
Interpreting a Finitary Pi-Calulus in Di�erentialInteration NetsThomas Ehrhard and Olivier LaurentPreuves, Programmes & SystèmesUniversité Denis Diderot and CNRSAbstrat. We propose and study a translation of a pi-alulus withoutsums nor repliation/reursion into an untyped and essentially promotion-free version of di�erential interation nets. We de�ne a transition systemof labeled proesses and a transition system of labeled di�erential in-teration nets. We prove that our translation from proesses to nets isa bisimulation between these two transition systems. This shows thatdi�erential interation nets are su�iently expressive for representingonurreny and mobility, as formalized by the pi-alulus.IntrodutionLinear Logi proofs [Gir87℄ admit a proof net representation whih has a veryasynhronous and loal redution proedure, suggesting strong onnetions withparallel omputation. This impression has been enfored by the introdution ofinteration nets and interation ombinators by Lafont in [Laf95℄.But the attempts towards �onurrent� interpretations of linear logi (e.g.[EW97℄, [AM99℄, [Mel06℄, [Bef05℄, [CF06℄ based on [FM05℄. . . ) missed a ru-ial feature of true onurreny, suh as modelled by proess aluli like Milner's
π-alulus [Mil93,SW01℄): its intrinsi non-determinism. This failure is easily un-derstandable sine there is an apparent ontradition between non-determinismand the Curry-Howard approah to omputation onsisting in identifying proofsand programs. Aording to this paradigm, a well-behaved proof system shouldpossess a on�uent ut-elimination proedure. But on�uene is a way of ex-pressing determinism in a rewriting setting: typially, it implies that a losedproof of boolean type annot redue to true and also to false.Many denotational models of the lambda-alulus and of linear logi ad-mit some form of non-determinisms (e.g. [Plo76,Gir88℄), showing that a non-deterministi proof alulus is not neessarily trivial. The �rst author introduedsuh models, based on vetor spaes in [Ehr02,Ehr05℄, whih have a nie proof-theoreti ounterpart, orresponding to a simple extension of the rules that linearlogi assoiates with the exponentials. In this di�erential setting, the weakeningrule has a mirror image rule alled oweakening, and similarly for derelition andfor ontration, and the redution rules have the orresponding mirror symmetry.The orresponding formalism of di�erential interation nets has been introduedin a joint work by the �rst author and Regnier [ER06℄.



In a joint work with Kohei Honda [HL06℄, the seond author proposed atranslation of a version of the π-alulus in proof-nets for a version of linearlogi extended with the oontration rule. The basi idea onsists in inter-preting the parallel omposition as a ut between a ontration link (to whihseveral outputs are onneted, through derelition links) and a oontrationlink, to whih several promoted reeivers are onneted. Being promoted, thesereeivers are repliable, in the sense of the π-alulus. The other fundamentalidea of this translation onsists in using linear logi polarities for making thedi�erene between outputs (negative) and inputs (positive), and of imposing astrit alternation between these two polarities. This allows to reast in a polar-ized linear logi setting a typing system for the π-alulus previously introduedby Berger, Honda and Yoshida in [BHY03℄. This translation an be onsideredas the �rst really onvining Curry-Howard interpretation of proesses, but hastwo features whih an be onsidered as slight defets: it aepts only repliablereeivers and is not really modular (the parallel omposition of two proessesannot be desribed as a ombination of the orresponding nets).Priniple of the translation. The purpose of the present paper is to ontinuethis line of ideas, using more systematially the new strutures introdued bydi�erential interation nets1.The �rst key deision we made, guided by the struture of the typial o-ontration/ontration ut intended to interpret parallel omposition, was ofassoiating with eah free name of a proess not one, but two free ports in theorresponding di�erential interation net. One of these ports will have a !-type(positive type) and will have to be onsidered as the input port of the orre-sponding name for this proess, and the other one will have a ?-type (negativetype) and will be onsidered as an output port.
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Fig. 1. Communiationarea
We disovered strutures whih allow to ombinethese pairs of wires for interpreting parallel omposi-tion and alled them ommuniation areas : they areobtained by ombining in a ompletely symmetri wayoontration and ontration ells. There are om-muniation areas of any �arity� (number of pairs ofwires onneted to it). The ommuniation area ofarity 3 an be pitured as in Figure 1, where oon-tration ells are pitured as !-labeled triangles andontration ells as ?-labeled triangles. The ports or-responding to the same pairs are the prinipal portsof antipodi ells.1 One should mention here that translations of the π-alulus into nets of variouskinds, subjet to loal redution relations, have been provided by various authors(f. the work of Laneve, Parrow and Vitor on solo diagrams [LPV01℄, of Be�araand Maurel [BM05℄, of Milner on bigraphs [JM04℄, of Mazza [Maz05℄ on multiportinteration nets et.). But these settings have no lear logial grounds nor simpledenotational semantis.



Content. We �rst introdue di�erential interation nets, typed with a reur-sive typing system (introdued by Danos and Regnier in [Reg92℄ and orre-sponding to the untyped lambda-alulus) for avoiding the appearane of nonreduible on�gurations. This system is �nitary in the sense that it has no pro-motion. Using these ells, we de�ne a �toolbox�, a olletion of nets that we shallombine for interpreting proesses, and a few assoiated redutions, derived fromthe basi redution rules of di�erential interation nets.We organize redution rules of nets as a labeled transition system, whose ver-ties are nets, and where the transitions orrespond to derelition/oderelitionredution. Then we de�ne a proess algebra whih is a polyadi π-alulus, with-out repliation and without sums. We speify the operational semantis of thisalulus by means of an abstrat mahine inspired by the mahine presentedin [AC98℄, Chapter 16. We de�ne a transition system whose verties are thestates of this mahine, and transitions orrespond to input/output redutions.Last we de�ne a �translation� relation from mahine states to nets and show thatthis translation relation is a bisimulation between the two transition systems.The main goal of this work is not to de�ne one more translation of the π-alulus into yet another exoti formalism. We want to illustrate by our bisimu-lation result that di�erential interation nets are su�iently expressive for simu-lating onurreny and mobility, as formalized in the π-alulus. We believe thatdi�erential interation nets have their own interest and �nd a strong mathemat-ial and logial justi�ation in their onnetion with linear logi, in the existeneof various denotational models and in the analogy between its basi onstrutsand fundamental mathematial operations suh as di�erentiation and onvolu-tion produt. The fat that di�erential interation nets support onurreny andmobility suggests that they might provide more onvenient mathematial andlogial foundations to onurrent omputing.1 Di�erential interation nets1.1 Presentation of the ellsOur nets will be typed using a type system whih orresponds to the untypedlambda-alulus. This typing system is based on a single type symbol o (thetype of outputs), subjet to the following reursive equation o = ?o⊥�o. We set
ι = o⊥, so that ι = !o ⊗ ι and o = ?ι�o.We assume known from the reader the basis of interation nets, as intro-dued by Lafont in [Laf95℄, see also [ER06℄ for a more detailed introdution todi�erential interation nets. In our pitures, ells are represented by triangles,and the prinipal port is loated at one of the angles of the triangle. Sometimes,we shall put a blak dot to loate the auxiliary port numbered 1. The other aux-iliary ports are numbered in the obvious way, starting from this marked auxiliaryport (the arity of the ell is the number of its auxiliary ports).In the present setting, there are eleven kinds of ells: par (arity 2), bottom(arity 0), tensor (arity 2), one (arity 0), derelition (arity 1), weakening (arity 0),



ontration (arity 2), oderelition (arity 1), oweakening (arity 0), oontration(arity 2) and losed promotion (arity 0). We present now the various kinds ofells, with their typing rules, in a pitorial way.1.1.1 Multipliative ells. The par and tensor ells, as well as their �nullary�versions bottom and one are as follows:
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ι1.1.2 Exponential ells. They are typed aording to a stritly polarizeddisipline. Here are �rst the why not ells, whih are alled derelition, weakeningand ontration:
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!o1.1.3 Closed promotion ells and simple nets. The notion of simple netis then de�ned indutively, together with the notion of losed promotion ell.Given a (non neessarily simple) net s with only one free port os weintrodue a ell s!
!o .A simple net is a net, built aording to the usual onstrution rules oftyped interation nets reorded in Setion 6.1, using the kinds of ells we haveintrodued.1.1.4 Nets. A net is a �nite sum of simple nets having all the same interfae.Remember that the interfae of a simple net s is the set of its free ports, togetherwith the mapping assoiating to eah free port the type of the oriented wire of

s whose ending point is the orresponding port.Let L be a ountable set of labels ontaining a distinguished element τ (to beunderstood as the absene of label). A labeled simple net is a simple net whereall derelition and oderelition ells are equipped with labels belonging to L.We require moreover that, if two labels ourring in a labeled net are equal, theyare equal to τ . All the nets we onsider in this paper are labeled. In our pitures,the labels of derelition and oderelition ells will be indiated, unless it is τ ,in whih ase the (o)derelition ell will be drawn without any label.2 Redution rulesWe denote by ∆ the olletion of all simple nets and by N〈∆〉 the olletion ofall nets (�nite sums of simple nets with the same interfae).A redution rule is a subset R of ∆ × N〈∆〉 onsisting of pairs (s, s′) where
s is made of two ells onneted by their prinipal ports and s′ has the same



interfae as s. This set an be �nite or in�nite. Suh a relation is easily extendedto arbitrary simple nets (s R t if there is (s0, u1 + · · · + un) ∈ R where s0 isa subnet of s, eah ui is simple and t = t1 + · · · + tn where ti is obtained byreplaing s0 by ui in s). This relation is extended to nets (sums of simple nets):
s1 + · · · + sn (where eah si is simple) is related to s′ by this extension RΣ if
s′ = s′1 + · · ·+ s′n where, for eah i, si R s′i or si = s′i. Last, R∗ is the transitiveand re�exive losure of RΣ.2.1 De�ning the redution2.1.1 Multipliative redution. The �rst two rules onern the interationof two multipliative ells of the same arity.
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;m ε1where ε stands for the empty simple net (not to be onfused with the net 0 ∈
N〈∆〉, whih is not a simple net). The next two rules onern the interationbetween a binary and a nullary multipliative ell.� 1
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⊥So here the redution rule (denoted as ;m) has four elements.2.1.2 Communiation redution. Let R ⊆ L. We have the following re-dutions if l, m ∈ R.
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l mSo the set ;c,R is in bijetive orrespondene with the set of pairs (l, m) with
l, m ∈ R and l = m ⇒ l = m = τ .2.1.3 Non-deterministi redution. Let R ⊆ L. We have the followingredutions if l ∈ R.
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2.1.4 Strutural redution.
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?2.1.5 Box redution.
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lObserve that the redution rules are ompatible with the identi�ation of theoweakening ell with a promotion ell ontaining the 0 net. Observe also thatthe only rules whih do not admit a �symmetri� rule are those whih involvepromotion ell. Indeed, promotion is the only asymmetri rule of di�erentiallinear logi.One an hek that we have provided redution rules for all possible redexes,ompatible with our typing system: for any simple net2 s made of two ellsonneted through their prinipal ports, there is a redution rule whose leftmember is s. This rule is unique, up to the hoie of a set of labels, but thishoie has no in�uene on the right member of the rule.2.2 Con�ueneTheorem 1. Let R, R′ ⊆ L. Let R ⊆ ∆ × N〈∆〉 be the union of some of theredution relations ;c,R, ;nd,R′ , ;m, ;s and ;b. The relation R∗ is on�uenton N〈∆〉.The proof is essentially trivial sine the rewriting relation has no ritial pair(see [ER06℄). Given R ⊆ L, we onsider in partiular the following redution:
;R = ;m∪;c,{τ}∪;s∪;b∪;nd,R. We set ;d = ;∅ (�d� for �deterministi�)and denote by ∼d the symmetri and transitive losure of this relation.Some of the redution rules we have de�ned depend on a set of labels. Thisdependene is learly monotone in the sense that the relation beomes largerwhen the set of labels inreases.2.3 A transition system of simple nets2.3.1 {l, m}-neutrality. Let l and m be distint elements of L\{τ}. We all
(l, m)-ommuniation redex a ommuniation redex whose (o)derelition ells2 And remember that suh a struture must be typed.



are labeled by l and m. We say that a simple net s is {l, m}-neutral if, whenever
s ;

∗
{l,m} s′, none of the simple summands of s′ ontains an (l, m)-ommuniationredex.Lemma 1. Let s be a simple net. If s ;

∗
{l,m} s′ where all the simple summandsof s′ are {l, m}-neutral, then s is also {l, m}-neutral.2.3.2 The transition system. We de�ne a labeled transition system DLwhose objets are simple nets, and transitions are labeled by pairs of distintelements of L \ {τ}. Let s and t be simple nets, we have s

lm
−→ t if the followingholds: s ;

∗
{l,m} s1 + s2 + · · · + sn where s1 is a simple net whih ontainsan (l, m)-ommuniation redex (with derelition labeled by m and oderelitionlabeled by l) and beomes t when one redues this redex, and eah si (for i > 1)is {l, m}-neutral.Lemma 2. The relation ∼d ⊆ ∆ × ∆ is a a bisimulation on DL.3 A toolbox for proess aluli interpretation3.1 Compound ells3.1.1 Generalized ontration and oontration. A generalized on-tration ell or ontration tree is a simple net γ (with one prinipal port anda �nite number of auxiliary ports) whih is either a wire or a weakening ell ora ontration ell whose auxiliary ports are onneted to the prinipal port ofother ontration trees, whose auxiliary ports beome the auxiliary ports of γ.Generalized oontration ells (oontration trees) are de�ned dually.We use the same graphial notations for generalized (o)ontration ells asfor ordinary (o)ontration ells, with a �∗� in supersript to the � !� or �?�symbols to avoid onfusions. Observe that there are in�nitely many generalized(o)ontration ells of any given arity.3.1.2 The derelition-tensor and the oderelition-par ells. Let n bea non-negative integer. We de�ne an n-ary ell as follows. It will be deoratedby the label of its derelition ell (if di�erent from τ).
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lThe number of tensor ells in this ompound ell is equal to n. One de�nes duallythe !� ompound ell.



3.1.3 The pre�x ells. Now we an de�ne the ompound ells whih willplay the main role in the interpretation of pre�xes of the π-alulus. Thanks tothe above de�ned ells, all the oriented wires of the nets we shall de�ne will beartype ?ι or !o. Therefore, we adopt the following graphial onvention: the wireswill bear an orientation orresponding to the ?ι type.The n-ary input ell and the n-ary output ell are de�ned as
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llwith n pairs of auxiliary ports.Pre�x ells are labeled by the label arried by their outermost derelition-tensor or oderelition-par ompound ell, if di�erent from τ , the other oderelition-par or derelition-tensor ompound ells being unlabeled (that is, labeled by τ).3.1.4 Transistors and boxed identity. In order to implement the sequen-tiality orresponding to sequenes of pre�xes in the π-alulus, we shall use theunary output pre�x ell de�ned above as a kind of transistor, that is, as a kindof swith that one an put on a wire, and whih is ontrolled by another wire.This idea is strongly inspired by the translation of the π-alulus in the alulusof solos3. ��?⊗

⊥

o•Fig. 2. IdentityThese swithes will be losed by �boxed identity ells�,whih are the unique use we make of promotion in thepresent work. Let I be the �identity� net of Figure 2.Then we shall use the losed promotion ell labeled by
I !: I ! .3.2 Communiation tools

3Fig. 3. Area of or-der 3
3.2.1 The ommuniation areas. Let n ≥ −2. Wede�ne a family of nets with 2(n + 2) free ports, alledommuniation areas of order n, that we shall draw usingretangles with beveled angles. Figure 3 shows how wepiture a ommuniation area of order 3.A ommuniation area of order n is made of n+2 pairsof (n + 1)-ary generalized oontration and ontrationells (γ+

1 , γ−
1 ), . . . , (γ+

n+1, γ
−
n+1), with, for eah i and j suhthat 1 ≤ i < j ≤ n + 2, a wire from an auxiliary port of γ+

i to an auxiliary portof γ−
j and a wire from an auxiliary port of γ−

i to an auxiliary port of γ+
j .So the ommuniation area of order −2 is the empty net ε, and ommunia-tion areas of order −1, 0 and 1 are respetively of the shape3 It is shown in [LV03℄ that one an enode the π-alulus sequentiality indued bypre�x nesting in the ompletely asynhronous solo formalism: the idea of suh trans-lations is to observe that, in a solo proess like P = νy (u(x, y) | y(. . . )) | Q, the �rstsolo must interat before the seond one with the environment Q.
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?∗!∗3.2.2 Identi�ation strutures. Let n, p ∈ N and let f : {1, . . . , p} →
{1, . . . , n} be a funtion. An f -identi�ation net is a struture with p + n pairsof free ports (p pairs orrespond to the domain of f and, in our pitures, willbe attahed to the non beveled side of the identi�ation struture, and n pairsorrespond to the odomain of f , attahed to the beveled side of the struture)as in Figure 4(a). Suh a net is made of n ommuniation areas, and on the j'tharea, the j'th pair of wires of the odomain is onneted, as well as the pairsof wires of index i of the domain suh that f(i) = j. For instane, if n = 4,
p = 3, f(1) = 2, f(2) = 3 and f(3) = 2, a orresponding identi�ation strutureis made of three ommuniation areas, two of order −1, one of order 0 and oneof order 1, as in Figure 4(b).
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. . .() RedutionFig. 4. Identi�ation strutures3.3 Useful redutions.3.3.1 Aggregation of ommuniation areas. One of the nie propertiesof ommuniation areas is that, when one onnets two suh areas through a pairof wires, one gets another ommuniation area; if the two areas are of respetiveorders p and q, the resulting area is of order p + q, see Figure 5.
p + q ...... p ;

∗
sq ... ...Fig. 5. Aggregation



3.3.2 Composition of identi�ation strutures. In partiular, we getthe redution of Figure 4().3.3.3 Port forwarding in a net. Let t be a net and p be a free port of t.We say that p is forwarded in t if there is a free port q of t suh that t is of oneof the two following shapes:
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......3.3.4 Forwarding of derelitions and oderelitions in ommuniationareas. The following redution shows that derelitions and oderelitions anmeet eahother, when onneted to a ommon ommuniation areas. Let l, m ∈
L, then
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mwhere N is a non-negative integer (atually, N = (p + 1)2) and, in eah simplenet ti, both ports r and r′ are forwarded.3.3.5 General forwarding. Let l ∈ L. The following more general but lessinformative property will also be used: one has
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lwhere in eah simple net ui, the port r is forwarded (see 3.3.3). Of ourse onealso has a dual redution (where the derelition is replaed by a oderelition,and the generalized ontration by a generalized oontration).3.3.6 Redution of pre�xes. Let l, m ∈ L. If we onnet an n-ary outputpre�x labeled by m to a p-ary input pre�x labeled by l, we obtain a net whihredues by ;c,{l,m} to a net u whih redues by ;

∗
{τ} to 0 if n 6= p and to simplewires, in Figure 6(a), if n = p.3.3.7 Transistor triggering. A boxed identity onneted to the prinipalport of a unary output ell used as a �transistor� turns it into a simple wire asin Figure 6(b).

• • ...!?
... ...

m

l

;c,{l,m} u ;
∗
∅(a) Pre�xes interation I ! ?

•
;

∗
∅(b) TransistortriggeringFig. 6. Pre�x redution



4 A polyadi �nitary π-alulus and its enodingThe proess alulus we onsider is a fragment of the π-alulus where we havesuppressed the following features: sums, repliation, reursive de�nitions, mathand mismath. This does not mean of ourse that di�erential interation netsannot interpret these features. LetN be a ountable set of names. Our proessesare de�ned by the following syntax. We use the same set of labels as before.� nil is the empty proess.� If P1 and P2 are proesses, then P1 | P2 is a proess.� If P is a proess and a ∈ N , then νa · P is a proess. a is bound in thisproess.� If P is a proess, a, b1, . . . , bn ∈ N , the names bi being pairwise distint andif l ∈ L, then Q = [l]a(b1 . . . bn) ·P is a proess (pre�xed by an input ation,whose subjet is a and whose objets are the bi; a is free and eah bi is boundin Q and hene a is distint from eah bi).� If P is a proess, a, b1, . . . , bn ∈ N and l ∈ L, then [l]a〈b1 . . . bn〉 · P is aproess (pre�xed by an output ation, whose subjet is a and whose objetsare the bi's). This onstrution does not bind the names bi, and one does notrequire the bi to be distint. The name a an be equal to some of the bis.The purpose of this labeling of pre�xes is to distinguish the various ourrenesof names as subjet of pre�xes. The set FV(P ) of free names of a proess P isde�ned in the obvious way. The α-equivalene relation on proesses is de�ned asusual.A labeled proess is a proess where all pre�xes are labeled, by pairwisedistint labels, all these labels being di�erent from τ . If P is a labeled proess,
L(P ) denotes the set of all labels ourring in P . Observe that this set has anatural poset (forest atually) struture (l < m if, in P , l labels a pre�x µ and
m ours in the proess pre�xed by µ).All the proesses we onsider in this paper are labeled.4.1 An exeution modelRather than onsidering a rewriting relation on proesses as one usually does,we prefer to de�ne an �environment mahine�, similar to the mahine introduedin [AC98℄, Chapter 164.An environment is a funtion from a �nite subset Dom e ofN to a �nite subset
Codom e of N . A losure is a pair (P, e) where P is a proess and e is an environ-ment suh that FV(P ) ⊆ Dom(e). A soup is a multiset S = (P1, e1) · · · (PN , eN )of losures (denoted by simple juxtaposition). The odomain of a soup is theunion of the odomains of the environments of this soup. The soup S is labeledif all the Pi's are labeled, with pairwise disjoint sets of labels. A state is a pair4 The reason for this hoie is that the rewriting approah uses an operation whihonsists in replaing a name by another name in a proess. The orresponding op-eration on nets is rather ompliated and we prefer not to de�ne it here.



(S, L) where S is a soup and L is a set of names (the names whih have to beonsidered as loal to the state). The state (S, L) is labeled if the soup S islabeled.All the states we onsider are labeled. One de�nes the poset L(S, L) of alllabels of the state (S, L) in the straightforward way, as the parallel ompositionof the posets assoiated to the proesses of the losures of S.4.1.1 Canonial form of a state. We say that a proess is guarded ifit starts with an input pre�x or an output pre�x. We say that a soup S =
(P1, e1) · · · (PN , eN ) is anonial if eah Pi is guarded, and that a state (S, L) isanonial if the soup S is anonial. One de�nes a rewriting relation ;can whihallows to turn a state into a anonial one.

((nil, e)S, L) ;can (S, L)

((νa · P, e)S, L) ;can ((P, e[a 7→ a′])S, L ∪ {a′})

((P | Q, e)S, L) ;can ((P, e)(Q, e)S, L)where, in the seond rule, a′ ∈ N \ (L ∪ Codom(e) ∪ Codom(S)). One showseasily that, up to α-onversion, this redution relation is on�uent, and it islearly strongly normalizing. We denote by Can(S, L) the normal form of thestate (S, L) for this rewriting relation.Moreover, observe that if (S, L) ;can (T, M), then (S, L) and (T, M) havethe same set of free names.4.1.2 Transitions. Next, one de�nes a labeled transition system SL. Theobjets of this system are labeled anonial states and the transitions, labeledby pairs of labels, are de�ned as follows.
(([l]a(b1 . . . bn) · P, e)([m]a′〈b′1 . . . b′n〉 · P

′, e′)S, L)
lm
−→ Can((P, e[b1 7→ e′(b′1), . . . , bn 7→ e′(b′n)])(P ′, e′)S, L)if e(a) = e′(a′). Observe that if (S, L)

lm
−→ (T, M) then FV(T, M) ⊆ FV(S, L).4.2 Translation of proessesSine we do not work up to assoiativity and ommutativity of ontration andoontration, it does not make sense to de�ne this translation as a funtion fromproesses to nets. For eah repetition-free list of names a1, . . . , an, we de�ne arelation Ia1,...,an

from proesses whose free names are ontained in {a1, . . . , an}to nets t whih have 2n + 1 free ports aι
1, a

o
1, . . . , a

ι
n, ao

n and c as in Figure 7(a).The additional port c will be used for ontrolling the sequentiality of the redu-tion, thanks to transistors. Reduing the translation of a proess will be possibleonly when a boxed identity ell will be onneted to its ontrol port. This isompletely similar to the additional ontrol free name in the translation of the
π-alulus in solos, in [LV03℄.Clearly, if P and P ′ are α-equivalent, then P Ia1,...,an

s i� P ′ Ia1,...,an
s.
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(g) StateFig. 7. Proess and state translation4.2.1 Empty proess. One has nil Ib1,...,bn
t if t is t is as in Figure 7(b).4.2.2 Name restrition. One has νa ·P Ib1,...,bn

t i� t is as in Figure 7(),with s satisfying P Ia,b1,...,bn
s.4.2.3 Parallel omposition. One has P1 | P2 Ib1,...,bn

t i� the simple net
t is as in Figure 7(d), where P1 Ib1,...,bn

t1, P2 Ib1,...,bn
t2 and γ1, . . . , γn areommuniation areas of order 1.4.2.4 Input pre�x. Let l ∈ L. Assume that a, b1, . . . , bn, c1, . . . , cp are pair-wise distint names and let Q = [l]a(b1 . . . bn) · P . One has Q Ia,c1,...,cp

t if allthe free names of P are ontained in a, b1, . . . , bn, c1, . . . , cp and if t is as in Fig-ure 7(e), where γ is a ommuniation area of order 1 and where s is a simple netwhih satis�es P Ia,b1,...,bn,c1,...,cp
s.4.2.5 Output pre�x. Let l ∈ L. Let b1, . . . , bn be a list of pairwise distintnames and let Q = [l]bf(0)〈bf(1) . . . bf(q)〉 ·P , where f : {0, 1, . . . , q} → {1, . . . , n}is a funtion. One has Q Ib1,...,bn
t if all the free names of P are ontained in

b1, . . . , bn and if t is as in Figure 7(f), where γ1, . . . , γn are ommuniation areas



of order 1, δ is an f -identi�ation struture and where s is a simple net whihsatis�es P Ib1,...,bn
s.4.2.6 States. Let S = (P1, e1) . . . (PN , eN) be a soup and b1, . . . , bn be arepetition-free list of names ontaining all the odomains of the environments

e1, . . . , eN . We assume that the domains of the environments ei are pairwisedisjoint, whih is possible up to α-onversion. Let a1, . . . , ap be a repetition-freeenumeration of the elements of ⋃N

i=1 Dom ei, suh that there is a list of non-negative integers 0 = h0 ≤ h1 ≤ · · · ≤ hN = p suh that, for i = 1, . . . , N , thelist ahi−1+1, . . . , ahi
is a repetition-free enumeration of the elements of Dom(ei).Let e : {1, . . . , p} → {1, . . . , n} be the map whih is uniquely de�ned by the fatthat, for eah i = 1, . . . , N and eah j suh that hi−1 + 1 ≤ j ≤ hi, one has

ei(aj) = be(j).Then one has S Ib1,...,bn
t if t is a simple net of the following shape, where

s1,. . . , sN are simple nets suh that Pi Ib1,...,bn
si and δ is an e-identi�ationstruture as in Figure 7(g).Last, if we are moreover given L ⊆ N and a repetition-free list of names

b1, . . . , bn ontaining all the free names of the state (S, L), one has (S, L) Ib1,...,bn

u if one has S Ib1,...,bn,c1,...,cp
t for some repetition-free enumeration c1, . . . , cp of

L (assumed of ourse to be disjoint from b1, . . . , bn, whih is always possible upto α-equivalene), and u is obtained by plugging ommuniation areas of order
−1 on the pairs of free ports of t orresponding to the cjs.5 Comparing the transition systemsWe establish �rst two results whih are the main ingredients towards our bisim-ulation theorem.Proposition 1. Let (S, L) and (T, M) be anonial states and let l, m ∈ L\{τ}.Assume that (S, L)

lm
−→ (T, M). Let s be a simple net suh that (S, L) Ib1,...,bn

swhere b1, . . . , bn is a repetition-free list of names ontaining all the free names of
(S, L). Then there are simple nets t0 and t suh that (T, M) Ib1,...,bn

t, s
lm
−→ t0and t0 ∼d t.Proposition 2. Let (S, L) be a anonial state and b1, . . . , bn be a repetition-free list of names ontaining all the free names of (S, L). Let s be a simple netsuh that (S, L) Ib1,...,bn

s. If t′0 is a simple net suh that s
lm
−→ t′0, then there isa anonial state (T, M) suh that (S, L)

lm
−→ (T, M) and there exists a simplenet t suh that (T, M) Ib1,...,bn

t and t ∼d t′0.We are now ready to state a bisimulation theorem. Given a repetition-free list
b1, . . . , bn of names, we de�ne a relation Ĩb1,...,bn

between states and simple netsby: (S, L) Ĩb1,...,bn
s if there exists a simple net s0 suh that (S, L) Ib1,...,bn

s0and s0 ∼d s.Theorem 2. The relation Ĩb1,...,bn
de�nes a bisimulation between the labeledtransition systems SL and DL.
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(A0, A1, . . . , An) of types (where n is the arity assoiated to the kind; types aretypially formulae of linear logi). A net is made of ells. With eah ell γ isassoiated a kind and therefore an arity n and a typing rule (A0, A1, . . . , An).Suh a ell γ has one prinipal port p0 and n auxiliary ports p1, . . . , pn. A nethas also a �nite set of free ports. All these ports (the free ports and the portsassoiated with ells) have to be pairwise distint and a set of wires is given.This wiring is a family of pairwise disjoint sets of ports of ardinality 2 (ordinarywires) or 0 (loops), and the union of these wires must be equal to the set of allports of the net. An oriented wire of the net is an ordered pair (p1, p2) where
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γ of arity n, whose ports are p0, p1, . . . , pn and typing rule is (A0, A1, . . . , An),denoting by p′0, p

′
1, . . . , p

′
n the ports of the net uniquely de�ned by the fat thatthe sets {pi, p

′
i} are wires (for i = 0, 1, . . . , n), then the oriented wires (p0, p

′
0),

(p′1, p1),. . . ,(p′n, pn) have type A0, A1,. . . ,An respetively.6.2 Arity typing of proesses.Although not stritly neessary, it is onvenient to assume that our proesses are�typed� in the sense that eah name is given with an arity, whih is a possiblyempty list of arities. When a name of arity (ρ1, . . . , ρn) ours as subjet, it isalways assumed that it has n objets b1, . . . , bn, the arity of bi being ρi. Thisguarantees that, during the redution, when an input pre�x ommuniates withan output pre�x, the numbers of objets of the two involved pre�xes oinide.Sine this is a standard π-alulus notion (see [SW01℄, Part III), we shall notsay more about it, and we shall simply assume that, during the redution ofproesses and states, the arities of ommuniating pre�xes always oinide.



6.3 α-equivalene of states.Given a partial funtion f : N → N and a proess P , we denote by f · P theproess where eah free name a has been replaed by f(a) (if a ∈ Dom f) � thisonstrution is not part of the syntax, it is a meta-operation like substitution inthe lambda-alulus �. Of ourse, bound names have to be renamed to avoidname lashes.Two losures (P1, e1) and (P2, e2) are α-equivalent (written (P1, e1) ∼α (P2, e2))if there is a bijetion on names f suh that f · P1 and P2 are α-equivalent,and e2 ◦ f = e1. Two soups S and T are α-equivalent if S = γ1 . . . γN and
T = δ1 . . . δN with γi ∼α δi for eah i. Let f : N → N be a funtion. If γ = (P, e)is a losure, one sets f ·γ = (P, f ◦ e). And last, f ·(γ1 . . . γN ) = (f ·γ1) . . . (f ·γN )Two states (S, L) and (T, M) are α-equivalent if there is a bijetion on names
f whih is the identity on N \ L and satis�es f(L) = M and f · S ∼α T . Thefree names of a state (S, L) are the names belonging to the odomain of S butnot to L, we denote by FV(S, L) the set of these free names.6.4 Relating the rewriting and the abstrat mahine approahes tothe operational semantis of the π-alulusWe reall a more standard way of presenting the operational semantis of the
π-alulus and outline its equivalene with the environment mahine style wehave hosen.One de�nes �rst a strutural equivalene relation between labeled π-terms,denoted as ∼. It is the least equivalene relation suh that

nil | P ∼ P

P | Q ∼ Q | P

(P | Q) | R ∼ P | (Q | R)

νa · νb · P ∼ νb · νa · P

νa · nil ∼ nil

(νa · P ) | Q ∼ νa · (P | Q) if a /∈ FV QThen one an de�ne a labeled transition system, where the transitions are labeledby pairs of labels (as all the transition systems we onsider in the present paper).This transition system is de�ned by the following rules:
[l]a(b1, . . . , bn) · P1 | [m]a〈c1, . . . , cn〉 · P2

lm
−→ P1[c1, . . . , cn/b1, . . . , bn] | P2

P1 ∼ P ′
1 P ′

1
lm
−→ P ′

2 P ′
2 ∼ P2

P1
lm
−→ P2

P
lm
−→ P ′

P | Q
lm
−→ P ′ | Q

P
lm
−→ P ′

νa · P
lm
−→ νa · P ′



Then one de�nes a translation relation T between states and proesses. Wesay that P T (S, L) if S = (P1, e1) · · · (Pn, en), L = {a1, . . . , ak} and P ∼
νa1 . . . ak · ((e1 · P1 | · · ·) | en · Pn).Proposition 3. For any proess P , one has P T Can((P, e), ∅) where e is thepartial identity funtion whose domain is FV(P ). Moreover, the relation T is abisimulation.The proof is easy.7 Annex: proofsWe give the proofs of all the statements of the paper.7.1 Proof of Lemma 1The following is a simple, but quite useful remark.Lemma 3. Let s0 be a simple net whih ontains an (l, m)-ommuniation re-dex. If s0 ;

∗
{l,m} t0, then t0 is simple, ontains an (l, m)-ommuniation redexand one has atually s0 ;

∗
d t0. Moreover, if s is the simple net obtained from s0by reduing the (l, m)-ommuniation redex, then s ;d t where t is the simplenet obtained from t0 by reduing the (l, m)-ommuniation redex of t0.Now we an prove Lemma 1.Proof. Assume s ;

∗
{l,m} t = s1 + · · · + sn where eah si is simple and where

s1 ontains an (l, m)-ommuniation redex. By the Churh-Rosser property of
;

∗
{l,m}, there is s′′ suh that t ;

∗
{l,m} s′′ and s′ ;

∗
{l,m} s′′. By Lemma 3applied to s1, s′′ must have a summand ontaining an (l, m)-ommuniationredex, ontraditing our hypothesis on s′. 27.2 Proof of Lemma 2Proof. Let s, s′ ∈ ∆ and assume that s ∼d s′. Assume moreover that s

lm
−→

t, whih means that s ;
∗
{l,m} s0 + s1 + · · · + sn where eah si is simple, s0ontains an (l, m)-ommuniation redex, eah si is {l, m}-neutral for i ≥ 1 and

t is obtained by reduing the (l, m)-ommuniation redex of t0. By the Churh-Rosser property of ;
∗
{l,m} (remember that ;d ⊆ ;

∗
{l,m}), there exists u ∈ N〈∆〉suh that s0+s1+ · · ·+sn ;

∗
{l,m} u and s′ ;

∗
{l,m} u. But by lemmas 3 and 1, wehave u = u0 +u1 + · · ·+um with s0 ;d u0, u0 ontains an (l, m)-ommuniationredex, and if we redue this redex, we obtain a net t′ suh that t ;d t′. 27.3 A diving lemmaWe �rst introdue the auxiliary notions of guarded ell and of a (o)derelitionell diving into a proess. We then state and prove two lemmas whih will beruial in the proofs of Proposition 1 and 2.



7.3.1 Guarded derelition and oderelition ells. Let l, r ∈ L be dis-tint, r 6= τ and let s ∈ ∆. Let δ be a (o)derelition ell labeled by l in s. Onesays that δ is guarded by (the derelition or oderelition ell labeled by) r in sif there is a sequene p1, . . . , pn of pairwise distint ports of s suh that� p1 is the auxiliary port of δ and p2 is its prinipal port;� pn−1 is the auxiliary port of r and pn is its prinipal port;� and for eah i with 1 < i < n − 1, either pi and pi+1 are the two ports of awire of s or there is a ell in s suh that pi−1 is an auxiliary port of that elland pi is its prinipal port.Suh a sequene of ports will be alled a guarding path from δ to r in s (observethat sine r 6= τ , there is no ambiguity on the (o)derelition ell labeled by rin s, whereas l an be equal to τ and so there might be several (o)derelitionells labeled by l in s).7.3.2 Persisteny.Lemma 4. Let s be a simple net, let R ⊆ L, let l, r be labels whih are distint,with r 6= τ . Let δ be an l-labeled (o)derelition ell whih is guarded by r in sand assume that s ;
∗
R s1 + · · ·+sp where the si are simple. Then δ and r our,and δ is guarded by r, in eah of the simple nets si.Proof. The proof is straightforward: the (o)derelition r an take part only tonon-deterministi redutions during an ;R-redution, and hene annot disap-pear (more preisely, its only way of disappearing is by turning to 0 the wholesimple net where it ours). 27.3.3 Diving of derelitions and oderelitions. Let l ∈ L \ {τ}, let ube a simple net, let P be a proess. We say that l dives into P in u if there is arepetition-free list of names b1, . . . , bn and a simple net s suh that P Ib1,...,bn

sand u is of one of the following shapes (aording to whether l labels a derelitionor a oderelition ell):
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where θ is a boxed identity ell, or a net of the following shape, onsisting of alabeled input of output pre�x ompound ell, with a label di�erent from τ :



?∗

. . . . . .
· · ·

...With these notations, our aim is here to prove the following property.Lemma 5 (Diving). Assume that l ∈ L \ {τ} dives into P in the simple net
u, and let m ∈ L \ {τ} whih does not our in P . Then u is {l, m}-neutral.The label m annot our in P , but it an our in the remainder of u; themeaning of the lemma is that, during the redution, �l annot exit from P � or,more preisely, if it exits, it is by the ontrol port c.7.4 Proof of Lemma 5Proof. By indution on P and ontradition, so assume that u ;

∗
{l,m} u1 + u′and that u1 ontains an (l, m)-ommuniation redex.Assume �rst that P = nil. Assume that l is a derelition. Then u has thefollowing shape
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Thus u ;
∗
{l,m} 0 by 3.3.5. Hene by the Churh-Rosser property of ;

∗
{l,m}, wemust have u1 + u′

;
∗
{l,m} 0. But this is impossible by Lemma 3 sine u1 has an

(l, m)-ommuniation redex.The ase P = P1 | P2 is similarly handled: using 3.3.5 and the indutivehypothesis, one shows that u ;
∗
{l,m} u′ where u′ is a sum of {l, m}-neutralsimple nets, and hene u is {l, m}-neutral by Lemma 1.If P = νa · Q, one applies diretly the indutive hypothesis.To onlude, we onsider the ase where P = [r]bf(0)〈bf(1) . . . bf(p)〉 · Q. As-sume �rst that l is a derelition. Then u is of the following shape (without loss ofgenerality, we assume that the derelition is onneted to a port orrespondingto the name bn), where s is a simple net satisfying Q Ib1,...,bn

s:
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· · ·· · ·Then, aggregating �rst the ommuniation area γn with the ommuniation areaof the f -identi�ation struture to whih it is onneted, we see that we have
u ;

∗
{l,m}

∑N

i=1 ui where ui is a simple net whih has the following shape
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where, aording to 3.3.5, in vi, the prinipal port of l is forwarded (see thede�nition of this onept in 3.3.3)1. to the port b+
n of s2. or to the prinipal port of the oweakening ell γ, in the ase where f(0) = n3. or to one of the input auxiliary port of the ompound ell ϕ, orrespondingto an index j ∈ {1, . . . , q} suh that f(j) = n.For i satisfying (2), we have ui ;

∗
{l,m} 0. For i satisfying (3), l is guarded by

r 6= τ (the labeled derelition ell of ϕ) in ui, and so ui is {l, m}-neutral byLemma 4. For i satisfying (1), the indutive hypothesis applies, showing that uiis {l, m}-neutral. Therefore u is {l, m}-neutral by Lemma 1.Assume now that l is a oderelition, so that u has the following shape (withthe same notations as above).
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As before, we have u ;
∗
{l,m}

∑N

i=1 ui where the ui's have the same shape asbefore. Using the same notations, in vi, the prinipal port of l is forwarded1. to the port b−n of s2. or to the dotted auxiliary port of the transistor output ompound ell β, inthe ase where f(0) = n3. or to one of the input auxiliary port of the ompound ell ϕ, orrespondingto an index j ∈ {1, . . . , q} suh that f(j) = n.The ases (1) and (3) are handled as before. So onsider an index i orrespondingto ase (2). There are two possibilities, depending on the value of the net θ. If θis a boxed identity ell, then ui ;
∗
{l,m} u′ where u′ is a simple net whih ontainsthe following subnet

? !∗
!

r l...Sine we have r /∈ {l, m} (remember that we have assumed that m does not ourin P ), this subnet has no ;
∗
{l,m}-redex, and therefore, it will still be present inany simple summand of a net u′′ suh that u′

;
∗
{l,m} u′′. So u′ is {l, m}-neutral,and so is u by Lemma 1.Assume last that θ onsists of an r′-labeled output or input pre�x ompoundell (with r′ 6= τ) together with a generalized ontration ell (seond possibilityfor θ in 7.3.3). Here we an have r′ = m, but l is guarded by r′ in u, and hene

u is {l, m}-neutral by Lemma 4 and Lemma 1.The ase where P starts with an input pre�x is ompletely similar, and ofourse simpler, to that of an output pre�x. 2Lemma 6. Let (S, L) be a state and let b1, . . . , bn be a repetition-free enumera-tion of the free names of (S, L). Let (T, M) be its anonial form and let s be asimple net suh that (S, L) Ib1,...,bn
s. Then there exists a simple net t suh that

(T, M) Ib1,...,bn
t and s ∼s t.The proof is by simple inspetion of the de�nition of the interpretation relation,using 3.3.1.



7.5 Proof of Proposition 1Proof. We know that S must be of the shape
S = ([l]a(c1 . . . cp)·P, e1)([m]df(0)〈df(1) . . . df(p)〉·Q, e2)(P3, e3) · · · (PN , eN) (1)where we assume that the ei have pairwise disjoint domains, that a, c1, . . . , cp,

cp+1 . . . , cp+q is a repetition-free enumeration of the domain of e1, that d1, . . . , dris a repetition-free enumeration of the domain of e2, that h1, . . . , hm is a repetition-free enumeration of the union of the domains of e3,. . . ,eN , and f : {0, . . . , p} →
{1, . . . , r} is a funtion, and we have e1(a) = e2(df(0)). And (T, M) = Can(S′, L)where

S′ = (P, e1[c1 7→ e2(df(1)), . . . , cp 7→ e2(df(p))])(Q, e2)(P3, e3) · · · (PN , eN) .Without loss of generality, we an assume that f(0) = 1. With these nota-tions, s is the following simple net, where s1 is a simple net suh that P Ia,c1,...,cp+q

s1, s2 is a simple net suh that Q Id1,...,dr
s2 and s′ stands for the juxtaposi-tion of simple nets si suh that Pi I

h
isi (for 3 ≤ i ≤ N) where h

i stands foran enumeration of the domain of ei (so that the lists of names h
i are pairwisedisjoint, and their onatenation is a repetition-free enumeration of the names

h1, . . . , hm), with a boxed identity onneted to the ontrol ports of eah si:
!

I !

•

?
•

?

I !

?

I ! ?

I !

•
!

•

dr

. . .

. . .

. . .

a cp+1. . .
c c1 . . .

. . .

cp

l

. . . . . . . . .

s′

e

s1

cp+q

...h1

hm

r + 2r

β2

γ1

σ

1

d1

s2

...
c

f

p

m

c ...
r

0

1

r + 1

β1 ...
r + q + m + 1

γ2

In this net, e is the funtion {1, . . . , r+q+m+1} → {1, . . . , n} whih orrespondsto the union of the funtions ei for i = 1, . . . , N . Observe that we have e(1) =
e(r + 1) sine by hypothesis e1(a) = e2(d1).We have omitted in the piture the pairs of free ports orresponding to
b1, . . . , bn, bn+1, . . . , bn+n′ , the names bi for i > n orresponding to the elementsof L; remember that they are there and that eah pair of free port orrespondingto a bi with i > n is onneted to a ommuniation area of order −1.Then we an redue this net along the following steps.� Observe �rst that the pairs of ports 1 and r + 1 (attahed to the domain of

e) are onneted to a ommon ommuniation area δ1 in the identi�ationstruture labeled by e (see 3.2.2) sine e(1) = e(r + 1), and also that theodomain pair of ports 1 and the domain pair of ports 0 of the identi�ation



struture labeled by f are onneted to a ommon ommuniation area δ2in this identi�ation struture, sine f(0) = 1. We apply redution 3.3.1for aggregating the ommuniation areas γ1, δ1, γ2 and δ2 in an uniqueommuniation area δ. Let u be the obtained simple net, we have s ;
∗
{l,m} u.� Apply redution 3.3.7 to both transistors β1 and β2 and let u′ be the obtainedsimple net, we have u ;

∗
{l,m} u′.� u′ ontains therefore the following subnet v

! ?

? !

· · ·

δ

m l
g + 2

r2g+4r1where, for i = −1, 0, . . . , g the pair of ports (r2i+3, r2i+4) is onneted either1. to the pair of port a of s12. or to one of the pairs of ports cp+1, . . . , cp+q of s13. or to one of the pairs of ports h1, . . . , hm of s′4. or to a pair of ports of one of the ommuniation areas onneted to
d2, . . . , dr5. or to the pair of ports d16. or to one of the auxiliary pairs of ports of the output pre�x ompoundell labeled by m7. or to one of the pairs of ports bi orresponding to odomain pairs ofports of the identi�ation struture e; these pairs of ports are either freein s (and hene in u′) or onneted to a ommuniation area of order
−1.To v, we an apply redution 3.3.4.This subnet redues by the ;

∗
{l,m} re-dution to a sum v0 + v1 + · · · + vkwhere v0 is

? !

· · ·

m l
g

δ

r1 r2g+4and the vj 's (j ≥ 1) are nets of theshape
? !

· · ·

m l

r1 r2g+4

wjwhere the prinipal port of l andm are forwarded to ports among r1, . . . , r2g+4.We have u′
;

∗
{l,m} u′

0 + u′
1 + · · · + u′

k where u′
j is obtained by replaing in

u′ the net v by the net vj (j = 0, . . . , k).� We apply the (l, m)-ommuniation redution to u′
0, getting a simple net t0whih is ∼d equivalent to the following simple net



I !I !

dr

. . .

. . .

. . .

a cp+1. . .c1 . . .

. . .

cp

. . . . . . . . .

s′

s1

cp+q

...h1

hm

r

c

...
r

1

p

f ′

1

d1

s2

c

e

1

r + 1 r + 2 r + q + m

...where f ′ is the restrition of f to {1, . . . , p}. This net is ∼s equivalent to asimple net t1 with (S′, L) Ib1,...,bn
t1 (upon applying 3.3.1 to the ommuni-ation areas of the identi�ation struture f ′, the ones whih are onnetedto the pairs of free ports di of s2 and those belonging to the identi�ationstruture e). By Lemma 6, there is a simple net t suh that t1 ∼s t and

(T, M) Ib1,...,bn
t.To onlude, we must hek that, for j ≥ 1, u′

j is {l, m}-neutral. But, for eahof the two labels l and m, we are in one of the seven ases (1) to (7) above.Consider for instane label l. If we are in ase (1), (2), (3), (5), we an diretlyapply Lemma 5.Assume that we are in ase (4), we anapply 3.3.5 and see that u′
j ;

∗
{l,m} w1 +

w2 where w1 and w2 are simple, and w1ontains a subnet of the shown shape(assuming that in u′
j , l is forwarded tothe ommuniation area onneted to

dr). Hene by Lemma 5, w1 is {l, m}-neutral. !∗

!

?

•

I !

dr

. . .

. . .d1

s2

c

l

m ...On the other hand, w2 ontains a sub-net of the following shape. This subnet
;

∗
{l,m} redues by 3.3.5 to a sum of sim-ple nets in eah of whih l is guarded by

m. Therefore, by Lemma 1, w2 is {l, m}-neutral. So by the same lemma, u′
j is

{l, m}-neutral. ?

?
•

!

•
!∗

!

l...f

p

m
...
r

0

1
τ1 ......If we are in ase (6) then, in u′

j, l is guarded by m and hene u′
j is {l, m}-neutral by Lemma 4. Last assume we are in ase (7); in this ase, l is onnetedto an auxiliary port of a generalized strutural ell whose prinipal port is free,or is onneted to a weakening ell. In both ases again it is lear that u′

j is
{l, m}-neutral 2



7.6 Proof of Proposition 2Proof. One shows �rst that both l and m must be minimal in the poset L(S, L).Assume for instane that m is not minimal. Then the prinipal port of thederelition ell labeled by m is onneted to an auxiliary port of a transistorwhose prinipal port is onneted to an auxiliary port of an input or outputpre�x ell, labeled say by m′, with m′ < m (atually, m′ is the predeessor of min the forest L(S, L)). Say for instane that the pre�x ell labeled by m′ is aninput pre�x ell. So s ontains the following subnet
!

?
•

••

?

I !

I !

m′m

... ...So m is guarded by m′ in s and so, whenever s ;
∗
{l,m} s′, no simple net appear-ing in s′ an ontain an (l, m)-ommuniation redex, in ontradition with ourhypothesis that s

lm
−→ t′0.We have seen that l and m are minimal in the poset L(S, L) and this meansthat in S, the pre�xes labeled by l and m are the outermost pre�xes of P1 and

P2 where S = (P1, e1) · · · (PN , eN ) (and the hoie of P1 and P2 is uniquelydetermined by l and m), that is, S is of the form desribed by Equation (1) inthe proof of Proposition 1, P1 denoting the �rst proess in that expression, whihis guarded by an l-labeled input pre�x, and P2 the seond one, whih is guardedby an m-labeled output pre�x. Using the notations of that formula, we arguenow that neessarily e1(a) = e2(df(0)). But if this is not the ase, an inspetionof the interpretation of input pre�xes (Paragraph 4.2.4), of states (Setion 4.2.6)and of the identi�ation struture (Paragraph 3.2.2) assoiated to the �globalenvironment� e shows that s ;
∗
{l,m} s′ = s′1 + · · · + s′q where for eah i, s′i issimple and one of the following holds:1. in s′i, l is forwarded to a free port of s′2. or in s′i, l dives into a subnet t suh that Pj Ic1,...,cr

t for some j = 1, . . . , Nand c1, . . . , cr is a repetition-free enumeration of the domain of ej.In ase (1), s′i is {l, m}-neutral. The same is true of s′i in ase (2) when the index
j is di�erent from 2 sine then Pj annot ontain the label m and we an applyLemma 5. In the ase j = 2, using our assumption that e1(a) 6= e2(df(0)), wesee that l dives into t through a free port whih does not orrespond to df(0)and from this (and from an inspetion of the interpretation of output pre�xes,Paragraph 4.2.5), we see that si ;

∗
{l,m} s′ where s′ is a sum of simple netsin whih, either l is guarded by m, or l dives into a subnet u of t suh that

Q Ih1,...,hq
u (for a suitable list of names h1, . . . , hq), where Q is the proessguarded by the m-labeled output pre�x of P2 (and therefore, Q does not ontainthe label m). Applying Lemma 4 in the �rst ase and Lemma 5 in the seondase, we see that eah simple summand of s′ is {l, m}-neutral and therefore



si also is {l, m}-neutral by Lemma 1. Finally, by the same lemma, s itself is
{l, m}-neutral, ontraditing the hypothesis that s

lm
−→ t′0.So we must have e1(a) = e2(df(0)) and sine our proesses and states areimpliitly arity-typed (see Paragraph 6.2), we know that the number of objetsof the two involved pre�xes oinide (the ommon value of these numbers is p,aording to our notations).Using the same notations as in Proposition 1, and the statement itself of thistheorem, we have (S, L)

lm
−→ (T, M) and there are simple nets t and t0 suhthat (T, M) Ib1,...,bn

t, t ∼d t0 and s
lm
−→ t0. This means more preisely that

s ;
∗
{l,m} s′ = s0 + s1 + · · ·+ sp, with the sj 's simple, suh that s0 has an (l, m)-ommuniation redex and eah sj (for j ≥ 1) is {l, m}-neutral and t0 is the netobtained by reduing the (l, m)-ommuniation redex of s0.We onlude by showing that t0 ∼d t′0.We know from our hypothesis that s ;

∗
{l,m} s′′ = s′0 + s′1 + · · · + s′q, where

s′0 has an (l, m)-ommuniation redex and eah s′j (for j ≥ 1) is {l, m}-neutral,and t′0 is the simple net obtained from s′0 by reduing its (l, m)-ommuniationredex.By the Churh Rosser property of ;∗
{l,m}, there is a net u suh that s′ ;

∗
{l,m}

u and s′′ ;
∗
{l,m} u. By Lemma 3, we have u = u0 + u′ with s0 ;d u0 and

s′0 ;d u0, thanks also to the {l, m}-neutrality of sj and s′j for j ≥ 1. Moreover(still by Lemma 3), u0 ontains an (l, m)-ommuniation redex as well, and if v0is the net obtained by reduing the (l, m)-ommuniation redex of u0, we havealso t0 ;d v0 and t′0 ;d v0. So we have t0 ∼d t′0. 27.7 Proof of Theorem 2Proof. Let (S, L) be a anonial state and s1 be a simple net, and assume that
(S, L) Ĩb1,...,bn

s1. So there is a simple net s suh that (S, L) Ib1,...,bn
s and

s ∼d s1.Assume �rst that (S, L)
lm
−→ (T, M), with l, m two distint elements of L\{τ}.By Proposition 1, there are simple nets t0 and t suh that (T, M) Ib1,...,bn

t0 ∼d tand s
lm
−→ t. By Lemma 2 (∼d is a bisimulation), there exists t1 suh that t ∼d t1and s1

lm
−→ t1. We have (T, M) Ĩb1,...,bn

t1.Conversely, assume that s1
lm
−→ t1. By Lemma 2, there exists t suh that

t ∼d t1 and s
lm
−→ t. By Proposition 2, there is a anonial state (T, M) and asimple net t0 suh that (S, L)

lm
−→ (T, M) and (T, M) Ib1,...,bn

t0 ∼d t. We have
(T, M) Ĩb1,...,bn

t1. 28 Annex: examplesWe give a few examples to illustrate some key features of ommuniation in the
π-alulus as represented in di�erential interation nets.



8.1 Conurrent ommuniationLet P be the proess:
νa ·

((
[l]a() · nil | [m]a〈〉 · nil

)
| [r]a〈〉 · nil

)The simplest state ontaining P is (S, L) = ((P, ∅), ∅). We have (S, L) I s where
s is the following simple net:

I !

I !

?∗

?∗

?

!
•

• •

?∗

?

•
?

!∗

I !

•

?∗

?

•
?

!∗

I !

?∗

l m r

By applying aggregations of ommuniation areas, we obtain the simple net
s1:

?∗

!

I !

?∗

I !

?•

•

?

?

I !

?∗

•

•

?

?

I !

?∗

•

•
!∗

?∗

!∗

l
m r

thus s ;
∗
s s1. Sine P is in fat a CCS proess, we an remark how the translationinto di�erential interation nets is given by �rst a tree (with nodes representedwith dashed boxes) orresponding to the tree struture of the CCS proess (builtfrom sequential and parallel ompositions), and seond ommuniation areas forthe identi�ation of names.The simple net s1 redues to the following net s2 (s1 ;

∗
d s2):



!
•

I ! ?∗

?∗

?
•

?∗

I !

!∗

!∗

I ! ?∗

?•

l
m

r

where the hoie between ations ready to ommuniate will be done. This meansthat s2 redues to a sum of simple nets ontaining in partiular the following s3(s2 ;
∗
{l,m} s3 + · · · ):

I !

?∗

!

?
•

?∗

I !

!∗

?
•

?∗

I !

m •

r

l

If t is obtained from s3 by reduing the (l, m)-ommuniation redex, we have
s

lm
−→ t. This orresponds to (S, L) ;can (([l]a() · nil, e)([m]a〈〉 · nil, e)([r]a〈〉 ·

nil, e), {a′})
lm
−→ (([r]a〈〉 · nil, e), {a′}) (with e de�ned only on {a} by e(a) = a′)in the environment mahine.8.2 SequentialityLet P be the proess:

νa ·
(
[l]a() · [l′]b() · nil | [m′]b〈〉 · nil | [m]a〈〉 · nil

)The simplest state ontaining P is (S, L) = ((P, e), ∅) (with e de�ned on {a, b}by e(a) = a′ and e(b) = b′). We have (S, L) Ia′,b′ s with s ;
∗
s s1 (aggregationsof ommuniation areas) and s1 is the following simple net:



?∗

I !

?

?

I !

?∗

•

•

?

?

I !

?∗

•

•
!∗

!

I !

?•

•

?∗

!∗

?∗

!

I !

?•

•

?∗

mm′l

l′

a′

b′

Sine P is again a CCS proess, we an see its tree struture in the di�erentialinteration net s1.The simple net s1 redues to the following net s2 (s1 ;
∗
d s2):

!•

I !

?∗

?
•

?∗

?∗

I !

!
•

?
•

!∗

?∗

I !

?
•

!∗

?∗

I !

m

l′

m′

l

a′

b′Then there exists a simple net s3 suh that s2 ;
∗
{l,m} s3 + · · · and if t isobtained from s3 by reduing the (l, m)-ommuniation redex it ontains, wehave s

lm
−→ t. Moreover t redues to the following net:



?
•

?∗

?∗

I !

!
•

?
•

!∗

?∗

I !

I !

l′

m′

a′

b′This orresponds to (S, L) ;can (([l]a() · [l′]b() · nil, e)([m′]b〈〉 · nil, e)([m]a〈〉 ·

nil, e), ∅)
lm
−→ (([l′]b() · nil, e)([m′]b〈〉 · nil, e), ∅) in the environment mahine.8.3 Name passingLet P , Q and R be proesses suh that the free names of P are a and z, the onlyfree name of Q is y and the free names of R are x and b. Let P ′ be the proess:

νz ·
(
[l]a〈z〉 · P | [l′]z(y) · Q

)
| [m]a(x) · [m′]x〈b〉 · RThe simplest state ontaining P ′ is (S, L) = ((P ′, e), ∅) (with e de�ned on {a, b}by e(a) = a′ and e(b) = b′). If P Ia,z s1, Q Iy s2 and R Ix,b s3, we have

(S, L) Ia′,b′ s′ with s′ ;
∗
s s′1 (aggregations of ommuniation areas) and s′1 isthe following simple net:

c c c

I !

I !

I !

I !

!

?∗

?

!∗

?∗

!

!∗

?
?

•

•
•

•

•

s1 s2 s3

a z y x b

l

l′

m

m′

b′

a′We have s′
ml
−→ t with t ;

∗
d s′2 and s′2 is the following simple net:



c c c

I !

I !

!

?∗

!∗

?

•

•

s1 s2 s3

a z y x bI !

m′

l′

b′

a′where the identi�ation of the names z and x orresponds to the onnetion ofthe assoiated ommuniation areas.Finally t
l′m′

−→ t′ with t′ ;
∗
d s′3 and s′3 is the following simple net:
I ! I !

c c cs1 s2 s3

a z y x bI !

b′

a′where y and b are also identi�ed.This orresponds to (S, L) ;can (([l]a〈z〉 · P, e[z 7→ z′])([l′]z(y) · Q, e[z 7→

z′])([m]a(x)·[m′]x〈b〉 · R, e), {z′})
ml
−→ ((P, e[z 7→ z′])([l′]z(y)·Q, e[z 7→ z′])([m′]x〈b〉·

R, e[x 7→ z′]), {z′})
l′m′

−→ ((P, e[z 7→ z′])(Q, e[z 7→ z′, y 7→ b′])(R, e[x 7→ z′]), {z′})in the environment mahine.


