Differential interaction nets and processes

Thomas Ehrhard Olivier Laurent

Preuves, Programmes et Systèmes
April 16, 2007

Objective

Show that differential interaction nets are sufficiently expressive for encoding faithfully a sgnificant fragment of the π-calculus.

The fragment: no sums (additives?), no recursion, no replication (promotion?).

Outline

(1) Differential interaction nets

- Cells and nets
- Reduction rules
- A labeled transition system of simple nets
- A toolbox for process interpretation
(2) A finitary polyadic π-calculus
- The calculus
- Environment machine
(3) Translation of states to nets
- Translation of processes
- Translation of states

4 A bisimulation theorem
(5) Examples

A typing system

Single type symbol o (outputs), subject to the following recursive equation $o=? 0^{\perp} 80$.

We set $\iota=o^{\perp}$, so that $\iota=!\circ \otimes \iota$ and $\circ=? \iota \times \circ$.
Types are MELL formulae based on o and ι (up to these equations). Here, we use only $\circ, \iota,!\circ$ and ? ι.

Typing a net consists in associating a type A to each oriented wire w. If w^{\prime} is w reversed, the type of w^{\prime} must be A^{\perp}.

Typing rules associated with cells must be respected.

Differential interaction nets
A finitary polyadic π-calculus
Translation of states to nets
A bisimulation theorem
Examples

Cells and nets

Multiplicative fragment

Binary cells:

Constants:

Exponential fragment

Dereliction, weakening and contraction:

Codereliction, coweakening and cocontraction:

Closed promotion cell

A simple net is an interaction net made of these cells (respecting types), and of the fothcoming closed promotion cell.

A net is a finite formal sum of simple net with the same interface.
Given a (non necessarily simple) net s with only one free port $(5) \stackrel{0}{\infty}$ we introduce a cell $s \stackrel{!0}{>}$, called closed promotion.

Labels

We use a set \mathcal{L} of labels. They will determine what is observable from our reduction and used for defining labeled transitions systems of nets and of processes.
\mathcal{L} is countable and has a dummy element τ.
The simple nets are labeled: each dereliction and each codereliction cell is equiped with a label from \mathcal{L}.

If, in a simple net, two of these labels are equal, they must be equal to τ.

Cells and nets

Reduction rules
A labeled transition system of simple nets
A toolbox for process interpretation

Multiplicative reduction

Exponentials: deterministic reductions

Let R be a set of labels, if $I, m \in R$, then we have the communication reduction:

Exponentials: deterministic reductions (continued)

The next deterministic reduction rules are the structural ones:

Cells and nets

Reduction rules
A labeled transition system of simple nets
A toolbox for process interpretation

Exponentials: deterministic reductions (continued)

Structural reductions (continued):

Semantically, contraction is associative, weakening is neutral for contraction etc. But there is no need to require corresponding reductions or equivalences on nets.

Exponentials: non-deterministic reductions

It is here that sums of nets appear. To be understood as non-deterministic superposition.

All net constructions distribute over sums of nets. If a subnet of a simple nets reduces to 0 , the whole simple net reduces to 0 .

If $R \subseteq \mathcal{L}$ and $I, r \in R$, we have the reductions:

Cells and nets

Reduction rules
A labeled transition system of simple nets
A toolbox for process interpretation

Exponentials: non-deterministic reductions (continued)

Differential interaction nets

Exponentials: promotion reduction

Cells and nets

Confluence

Δ : the set of all nets, $\mathbb{N}\langle\Delta\rangle$: the set of all nets.
If $\mathcal{R} \subseteq \Delta \times \mathbb{N}\langle\Delta\rangle$ is a rewriting relation, $\mathcal{R}^{*} \subseteq \mathbb{N}\langle\Delta\rangle \times \mathbb{N}\langle\Delta\rangle$ is the transitive closure of its "extension to sums".

Theorem

Let $R, R^{\prime} \subseteq \mathcal{L}$. Let $\mathcal{R} \subseteq \Delta \times \mathbb{N}\langle\Delta\rangle$ be the union of some of the reduction relations $\sim_{\mathrm{c}, R}, \leadsto_{\mathrm{nd}, R^{\prime}}, \neg_{\mathrm{m}}, \leadsto_{\mathrm{s}}$ and \sim_{b}. The relation \mathcal{R}^{*} is confluent on $\mathbb{N}\langle\Delta\rangle$.

The proof is straightforward (reduction is local, no critical pairs).
Particular reduction: $\neg_{R}={\overbrace{\mathrm{m}}} \cup \overbrace{\mathrm{c},\{\tau\}} \cup \sim_{\mathrm{s}} \cup \sim_{\mathrm{b}} \cup \sim_{\mathrm{nd}, R}$. We set $\sim_{d}=\sim \emptyset$.

A labeled transition system $\mathbb{D}_{\mathcal{L}}$:

- objects: simple nets
- transitions labeled by pairs of labels
- $s \xrightarrow{I \bar{m}} t$ if $s \leadsto{ }_{\{l, m\}}^{*} s_{1}+s_{2}+\cdots+s_{n}$ where
- s_{1} is a simple net which contains a communication redex with dereliction labeled by m and codereliction labeled by I, and becomes t when one reduces this redex
- and for $i>1$, whenever $s_{i} \neg_{\{1, m\}}^{*} s^{\prime}$, none of the summands of s^{\prime} has such a communication redex.

Dereliction-tensor and codereliction-par cells

Let $n \in \mathbb{N}$ be a non-negative integer. We define an n-ary cell as follows. It will be decorated by the label of its dereliction cell (if different from τ).

Codereliction-par cell defined dually.

Prefix cells

n-ary input and n-ary output prefix cells are

where n is the number of pairs of auxiliary ports.

Reduction of prefixes

If the two prefix cells have the same arity, then one has

otherwise, the lefthand configuration reduces to 0 (but we can avoid this situation).

Boxed identity

Let I be the following "identity" net

Then we shall use the closed promotion cell $!!: 1 .<$

Differential interaction nets

Transistor triggering

We use the unlabeled unary output prefix cell as a kind of transistor, triggered by the boxed identity cell, since indeed we have the reduction

Communication areas

Let $n \geq-2$. We define a family of nets with $2(n+2)$ free ports, called communication areas of order n. Here is how we picture a communication area of order 3:

Differential interaction nets

Communication areas of order $-1,0$ and 1

where the ?*-cells are "contraction trees" (containing possibly weakening cells) and similarly for the !*-cells.

Differential interaction nets
A finitary polyadic π-calculus
Translation of states to nets
A bisimulation theorem
Examples

A toolbox for process interpretation

Other representation of a communication area of order 1

Aggregation of communication areas

When connecting two distinct communication areas through a pair of wires, one obtains a new one, applying only structural reductions:

Identification structures

Given a function $f:\{1, \ldots, p\} \rightarrow\{1, \ldots, n\}$, one defines a structure, using only communication areas:

For instance, if $n=4, p=3, f(1)=2, f(2)=3$ and $f(3)=2$, it is

Differential interaction nets
A finitary polyadic π-calculus
Translation of states to nets
A bisimulation theorem
Examples

Cells and nets
Reduction rules
A labeled transition system of simple nets
A toolbox for process interpretation

Identification structures composition

Applying communication areas aggregation, we have:

A toolbox for process interpretation

Interaction between prefixes and communication areas

Syntax

$\mathcal{N}=\left\{a, b, a_{1}, \ldots\right\}$ a set of names.

- Empty process: nil
- Parallel composition: $P_{1} \mid P_{2}$
- Name restriction: $\nu a \cdot P$
- Input prefix: $Q=[/] a\left(b_{1} \ldots b_{n}\right) \cdot P$ where the names a, b_{1}, \ldots, b_{n} are pairwise distinct. The b_{i} s are bound. $I \in \mathcal{L}$.
- Output prefix: $\overline{[/] a}\left\langle b_{1} \ldots b_{n}\right\rangle \cdot P$, no restriction on the names a, b_{1}, \ldots, b_{n}, they are all free in the process. $I \in \mathcal{L}$.
The labels of a process must be distinct from τ and pairwise distinct.

States of the machine

- Environment: finite partial function $e: \mathcal{N} \rightarrow \mathcal{N}$.
- Closure: (P, e) with all free names of P in the domain of e.
- Soup: multiset $S=\left(P_{1}, e_{1}\right) \cdots\left(P_{N}, e_{N}\right)$ with all labels pairwise distinct.
- State: (S, L) with $L \subseteq \mathcal{N}$ finite (the private names of the state).

The state is canonical if all the $P_{i} \mathrm{~s}$ start with input or output prefixes.

Canonical form of a state

The reduction

$$
\begin{array}{rll}
((\text { nil }, e) S, L) & \sim_{c a n} & (S, L) \\
((\nu a \cdot P, e) S, L) & \sim_{c a n} & \left(\left(P, e\left[a \mapsto a^{\prime}\right]\right) S, L \cup\left\{a^{\prime}\right\}\right) \quad \text { fresh } a^{\prime} \\
((P \mid Q, e) S, L) & \sim_{\mathrm{can}} & ((P, e)(Q, e) S, L)
\end{array}
$$

is confluent on states (up to α-conversion). The normal forms are canonical states.

Can (S, L) the normal from of (S, L) for this reduction.

A labeled transition system of states

Objects: canonical states.
Transitions labeled by pairs of labels, defined by

$$
\begin{aligned}
& \left(\left([/] a\left(b_{1} \ldots b_{n}\right) \cdot P, e\right)\left(\overline{[m] a^{\prime}}\left\langle b_{1}^{\prime} \ldots b_{n}^{\prime}\right\rangle \cdot P^{\prime}, e^{\prime}\right) S, L\right) \\
& \quad \stackrel{/ \bar{m}}{\longrightarrow} \operatorname{Can}\left(\left(P, e\left[b_{1} \mapsto e^{\prime}\left(b_{1}^{\prime}\right), \ldots, b_{n} \mapsto e^{\prime}\left(b_{n}^{\prime}\right)\right]\right)\left(P^{\prime}, e^{\prime}\right) S, L\right)
\end{aligned}
$$

if $e(a)=e^{\prime}\left(a^{\prime}\right)$.

General principle

The translation is not a function but a relation because we do not work up to associativity, commutativity. . . of (co)contraction: there are many different (co)contraction trees of the same arity.

Given a repetition-free list a_{1}, \ldots, a_{n} of names, $\mathcal{I}_{a_{1}, \ldots, a_{n}}$ is a relation from processes whose free names are in that list and simple nets of the shape

where \mathbf{c} is an additional controle port.

Empty process

nil $\mathcal{I}_{b_{1}, \ldots, b_{n}} t$ if t is of the shape

Name restriction

$\nu a \cdot P \mathcal{I}_{b_{1}, \ldots, b_{n}} t$ if there is s such that $P \mathcal{I}_{a, b_{1}, \ldots, b_{n}} s$ and t is of the shape

Parallel composition

$P_{1} \mid P_{2} \mathcal{I}_{b_{1}, \ldots, b_{n}} t$ if t is

with $P_{1} \mathcal{I}_{b_{1}, \ldots, b_{n}} t_{1}, P_{2} \mathcal{I}_{b_{1}, \ldots, b_{n}} t_{2}$ and $\gamma_{1}, \ldots, \gamma_{n}$ are communication areas of order 1 .

Input prefix

$[/] a\left(b_{1} \ldots b_{n}\right) \cdot P \mathcal{I}_{a, c_{1}, \ldots, c_{p}} t$ if t is

with $P \mathcal{I}_{a, b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{p}} s$. Remember that a and the $b_{i} s$ are pairwise distinct.

Output prefix

$$
\overline{[I] b_{f(0)}}\left\langle b_{f(1)} \ldots b_{f(q)}\right\rangle \cdot P \mathcal{I}_{b_{1}, \ldots, b_{n}} t \text { if } t \text { is }
$$

with $P \mathcal{I}_{b_{1}, \ldots, b_{n}}$ s.

Translation of soups

$$
\left(P_{1}, e_{1}\right) \ldots\left(P_{N}, e_{N}\right) \mathcal{I}_{b_{1}, \ldots, b_{n}} t \text { if } t \text { is }
$$

if $P_{i} \mathcal{I}_{c_{n_{i}+1}, \ldots, c_{n_{i+1}}} s_{i}$ (with c_{1}, \ldots, c_{p} a repetition free list containing all the free names of all $P_{i} \mathrm{~s}$) and e such that $e_{i}\left(c_{j}\right)=b_{e(j)}$ for $n_{i}+1 \leq j \leq n_{i+1}$.

Translation of states

$(S, L) \mathcal{I}_{b_{1}, \ldots, b_{n}} t$ if $S \mathcal{I}_{c_{1}, \ldots, c_{p}, b_{1}, \ldots, b_{n}}, c_{1}, \ldots, c_{p}$ is a repetition-free enumeration of L and t is s where communication areas of arity -1 have been plugged on the pairs of ports corresponding to the $c_{j} s$.

The main result

$(S, L) \widetilde{\mathcal{I}}_{b_{1}, \ldots, b_{n}} s$ if there exists a simple net s_{0} such that $(S, L) \mathcal{I}_{b_{1}, \ldots, b_{n}} s_{0}$ and $s_{0} \sim_{d} s$.

Theorem

The relation $\widetilde{\mathcal{I}}_{b_{1}, \ldots, b_{n}}$ is a bisimulation from the labeled transition system of canonical states to the labeled transition system of simple nets.

Uses crucially the confluence of the reduction.

What this means

Assume that $(S, L) \widetilde{\mathcal{I}}_{b_{1}, \ldots, b_{n}} s$ and let $I, m \in \mathcal{L} \backslash\{\tau\}$.

- If $(S, L) \xrightarrow{\sqrt{m}}(T, M)$ then there is a simple net t such that $s \xrightarrow{\mid \bar{m}} t$ and $(T, M) \widetilde{\mathcal{I}}_{b_{1}, \ldots, b_{n}} t$.
- If $s \xrightarrow{\mid \bar{m}} t$ then there is a canonical state (T, M) such that $(S, L) \xrightarrow{/ \bar{m}}(T, M)$ and $(T, M) \widetilde{\mathcal{I}}_{b_{1}, \ldots, b_{n}} t$.

Differential interaction nets
A finitary polyadic π-calculus
Translation of states to nets
A bisimulation theorem
Examples

Concurrent communication

$$
P=\nu a \cdot(([/] a() \cdot \text { nil } \mid \overline{[m] a}\langle \rangle \cdot \text { nil }) \mid \overline{[r] a}\langle \rangle \cdot \text { nil }) \mathcal{I} s \text { where } s \text { is }
$$

Applying aggregation of communication areas, we get

Applying the $\sim{ }_{\mathrm{d}}$ reduction, we get

And this nets reduces to a sum of two nets, by the prefix/communication area interaction. One of these is

Sequentiality

Let P be the process

$$
[/] a^{\prime}() \cdot\left[I^{\prime}\right] b^{\prime}() \cdot \text { nil } \mid \overline{\left[m^{\prime}\right] b^{\prime}}\langle \rangle \cdot \text { nil } \mid \overline{[m] a^{\prime}}\langle \rangle \cdot \text { nil }
$$

Then $P \mathcal{I}_{b} s$ where s reduces by aggregation to

Differential interaction nets
A finitary polyadic π-calculus
Translation of states to nets A bisimulation theorem

Examples

which reduces by $\sim{ }_{\mathrm{d}}$ to

Which reduces to a sum $s_{1}+\cdots$ where s_{1} (and only s_{1}) contains a communication redex on $/$ and m, and by reducing this redex, we get from s_{1}

and only now it will be possible to reduce $I^{\prime} / \mathrm{m}^{\prime}$.

Name passing

$\nu z \cdot\left(\overline{[I] a}\langle z\rangle \cdot P \mid\left[l^{\prime}\right] z(y) \cdot Q\right) \mid[m] a(x) \cdot \overline{\left[m^{\prime}\right]}\langle b\rangle \cdot R$ translates to
s which (up to some aggregations...) is

Then $s \xrightarrow{m \bar{l}} t \sim_{\mathrm{d}} t^{\prime}$ where t^{\prime} is

in which the names x and z are now identified (the corresponding communication areas are connected).

Finally $t^{\prime} \xrightarrow{l^{\prime} \overline{m^{\prime}}} t^{\prime \prime}$ where $t^{\prime \prime}$ is

