
Interpreting a Finitary Pi-Calulus in Di�erentialInteration Nets✩Thomas Ehrharda, Olivier LaurentbaPreuves, Programmes et Systèmes, CNRS and Université Paris Diderot � Paris 7bLaboratoire de l'Informatique du Parallélisme, Université de Lyon, ENS Lyon - CNRS -UCBL - INRIAAbstratWe propose and study a translation of a pi-alulus without sums nor reursioninto an untyped version of di�erential interation nets. We de�ne a transi-tion system of labeled proesses and a transition system of labeled di�erentialinteration nets. We prove that our translation from proesses to nets is abisimulation between these two transition systems. This shows that di�eren-tial interation nets are su�iently expressive for representing onurreny andmobility, as formalized by the pi-alulus.Our study will onern essentially a repliation-free fragment of the pi-alulus, but we shall also give indiations on how to deal with a restritedform of repliation.Key words: linear logi, interation nets, onurreny, pi-alulusIntrodutionLinear Logi proofs [Gir87℄ admit a proof net representation whih has a veryasynhronous and loal redution proedure, suggesting strong onnetions withparallel omputation. This impression has been enfored by the introdution ofinteration nets and interation ombinators by Lafont in [Laf95℄.But the attempts at relating onurreny with linear logi (e.g. [EW97℄,[AM99℄, [Mel06℄, [Bef05℄, [CF06℄ based on [FM05℄. . . ) missed a ruial fea-ture of onurreny, suh as modeled by proess aluli like Milner's π-alulus[Mil93℄, [SW01℄: its intrinsi non-determinism. Indeed, all known logial sys-tems had either an essentially deterministi redution proedure � this is thease of intuitionisti and linear logi, and of lassial systems suh as Girard'sLC or Parigot's λµ � or an exessively non-deterministi one, as Gentzen's las-sial sequent alulus LK, whih equates all proofs of the same formula.However, many denotational models of the lambda-alulus and of linearlogi admit some form of non-determinism (e.g. [Plo76, Gir88b℄), showing that
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a non-deterministi proof alulus is not neessarily trivial. The �rst authorintrodued suh models, based on vetor spaes (see e.g. [Ehr05℄), whih havea nie proof-theoreti ounterpart, orresponding to a simple extension of therules that linear logi assoiates with the exponentials.In this di�erential linear logi (DiLL), the weakening rule has a mirror imagerule alled oweakening, and similarly for derelition and for ontration, and theredution rules have the same mirror symmetry1. The orresponding formalismof di�erential interation nets (DIN) has been introdued in a joint work bythe �rst author and Regnier [ER06℄. In DiLL, two proofs of the same formulaan be added and there is a 0-proof of any formula, whih is neutral for thisaddition. So the set of proofs of any formula is a ommutative monoid and this isneessary beause the redutions assoiated with the derelition/oontrationand oderelition/ontration uts of DiLL lead to suh non trivial sums ofproofs: in that sense, DiLL is a non-deterministi logi. As it is well knownin a ategorial setting, this possibility of adding proofs is equivalent to theidenti�ation of the two additive onnetives ⊕ and &.In a joint work with Kohei Honda [HL08℄, the seond author proposed atranslation of a version of the π-alulus in proof-nets for a version of linear logiextended with the oontration rule (as we now understand). The basi ideaonsists in interpreting the parallel omposition as a ut between a ontrationlink (to whih several outputs are onneted, through derelition links) and aoontration link, to whih several promoted reeivers are onneted. Beingpromoted, these reeivers are repliable, in the sense of the π-alulus. The otherfundamental idea of this translation onsists in using linear logi polarities formaking the di�erene between outputs (negative) and inputs (positive), and ofimposing a strit alternation between these two polarities. This allows to reastin a polarized linear logi setting a typing system for the π-alulus previouslyintrodued by Berger, Honda and Yoshida in [BHY04℄. This translation hastwo features whih an be onsidered as slight defets: it aepts only repliablereeivers and it is not really modular (the parallel omposition of two proessesannot be desribed as a ombination of the orresponding nets).One should mention here that translations of the π-alulus into nets of var-ious kinds, subjet to loal redution relations, have been provided by severalauthors (f. the work of Laneve, Parrow and Vitor on solo diagrams [LPV01℄,of Be�ara and Maurel [BM06℄, of Milner on bigraphs [JM03℄, of Mazza [Maz05℄on multiport interation nets et.). One should also mention the early work ofHonda and Yoshida [HY94℄ whih introdues a system of ombinators for inter-preting a proess algebra. These ombinators have onnetions with Lafont'sinteration nets; just like multiport interation nets and solo diagrams, this sys-tem seems however to lak the main feature of interation nets, namely (strong)on�uene. Moreover, as far as we know, these approahes have no lear logialgrounds nor simple denotational semantis. Indeed, the fat that DINs have1The only non symmetri rule of DiLL is promotion. Finding a symmetri version thereofseems to be a rather hallenging task! 2



a denotational semantis, together with the translation we propose, suggest tointerpret the π-alulus in DINs' denotational models and to study the induedequivalene of proesses. This approah will be developed in further work. Itshould be observed moreover that the denotational models of DINs' are alsomodels of the lambda-alulus, suggesting natural ombinations between on-urrent programming (as modeled in DINs) and funtional programming.Priniple of the translation. The purpose of the present paper is to on-tinue this line of ideas, using more systematially the new strutures introduedby DINs.The �rst key deision we made, guided by the struture of the typial o-ontration/ontration ut intended to interpret parallel omposition, was ofassoiating with eah free name of a proess not one, but two free ports in theorresponding di�erential interation net. One of these ports will have a !-type(positive type) and will have to be onsidered as the input port of the orre-sponding name for this proess, and the other one will have a ?-type (negativetype) and will be onsidered as an output port.
! ?

? !

?!Figure 1: Communiationarea
We disovered strutures whih allow one to om-bine these pairs of wires for interpreting parallel om-position and alled them ommuniation areas : theyan be seen as omplete graphs between verties madeof pairs of ontration ells (marked by a �?� sym-bol) and oontration ells (marked by a � !� symbol),onneted by edges whih are pairs of wires. An ex-ample of suh a struture, with 3 verties, is givenin �gure 1. Output and input pre�xes will be inter-preted using derelition and oderelition, as well asthe multipliative onnetives.Content. We �rst introdue di�erential linear logi, presented as a sequentalulus, and then di�erential interation nets. These nets are typed with thereursive typing system introdued by Danos and Regnier in [Reg92℄ (whihorresponds to the untyped lambda-alulus) for avoiding the appearane ofnon reduible on�gurations. To simplify the presentation, these nets use onlya restrited form of the promotion rule of linear logi, whih is su�ient forinterpreting a repliation-free version of the π-alulus, as well as a restritedform of repliation. In this setting, we de�ne a �toolbox�, a olletion of netsthat we shall ombine for interpreting proesses, and a few assoiated redutions,derived from the basi redution rules of di�erential interation nets.We organize redution rules of nets as a labeled transition system, whose ver-ties are nets, and where the transitions orrespond to derelition/oderelitionredutions. Then we de�ne a proess algebra whih is a polyadi π-alulus,without repliation and without sums. We speify the operational semantis ofthis alulus by means of an abstrat mahine inspired by the mahine presentedin [AC98, Chapter 16℄. We de�ne a transition system whose verties are thestates of this mahine, and transitions orrespond to input/output redutions.3



And we de�ne a �translation� relation from mahine states to nets and show thatthis translation relation is a bisimulation between the two transition systems.Last, we sketh the extension of this translation to a version of our π-alulusaugmented with a restrited form of repliation (input-guarded repliation wherethe only free name of the repliated proess is the subjet of the input pre�x, andmoreover, this name is not free in the ontinuation of the repliated input pre�x).We onlude the paper with several onrete examples, showing how variousoperational features of the π-alulus are modeled in di�erential interationnets.1. Di�erential interation nets1.1. Di�erential linear logiIn the fragment of linear logi we use, there are two onstants 1 and ⊥ and
4 onnetives: ⊗ and ` whih are binary (the multipliative onnetives) and !and ? (the exponentials), whih are unary. Given a formula A, its dual (or linearnegation) A⊥ is de�ned by indution: (A ⊗ B)⊥ = A⊥`B⊥ et. We present thelogial system in a sequent alulus style, with unilateral sequents (all formulaeare on the right side of the turnstyle symbol). The identity rules are the axiomand the ut rule:

⊢ A⊥, A
⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ, ∆The multipliative rules are:
⊢ Γ, A ⊢ ∆, B

⊢ Γ, ∆, A ⊗ B

⊢ Γ, A, B

⊢ Γ, A`B ⊢ 1
⊢ Γ

⊢ Γ,⊥The �standard� exponential rules are the weakening, ontration and derelitionrules:
⊢ Γ

⊢ Γ, ?A
⊢ Γ, ?A, ?A

⊢ Γ, ?A

⊢ Γ, A

⊢ Γ, ?AThe exponential rules whih are new in di�erential linear logi are the oweak-ening, oontration and oderelition rules:
⊢ !A

⊢ Γ, !A ⊢ ∆, !A

⊢ Γ, ∆, !A

⊢ Γ, A

⊢ Γ, !AThe promotion rule is a standard rule of ordinary linear logi. It allows to turna proof into a dupliable objet:
⊢ ?A1, . . . , ?An, B

⊢ ?A1, . . . , ?An, !BBeause the redution rules for the derelition/oontration and oderelition-/ontration redexes produe formal sums of proofs, we have to introdue a rulefor suh sums. 4



⊢ Γ · · · ⊢ Γ
⊢ ΓThere is one suh rule for eah n ∈ N (the number of premises), and in partiularfor n = 0, so that eah sequent is provable in this logi by a 0 proof: this meansthat our proofs should be onsidered as partial objets, just as Böhm trees inthe lambda-alulus, whih are partial lambda-terms (in this analogy, the Ωsymbol of Böhm trees orresponds to the 0 proof).The graphial formalism of interation nets is muh more onvenient forrepresenting this system, in partiular when one wants to deal with the utelimination rules (the redution of the ontration/oontration ut is parti-ularly unnatural in the sequent alulus presentation).1.2. The general formalism of interation netsWe reall now the general syntax of interation nets, as introdued in [Laf95℄.See also [ER06℄ for more details. Assume we are given a set of symbols andthat an arity (a non-negative integer) and a typing rule is assoiated with eahsymbol. This typing rule is a list (A0, A1, . . . , An) of types, where n is the arityassoiated with the symbol. Types are formulae of some system of linear logi.A net is made of ells. With eah ell γ is assoiated exatly one symbol andtherefore an arity n and a typing rule (A0, A1, . . . , An). Suh a ell γ has oneprinipal port p0 and n auxiliary ports p1, . . . , pn. A net has also a �nite set offree ports. All these ports (the free ports and the ports assoiated with ells)have to be pairwise distint and a set of wires is given. This wiring is a setof pairwise disjoint sets of ports of ardinality 2 (ordinary wires) or 0 (loops2),and the union of these wires must be equal to the set of all ports of the net. Inother words, eah port of the net (free or assoiated with a ell) is onneted toexatly one other port (free or assoiated with a ell) through a wire, and eahsuh wire onnets exatly two ports: ports annot be shared. The free portsof the net are those whih are not assoiated with a ell.An oriented wire of the net is an ordered pair (p1, p2) where {p1, p2} is awire. In a net, a type is assoiated with eah oriented wire, in suh a waythat if A is assoiated with (p1, p2), then A⊥ is assoiated with (p2, p1). Last,the typing rules of the ells must be respeted in the sense that for eah ell

γ of arity n, whose ports are p0, p1, . . . , pn and typing rule is (A0, A1, . . . , An),denoting by p′0, p
′
1, . . . , p

′
n the ports of the net uniquely de�ned by the fat thatthe sets {pi, p

′
i} are wires (for i = 0, 1, . . . , n), then the oriented wires (p0, p

′
0),

(p′1, p1),. . . ,(p′n, pn) have types A0, A1,. . . ,An respetively.
•

•

•
α β

γ

A

B

C

E

F p

q
DFigure 2: An interation netThe free ports of the net onstitute itsinterfae. With eah free port p an beassoiated the type of the unique orientedwire whose endpoint is p: this is the typeof p in the interfae of the net. Figure 22To be more preise, one has to speify the number of loops in the net, but this will notplay any role in the sequel. 5



shows a typial example of a typed intera-tion net, with ells of symbols α, β and γ, of respetive types (B, A⊥, C⊥),
(B⊥, A, E⊥, D⊥) and (F, D, C). The interfae is (p : E, q : F ). Cells are repre-sented as triangles, with prinipal port loated at one of the angles and otherports on the opposite edge. We often draw a blak dot to loate the auxiliaryport number 1.1.3. Presentation of the ellsOur nets will be typed using a type system whih orresponds to the untypedlambda-alulus. This system is based on a single type symbol o (the type ofoutputs), subjet to the reursive equation o = ?o⊥`o. We set ι = o⊥, so that
ι = !o ⊗ ι and o = ?ι`o. The tensor onnetive is used only with premises !oand ι and dually for the par, and therefore, the only types we atually need are
o, ι, !o and ?ι for typing our nets.In the present setting, there are eleven symbols: par (arity 2), bottom (ar-ity 0), tensor (arity 2), one (arity 0), derelition (arity 1), weakening (arity 0),ontration (arity 2), oderelition (arity 1), oweakening (arity 0), oontra-tion (arity 2) and losed promotion (arity 0). We present now the various ellsymbols, with their typing rules, in a pitorial way.1.3.1. Multipliative ells. The par and tensor ells, and their �nullary�versions bottom and one are as follows:

•

o

o
?ι

`
•

!o

⊗

ι

ι
⊥

o
1

ιThe �rst two ells are graphial representations of the ` and ⊗ rules ofSetion 1.1. The last two ells are similar to the ⊥ and 1 rules.1.3.2. Exponential ells. They are typed aording to a stritly polarizeddisipline. Here are �rst the why not ells, whih are alled derelition, weaken-ing and ontration:
?

ι ?ι
?

?ι
?

?ι
?ι

?ιand then the bang ells, alled oderelition, oweakening and oontration:
!

o !o
!

!o
!

!o
!o

!o1.3.3. Closed promotion ells and the de�nition of nets. The notionof net is then de�ned indutively, together with losed promotion ells.
• A simple di�erential net is a typed interation net, whih uses the mul-tipliative and exponential ells introdued above as well as the losedpromotion ells we are de�ning now.6



• A di�erential net is a �nite formal sum S = s1 + · · · + sn of simpledi�erential nets having all the same interfae, and this interfae is thenonsidered as the interfae of S. A partiular ase is the net S = 0 (theempty sum), and this net has to be given together with its interfae: thereis a 0 net for eah interfae.
• Given a di�erential net S with only one free port o

S we introduethe losed promotion ell !o
S! . This orresponds to the promotionbox onstrution of linear logi nets, restrited here to the ase where theresulting box has no �auxiliary ports�. We say that s is the subnet of thispromotion ell. There would be of ourse no di�ulties in introduingmore general promotion ells, with auxiliary ports, but we shall not usethem in the present work.In the sequel, sine no onfusion with other kinds of interation nets will bepossible, we shall use �net� for �di�erential net�.1.3.4. Logial orretness. It is easy to transform any3 proof of the se-quent alulus of Setion 1.1 into a net made of these ells. The nets whihresult from this translation are exatly those whih satisfy one of the variousequivalent orretness riteria [Gir87, DR89, . . . ℄: one says that suh nets anbe sequentialized4. One of the most remarkable features of interation nets isthat they allow to ompute (using the forthoming redution rules), even onstrutures whih annot be sequentialized.1.3.5. Labeled nets. We now introdue labels and labeled nets, whih arenets where partiular ells are equipped with labels. The labeled transition sys-tem of di�erential nets will be de�ned using these labels in Setion 2.3. We shallalso use these labels in Setion 4 for de�ning a version of the π-alulus wherepre�xes are labeled, and for de�ning a transition system for this π-alulus.The main result of the paper will be a omparison between these two systems.These labels are not used for representing the names of the π-alulus, but justfor identifying the various ourrenes of names.Let L be a ountable set of labels ontaining a distinguished element τ (tobe understood as the absene of label). A labeled simple net is a simple netwhere all derelition, oderelition and promotion ells are equipped with labelsbelonging to L.All the nets we onsider in this paper are labeled. In our pitures, the labelsof derelition, oderelition and box ells will be indiated, when this label is3Not exatly any atually, beause we onsider only a restrited form of promotion in ourdi�erential interation nets, but the general promotion rule an be translated as well, withmore general nets.4The riteria have to be extended to the di�erential setting. This is straightforward:oontration is handled like the tensor rule. 7



di�erent from τ . When its label is τ , a (o)derelition or box ell will be drawnwithout any label.2. Redution rulesWe denote by ∆ the olletion of all simple nets, ranged over by the letters
s, t, u, with or without subsripts or supersripts, and by N〈∆〉 the olletionof all nets (�nite sums of simple nets with the same interfae), ranged over bythe letters S, T , U , with or without subsripts or supersripts. We onsider ∆as a subset of N〈∆〉 (s ∈ ∆ being identi�ed with the sum made of exatly oneopy of s).A redution rule is a subset R of ∆×N〈∆〉 onsisting of pairs (s, S) where
s is a simple net made of two ells onneted by their prinipal ports and S is anet that has the same interfae as s. There are atually redution rules whihtransform simple nets in non simple ones, see 2.1.3.This set R an be �nite or in�nite. Suh a relation is easily extended toarbitrary simple nets (s R T if there is (s0, u1 + · · · + un) ∈ R where s0 is asubnet of s, eah ui is a simple net and T = t1 + · · ·+ tn where ti is the simplenet resulting from the replaement of s0 by ui in s). This relation is extendedto nets (sums of simple nets): s1 + · · · + sn (where eah si is simple) is relatedto T by this extension RΣ if T = T1 + · · · + Tn where, for eah i, si R Ti or
si = Ti. Last, R∗ is the transitive losure of RΣ (whih is re�exive).2.1. De�ning the redutionWe give now the redution rules of di�erential interation nets. They orre-spond to the ut elimination rules of the di�erential linear logi of Setion 1.1.2.1.1. Multipliative redution. The �rst two rules onern the interationof two multipliative ells of the same arity.

• •
` ⊗

?ι ?ι

o

o
;m

o o

?ι

⊥
o

;m ε1where ε stands for the empty simple net (not to be onfused with the net
0 ∈ N〈∆〉, the empty sum, whih is not a simple net). The next two rulesonern the interation between a binary and a nullary multipliative ell.

` 1
o

;m

?ι

o

?ι

o 1

!

;m

!o

ι

⊗ ⊥

!o

ι

?

⊥
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2.1.2. Communiation redution. This is in some sense the most funda-mental redution of the system: from the proess alulus viewpoint, it orre-sponds to a ommuniation between an input and an output pre�x whih havethe same subjet.Let R ⊆ L. We have the following redutions if l, m ∈ R.
? !

ι ι?ι
;c,R

ι

l m2.1.3. Non-deterministi redution. These rules will be used for imple-menting the non-determinism of the proess alulus. Let R ⊆ L. We have thefollowing redutions if l ∈ R.
?

?

?

?

?ι

?ι?ι

!? +

l

l

;nd,R

?ι

l

ι
ι

?ι

?ι

ι ?ι

?ι

!

!

!

!

! ?
!o

+

l

l

;nd,R
l

o
o

!o

!o

!o

!o

o !o

!o

? !
ι ?ι

l
;nd,R 0 ! ?

o !o

l
;nd,R 0Remark 1 One an onsider a sum s1 + · · · + sn of several simple nets asa non-deterministi superposition, and then a redution s ; s1 + · · · + snan be interpreted as meaning that all the redutions s ; s1,. . . ,s ; sn arepossible, but that the various outomes si orrespond to semantially distintomputations. In that ase, there is an essential on�it between these varioushoies, as it should be lear in the rules above: in the two terms of the sums,we establish ompletely di�erent onnetions in the net.On the other hand, by reduing various redexes in s, it is also possible toobtain various results: s ; T1,. . . ,s ; Tp, but these hoies of redexes in sommute with eah other (this is the main ontent of Theorem 2), and theresulting nets T1,. . . ,Tp are semantially equivalent.One of the main features of di�erential interation nets is that they reifythis distintion in the rewriting rules: in the �rst ase s redues to the net

s1 + · · ·+ sn whereas in the seond ase, s redues to eah of the nets T1,. . . ,Tp.Moreover, this rei�ation is ompatible with (and atually, omes from) the de-notational semantis of di�erential linear logi (see e.g. [Ehr05℄), where these�non-deterministi sums� are interpreted as algebrai sums. Of ourse this dis-tintion between two kinds of redution is not new (it is pervasive in rewritingtheory, in onurreny et), what is new is its formalization in the present set-ting, using formal sums. 9



2.1.4. Strutural redution. From the proess alulus viewpoint, theserules implement the assoiativity and ommutativity laws of parallel omposi-tion whih are impliit in the Chemial Abstrat Mahine [BB90℄, and in theabstrat mahine of Setion 4.2. They also implement some of the laws asso-iated with name restrition (sope extrusion in partiular). They are alled�strutural� beause they orrespond to the interation between the struturaland the ostrutural rules of di�erential linear logi.
?ι

?

!

!

! ;s

?ι

?ι

?ι

?ι

!
!o

?

?

? ;s
!o

!o !o

!o

;s εs!?
?ι

l
?

?ι
;s

s!

s!

s!

?ι

?ι

?ι

?ι
l

l

l

?ι
? ! ;s ε ? !

?ι

?ι

?ι
?ι

?ι
?ι

?ι
?ι

?ι

?ι
?ι

?ι
;s

!

! ?

?We use ∼s for the symmetri and transitive losure of ;s.2.1.5. Box redution. Let R ⊆ L. We have the following redutions if
l, m ∈ R.

s!

m l
;b,R s

?ιι
?

ιObserve that the redution rules are ompatible with the identi�ation of theoweakening ell with a promotion ell ontaining the 0 net. Observe also thatthe only rules whih do not admit a �symmetri� rule are those whih involvea promotion ell. Indeed, promotion is the only asymmetri rule of di�erentiallinear logi.2.1.6. Completeness of the redution. One an hek that we have pro-vided redution rules for all redexes ompatible with our typing system: for anysimple net s made of two ells onneted through their prinipal ports, there isa redution rule whose left member is s. This rule is unique, up to the hoie ofa set of labels, but this hoie has no in�uene on the right member of the rule.
10



2.1.7. Conditions on labeled nets. We say that a simple net s satis�es theondition on labels for simple nets if two labels assoiated with distint ells5of s are either distint or equal to τ . As suh, this ondition will not preservedunder redution, due to the fat that promotion ells are dupliated. Therefore,we reinfore this ondition by requiring also that all the promotion ells of s belabeled by τ and all the labels ourring in subnets of promotion ells of s beequal to τ . We shall refer to the onjuntion of these onditions as to the CLB(ondition on labels and boxes).One an also hek, by simple inspetion of the rules that, if t is a simple netwhih satis�es the CLB and if t ; t1 + · · · + tn by one of our redution rules,then all the simple nets ti satisfy the CLB.2.2. Con�ueneTheorem 2 Let R, R′, R′′ ⊆ L. Let R ⊆ ∆ × N〈∆〉 be the union of some ofthe redution relations ;c,R, ;nd,R′ , ;m, ;s and ;b,R′′ . The relation R∗ ison�uent on N〈∆〉.The proof is essentially trivial sine the rewriting relation has no ritial pair(see [ER06℄). Given R ⊆ L, we onsider in partiular the following redution:
;R = ;m∪;c,{τ}∪;s∪;b,{τ}∪;nd,R. We set ;d = ;∅ (�d� for �determin-isti�) and denote by ∼d the symmetri and transitive losure of this relation.Observe that, if s and S are nets with s simple and if s ;d S, then S is alsosimple.Some of the redution rules we have de�ned depend on a set of labels. Thisdependene is learly monotone in the sense that the relation beomes largerwhen the set of labels inreases.2.3. A transition system of simple nets2.3.1. Restrition on simple nets. From now on, and until Setion 6, weassume that all simple nets satisfy the CLB; remember that, together, theseonditions are preserved under redution. This will be su�ient for dealingwith repliation-free proesses. The reason for this restrition is that the usefulLemmata 3 and 4 seem to depend on the uniqueness of label ourrenes.2.3.2. {l, m}-neutrality. Let l and m be distint elements of L \ {τ}. Weall (l, m)-ommuniation redex a ommuniation redex whose oderelition ellis labeled by l and whose derelition ell is labeled by m.The following is a simple, but quite useful remark.Lemma 3 Let s0 be a simple net whih ontains an (l, m)-ommuniation re-dex. If s0 ;

∗
{l,m} T0, then T0 is a simple net t0 whih ontains an (l, m)-ommuniation redex and one has atually s0 ;

∗
d t0. Moreover, if s is the5This means that they an also our in subnets assoiated with promotion ells, at anydepth. 11



simple net resulting from the redution of the (l, m)-ommuniation redex in
s0, then s ;

∗
d t where t is the simple net resulting from the redution of the

(l, m)-ommuniation redex in t0.We say that a simple net s is {l, m}-neutral if, whenever s ;
∗
{l,m} S, noneof the simple summands of S ontains an (l, m)-ommuniation redex.Lemma 4 Let s be a simple net. If s ;

∗
{l,m} S where all the simple summandsof S are {l, m}-neutral, then s is also {l, m}-neutral.The onverse impliation learly holds, but we do not use it.Proof. Assume, towards a ontradition, that s ;

∗
{l,m} T = s1 + · · ·+ sn whereeah si is simple and where s1 ontains an (l, m)-ommuniation redex. Bythe Churh-Rosser property of ;

∗
{l,m}, there is S′ suh that T ;

∗
{l,m} S′ and

S ;
∗
{l,m} S′. By Lemma 3 applied to s1, S′ must have a summand ontainingan (l, m)-ommuniation redex, ontraditing our hypothesis on S. 22.3.3. The transition system. We de�ne a labeled transition system DLwhose objets are simple nets, and transitions are labeled by pairs of distintelements of L \ {τ}. Let s and t be simple nets, we have s

lm
−→ t if the followingholds: s ;

∗
{l,m} s0 + s1 + · · · + sn where s0 is a simple net whih ontains an

(l, m)-ommuniation redex and beomes t when one redues this redex, andeah si (for i > 0) is {l, m}-neutral.Remark 5 The simple nets s1, . . . , sn orrespond to other possible ommu-niations, where typially the oderelition labeled by l will meet a derelitionlabeled by some m′ 6= m, and similarly for the derelition labeled by m. So theseterms are not garbage but orrespond to the branhes of the non-deterministiredutions whih do not lead to a ommuniation between l and m. There aretwo restritions in our de�nition whih deserve further omments:
• The non-deterministi steps allowed in the redution from s to s0 + s1 +
· · · + sn an involve only the oderelition and derelition labeled by land m respetively. In proess algebras, pre�xes ommuniate in onestep through a parallel omposition. This single step beomes here asequene of many elementary steps and our restrition allows to avoidonsidering the steps whih have nothing to do with the ommuniationwe are interested in.

• The seond restrition onsists in requiring the sis to be (l, m)-neutralfor i > 0 and seems to potentially prune out relevant (l, m) ommunia-tions from the LTS DL, and therefore to weaken Proposition 11 and heneTheorem 12.We think that Theorem 12 would hold even without these restritions in thede�nition of DL, whih are here only for making the proofs tratable. In the12



�nal remark of the Conlusion, we shortly argue that the seond restrition isnot essential. The �rst one an probably be weakened as well.Lemma 6 The relation ∼d ⊆ ∆ × ∆ is a strong bisimulation on DL.Proof. Let s, s′ ∈ ∆ and assume that s ∼d s′. Assume moreover that s
lm
−→ t,whih means that s ;

∗
{l,m} s0 + s1 + · · · + sn where eah si is simple, s0ontains an (l, m)-ommuniation redex, eah si is {l, m}-neutral for i ≥ 1 and

t results from the redution of the (l, m)-ommuniation redex of s0. By theChurh-Rosser property of ;
∗
{l,m} (remember that ;d ⊆ ;

∗
{l,m}), there exists

U ∈ N〈∆〉 suh that s0 + s1 + · · · + sn ;
∗
{l,m} U and s′ ;

∗
{l,m} U . But byLemmata 3 and 4, we have U = u0 + u1 + · · ·+ um with s0 ;
∗
d u0, u0 ontainsan (l, m)-ommuniation redex, and if we redue this redex, we obtain a net t′suh that t ;

∗
d t′. 23. A toolbox for proess aluli interpretationWe introdue now a few families of simple nets, whih are built using thepreviously introdued basi ells. They will be used as basi modules for in-terpreting proesses. All of these nets, but the ommuniation areas, an beonsidered as ompound ells : in redution, they behave in the same way asells of interation nets. We advise the reader aquainted with the π-alulusto have simultaneously a look at Setion 4.3 in order to �gure out how thesevarious strutures will be used.3.1. Compound ells3.1.1. Generalized ontration and oontration. A generalized on-tration ell or ontration tree is a simple net γ (with one prinipal port anda �nite number of auxiliary ports) whih is either a wire or a weakening ell ora ontration ell whose auxiliary ports are onneted to the prinipal port ofother ontration trees, whose auxiliary ports beome the auxiliary ports of γ.Generalized oontration ells (oontration trees) are de�ned dually.We use the same graphial notations for generalized (o)ontration ells asfor ordinary (o)ontration ells, with a �∗� in supersript to the � !� or �?�symbols to avoid onfusions. Observe that there are in�nitely many generalized(o)ontration ells of any given arity. Figure 3 gives an example of a ternarygeneralized oontration ell.3.1.2. The derelition-tensor and the oderelition-par ells. Let n bea non-negative integer. We de�ne an n-ary ?⊗ ompound ell as in Figure 4.It will be deorated by the label of its derelition ell (if di�erent from τ). Thenumber of tensor ells in this ompound ell is equal to n. We de�ne dually the

!` ompound ell. 13
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! !∗Figure 3: A ternary generalized oontration ell and its graphial representation (all orientedwires are typed with ?ι)
?⊗

!o

!o

?ι

⊗
⊗

⊗
1

?

!o

!o

!o

ι ?ι

•

•
•

•

=... l

lFigure 4: Derelition-tensor ompound ell (the oderelition-par is dual)3.1.3. The pre�x ells. Now we an de�ne the ompound ells whih willplay the main role in the interpretation of pre�xes of the π-alulus. Thanksto the above de�ned ells, all the oriented wires of the nets we shall de�ne willhave type ?ι or !o. Therefore, we adopt the following graphial onvention: thewires will have an orientation orresponding to the ?ι type.The n-ary input ell and the n-ary output ell are de�ned in Figure 5, theyhave n pairs of auxiliary ports. In Setion 6, we shall also use a version ofthe input pre�x where the oderelition ell has been removed. The main portof this pre-input ell has therefore type o (when oriented towards the outside)instead of !o. We use the same notation as for the input ell (Figure 5), withthe only di�erene that the symbol � !� will be replaed by the symbol �`�. Seean example in Figure 6.Pre�x ells are labeled by the label arried by their outermost ?⊗ or !`ompound ell, if di�erent from τ , the other ?⊗ or !` ompound ells beingunlabeled (that is, labeled by τ).
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llFigure 5: Input and output ompound ells14



`

• oFigure 6: Identity3.1.4. Transistors and boxed identity. In order to implement the sequen-tiality orresponding to sequenes of pre�xes in the π-alulus, we shall use theunary output pre�x ell de�ned above as a kind of transistor, that is, as a kindof swith that one an put on a wire, and whih is ontrolled by another wire.This idea is strongly inspired by the translation of the π-alulus in the solosalulus 6.These swithes will be losed by �boxed identity ells�, whih are the uniqueuse we make of promotion in the present work (apart from the extension skethedin Setion 6). Let I be the �identity� net of Figure 6, whih uses a pre-input om-pound ell. Then we shall use the losed promotion ell labeled by I !: I ! .3.2. Communiation tools
3Figure 7: Area of order3

3.2.1. The ommuniation areas. Let n ≥ −2. Wede�ne a family of nets with 2(n + 2) free ports, alledommuniation areas of order n, that we shall draw usingretangles with beveled angles. Figure 7 shows how wepiture a ommuniation area of order 3.A ommuniation area of order n is made of n+2 pairsof (n + 1)-ary generalized oontration and ontrationells (γ+
1 , γ−

1 ) ,. . . , (γ+
n+2, γ

−
n+2), with, for eah i and j suh that 1 ≤ i < j ≤

n+ 2, a wire from an auxiliary port of γ+
i to an auxiliary port of γ−

j and a wirefrom an auxiliary port of γ−
i to an auxiliary port of γ+

j .So the ommuniation area of order −2 is the empty net ε, and ommu-niation areas of order −1, 0, 1 and 2 are the strutures shown in Figure 8.3.2.2. Identi�ation strutures. Let n, p ∈ N and let f : {1, . . . , p} →
{1, . . . , n} be a funtion. An f -identi�ation net is a struture with p + n pairsof free ports (p pairs orrespond to the domain of f and, in our pitures, willbe attahed to the non beveled side of the identi�ation struture, and n pairsorrespond to the odomain of f , attahed to the beveled side of the struture)as in Figure 9(a). Suh a net is made of n ommuniation areas, and on the j-tharea, the j-th pair of wires of the odomain is onneted, as well as the pairsof wires of index i of the domain suh that f(i) = j. For instane, if n = 4,6It is shown in [LV03℄ that one an enode the π-alulus sequentiality indued by pre�xnesting in the ompletely asynhronous solos formalism: the idea of suh translations is toobserve that, in a solos proess like P = νy (u(x, y) | y(. . . )) | Q, the seond solo annotinterat with the environment Q before the �rst one.15
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Figure 8: Communiation areas of order −1, 0, 1 and 2

p = 3, f(1) = 2, f(2) = 3 and f(3) = 2, a orresponding identi�ation strutureis made of four ommuniation areas, two of order −1, one of order 0 and oneof order 1, as in Figure 9(b).When we want to mention a partiular ommuniation area of suh a stru-ture, we refer to it as to the j-th ommuniation area (where j is the orre-sponding element of {1, . . . , n}).
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. . .() RedutionFigure 9: Identi�ation strutures3.3. Useful redutions.3.3.1. Aggregation of ommuniation areas. One of the nie propertiesof ommuniation areas is that, when one onnets two suh areas through a pairof wires, one gets another ommuniation area; if the two areas are of respetiveorders p ≥ −1 and q ≥ −1, the resulting area is of order p + q, see Figure 10.16



p + q ...... p ;
∗
sq ... ...Figure 10: Aggregation, with p, q ≥ −13.3.2. Composition of identi�ation strutures. In partiular, we getthe redution of Figure 9().3.3.3. Port forwarding in a net. Let t be a net and p be a free port of t.We say that p is forwarded in t if there is a free port q of t suh that t is of oneof the two shapes given in Figure 11. When a port is forwarded in a net, wemark this port with a small triangle, as in Figures 12 and 13.
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qFigure 11: Port forwarding3.3.4. Communiation and forwarding of derelitions and odereli-tions in ommuniation areas. The redution of Figure 12 shows that dere-litions and oderelitions an meet eah other, when onneted to a ommonommuniation area. More preisely, let l, m ∈ L, then we have the redutionof Figure 12, where N is a non-negative integer (atually, N = (p + 2)2) and, in
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r r′Figure 12: Derelition and oderelition ommuniating through a ommuniation area. Theforwarded ports are indiated by small triangles.eah simple net ti, both ports r and r′ are forwarded.17



3.3.5. General forwarding. Let l ∈ L. The more general but less informa-tive property shown in Figure 13 will also be used, where in eah simple net
?∗?

...... p
l

;
∗
{l}

?

... ui

...rlFigure 13: General forwarding
ui, the port r is forwarded (see 3.3.3). Of ourse one also has a dual redu-tion (where the derelition is replaed by a oderelition, and the generalizedontration by a generalized oontration).3.3.6. Redution of pre�xes. Let l, m ∈ L. If we onnet an n-ary outputpre�x labeled by m to a p-ary input pre�x labeled by l, we obtain a net whihredues by ;c,{l,m} to a net u whih redues by ;

∗
{τ} to 0 if n 6= p and tosimple wires by ;

∗
∅, as in Figure 14(a), if n = p.3.3.7. Transistor triggering. A boxed identity onneted to the prinipalport of a unary output ell used as a �transistor� turns it into a simple wire asin Figure 14(b).
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∅(b) Transistor trig-geringFigure 14: Pre�xes and transistors4. A polyadi �nitary π-alulus and its enodingThe proess alulus we onsider is a fragment of the π-alulus where wehave suppressed the following features: sums, repliation, reursive de�nitions,math and mismath. This does not mean of ourse that di�erential intera-tion nets annot interpret these features. We shortly disuss this point in theConlusion.It is well known that the monadi π-alulus is as expressive as the polyadione. We nevertheless onsider a polyadi version of the π-alulus beause ourenoding an easily be adapted to other proess algebras, and in partiular toasynhronous ones (suh as the solos alulus), where polyadiity is essential for18



expressiveness. Moreover, polyadi aluli are more natural and widely used inthe proess algebra ommunity.LetN be a ountable set of names. Our proesses are de�ned by the followingsyntax. We use the same set L of labels as before.
• nil is the empty proess.
• If P1 and P2 are proesses, then P1 | P2 is a proess.
• If P is a proess and a ∈ N , then νa ·P is a proess. The name a is boundin this proess.
• If P is a proess, a, b1, . . . , bn ∈ N , the bis being pairwise distint and if

l ∈ L, then Q = [l]a(b1 . . . bn) ·P is a proess (pre�xed by an input ation,whose subjet is a and whose objets are the bis; the name a is free andeah bi is bound in Q and hene a is distint from eah bi).
• If P is a proess, a, b1, . . . , bn ∈ N and l ∈ L, then [l]a〈b1 . . . bn〉 · P isa proess (pre�xed by an output ation, whose subjet is a and whoseobjets are the bis). This onstrution does not bind the names bi, andwe do not require the bis to be distint. The name a an be equal to someof the bis.We introdue this labeling of pre�xes to distinguish the various ourrenes ofnames as subjet of pre�xes; these labels do not play any ative role in theredution of proesses, they are here only for traing purposes. The set FV(P )of free names of a proess P is de�ned in the obvious way. The α-equivalenerelation on proesses is de�ned as usual.A labeled proess is a proess where all pre�xes are labeled, by pairwisedistint labels, all these labels being di�erent from τ . If P is a labeled proess,

L(P ) denotes the set of all labels ourring in P . Observe that this set has anatural poset (forest atually) struture (l < m if, in P , l labels a pre�x µ and
m ours in the proess pre�xed by µ).All the proesses we onsider in this paper are labeled.4.1. Arity typing of proesses.Although not stritly neessary, it is onvenient to assume that our proessesare �typed� (one often speaks rather of �sorting� in this ontext) in the sensethat eah name is given with an arity, whih is a possibly empty list of arities.When a name of arity (ρ1, . . . , ρn) ours as subjet, it is always assumed thatit has n objets b1, . . . , bn, the arity of bi being ρi. This guarantees that, duringthe redution, when an input pre�x ommuniates with an output pre�x, thenumbers of objets of the two involved pre�xes oinide. Sine this is a standard
π-alulus notion (see [SW01, Part III℄), we shall not say more about it, andwe shall simply assume that, during the redution of proesses and states, thearities of ommuniating pre�xes always oinide.19



4.2. An exeution modelRather than onsidering a rewriting relation on proesses as one usually does,we prefer to de�ne an �environment mahine�, similar to the mahine introduedin [AC98, Chapter 16℄7, whih itself is based on the Chemial Abstrat Mahineof Berry and Boudol [BB90℄. It is not di�ult to show that this presentation ofthe π-alulus is equivalent to more standard ones.An environment is a funtion e from a �nite subset Dom e of N to a �-nite subset Codom e of N . A losure is a pair (P, e) where P is a proessand e is an environment suh that FV(P ) ⊆ Dom(e). A soup is a multiset
Γ = (P1, e1) · · · (PN , eN ) of losures (denoted by simple juxtaposition). The set
FV(Γ) of free names of a soup Γ is the union of the odomains of the envi-ronments of Γ. The soup Γ is labeled if all the Pis are labeled, with pairwisedisjoint sets of labels. A state is a pair (Γ, L) where Γ is a soup and L is a setof names (the names whih have to be onsidered as loal to the state) and weset FV(Γ, L) = FV(Γ) \ L. The state (Γ, L) is labeled if the soup Γ is labeled.All the states we onsider are labeled. We de�ne the poset L(Γ, L) of alllabels of the state (Γ, L) in the straightforward way, as the parallel ompositionof the posets assoiated with the proesses of the losures of Γ.4.2.1. α-equivalene of states. Given a partial funtion f : N → N anda proess P , we denote by f · P the proess where eah free name a has beenreplaed by f(a) (if a ∈ Dom f) � this onstrution is not part of the syntax, itis a meta-operation like substitution in the lambda-alulus. Of ourse, boundnames have to be renamed to avoid name lashes.Two losures (P1, e1) and (P2, e2) are α-equivalent (written (P1, e1) ∼α

(P2, e2)) if there is a bijetion on names f suh that f · P1 and P2 are α-equivalent, and e2 ◦ f = e1. Two soups Γ and ∆ are α-equivalent if Γ = γ1 . . . γNand ∆ = δ1 . . . δN with γi ∼α δi for eah i. Let f : N → N be a fun-tion. If γ = (P, e) is a losure, one sets f · γ = (P, f ◦ e). And last,
f · (γ1 . . . γN ) = (f · γ1) · · · (f · γN ).Two states (Γ, L) and (∆, M) are α-equivalent if there is a bijetion on names
f whih is the identity on N \ L and satis�es f(L) = M and f · Γ ∼α ∆.4.2.2. Canonial form of a state. We say that a proess is guarded ifit starts with an input pre�x or an output pre�x. We say that a soup Γ =
(P1, e1) · · · (PN , eN) is anonial if eah Pi is guarded, and that a state (Γ, L) isanonial if the soup Γ is anonial. We de�ne a rewriting relation ;can whih7The reason for this hoie is that the rewriting approah uses an operation whih onsistsin replaing a name by another name in a proess. The orresponding operation on nets israther ompliated and we prefer not to de�ne it here.
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turns any state into a anonial one.
((nil, e)Γ, L) ;can (Γ, L)

((νa · P, e)Γ, L) ;can ((P, e[a 7→ a′])Γ, L ∪ {a′})

((P | Q, e)Γ, L) ;can ((P, e)(Q, e)Γ, L)where, in the seond rule, a′ ∈ N \ (L ∪ Codom(e) ∪ FV(Γ)). It is easy toshow that, up to α-equivalene, this redution relation is on�uent, and it islearly strongly normalizing. We denote by Can(Γ, L) the normal form of thestate (Γ, L) for this rewriting relation. Observe that if (Γ, L) ;can (∆, M) then
FV(∆, M) ⊆ FV(Γ, L).4.2.3. Transitions. Next, we de�ne a labeled transition system SL. Theobjets of this system are labeled anonial states and the transitions, labeledby pairs of labels, are de�ned as follows.

(([l]a(b1 . . . bn) · P, e)([m]a′〈b′1 . . . b′n〉 · P
′, e′)Γ, L)

lm
−→ Can((P, e[b1 7→ e′(b′1), . . . , bn 7→ e′(b′n)])(P ′, e′)Γ, L)if e(a) = e′(a′). Observe that if (Γ, L)

lm
−→ (∆, M) then FV(∆, M) ⊆ FV(Γ, L).4.3. Translation of proesses to di�erential interation netsSine we do not work up to assoiativity and ommutativity of ontrationand oontration, it does not make sense to de�ne this translation as a funtionfrom proesses to nets. For eah repetition-free list of names a1, . . . , an, wede�ne a relation Ia1,...,an

from proesses whose free names are ontained in
{a1, . . . , an} to simple nets t whih have 2n + 1 free ports aι

1, a
o
1, . . . , a

ι
n, ao

n and
c as in Figure 15(a). The additional port c will be used for ontrolling thesequentiality of the redution, thanks to transistors. Reduing the translationof a proess will be possible only when a boxed identity ell is onneted to itsontrol port. This is ompletely similar to the additional ontrol free name inthe translation of the π-alulus in solos, in [LV03℄8.It will be possible to hek that, if P and P ′ are α-equivalent, then P Ia1,...,an

s i� P ′ Ia1,...,an
s. We de�ne now the translation relation, by indution onproesses. And next we de�ne the translation relation for states.4.3.1. Empty proess. One has nil Ib1,...,bn

t if t is as in Figure 15(b).8There is a simple interpretation of solo diagrams into di�erential interation nets, whihuses only our toolbox without promotion so that solo diagrams an be seen as an interme-diate graphial language whih an be implemented in the low level di�erential syntax. Ourtranslation of the π-alulus results from an analysis and a simpli�ation of the omposedtranslation �π-alulus → solo diagrams → di�erential nets�. The simpli�ation results fromsome rewiring and from the use of the boxed identity ells whih are easily repliable. Thetranslation of solos into di�erential nets leads to yles (whih appear when a name is identi-�ed with itself) whih are avoided in the present diret translation. Well behaved onditionson solos for avoiding suh yles are introdued and studied in [EL08℄.21
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(d) Parallel ompositionFigure 15: Translation of proesses: strutural onstrutions, see Setion 4.34.3.2. Name restrition. One has νa ·P Ib1,...,bn
t i� t is as in Figure 15(),with s satisfying P Ia,b1,...,bn

s.4.3.3. Parallel omposition. One has P1 | P2 Ib1,...,bn
t i� the simple net

t is as in Figure 15(d), where P1 Ib1,...,bn
t1, P2 Ib1,...,bn

t2 and γ1, . . . , γn areommuniation areas of order 1.4.3.4. Input pre�x. Let l ∈ L. Assume that a, b1, . . . , bn, c1, . . . , cp are pair-wise distint names and let Q = [l]a(b1 . . . bn) · P . One has Q Ia,c1,...,cp
t if t isas in Figure 16(a), where γ is a ommuniation area of order 1 and where s isa simple net whih satis�es P Ia,b1,...,bn,c1,...,cp

s. The ommuniation area γ isrequired to endow the hannel a with a further input ommuniation apabilityand making it available to the environment.4.3.5. Output pre�x. Let l ∈ L. Let b1, . . . , bn be a list of pairwise distintnames and let Q = [l]bf(0)〈bf(1) . . . bf(q)〉·P , where f : {0, 1, . . . , q} → {1, . . . , n}is a funtion (this funtion is uniquely determined by Q and by the enumeration
b1, . . . , bn). So b1, . . . , bn is a list of pairwise distint names ontaining all thenames of the pre�x we want to translate and the funtion f says where eahname ours in the pre�x; observe that some names of the list an be omittedin the pre�x (f is not neessarily surjetive). One has Q Ib1,...,bn

t if t is asin Figure 16(b), where γ1, . . . , γn are ommuniation areas of order 1, δ is an
f -identi�ation struture and where s is a simple net whih satis�es P Ib1,...,bn

s. This identi�ation struture and the additional ommuniation areas arerequired beause the names ourring in the output pre�x are not neessarily22
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Figure 17: State translation, see Setion 4.3distint from eah other, and the objet names are not bound by the outputpre�x: the identi�ation strutures implement these equalities between namesand the ommuniation areas make the orresponding ommuniation hannelsavailable to the environment. These strutures are not required in an inputpre�x beause, in suh a pre�x, the objet names are bound, pairwise distintand distint from the subjet name whih is free in the pre�x.4.3.6. States. Let Γ = (P1, e1) . . . (PN , eN ) be a soup and b1, . . . , bn be arepetition-free list of names ontaining all the odomains of the environments
e1, . . . , eN (that is, ontaining FV(Γ)). We assume that the domains of theenvironments ei are pairwise disjoint, whih is possible up to α-equivalene. Let
a1, . . . , ap be a repetition-free enumeration of the elements of ⋃N

i=1 Dom ei, suhthat there is a list of non-negative integers 0 = h0 ≤ h1 ≤ · · · ≤ hN = p suhthat, for i = 1, . . . , N , the list ahi−1+1, . . . , ahi
is a repetition-free enumerationof the elements of Dom(ei). Let e : {1, . . . , p} → {1, . . . , n} be the map whihis uniquely de�ned by the fat that, for eah i = 1, . . . , N and eah j suh that

hi−1 + 1 ≤ j ≤ hi, one has ei(aj) = be(j).Then one has Γ Ib1,...,bn
t if t is a simple net of the shape shown in Figure 4.3,where s1,. . . , sN are simple nets suh that Pi Iahi−1+1,...,ahi

si and δ is an e-identi�ation struture. 23
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Figure 20: Possible shape for the subnet θ of Figure 195.1.2. Persisteny.Lemma 7 Let s be a simple net, let R ⊆ L, let l, r be labels whih are distint,with r 6= τ . Let δ be an l-labeled (o)derelition ell whih is guarded by r in
s and assume that s ;

∗
R s1 + · · · + sp where the si are simple. Then δ and rour, and δ is guarded by r, in eah of the simple nets si.Proof. The proof is straightforward: the (o)derelition r an take part only innon-deterministi redutions during an ;R-redution, and hene annot disap-pear (more preisely, its only way of disappearing is by turning to 0 the wholesimple net where it ours). Hene the guarding path from δ to r is preservedduring this redution sine its ells are not involved in any redex. 25.1.3. Diving of derelitions and oderelitions. Let l ∈ L \ {τ}, let ube a simple net, let P be a proess. We say that l dives into P in u if there is arepetition-free list of names b1, . . . , bn and a simple net s suh that P Ib1,...,bn

sand u is of one of the shapes (aording to whether l labels a derelition or aoderelition ell) shown in Figure 19, where θ is either a boxed identity ell ora net of the shape shown in Figure 20, onsisting of a labeled input or outputpre�x ompound ell, with a label r′ 6= τ .With these notations, our aim is here to prove the following property.Lemma 8 (Diving) Assume that l ∈ L \ {τ} dives into P in the simple net
u, and let m ∈ L \ {τ} be a label whih does not our in P . Then u is {l, m}-neutral. 25
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∗
{l,m} u1 + U and that u1 ontains an (l, m)-ommuniationredex).Assume �rst that P = nil. Assume that l is a derelition. Then u has theshape shown in Figure 21. Thus u ;

∗
{l,m} 0 by 3.3.5. Hene by the Churh-Rosser property of ;∗

{l,m}, we must have u1+U ;
∗
{l,m} 0. But this is impossibleby Lemma 3 sine u1 has an (l, m)-ommuniation redex. The ase where l is aoderelition is similar.The ase P = P1 | P2 is handled similarly: using 3.3.5 and the indutivehypothesis, one shows that u ;

∗
{l,m} V where V is a sum of {l, m}-neutralsimple nets, and hene u is {l, m}-neutral by Lemma 4.If P = νa · Q, one applies diretly the indutive hypothesis.To onlude, we onsider the ase where P = [r]bf(0)〈bf(1) . . . bf(p)〉 · Q.Assume �rst that l is a derelition. Then u is of the shape shown in Figure 22(without loss of generality, we assume that the derelition is onneted to a portorresponding to the name bn), where s is a simple net satisfying Q Ib1,...,bn

s.Then, aggregating �rst the ommuniation area γn with the ommuniationarea of the f -identi�ation struture to whih it is onneted, we see that wehave u ;
∗
{l,m}

∑N
i=1 ui where ui is a simple net whih has the shape shown inFigure 23 and where, aording to 3.3.5, in vi, the prinipal port of l is forwarded(see the de�nition of this onept in 3.3.3 and remember that this is indiatedpitorially by a small triangle)1. to the port b+
n of s2. or to the prinipal port of the oweakening ell γ, in the ase where f(0) =

n3. or to one of the input auxiliary port of the ompound ell ϕ, orrespondingto an index j ∈ {1, . . . , q} suh that f(j) = n.26
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Figure 24: Proof of Lemma 8For i satisfying (2), we have ui ;
∗
{l,m} 0. For i satisfying (3), l is guarded by

r 6= τ (the labeled derelition ell of ϕ) in ui, and so ui is {l, m}-neutral byLemma 7. For i satisfying (1), the indutive hypothesis applies, showing that
ui is {l, m}-neutral. Therefore u is {l, m}-neutral by Lemma 4.Assume now that l is a oderelition, so that u has the shape shown inFigure 24 (with the same notations as above).As before, we have u ;

∗
{l,m}

∑N
i=1 ui where the uis have the same shape asbefore. Using the same notations, in vi, the prinipal port of l is forwarded1. to the port b−n of s2. or to the dotted auxiliary port of the transistor output ompound ell β,in the ase where f(0) = n3. or to one of the input auxiliary ports of the ompound ell ϕ, orrespondingto an index j ∈ {1, . . . , q} suh that f(j) = n.The ases (1) and (3) are handled as before. So onsider an index i orre-sponding to ase (2). There are two possibilities, depending on the value of thenet θ.If θ is a boxed identity ell, then ui ;

∗
{l,m} u′where u′ is a simple net whih ontains the sub-net shown aside. ? !∗

!
r l...Sine we have r /∈ {l, m} (remember that we have assumed that m doesnot our in P ), this subnet has no ;

∗
{l,m}-redex, and therefore, it will still bepresent in any simple summand of a net U suh that u′

;
∗
{l,m} U . So u′ is

{l, m}-neutral, and so is u by Lemma 4.Assume last that θ onsists of an r′-labeled output or input pre�x ompoundell (with r′ 6= τ) together with a generalized ontration ell (seond possibilityfor θ in 5.1.3, see Figure 20). Here we an have r′ = m, but l is guarded by r′in u, and hene u is {l, m}-neutral by Lemma 7 and Lemma 4.The ase where P starts with an input pre�x is ompletely similar to thatof an output pre�x, and of ourse simpler. 228



Lemma 9 Let (Γ, L) be a state and let b1, . . . , bn be a repetition-free enumera-tion of the free names of (Γ, L). Let (∆, M) be the anonial form of (Γ, L) andlet s be a simple net suh that (Γ, L) Ib1,...,bn
s. Then there exists a simple net

t suh that (∆, M) Ib1,...,bn
t and s ∼s t.The equivalene relation ∼s is de�ned in 2.1.4. The proof is by simple inspetionof the de�nition of the interpretation relation, using 3.3.1.We establish now two results whih are the main ingredients towards ourbisimulation theorem.Proposition 10 Let (Γ, L) and (∆, M) be anonial states and let l, m ∈ L \

{τ}. Assume that (Γ, L)
lm
−→ (∆, M). Let s be a simple net and assume that

(Γ, L) Ib1,...,bn
s where b1, . . . , bn is a repetition-free list of names ontainingall the free names of (Γ, L). Then there are simple nets t0 and t suh that

(∆, M) Ib1,...,bn
t, s

lm
−→ t0 and t0 ∼d t.Proof. We know that Γ must be of the shape

([l]a(c1 . . . cp) · P, e1)([m]df(0)〈df(1) . . . df(p)〉 · Q, e2)(P3, e3) · · · (PN , eN) (1)where we assume that the eis have pairwise disjoint domains, that a, cp+1,. . . ,
cp+q is a repetition-free enumeration of the domain of e1 (these names are as-sumed to be distint from the names c1, . . . , cp, whih are bound in the �rstproess of the soup (1)), that d1, . . . , dr is a repetition-free enumeration of thedomain of e2, that h1, . . . , hm is a repetition-free enumeration of the union ofthe domains of e3,. . . ,eN , and f : {0, . . . , p} → {1, . . . , r} is a funtion, and wehave e1(a) = e2(df(0)). And (∆, M) = Can(Γ′, L) where

Γ′ = (P, e1[c1 7→ e2(df(1)), . . . , cp 7→ e2(df(p))])(Q, e2)(P3, e3) · · · (PN , eN) .Without loss of generality, we an assume that f(0) = 1. With these nota-tions, the simple net s is of the shape shown in Figure 25, where s1 is a simplenet suh that P Ia,c1,...,cp+q
s1, s2 is a simple net suh that Q Id1,...,dr

s2 and s′stands for the juxtaposition of simple nets sis suh that Pi I ~hisi (for 3 ≤ i ≤ N)where ~hi stands for an enumeration of the domain of ei (so that the lists of names
~hi are pairwise disjoint, and their onatenation is a repetition-free enumerationof the names h1, . . . , hm), with a boxed identity onneted to the ontrol portsof eah si. In this net, e is the funtion {1, . . . , r + q + m + 1} → {1, . . . , n}whih orresponds to the union of the funtions ei for i = 1, . . . , N . Observethat we have e(1) = e(r + 1) sine by hypothesis e1(a) = e2(d1).We have omitted in Figure 25 the pairs of free ports orresponding to
b1, . . . , bn, bn+1, . . . , bn+n′ , the names bi for i > n orresponding to the ele-ments of L; remember that they are there and that eah pair of frees portorresponding to a bi with i > n is onneted to a ommuniation area of order
−1.Then we an redue the net of Figure 25 along the following steps.29
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r2g+4r1Figure 26: Proof of Proposition 10
• Observe �rst that the pairs of ports 1 and r + 1 (attahed to the domainof e) are onneted to a ommon ommuniation area δ1 in the identi�-ation struture labeled by e (see 3.2.2) sine e(1) = e(r + 1), and alsothat the odomain pair of ports 1 and the domain pair of ports 0 of theidenti�ation struture labeled by f are onneted to a ommon ommu-niation area δ2 in this identi�ation struture, sine f(0) = 1. We applyredution 3.3.1 to aggregate the ommuniation areas γ1, δ1, γ2 and δ2in a unique ommuniation area δ. Let u be the resulting simple net, wehave s ;

∗
{l,m} u.

• Apply redution 3.3.7 to both transistors β1 and β2 and let u′ be theresulting simple net, we have u ;
∗
{l,m} u′.

• u′ ontains therefore the subnet v shown in Figure 26 where, for i =
−1, 0, . . . , g the pair of ports (r2i+3, r2i+4) is onneted either1. to the pair of ports a of s12. or to one of the pairs of ports cp+1, . . . , cp+q of s13. or to one of the pairs of ports h1, . . . , hm of s′4. or to a pair of ports of one of the ommuniation areas onneted to

d2, . . . , dr5. or to the pair of ports d16. or to one of the auxiliary pairs of ports of the output pre�x ompoundell labeled by m 30



? !

· · ·

m l
g

δ

r1 r2g+4(a) The net v0

? !

· · ·

m l

r1 r2g+4

wj(b) The net vj for j ≥ 1Figure 27: Proof of Proposition 10
I !I !

dr

. . .

. . .

. . .

a cp+1. . .c1 . . .

. . .

cp

. . . . . . . . .

s′

s1

cp+q

...h1

hm

c

...
r

1

p

f ′

d1

s2

c

e

1 ...
1 r r + 1 r + 2 r + q + mFigure 28: Proof of Proposition 107. or to one of the pairs of ports bh orresponding to odomain pairs ofports of the identi�ation struture e; these pairs of ports are eitherfree in s (and hene in u′) or onneted to a ommuniation area oforder −1.To v, we an apply redution 3.3.4. This subnet redues by the ;

∗
{l,m}redution to a sum v0 + v1 + · · · + vk where v0 is shown in Figure 27(a)and the vjs (j ≥ 1) are nets of the shape shown in Figure 27(b) where theprinipal port of l and m are forwarded to ports among r1, . . . , r2g+4. Wehave u′

;
∗
{l,m} u′

0 + u′
1 + · · · + u′

k where u′
j results from the replaementof the net v by the net vj in u′ (j = 0, . . . , k).

• We apply the (l, m)-ommuniation redution to u′
0, getting a simple net

t0 whih is ∼d equivalent to the simple net of Figure 28 where f ′ is therestrition of f to {1, . . . , p}. This net is ∼s equivalent to a simple net
t1 with (Γ′, L) Ib1,...,bn

t1 (upon applying 3.3.1 to the ommuniationareas of the identi�ation struture f ′, the ones whih are onneted tothe pairs of free ports di of s2 and those belonging to the identi�ationstruture e). By Lemma 9, there is a simple net t suh that t1 ∼s t and
(∆, M) Ib1,...,bn

t.To onlude, we must hek that, for j ≥ 1, u′
j is {l, m}-neutral. But, for eah31



of the two labels l and m, we are in one of the seven ases (1) to (7) above.Consider for instane label l. If we are in ase (1), (2), (3), (5), we an diretlyapply Lemma 8.Assume that we are in ase (4) and that,in u′
j , the oderelition labeled by l isforwarded to the ommuniation areaonneted to dr (so that r ≥ 2), wean apply 3.3.5 and see that u′

j ;
∗
{l,m}

w1 + w2 where w1 and w2 are simple,and w1 ontains a subnet of the shapeshown aside. Hene by Lemma 8, w1 is
{l, m}-neutral. !∗

!

?

•

I !

dr

. . .

. . .d1

s2

c

l

m ...On the other hand, in w2, l is onneted to the r-th ommuniation area(in the sense of 3.2.2) of the identi�ation struture labeled by f and the otherpairs of ports of that ommuniation area are onneted to auxiliary ports ofthe output pre�x ompound ell labeled by m. Therefore, by Lemmata 7 and 4,
w2 is {l, m}-neutral. So, by Lemma 4, u′

j is {l, m}-neutral.If we are in ase (6) then, in u′
j, l is guarded by m and hene u′

j is {l, m}-neutral by Lemma 7. Last assume we are in ase (7); in this ase, l is onnetedto an auxiliary port of a generalized strutural ell whose prinipal port is free,or is onneted to a weakening ell. In both ases again it is lear that u′
j is

{l, m}-neutral 2We prove now a onverse statement. We explain in 7.4.3 that this statement,and hene also Theorem 12, an be strengthened.Proposition 11 Let (Γ, L) be a anonial state and b1, . . . , bn be a repetition-free list of names ontaining all the free names of (Γ, L). Let s be a simple netsuh that (Γ, L) Ib1,...,bn
s. If t′0 is a simple net suh that s

lm
−→ t′0, then there isa anonial state (∆, M) suh that (Γ, L)

lm
−→ (∆, M) and there exists a simplenet t suh that (∆, M) Ib1,...,bn

t and t ∼d t′0.Proof.We show �rst that both l and m must be minimal in the poset L(Γ, L) (seeSetion 4.2). Assume for instane that m is not minimal. Then the prinipalport of the derelition ell labeled by m is onneted to an auxiliary port ofa transistor whose prinipal port is onneted to an auxiliary port of an inputor output pre�x ell, labeled say by m′, with m′ < m (atually, m′ is thepredeessor of m in the forest L(Γ, L)). Say for instane that the pre�x elllabeled by m′ is an input pre�x ell.Hene s ontains the subnet shownaside. So m is guarded by m′ in s andso, whenever s ;
∗
{l,m} s′, no simple netappearing in s′ an ontain an (l, m)-ommuniation redex, in ontraditionwith our hypothesis that s

lm
−→ t′0. !

?
•

••

?

I !

I !

m′m

... ...
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We have seen that l and m are minimal in the poset L(Γ, L) and this meansthat in Γ, the pre�xes labeled by l and m are the outermost pre�xes of P1 and
P2 where Γ = (P1, e1) · · · (PN , eN ) (and the hoie of P1 and P2 is uniquelydetermined by l and m), that is, Γ is of the form desribed by Formula (1) inthe proof of Proposition 10, P1 denoting the �rst proess in that expression,whih is guarded by an l-labeled input pre�x, and P2 the seond one, whihis guarded by an m-labeled output pre�x. Using the notations of Formula (1),we argue now that neessarily e1(a) = e2(df(0)) (we an refer to Figure 25 asdesribing s). But if this is not the ase, an inspetion of the interpretation ofinput pre�xes 4.3.4, of states 4.3.6 and of the identi�ation struture assoiatedwith the �global environment� e (see 3.2.2) shows that s ;

∗
{l,m} S′ = s′1+· · ·+s′qwhere for eah i, s′i is simple and one of the following holds:1. in s′i, l is forwarded to a free port of S′2. or l dives into Pj in s′i for some j = 1, . . . , N . We denote by t the subnet of

s′i suh that Pj Ic1,...,cr
t, where c1, . . . , cr is a repetition-free enumerationof the domain of ej .In ase (1), s′i is {l, m}-neutral. The same is true of s′i in ase (2) when theindex j is di�erent from 2 sine then Pj annot ontain the label m and we anapply Lemma 8. In the ase j = 2, using our assumption that e1(a) 6= e2(df(0)),we see that l dives into P2 through a free port whih does not orrespond to

df(0) and from this (and from an inspetion of the interpretation of outputpre�xes 4.3.5), we see that si ;
∗
{l,m} S′′ where S′′ is a sum of simple nets inwhih, either l is guarded by m, or l dives into Q in t where Q is the proessguarded by the m-labeled output pre�x of P2 (and therefore, Q does not ontainthe label m). Applying Lemma 7 in the �rst ase and Lemma 8 in the seondase, we see that eah simple summand of S′′ is {l, m}-neutral and therefore

si also is {l, m}-neutral by Lemma 4. Finally, by the same lemma, s itself is
{l, m}-neutral, ontraditing the hypothesis that s

lm
−→ t′0.So we must have e1(a) = e2(df(0)) and sine our proesses and states areimpliitly arity-typed (see 4.1), we know that the number of objets of the twoinvolved pre�xes oinide (the ommon value of these numbers is p, aordingto our notations).Using the same notations as in Proposition 10, and the statement itself ofthat proposition, we have (Γ, L)

lm
−→ (∆, M) and there are simple nets t and t0suh that (∆, M) Ib1,...,bn

t, t ∼d t0 and s
lm
−→ t0. This means more preiselythat s ;

∗
{l,m} S′ = s0 + s1 + · · · + sp, with the sjs simple, suh that s0 hasan (l, m)-ommuniation redex and eah sj (for j ≥ 1) is {l, m}-neutral and t0is the simple net whih results from the redution of the (l, m)-ommuniationredex in s0.We onlude by showing that t0 ∼d t′0.We know from our hypothesis that s ;

∗
{l,m} S′′ = s′0 +s′1+ · · ·+s′q, where s′0has an (l, m)-ommuniation redex and eah s′j (for j ≥ 1) is {l, m}-neutral, and

t′0 is the simple net whih results from the redution of the (l, m)-ommuniationredex in s′0. 33



By the Churh Rosser property of ;
∗
{l,m}, there is a net U suh that

S′
;

∗
{l,m} U and S′′

;
∗
{l,m} U . By Lemma 3, we have U = u0 + U ′ with

s0 ;
∗
d u0 and s′0 ;

∗
d u0, thanks also to the {l, m}-neutrality of sj and s′j for

j ≥ 1. Moreover (still by Lemma 3), u0 ontains an (l, m)-ommuniation redexas well, and if v0 is the net whih results from the redution of the (l, m)-ommuniation redex in u0, we have also t0 ;
∗
d v0 and t′0 ;

∗
d v0. So we have

t0 ∼d t′0. 2We are now ready to state a bisimulation theorem. Given a repetition-freelist b1, . . . , bn of names, we de�ne a relation Ĩb1,...,bn
between states and simplenets by: (Γ, L) Ĩb1,...,bn

s if there exists a simple net s0 suh that (Γ, L) Ib1,...,bn

s0 and s0 ∼d s.Theorem 12 The relation Ĩb1,...,bn
is a strong bisimulation between the labeledtransition systems SL and DL.Proof. Let (Γ, L) be a anonial state and s1 be a simple net, and assume that

(Γ, L) Ĩb1,...,bn
s1. So there is a simple net s suh that (Γ, L) Ib1,...,bn

s and
s ∼d s1.Assume �rst that (Γ, L)

lm
−→ (∆, M), with l, m two distint elements of L \

{τ}. By Proposition 10, there are simple nets t0 and t suh that (∆, M) Ib1,...,bn

t0 ∼d t and s
lm
−→ t. By Lemma 6 (∼d is a bisimulation), there exists t1 suhthat t ∼d t1 and s1

lm
−→ t1. We have (∆, M) Ĩb1,...,bn

t1.Conversely, assume that s1
lm
−→ t1. By Lemma 6, there exists t suh that

t ∼d t1 and s
lm
−→ t. By Proposition 11, there is a anonial state (∆, M) anda simple net t0 suh that (Γ, L)

lm
−→ (∆, M) and (∆, M) Ib1,...,bn

t0 ∼d t. Wehave (∆, M) Ĩb1,...,bn
t1. 26. Dealing with repliationWe extend our π-alulus with the following onstrution9: if l ∈ L, if

a and b1, . . . , bn are pairwise distint names and if P is a proess suh that
FV(P ) ⊆ {b1, . . . , bn}, then [l]!a(b1, . . . , bn) · P is a proess, whose only freename is a. This proess is guarded, in the sense of 4.2.2. This extension has noin�uene on the de�nition of the relation ;can on the states of our environmentmahine. The transition of the mahine has to be extended with the followingrule:

(([l]!a(b1 . . . bn) · P, e)([m]a′〈b′1 . . . b′n〉 · P
′, e′)Γ, L)

lm
−→ Can(([l]!a(b1 . . . bn) · P, e)

(P, e[b1 7→ e′(b′1), . . . , bn 7→ e′(b′n)])(P ′, e′)Γ, L)9This is a restrited form of repliation: all the free names of the repliable proess haveto be bound by the pre�x. 34
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`(b) The subnet uFigure 29: Translation of input repliationWe extend now the translation relation I to the repliated input proess.Let P be a proess whose free names are ontained in the repetition-free list
b1, . . . , bn, and let a, a1, . . . , ap be a list of pairwise distint names. We set
[l]!a(b1 . . . bn) · P Ia,a1,...,ap

s if, for some simple net t suh that P Ib1,...,bn
t, sis of the shape given by Figure 29(a). The promotion ell of that net ontainsthe net shown in Figure 29(b).When P Ib1,...,bn

t for a proess with repliation P , the simple net t does notsatisfy the CLB (see 1.3.5) in general sine promotion ells will have labels 6= τ ,so that a bisimulation theorem will be harder to obtain (the transition systemof simple nets is de�ned only for nets satisfying the CLB in Setion 2.3). Oneshould label in a di�erent way the various opies of promotion ells, in the spiritof the geometry of interation [Gir88a℄, with a similar disipline for proessesas well.7. Examples and onlusionWe give a few examples to illustrate some key features of ommuniation inthe π-alulus as represented in di�erential interation nets.7.1. Conurrent ommuniationLet P be the proess (the restrition is here only to illustrate its interpreta-tion in nets by a ommuniation area of order −1):
νa ·

((
[l]a() · nil | [m]a〈〉 · nil

)
| [r]a〈〉 · nil

)
.The simplest state ontaining P is (Γ, L) = ((P, ∅), ∅). We have (Γ, L) I s where

s is the simple net of Figure 30.By applying aggregations of ommuniation areas, we obtain the simple net
s1 of Figure 31. Thus s ;

∗
s s1. Sine P is in fat a CCS proess (namely νa ·(a |

a | a)), we an remark how the translation into di�erential interation nets isgiven by �rst a tree (with nodes represented with dashed boxes) orrespondingto the tree struture of the CCS proess (built from sequential and parallelompositions), and seond ommuniation areas for the identi�ation of names.The simple net s1 redues to the net s2 (s1 ;
∗
d s2) of Figure 32, where35
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Figure 33: A CSS proess: �nal statethe hoie between ations ready to ommuniate will be done. This meansthat s2 redues to a sum of simple nets ontaining in partiular the net s3(s2 ;
∗
{l,m} s3 + · · · ) of Figure 33. If t results from the redution of the (l, m)-ommuniation redex in s3, we have s

lm
−→ t. This orresponds to (Γ, L) ;can

(([l]a() · nil, e)([m]a〈〉 · nil, e)([r]a〈〉 · nil, e), {a′})
lm
−→ (([r]a〈〉 · nil, e), {a′}) (with ede�ned only on {a} by e(a) = a′) in the environment mahine.7.2. SequentialityLet P be the proess:

[l]a() · [l′]b() · nil | [m′]b〈〉 · nil | [m]a〈〉 · nilThe simplest state ontaining P is (Γ, L) = ((P, e), ∅) (with e de�ned on {a, b}by e(a) = a′ and e(b) = b′). We have (Γ, L) Ia′,b′ s with s ;
∗
s s1 (aggregations37
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Figure 34: Sequentiality: s1, translation of the proess
P = [l]a() · [l′]b() · nil | [m′]b〈〉 · nil | [m]a〈〉 · nilof ommuniation areas) and s1 is the simple net of Figure 34; observe thatthere is a guarding path from l′ to l whih enfores sequentiality by preventing

l′ to interat with m. Sine P is again a CCS proess (namely a · b | b | a), wean see its tree struture in the di�erential interation net s1 of Figure 34.The simple net s1 redues to the simple net s2 of Figure 35 (s1 ;
∗
d s2),where the above mentioned guarding path is preserved.Then there exists a simple net s3 suh that s2 ;

∗
{l,m} s3 + · · · and if tresults from the redution of the (l, m)-ommuniation redex in s3, we have

s
lm
−→ t. Moreover t redues to the net of Figure 36. This orresponds to

(Γ, L) ;can (([l]a() · [l′]b() · nil, e)([m′]b〈〉 · nil, e)([m]a〈〉 · nil, e), ∅)
lm
−→ (([l′]b() ·

nil, e)([m′]b〈〉 · nil, e), ∅) in the environment mahine.7.3. Name passingLet P , Q and R be proesses suh that the free names of P are a and z, theonly free name of Q is y and the free names of R are x and b. Let P ′ be theproess:
νz ·

(
[l]a〈z〉 · P | [l′]z(y) · Q

)
| [m]a(x) · [m′]x〈b〉 · R38
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1
, translation of the proess P ′ (after a few struturalredutions)The simplest state ontaining P ′ is (Γ, L) = ((P ′, e), ∅) (with e de�ned on {a, b}by e(a) = a′ and e(b) = b′). If P Ia,z s1, Q Iy s2 and R Ix,b s3, we have

(Γ, L) Ia′,b′ s′ with s′ ;
∗
s s′1 (aggregations of ommuniation areas) and s′1 isthe simple net of Figure 37.We have s′

ml
−→ t with t ;

∗
d s′2 and s′2 is the simple net of Figure 38, wherethe identi�ation of the names z and x orresponds to the onnetion of theassoiated ommuniation areas.Finally t

l′m′

−→ t′ with t′ ;
∗
d s′3 and s′3 is the simple net of Figure 39 where yand b are also identi�ed.This orresponds to

(Γ, L) ;can (([l]a〈z〉 · P, e[z 7→ z′])([l′]z(y) · Q, e[z 7→ z′])

([m]a(x) · [m′]x〈b〉 · R, e), {z′})

ml
−→ ((P, e[z 7→ z′])([l′]z(y) · Q, e[z 7→ z′])

([m′]x〈b〉 · R, e[x 7→ z′]), {z′})

l′m′

−→ ((P, e[z 7→ z′])(Q, e[z 7→ z′, y 7→ b′])(R, e[x 7→ z′]), {z′})in the environment mahine.7.4. ConlusionThe main goal of this work was not to de�ne one more translation of the
π-alulus into yet another exoti formalism. We wanted to illustrate by ourbisimulation result that di�erential interation nets are su�iently expressivefor simulating onurreny and mobility, as formalized in the π-alulus. Webelieve that di�erential interation nets have their own interest and �nd a strong40
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mathematial and logial justi�ation in their onnetion with linear logi, inthe existene of various denotational models and in the analogy between its ba-si onstruts and fundamental mathematial operations suh as di�erentiationand onvolution produt. The fat that di�erential interation nets supportonurreny and mobility suggests that they might provide more onvenientmathematial and logial foundations to onurrent omputing. In partiular,this work suggests that di�erential linear logi might be the logial side of aCurry-Howard orrespondene for onurreny and mobility, but there is still alot of work to do for enforing this idea. The following issues are ruial.7.4.1. Logial orretness. The nets whih result from our translation donot satisfy in general the Danos-Regnier ayliity riterion, so they annotalways be sequentialized into proofs of the sequent alulus of Setion 1.1. Wethink that the sequentializable nets are already quite expressive in terms ofonurreny and mobility, but this laim has to be enfored by mathematialresults. One researh diretion here would be to try to identify a well-behavedand su�iently expressive fragment of the π-alulus, or of the solos alulus,whose proesses are translated into sequentializable nets.7.4.2. Typing. And then of ourse, there is the question of typing, whih isorthogonal to the sequentializabilty issue. The nets presented here are �weaklytyped�: they are typed using a type o whih satis�es the reursive equation
o = ?(o⊥)`o = (o ⇒ o). This is a typing system whih aepts all untypedlambda-terms10, and hene does not onvey any information about terms, buthas two e�ets when used in our setting. First it prevents �lashes� to appearduring the redution of nets (for instane, the prinipal port of a tensor ellonneted to the prinipal port of another tensor ell). Seond, it allows to in-terpret our nets in some denotational models of the untyped di�erential lambda-alulus, suh as the relational model presented in [BEM07℄. It is possible toadopt more informative typing disiplines, suh as seond order propositionallinear logi. The question is then again to understand if suh typed and logiallyorret di�erential nets are still su�iently expressive in terms of onurrenyand mobility and to design typed and logially orret proess algebras asso-iated with suh nets. The suess of this researh program would lead to atrue extension of the Curry-Howard orrespondene to onurreny. Of ourse,many other issues have to be addressed as well. Let us mention only a few ofthem.

• How should we handle the sum of proess algebras in our setting, and howis it related to the additive onnetives of linear logi?
• What kind of repliation an we enode in our nets, using more general10Remember that the untyped lambda-alulus an be translated into nets of multipliative-exponential linear logi, whih are typed in this typing system, and satisfy the Danos-Regnierayliity riterion, see [Reg92℄. 42



instanes of the promotion rule of linear logi than the losed promotionof Setion 6?
• Sine our nets belong to a di�erential extension of linear logi in whihthe lambda-alulus an be faithfully represented as well, does our settingsuggest new ways of ombining onurrent and funtional programming?
• Our nets admit denotational models, suh as the relational model intro-dued in [BEM07℄. What kind of equivalene on proesses do suh inter-pretations indue through our translation?7.4.3. Final remark. In the �nal revision proess of this paper, we observedthat Proposition 11 an be strengthened. Indeed, with the notations of thatproposition, if (Γ, L) Ib1,...,bn

s and if s ;
∗
{l,m} s0 + s1 + · · · + sn where s0 isa simple net whih ontains an (l, m)-ommuniation redex, then si is {l, m}-neutral for eah i ≥ 1. This is atually a simple onsequene of Theorem 2 andof Proposition 10, observing �rst that we must have (Γ, L)

lm
−→ (∆, M) for some

(∆, M), as we did at the beginning of the proof of Proposition 11. This indiatesthat Theorem 12 still holds if we remove the {l, m}-neutrality restrition in thede�nition of the transition system DL (see Remark 5 in 2.3.3).Referenes[AC98℄ Roberto Amadio and Pierre-Louis Curien. Domains and lambda-aluli, volume 46 of Cambridge Trats in Theoretial Computer Si-ene. Cambridge University Press, 1998.[AM99℄ Samson Abramsky and Paul-André Melliès. Conurrent games andfull ompleteness. In Proeedings of the 14th Annual IEEE Symposiumon Logi in Computer Siene. IEEE, 1999.[BB90℄ Gérard Berry and Gérard Boudol. The hemial abstrat mahine. InProeedings of the 17h ACM Symposium on Priniples of Program-ming Languages (POPL), pages 81�94. ACM Press, January 1990.[Bef05℄ Emmanuel Be�ara. Logique, Réalisabilité et Conurrene. PhD thesis,Université Denis Diderot, 2005.[BEM07℄ Antonio Buiarelli, Thomas Ehrhard, and Giulio Manzonetto. Notenough points is enough. In Proeedings of the 21st Annual Confereneof the European Assoiation for Computer Siene Logi (CSL'07),Leture Notes in Computer Siene. Springer-Verlag, September 2007.[BHY04℄ Martin Berger, Kohei Honda, and Nobuko Yoshida. Strong normalis-ability in the pi-alulus. Information and Computation, 191:145�202,2004. 43
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