x + u) \in \mathsf{P}Y$:

$$\widehat{t}(x+u)_b = \sum_{m \in |!X|} t_{m,b} (x+u)^m$$
$$= \sum_{m \in |!X|} t_{m,b} \sum_{p \le m} \binom{m}{p} x^{m-p} u^p.$$

where

$$\binom{m}{p} = \prod_{a \in |X|} \binom{m(a)}{p(a)}$$

So keeping only the terms which are constant (p empty) and linear (p singleton) in u:

$$\widehat{t}(x) + \sum_{a \in |X|} u_a \sum_{m \in |X|} (m(a) + 1) t_{m+[a],b} x^m \le \widehat{t}(x+u) \in \mathsf{P}Y$$

that is

$$\sum_{a \in |X|} \left(\sum_{m \in |!X|} (m(a) + 1) t_{m+[a],b} x^m \right) u_a \in \mathsf{P}(X_{\widehat{t}(x)})$$

So we define the "Jacobian matrix" of t at x by

$$t'(x)_{a,b} = \sum_{m \in |!X|} (m(a) + 1) t_{m+[a],b} x^m$$

and we have seen that

$$t'(x) \in \mathsf{P}(X_x, Y_{\widehat{t}(x)}).$$

Fact (chain rule)

Let $s \in \mathsf{Pcoh}_!(X, Y)$ and $t \in \mathsf{Pcoh}_!(Y, Z)$. Let $x \in \mathsf{PX}$ and $u \in \mathsf{PX}_x$. Then we have $(t \circ s)'(x) u = t'(\widehat{s}(x)) s'(x) u$.

A Lipschitz propery

We take some $p \in [0, 1)$. Let $t \in \mathbf{Pcoh}_{!}(X, 1)$.

Fact (basic observation)

If $x \in \mathsf{P}X$ and $||x||_X \leq p$, then $\forall u \in \mathsf{P}X$, one has

$$\|x + (1 - p)u\|_X \le \|x\|_X + (1 - p)\|u\|_X \le 1$$

so $(1 - p)u \in P(X_x)$. So if $w \in P(X_x \multimap Y)$, we have $\forall u \in PX ||w(1 - p)u||_Y \le 1$ and hence

$$(1-p)w \in \mathsf{P}(X \multimap Y).$$

In particular

$$(1-p)t'(x) \in \mathsf{P}(X \multimap 1).$$

Let $x \leq y \in \mathsf{P}X$ such that $\|y\|_X \leq p$. Observe that 2 - p > 1.

Then
$$x + (2 - p)(y - x) = y + (1 - p)(y - x) \in \mathsf{P}X$$
 since $||y - x||_X \le ||y||_X \le p \le 1$.

Since $x + (2 - p)(y - x) \in PX$ we can define

$$egin{aligned} h: [0,2-p] &
ightarrow [0,1] \ heta &\mapsto \widehat{t}(x+ heta(y-x)) \end{aligned}$$

We have $h \in \mathbf{Pcoh}_{!}([0, 2 - p], [0, 1])$ by compositionality.

Remember that 2 - p > 1 so $1 \in [0, 2 - p)$. By Chain Rule $\forall \theta \in [0, 1], h'(\theta) = t'(x + \theta(y - x))(y - x)$.

Since $||x + \theta(y - x)||_X \le ||y||_X \le p$ we have

$$\forall heta \in [0,1] \quad (1-p)t'(x+ heta(y-x)) \in \mathsf{P}(X \multimap 1).$$

Hence

$$orall heta \in [0,1] \quad h'(heta) = t'(x+ heta(y-x))\left(y-x
ight) \leq rac{\|y-x\|_X}{1-p}\,.$$

We have

$$\begin{split} 0 &\leq \widehat{t}(y) - \widehat{t}(x) = h(1) - h(0) \\ &= \int_0^1 h'(\theta) \, d\theta \leq \frac{\|y - x\|_X}{1 - p} \, . \end{split}$$

From this we deduce easily

Fact (Lipschitz property of non-linear morphisms)

Let $p \in [0,1)$ and $t \in \mathsf{Pcoh}_!(X,1)$. Let $x, y \in \mathsf{P}X$ with $||x||_X, ||y||_X \le p$. Then

$$\left|\widehat{t}(x) - \widehat{t}(y)\right| \leq \frac{\mathsf{d}_X(x,y)}{1-p}$$

A syntactic consequence

If $\Gamma \vdash C : \sigma \Rightarrow 1$ let $C^{\langle p \rangle}$ with $\vdash C^{\langle p \rangle} : \sigma \Rightarrow 1$ be

$$C^{\langle p \rangle} = \lambda x^{\sigma} (C) \operatorname{if}(\operatorname{coin}(p), M, \Omega^{\sigma}).$$

So that $\llbracket (C^{\langle p \rangle}) M \rrbracket = \widehat{\llbracket C \rrbracket} (p \llbracket M \rrbracket)$ when $\vdash M : \sigma$. If $\vdash M : \sigma$ and $\vdash N : \sigma$.

Definition (*p*-tamed observational distance)

$$\mathsf{d}_{\mathsf{obs}}^{\langle p \rangle}(M, N) = \mathsf{sup}\{\left|\mathsf{Pr}(\left(C^{\langle p \rangle}\right)M \downarrow \underline{0}) - \mathsf{Pr}(\left(C^{\langle p \rangle}\right)N \downarrow \underline{0})\right| \\ | \vdash C : \sigma \Rightarrow \iota\}$$

$$\begin{aligned} \mathsf{d}_{\mathsf{obs}}^{\langle p \rangle}(M, N) \\ &= \sup\{ \left| \widehat{\llbracket C \rrbracket}(p\llbracket M \rrbracket)_0 - \widehat{\llbracket C \rrbracket}(p\llbracket N \rrbracket)_0 \right| \mid \vdash C : \sigma \Rightarrow \iota \} \\ &\leq \sup\{ \left| \widehat{t}(p\llbracket M \rrbracket) - \widehat{t}(p\llbracket N \rrbracket) \right| \mid t \in \mathsf{P}(!\llbracket \sigma \rrbracket \multimap 1) \} \\ &\leq \frac{\mathsf{d}_{\llbracket \sigma \rrbracket}(p\llbracket M \rrbracket, p\llbracket N \rrbracket)}{1 - p} = \frac{p}{1 - p} \, \mathsf{d}_{\llbracket \sigma \rrbracket}(\llbracket M \rrbracket, \llbracket N \rrbracket) \,. \end{aligned}$$

We have proven:

Fact (metric adequacy of PCS's)

If $\vdash M : \sigma$, $\vdash N : \sigma$ and $0 \le p < 1$, then

$$\mathsf{d}_{\mathsf{obs}}^{\langle p \rangle}(M,N) \leq \frac{p}{1-p} \mathsf{d}_{\llbracket \sigma \rrbracket}(\llbracket M \rrbracket, \llbracket N \rrbracket)$$

So for instance

$$\mathsf{d}_{\mathsf{obs}}^{\langle p
angle}(\mathsf{coin}(0),\mathsf{coin}(arepsilon)) \leq rac{2arepsilon p}{1-p}$$

Perspectives

- Understand better what happens on the border of PCS's (elements such that ||x|| = 1)
- Extend to "continuous types" (using positive cones and Crubillé's Theorem on stable functions on positive cones)
- A differential pPCF and probabilistic LL? What is the proof-theoretic status of these local derivatives?