Differential interaction nets and processes

Thomas Ehrhard Olivier Laurent

Preuves, Programmes et Systèmes

April 16, 2007
Show that differential interaction nets are sufficiently expressive for encoding faithfully a significant fragment of the π-calculus.

The fragment: no sums (additives?), no recursion, no replication (promotion?).
Differential interaction nets

1. Differential interaction nets
 - Cells and nets
 - Reduction rules
 - A labeled transition system of simple nets
 - A toolbox for process interpretation

2. A finitary polyadic π-calculus
 - The calculus
 - Environment machine

3. Translation of states to nets
 - Translation of processes
 - Translation of states

4. A bisimulation theorem

5. Examples
A typing system

Single type symbol o (outputs), subject to the following recursive equation $o = ?o \perp \otimes o$.

We set $i = o \perp$, so that $i = !o \otimes i$ and $o = ?i \otimes i$.

Types are MELL formulae based on o and i (up to these equations). Here, we use only o, i, $!o$ and $?i$.

Typing a net consists in associating a type A to each oriented wire w. If w' is w reversed, the type of w' must be $A \perp$.

Typing rules associated with cells must be respected.
Multiplicative fragment

Binary cells:

\[\begin{array}{c}
\text{\(\text{?}\)} \\
\text{\(\text{!}\)} \\
\end{array} \]

\[\begin{array}{c}
\text{\(\triangleleft\)} \\
\text{\(\triangleright\)} \\
\end{array} \]

Constants:

\[\begin{array}{c}
\text{\(\bot\)} \\
\text{\(1\)} \\
\end{array} \]
Exponential fragment

Dereliction, weakening and contraction:

Codereliction, coweakening and cocontraction:
A **simple net** is an interaction net made of these cells (respecting types), and of the forthcoming **closed promotion cell**.

A **net** is a finite formal sum of simple net with the same interface.

Given a (non necessarily simple) net s with only one free port \circ, we introduce a cell $s_!^{\circ}$, called **closed promotion**.
Labels

We use a set \mathcal{L} of labels. They will determine what is observable from our reduction and used for defining labeled transitions systems of nets and of processes.

\mathcal{L} is countable and has a dummy element τ.

The simple nets are labeled: each dereliction and each codereliction cell is equipped with a label from \mathcal{L}.

If, in a simple net, two of these labels are equal, they must be equal to τ.
Multiplicative reduction

\[
\begin{align*}
\text{?} & \rightarrow o \\
\otimes & \rightarrow o \\
\rightarrow o & \sim_m o \\
\rightarrow o & \sim_m \perp \\
? & \rightarrow o \\
! & \rightarrow 1 \\
? & \rightarrow o \\
? & \rightarrow \perp \\
! & \rightarrow \perp \\
\end{align*}
\]
Exponentials: deterministic reductions

Let R be a set of labels, if $l, m \in R$, then we have the communication reduction:

\[
\begin{array}{c}
? \\
l \\
\rightarrow
\end{array}
\begin{array}{c}
?_l \\
\rightarrow
\end{array}
\begin{array}{c}
! \\
m \\
\rightarrow
\end{array}
\begin{array}{c}
\sim_{c,R} \\
l \\
\rightarrow
\end{array}
\]
Exponentials: deterministic reductions (continued)

The next deterministic reduction rules are the structural ones:

\[
\begin{align*}
?_l & \rightarrow !_l & \sim_s & !_l \\
? & \rightarrow ! & \sim_s & ! \\
!_o & \rightarrow ?_o & \sim_s & ? \\
! & \rightarrow ? & \sim_s & ? \\
?_l & \rightarrow s! & \sim_s & s! \\
? & \rightarrow s! & \sim_s & s!
\end{align*}
\]
Structural reductions (continued):

Semantically, contraction is associative, weakening is neutral for contraction etc. But there is no need to require corresponding reductions or equivalences on nets.
Exponentials: non-deterministic reductions

It is here that sums of nets appear. To be understood as non-deterministic superposition.

All net constructions distribute over sums of nets. If a subnet of a simple nets reduces to 0, the whole simple net reduces to 0.

If $R \subseteq \mathcal{L}$ and $l, r \in R$, we have the reductions:

\[
\begin{align*}
\langle ? \rightarrow l ?l \rightarrow ! \rangle & \rightsquigarrow_{\text{nd}, R} 0 \\
\langle ! \rightarrow l !o \rightarrow ? \rangle & \rightsquigarrow_{\text{nd}, R} 0
\end{align*}
\]
Exponentials: non-deterministic reductions (continued)
Exponentials: promotion reduction

\[\langle l \rightarrow \mathbf{?} l \mathbf{,} \mathbf{s}! \rangle \sim_b \mathbf{s} \]
Δ: the set of all nets, \(N\langle\Delta\rangle \): the set of all nets.

If \(R \subseteq \Delta \times N\langle\Delta\rangle \) is a rewriting relation, \(R^* \subseteq N\langle\Delta\rangle \times N\langle\Delta\rangle \) is the transitive closure of its “extension to sums”.

Theorem

Let \(R, R' \subseteq L \). Let \(R \subseteq \Delta \times N\langle\Delta\rangle \) be the union of some of the reduction relations \(\rightsquigarrow_{c,R}, \rightsquigarrow_{nd,R'}, \rightsquigarrow_m, \rightsquigarrow_s \) and \(\rightsquigarrow_b \). The relation \(R^* \) is confluent on \(N\langle\Delta\rangle \).

The proof is straightforward (reduction is local, no critical pairs).

Particular reduction: \(\rightsquigarrow_R = \rightsquigarrow_m \cup \rightsquigarrow_{c,\{\tau\}} \cup \rightsquigarrow_s \cup \rightsquigarrow_b \cup \rightsquigarrow_{nd,R} \).
We set \(\rightsquigarrow_d = \rightsquigarrow_\emptyset \).
A labeled transition system $\mathcal{D}_\mathcal{L}$:

- objects: simple nets
- transitions labeled by pairs of labels

$s \xrightarrow{\{l, m\}} t$ if $s \xrightarrow{*} \{l, m\} s_1 + s_2 + \cdots + s_n$ where

- s_1 is a simple net which contains a communication redex with dereliction labeled by m and codereliction labeled by l, and becomes t when one reduces this redex
- and for $i > 1$, whenever $s_i \xrightarrow{*} \{l, m\} s'$, none of the summands of s' has such a communication redex.
Let $n \in \mathbb{N}$ be a non-negative integer. We define an n-ary cell as follows. It will be decorated by the label of its dereliction cell (if different from τ).

Codereliction-par cell defined dually.
Prefix cells

\textit{n-ary input} and \textit{n-ary output} prefix cells are

\[\begin{array}{c}
\begin{array}{c}
\vdots \\
! \\
\vdots \\
\end{array}
\end{array} =
\begin{array}{c}
\begin{array}{c}
\vdots \\
? \\
\vdots \\
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\vdots \\
? \\
\vdots \\
\end{array}
\end{array} =
\begin{array}{c}
\begin{array}{c}
\vdots
\end{array}
\end{array} \]

where \(n \) is the number of pairs of auxiliary ports.
If the two prefix cells have the same arity, then one has

\[
\vdash_c \{l,m\} \quad u \vdash_0^\ast
\]

otherwise, the lefthand configuration reduces to 0 (but we can avoid this situation).
Let I be the following “identity” net

Then we shall use the closed promotion cell $I!$: $I!$
Transistor triggering

We use the unlabeled unary output prefix cell as a kind of transistor, triggered by the boxed identity cell, since indeed we have the reduction

\[I! \xrightarrow{?} \sim^* \emptyset \]
Let $n \geq -2$. We define a family of nets with $2(n + 2)$ free ports, called communication areas of order n. Here is how we picture a communication area of order 3:
where the ?* -cells are “contraction trees” (containing possibly weakening cells) and similarly for the !* -cells.
Other representation of a communication area of order 1
Aggregation of communication areas

When connecting two distinct communication areas through a pair of wires, one obtains a new one, applying only structural reductions:

\[
p + q \sim^* s \quad p + q
\]
Identification structures

Given a function $f : \{1, \ldots, p\} \rightarrow \{1, \ldots, n\}$, one defines a structure, using only communication areas:

![Diagram](image_url)

For instance, if $n = 4$, $p = 3$, $f(1) = 2$, $f(2) = 3$ and $f(3) = 2$, it is

![Diagram](image_url)
Applying communication areas aggregation, we have:

\[\cdots f \quad \rightsquigarrow_{a^*} \quad g \circ f \quad \cdots \]
Interaction between prefixes and communication areas
Syntax

\[\mathcal{N} = \{a, b, a_1, \ldots \} \] a set of names.

- Empty process: \(\text{nil} \)
- Parallel composition: \(P_1 \mid P_2 \)
- Name restriction: \(\nu a \cdot P \)
- Input prefix: \(Q = [l]a(b_1 \ldots b_n) \cdot P \) where the names \(a, b_1, \ldots, b_n \) are pairwise distinct. The \(b_i \)s are bound. \(l \in \mathcal{L} \).
- Output prefix: \([l]a\langle b_1 \ldots b_n \rangle \cdot P \), no restriction on the names \(a, b_1, \ldots, b_n \), they are all free in the process. \(l \in \mathcal{L} \).

The labels of a process must be distinct from \(\tau \) and pairwise distinct.
States of the machine

- Environment: finite partial function $e : \mathcal{N} \rightarrow \mathcal{N}$.
- Closure: (P, e) with all free names of P in the domain of e.
- Soup: multiset $S = (P_1, e_1) \cdots (P_N, e_N)$ with all labels pairwise distinct.
- State: (S, L) with $L \subseteq \mathcal{N}$ finite (the private names of the state).

The state is canonical if all the P_is start with input or output prefixes.
Canonical form of a state

The reduction

\[(\text{nil}, e)S, L \xrightarrow{\text{can}} (S, L)\]
\[(\nu a \cdot P, e)S, L \xrightarrow{\text{can}} ((P, e[a \mapsto a'])S, L \cup \{a'\}) \text{ fresh } a'\]
\[(P \mid Q, e)S, L \xrightarrow{\text{can}} ((P, e)(Q, e)S, L)\]

is confluent on states (up to \(\alpha\)-conversion). The normal forms are canonical states.

\text{Can}(S, L) \text{ the normal form of } (S, L) \text{ for this reduction.}
A labeled transition system of states

Objects: canonical states.

Transitions labeled by pairs of labels, defined by

\[
((\llbracket l \rrbracket a(b_1 \ldots b_n) \cdot P, e)(\llbracket m \rrbracket a'(b_1' \ldots b_n') \cdot P', e') S, L) \\
\xrightarrow{[m]} \text{Can}((P, e[b_1 \mapsto e'(b_1'), \ldots, b_n \mapsto e'(b_n')])(P', e') S, L)
\]

if \(e(a) = e'(a') \).
The translation is not a function but a relation because we do not work up to associativity, commutativity... of (co)contraction: there are many different (co)contraction trees of the same arity.

Given a repetition-free list a_1, \ldots, a_n of names, $\mathcal{I}_{a_1, \ldots, a_n}$ is a relation from processes whose free names are in that list and simple nets of the shape

\[\begin{array}{c}
 a_1 & \ldots & a_n \\
 \text{c} & t & \\
 \ldots & \\
 \end{array} \]

where c is an additional controle port.
nil $\mathcal{I}_{b_1,\ldots,b_n}$ t if t is of the shape

\[
\begin{align*}
\text{nil } & \mathcal{I}_{b_1,\ldots,b_n} \quad \text{if } t \text{ is of the shape} \\
& \begin{array}{cc}
\text{c} & \?^* \\
& \begin{array}{c}
\bullet \\
\downarrow \\
(b_1) \\
& \cdots \\
& (b_n)
\end{array}
\end{array}
\end{align*}
\]
\[\nu a \cdot P \lhd_{b_1, \ldots, b_n} t \text{ if there is } s \text{ such that } P \lhd_{a, b_1, \ldots, b_n} s \text{ and } t \text{ is of the shape} \]

\[
\begin{array}{c}
\nu a \cdot P \lhd_{b_1, \ldots, b_n} \begin{array}{ccc}
 & & \cdots \\
 \text{a} & \text{b}_1 & \text{b}_n \\
\end{array} \\
\text{s} \\
\text{c}
\end{array}
\]
Parallel composition

\[P_1 \mid P_2 \mathcal{I}_{b_1,\ldots,b_n} t \text{ if } t \text{ is} \]

with \(P_1 \mathcal{I}_{b_1,\ldots,b_n} t_1 \), \(P_2 \mathcal{I}_{b_1,\ldots,b_n} t_2 \) and \(\gamma_1, \ldots, \gamma_n \) are communication areas of order 1.
Input prefix

\[[l]a(b_1 \ldots b_n) \cdot P \mathcal{I}_{a,c_1,\ldots,c_p} t \text{ if } t \text{ is} \]

\[\gamma \]

with \(P \mathcal{I}_{a,b_1,\ldots,b_n,c_1,\ldots,c_p} s \). Remember that \(a \) and the \(b_i \)'s are pairwise distinct.
\[\overline{[l]b_f(0)\langle b_f(1) \ldots b_f(q) \rangle} \cdot P \ I_{b_1,\ldots,b_n} \ t \text{ if } t \text{ is} \]

with \(P \ I_{b_1,\ldots,b_n} \ s \).
Translation of soups

\[(P_1, e_1) \ldots (P_N, e_N) I_{b_1, \ldots, b_n} t \text{ if } t \text{ is}

\[
\begin{array}{c}
\text{if } P_i I_{c_{n_i+1}, \ldots, c_{n_i+1}} s_i \text{ (with } c_1, \ldots, c_p \text{ a repetition free list containing all the free names of all } P_i\text{s) and } e \text{ such that } e_i(c_j) = b_{e(j)} \text{ for } n_i + 1 \leq j \leq n_i + 1.
\end{array}
\]
Translation of states

\[(S, L) \mathcal{I}_{b_1, \ldots, b_n} t \text{ if } S \mathcal{I}_{c_1, \ldots, c_p, b_1, \ldots, b_n, c_1, \ldots, c_p} \text{ is a repetition-free enumeration of } L \text{ and } t \text{ is } s \text{ where communication areas of arity } -1 \text{ have been plugged on the pairs of ports corresponding to the } c_j \text{s.}\]
The main result

\[(S, L) \overset{\tilde{I}_{b_1,\ldots,b_n}}{\sim} s\] if there exists a simple net \(s_0\) such that
\[(S, L) I_{b_1,\ldots,b_n} s_0\] and \(s_0 \sim_d s\).

Theorem

The relation \(\tilde{I}_{b_1,\ldots,b_n}\) is a bisimulation from the labeled transition system of canonical states to the labeled transition system of simple nets.

Uses crucially the confluence of the reduction.
What this means

Assume that \((S, L) \leadsto b_1, \ldots, b_n s\) and let \(l, m \in L \setminus \{\tau\}\).

- If \((S, L) \xrightarrow{lm} (T, M)\) then there is a simple net \(t\) such that \(s \xrightarrow{lm} t\) and \((T, M) \leadsto b_1, \ldots, b_n t\).

- If \(s \xrightarrow{lm} t\) then there is a canonical state \((T, M)\) such that \((S, L) \xrightarrow{lm} (T, M)\) and \((T, M) \leadsto b_1, \ldots, b_n t\).
Concurrent communication

\[P = \nu a \cdot \left(([l]a() \cdot \text{nil} \mid \overline{[m]}a\langle \rangle \cdot \text{nil}) \mid \overline{[r]}a\langle \rangle \cdot \text{nil} \right) I s \text{ where } s \text{ is} \]
Applying aggregation of communication areas, we get
Applying the \sim_d reduction, we get
And this nets reduces to a sum of two nets, by the prefix/communication area interaction. One of these is
Sequentiality

Let P be the process

$$[l]a'(\cdot) \cdot [l']b'(\cdot) \cdot \text{nil} \mid [m']b'\langle \rangle \cdot \text{nil} \mid [m]a'\langle \rangle \cdot \text{nil}$$

Then $P \mathcal{I}_b s$ where s reduces by aggregation to
Differential interaction nets
A finitary polyadic π-calculus
Translation of states to nets
A bisimulation theorem
Examples
which reduces by \sim_d to
Which reduces to a sum $s_1 + \cdots$ where s_1 (and only s_1) contains a communication redex on l and m, and by reducing this redex, we get from s_1

\[
\begin{array}{c}
\text{and only now it will be possible to reduce l'/m'}.
\end{array}
\]
Name passing

\[\nu z \cdot \left([l]a\langle z \rangle \cdot P \mid [l']z(y) \cdot Q \right) \mid [m]a(x) \cdot [m']x\langle b \rangle \cdot R \text{ translates to} \]

\[s \text{ which (up to some aggregations...)} \] is

![Diagram](image-url)
Then $s \xrightarrow{\overline{m}l} t \sim_d t'$ where t' is

in which the names x and z are now identified (the corresponding communication areas are connected).
Finally $t' \xrightarrow{l' \overline{m'}} t''$ where t'' is