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This talk

Try to use the regularity of morphisms in the cartesian closed
category Pcoh! (they are power series with coefficients ≥ 0 with
> 0 radius of convergence).

In particular: these functions have differentials. What is their
probabilistic operational meaning? Two (related) answers:
• Expected computation time
• Operational distance

in a probabilistic functional programming language: pPCF.



Syntax of probabilistic pPCF

Syntax:

σ, τ, . . . := ι | σ ⇒ τ

M,N,P . . . := n | succ(M) | predM | x | coin(r) | let(x ,M,N)

| if(M,N,P) | (M)N | λxσM | fix(M)

with r ∈ [0, 1].



Typing rules

Γ ` n : ι Γ, x : σ ` x : σ

Γ ` M : ι
Γ ` succ(M) : ι

Γ ` M : ι
Γ ` predM : ι

Γ ` M : ι Γ, x : ι ` N : σ

Γ ` let(x ,M,N) : σ
Only for M of type ι !

Γ, x : σ ` M : τ

Γ ` λxσM : σ ⇒ τ
Γ ` M : σ ⇒ τ Γ ` N : σ

Γ ` (M)N : τ

Γ ` M : σ ⇒ σ
Γ ` fix(M) : σ

r ∈ [0, 1]

Γ ` coin(r) : ι



Intuitions on pPCF

` M : ι means that M represents a subprobability distribution on
the integers.

Example: coin(1/3) weights 0 with probability 1/3, 1 with
probability 2/3 and n + 2 with probability 0.

let(x ,M,N): samples an integer according to M and feeds N
through x with the obtained value (a n for some n ∈ N).

` M : ι⇒ ι means that M is an (generally non linear)
sub-probability distribution transformer.



Reduction rules

We define a weak head reduction strategy.

Deterministic reduction rules

(λxσM)N →d M [N/x ] fix(M)→d (M) fix(M)

succ(n)→d n + 1 if(0,M,N)→d M

if(n + 1,M,N)→d N let(x , n,N)→d N [n/x ]



Probabilistic reductions

M →d M ′

M
1→ M ′

coin(p)
p→ 0 coin(p)

1−p→ 1

M
p→ M ′

(M)N
p→ (M ′)N

M
p→ M ′

succ(M)
p→ succ(M ′)

M
p→ M ′

let(x ,M,N)
p→ let(x ,M ′,N)

M
p→ M ′

if(M,N,P)
p→ if(M ′,N,P)



Probability of reduction

Given M such that ` M : ι, we can consider all possible reductions
from M to a given integer constant n:

M = M0
p1→ M1

p2→ · · · pk→ Mk = n

Summing up the probabilities
∏k

i=1 pi of all these paths we get the
probability that M reduces to n, denoted Pr(M ↓ n).



Observational distance

Given M and N such that ` M : σ and ` N : σ, one defines the
observational distance dobs(M,N) between M and N as the sup of
all

|Pr((C )M ↓ 0)− Pr((C )N ↓ 0)|

for all possible “contexts” which are closed terms C such that
` C : σ ⇒ ι.

M and N are observationally equivalent if this “distance” is 0.

dobs(_,_) is a distance on the observational classes of closed terms
of type σ (for any type σ).



Part I

Reminder — Probabilistic coherence
spaces: an “analytic” denotational model



If u, u′ ∈ (R≥0)I then 〈u, u′〉 =
∑

i∈I uiu
′
i ∈ R≥0.

If P ⊆ R≥0
I then

P⊥ = {u′ ∈ R≥0
I | ∀u ∈ P 〈u, u′〉 ≤ 1} .

A probabilistic coherence space (PCS) is a pair X = (|X |,PX )

where PX ⊆ R≥0
|X | such that

• PX⊥⊥ = PX
• ∀a ∈ |X | ∃x ∈ PX xa > 0
• ∀a ∈ |X | ∃m ∈ R≥0∀x ∈ PX xa ≤ m

So actually PX ⊆ (R≥0)|X |.



Dual of X : X⊥ = (|X |,PX⊥) so that X⊥⊥ = X .

Examples of PCS’s.
• 1 = ({∗}, [0, 1]) with 1⊥ = 1 for 0 < r <∞.
• Bool = 1⊕ 1 = ({t, f}, {(xt, xf) ∈ R2

≥0 | xt + xf ≤ 1})
• Bool⊥ = 1 & 1 = ({t, f}, {(xt, xf) ∈ R2

≥0 | xt, xf ≤ 1})
• N = (N, {x ∈ (R≥0)N |

∑∞
i=0 xi ≤ 1})



Linear morphisms in PCS’s

Linear morphisms from X to Y : if t ∈ (R≥0)|X |×|Y | (a matrix) and
x ∈ PX (a vector) then we can apply the matrix to the vector:

t x ∈ (R≥0)|Y | with (t x)b =
∑
a∈|X |

ta,bxa

Then t is a linear morphism from X to Y (t ∈ Pcoh(X ,Y )) if
∀x ∈ PX t x ∈ PY . This defines a category Pcoh, a model of LL
(with all fixpoints of types and term fixpoint operators at all types).

Fact
Pcoh(X ,Y ) is a PCS structure, that is Pcoh(X ,Y ) = P(X ( Y )
for a PCS X ( Y with |X ( Y | = |X | × |Y |.

P(N ( N): sub-stochastic matrices on N× N.



Non-linear morphisms in PCS’s

The non-linear morphisms X → Y are the elements of P(!X ( Y )
where !X is a PCS with |!X | =Mfin(|X |) (finite multisets).
If x ∈ PX and m ∈ |!X | define

xm =
∏
a∈|X |

x
m(a)
a .

Then t ∈ P(!X ( Y ) = Pcoh!(X ,Y ) is characterized by

∀x ∈ PX t̂(x) =

 ∑
m∈|!X |

tm,bx
m


b∈|Y |

∈ PY

Pcoh! is a model of probabilistic pPCF. Morphisms are functions:
t̂ ◦ s = t̂ ◦ ŝ and (∀x ∈ PX ŝ(x) = t̂(x))⇒ s = t.



pPCF interpretation

Fact
Pcoh! is a cartesian closed category with an object of integers N
and least fixpoints operators (X ⇒ X )→ X for all X . An thus it is
a model of pPCF.

JιK = N and Jσ ⇒ τK = !JσK ( JτK
If Γ ` M : σ with Γ = (x1 : σ1, . . . , xk : σk) then

JMKΓ ∈ Pcoh!(Jσ1K & · · · & JσkK, JσK)

so JMKΓ can be seen as a function
∏k

i=1 PJσiK→ PJσK.



Why no negative coefficients in power
series?

Seems crucial for combining fixpoints and power series. Assume
e.g. that we admit the “weak parallel or” function

wpor : [0, 1]× [0, 1]→ [0, 1] (u, v) 7→ u + v − uv

Spawns two threads, stops as soon as one of them stops.

Add it to pPCF. Then we can define ` P : 1⇒ 1 by

P = fix(λf ι⇒ι λx ι wpor(x , (f ) x)) .

Spawns an unbounded number of copies of x , stops as soon as one
of them does. Then JPK(0) = 0 and JPK(u) = 1 for u > 0.
Scott continuous, but far from being analytic!





Example of term interpretations

• JxiKΓ(~u) = ui
• JnKΓ(~u) = en where (en)j = δn,j ∈ PN.
• Jif(M,N,P)KΓ =

JMKΓ(~u)0JNKΓ(~u) + (
∑∞

n=1JMKΓ(~u)n)JPKΓ(~u)

• Jcoin(p)KΓ(~u) = pe0 + (1− p)e1
• Jlet(x ,M,N)KΓ(~u) =

∑∞
n=0JMKΓ(~u)nJNKΓ,x :ι(~u, en)



Main properties of this interpretation

Fact
For all M with ` M : ι and n ∈ N, we have Pr(M ↓ n) = JMKn.

As a consequence

Fact (adequacy, Danos and E.)

For all M,N such that ` M : σ and ` N : σ, we have
JMK = JNK ⇒ dobs(M,N) = 0

And also

Fact (full abstraction, Pagani, Tasson and E.)

The converse implication.



Part II

Derivatives and execution (on an
example)



In a pPCF extension with unit type 1, for r ∈ [0, 1]

Mr = fix(λf 1⇒1 λx1 if(coin(r), (f ) x ; (f ) x , x ; x))

where () is the unique value of type 1 and “;” is the “unit
conditional” (M;N reduces to () if both M and N do).

Then JMr K is a monotonic function ϕr : [0, 1]→ [0, 1] minimal
such that ϕr (u) = (1− r)u2 + rϕr (u)2. Hence

ϕr (u) =

{
1−
√

1−4r(1−r)u2

2r if u > 0
u2 if r = 0 .

NB: by adequacy, ϕr (1) is Pr((Mr ) () ↓ ())



r = 0.2 — graph of ϕ0.2(u) = (1−
√
1− 0.64u2)/0.4
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r = 0.3 — graph of ϕ0.3(u) = (1−
√
1− 0.84u2)/0.6 (steeper

slope at u = 1)
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r = 0.5 — graph of ϕ0.5(u) = 1−
√
1− u2 (vertical slope at u = 1)
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r = 0.6 — graph of ϕ0.6(u) = (1−
√
1− 0.96u2)/1.2 (ϕ0.6(u) < 1

but less steep slope at u = 1)
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r = 0.9 — graph of ϕ0.9(u) = (1−
√
1− 0.36u2)/1.8

0 0.2 0.4 0.6 0.8 1

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12



Probability of termination of (Mr ) () for r ∈ [0, 1]:

ϕr (1) =
1−

√
1− 4r(1− r)

2r

=
1− |1− 2r |

2r

=

{
1 if r ≤ 1/2
1−r
r if r > 1/2



Graph of ϕr (1) for 0 ≤ r ≤ 1: probability of termination of (Mr ) ().
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ϕr (u) =
∞∑
n=0

an(r)un

Fact
an(r) ∈ [0, 1] is the probability that the execution of (Mr ) () uses n
times the argument () in its reduction to ().

ϕ′r (1) = lim
u→1−

ϕr (1)− ϕr (u)

1− u
=
∞∑
n=0

n an(r)

Fact
ϕ′r (1)/ϕr (1) is the conditional expectation of this execution time,
under the condition that the computation terminates.



In the example we can compute this derivative. We have

ϕr (u) = (1− r)u2 + rϕr (u)2

so

ϕ′r (u) = 2(1− r)u + 2rϕr (u)ϕ′r (u)

The conditional expectation of execution time is

ϕ′r (1)

ϕr (1)
=

2(1− r)

(1− 2rϕr (1))ϕr (1)
=

{
2(1−r)
1−2r if 0 ≤ r < 1/2
2r

2r−1 if 1/2 < r ≤ 1



Graph of ϕ′r (1)/ϕr (1): conditional expectation of the number of
steps in the reduction of (Mr ) () for 0 ≤ r ≤ 1.
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Part III

Lipschitz property and distances



Amplification of probabilities

Fact

∀ε ∈ [0, 1] ε > 0⇒ dobs(coin(0), coin(ε)) = 1

Take C = fix(λf ι⇒ι λx ι if(x , 0, (f ) x)) then

Pr((C ) coin(0) ↓ 0) = 0
Pr((C ) coin(ε) ↓ 0) = 1 ∀ε > 0



The denotational distance

There is a “norm” on PX :

‖x‖X = sup{〈x , x ′〉 | x ′ ∈ PX⊥} ∈ [0, 1]

For instance ‖x‖N =
∑∞

n=0 xn.

Also PX is a lattice: x ∧ y ∈ PX defined pointwise.
Then

dX (x , y) = ‖x − (x ∧ y)‖X + ‖y − (x ∧ y)‖X .

defines a distance on PX .



Remember that dobs(coin(0), coin(ε)) = 1 if ε > 0.

On the other hand Jcoin(0)K = e1 and Jcoin(ε)K = εe0 + (1− ε)e1.
Also e1 ∧ (εe0 + (1− ε)e1) = (1− ε)e1.

dN(Jcoin(0)K, Jcoin(ε)K) = ‖e1 − (1− ε)e1‖N
+ ‖(1− ε)e1 + εe0 − (1− ε)e1‖N
= 2ε .

Remember that by Full Abstraction, if ` M : σ and ` N : σ,

dJσK(JMK, JNK) = 0⇔ dobs(M,N) = 0

we would like to say something not completely trivial in the case
dobs(M,N) 6= 0 by limiting the space of observation contexts (in
the spirit of the work of Dal Lago and al. on probabilistic distances).



The local PCS

Given x ∈ PX , there is a PCS Xx such that

P(Xx) = {u ∈ PX | x + u ∈ PX}

We have |Xx | = {a ∈ |X | | ∃ε > 0 x + εea ∈ PX}.

It is a PCS (not completely obvious).

This is the local PCS of X at x .

[ ea ∈ (R≥0)|X | defined by (ea)a′ = δa,a′ . ]



Local derivatives

Let t ∈ Pcoh!(X ,Y ) and x ∈ PX
Given u ∈ P(Xx), we know that x + u ∈ PX and hence we can
compute t̂(x + u) ∈ PY :

t̂(x + u)b =
∑

m∈|!X |

tm,b(x + u)m

=
∑

m∈|!X |

tm,b
∑
p≤m

(
m

p

)
xm−pup.

where (
m

p

)
=
∏
a∈|X |

(
m(a)

p(a)

)



So keeping only the terms which are constant (p empty) and linear
(p singleton) in u:

t̂(x) +
∑
a∈|X |

ua
∑

m∈|!X |

(m(a) + 1)tm+[a],bx
m ≤ t̂(x + u) ∈ PY

that is

∑
a∈|X |

 ∑
m∈|!X |

(m(a) + 1)tm+[a],bx
m

 ua ∈ P(Xt̂(x))



So we define the “Jacobian matrix” of t at x by

t ′(x)a,b =
∑

m∈|!X |

(m(a) + 1)tm+[a],bx
m

and we have seen that

t ′(x) ∈ P(Xx ,Yt̂(x)) .

Fact (chain rule)

Let s ∈ Pcoh!(X ,Y ) and t ∈ Pcoh!(Y ,Z ). Let x ∈ PX and
u ∈ PXx . Then we have (t ◦ s)′(x) u = t ′(ŝ(x)) s ′(x) u.



A Lipschitz propery

We take some p ∈ [0, 1). Let t ∈ Pcoh!(X , 1).

Fact (basic observation)

If x ∈ PX and ‖x‖X ≤ p, then ∀u ∈ PX , one has

‖x + (1− p)u‖X ≤ ‖x‖X + (1− p)‖u‖X ≤ 1

so (1− p)u ∈ P(Xx).

So if w ∈ P(Xx ( Y ), we have ∀u ∈ PX ‖w (1− p)u‖Y ≤ 1 and
hence

(1− p)w ∈ P(X ( Y ) .



In particular

(1− p)t ′(x) ∈ P(X ( 1) .

Let x ≤ y ∈ PX such that ‖y‖X ≤ p. Observe that 2− p > 1.

Then x + (2− p)(y − x) = y + (1− p)(y − x) ∈ PX since
‖y − x‖X ≤ ‖y‖X ≤ p ≤ 1.



Since x + (2− p)(y − x) ∈ PX we can define

h : [0, 2− p]→ [0, 1]

θ 7→ t̂(x + θ(y − x))

We have h ∈ Pcoh!([0, 2− p], [0, 1]) by compositionality.

Remember that 2− p > 1 so 1 ∈ [0, 2− p). By Chain Rule
∀θ ∈ [0, 1], h′(θ) = t ′(x + θ(y − x)) (y − x).

Since ‖x + θ(y − x)‖X ≤ ‖y‖X ≤ p we have

∀θ ∈ [0, 1] (1− p)t ′(x + θ(y − x)) ∈ P(X ( 1) .

Hence

∀θ ∈ [0, 1] h′(θ) = t ′(x + θ(y − x)) (y − x) ≤ ‖y − x‖X
1− p

.



We have

0 ≤ t̂(y)− t̂(x) = h(1)− h(0)

=

∫ 1

0
h′(θ) dθ ≤ ‖y − x‖X

1− p
.

From this we deduce easily

Fact (Lipschitz property of non-linear morphisms)

Let p ∈ [0, 1) and t ∈ Pcoh!(X , 1). Let x , y ∈ PX with
‖x‖X , ‖y‖X ≤ p. Then

∣∣t̂(x)− t̂(y)
∣∣ ≤ dX (x , y)

1− p



A syntactic consequence

If Γ ` C : σ ⇒ 1 let C 〈p〉 with ` C 〈p〉 : σ ⇒ 1 be

C 〈p〉 = λxσ (C ) if(coin(p),M,Ωσ) .

So that J
(
C 〈p〉

)
MK = ĴCK(pJMK) when ` M : σ. If ` M : σ and

` N : σ.

Definition (p-tamed observational distance)

d〈p〉obs(M,N) = sup{
∣∣∣Pr((C 〈p〉)M ↓ 0)− Pr(

(
C 〈p〉

)
N ↓ 0)

∣∣∣
| ` C : σ ⇒ ι}



d〈p〉obs(M,N)

= sup{
∣∣∣ĴCK(pJMK)0 − ĴCK(pJNK)0

∣∣∣ | ` C : σ ⇒ ι}

≤ sup{
∣∣t̂(pJMK)− t̂(pJNK

∣∣) | t ∈ P(!JσK ( 1)}

≤
dJσK(pJMK, pJNK)

1− p
=

p

1− p
dJσK(JMK, JNK) .



We have proven:

Fact (metric adequacy of PCS’s)

If ` M : σ, ` N : σ and 0 ≤ p < 1, then

d〈p〉obs(M,N) ≤ p

1− p
dJσK(JMK, JNK)

So for instance

d〈p〉obs(coin(0), coin(ε)) ≤ 2εp
1− p



Perspectives

• Understand better what happens on the border of PCS’s
(elements such that ‖x‖ = 1)
• Extend to “continuous types” (using positive cones and

Crubillé’s Theorem on stable functions on positive cones)
• A differential pPCF and probabilistic LL? What is the

proof-theoretic status of these local derivatives?
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