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Abstract

We relate two sequential models of PCF: the sequential algorithm model due
to Berry and Curien and the strongly stable model due to Bucciarelli and the
author. More precisely, we show that all the morphisms araising in the strongly
stable model of PCF are sequential in the sense that they are the “extensional
projections” of some sequential algorithms. We define a model of PCF where
morphisms are “extensional” sequential algorithms and prove that any equation
between PCF terms which holds in this model also holds in the strongly stable
model.

Introduction

In previous works ([BE1, BE2, BE4, E]), we introduced the notion of strong stability as
an alternative way to deal with sequentialily. Our first observation was that the defini-
tion of sequentiality that Kahn and Plotkin have proposed in [KP] could be expressed
as a preservation property. To express sequentiality of functions, one needs domains
equipped with a suitable notion of “cell”. The domain is then equipped with a “filling
relation” between states (elements of the domain) and cells. The intuition is that, if a
pair (z,a) is in this relation, then the cell a which should be considered as a “place”
(typically, an index in a cartesian product) is filled in the datum # by some “value”.
Several values may fill the same cell, but in a given datum, a cell can be filled only by
one value. Typically, in a cartesian product of two domains corresponding to ground
types (natural numbers, booleans...), there are two cells corresponding to the two
components of the product. We observed that a fundamental property of cells which
always holds in the frameworks where Kahn-Plotkin sequentiality makes sense is lin-
earily. This means first that, if two bounded states fill the same cell, then their greatest
lower bound (glb) also fills this cell (because, in that case, the cell is filled by the same
value in both states) and second that, if the least upper bound (lub) of two states fills
a cell, then one of the two states must fill that cell. This fundamental property has an
important corollary: the set of cells of a cartesian product of two domains equipped
with cells must be a subset of the disjoint union of their sets of cells. Actually, in a
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cartesian product, any element is of the shape (z,y), and one has (z,y) = (z, L)V(L,y)
and so if (z,y) fills a cell, it must be the case that (z, L) or (L,y) fill that cell (but
not both since L does never fill any cell). This property means that the cells always
perform a suitable decomposition of objects, at least when they are built up out of
“ground domains” by terms of first order operations like products. (For higher types,
which are built using “function spaces”, things become more complicated, and the goal
of this paper is precisely to give a new insight on what happens.) For practical reasons,
we add an empty cell L to any set of cells associated with a domain. This cell is filled
by no element of the domain.

In that framework, we can formulate the Kahn-Plotkin definition as follows: a
function f: X — Y between two domains equipped with cells is sequential if, for any
state 2 of X and any cell 3 of Y such that f(z) does not fill 3, there exists a cell o of
X, not filled by z and which is filled by any a’, state of X greater than z such that
f(a") be filled. This can be easily understood if the function f is seen as a deterministic
process. Let us assume, in order to simplify a bit, that the target domain Y has only
one cell different from L. Now for f(z), there are only two possibilities: either it is
undefined (the only cell is empty) or it is defined (the only cell is filled). Assume that
we are in the first case. Then there are two possibilities: Either, whatever additional
information we give to its input, the process f is unable to fill its output. This situation
is described by the Kahn-Plotkin definition: take o = L, the empty cell. Or the process
is stuck somewhere in its computation because, in its input datum =z, it has found a
hole (unfilled cell) a. Since the process is deterministic, it cannot decide that, after
all, this lacking information could be replaced by something else: it really needs a to
be filled in z in order to fill its output cell. This is precisely what the Kahn-Plotkin
definition says: if we increase the information z to a greater piece of data z’ in such a
way that the only cell of Y be filled in f(z'), then the cell @ where the computational
process was stuck in x must be filled in z’.

In order to use this idea of sequentiality for building a model of a functional language
like PCF, we need to define a suitable notion of “function space”. The most natural
idea is the following: if X and Y are domains equipped with cells, take as space of
functions from X to Y the set Z of all Kahn-Plotkin sequential functions from X to Y
equipped with a suitable order and a suitable set of cells. The problem is that, until
now, all the natural attempts in that direction have failed; it seems impossible to find a
set of cells on Z such that the evaluation function (which takes a function, an argument
and applies the function to the argument) be Kahn-Plotkin sequential.

In order to get out of this difficulty, there are two kinds of approaches up to now.

The first one consists in changing the notion of sequential morphisms: this is the
“sequential algorithms” approach. A sequential algorithm is roughly a sequential func-
tion equipped with a Skolem function for the V3 sequence of quantifiers in the Kahn-
Plotkin definition of sequentiality. In a sequential algorithm, the sequential function
will sometimes be called “extensional component” and the Skolem function “intensional
component”. For the set Z of sequential algorithms from X to Y, it is possible to find
an order and a notion of cell such that Z be the exponentiation of X and Y, but
both these notions use in a very strong way the intensional components of sequential
algorithms. This approach has been developed by Berry and Curien [C1] and has now
interesting developments in the direction of models of linear logic [L, C2, AJ] which
have strong analogies with the game-theoretic model proposed by Blass [Bl]. This



approach has been very successful since it has allowed for a new characterization of
the fully abstract model of PCF [AJM, HOJ]. With Bucciarelli, we also developed an
abstract theory of sequential algorithms [BE3].

The other approach consists in reformulating the Kahn-Plotkin condition. The
first result in this direction is the cartesian closedness of the category of dI-domains
and stable functions, discovered by Berry. A stable function is a continuous function
which commutes to the glb’s of finite and bounded sets of data. However, stability only
captures “local sequentiality”, that is sequentiality restricted to bounded subsets of do-
mains. Actually, there are stable functions which are not sequential. In the same spirit,
we observed with Bucciarelli that Kahn-Plotkin sequentiality could be expressed as a
glb’s-preservation property, for some sets of data which are not necessarily bounded.
Let us be a bit more specific. In a domain X equipped with a suitable set of cells, let
us call “linearly coherent set” any finite and non-empty subset A of X which has the
following property: for any cell «, if all the elements of A fill the cell a, then the glh
of A fills the cell a. Intuitively, this can be reformulated as follows: if all the elements
of A fill a given cell a, then they all fill & with the same value. We observed that a
function from X to Y is Kahn-Plotkin sequential if and only if it sends any linearly
coherent set to a linearly coherent set and commutes to the glb’s of linearly coherent
sets. Obviously, any finite and bounded subset of X is linearly coherent (and so, as
it is well known, any sequential function is stable), but the converse is false. For in-
stance, any finite set which contains L (the minimum of X', the datum which does not
fill any cell) is linearly coherent, since it is impossible to find a cell which is filled by
all the elements of such a set of data. So, rather than considering domains equipped
with cells, it became natural to consider domains equipped with a “coherence”, that
is, a suitable subset of the set of finite and non-empty subsets of the domain, which
are called “coherent”. We have studied this notion in the framework of qualitative
domains and dI-domains, and in both cases, we could prove cartesian closedness. A
morphism between two domains equipped with a coherence is a continuous function
which sends coherent sets on coherent sets and commutes to the glb’s of coherent sets.
More recently, we have found a simplified framework for dealing with strong stability,
namely the framework of hypercoherences [E] which also gives rise to a new model of
linear logic, and we shall use this theory of strongly stable functions in the sequel. A
hypercoherence is a very simple structure (a hypergraph) which naturally gives rise to a
qualitative domain equipped with a coherence. All the constructions that we performed
on general qualitative domains with coherence (cartesian product and function space),
when restricted to qualitative domains with coherence induced by hypercoherences, give
rise to qualitative domains with coherence induced by hypercoherences. Furthermore,
these constructions are more easily expressed directly in terms of hypercoherences than
in terms of qualitative domains with coherence.

Between two domains equipped with linear coherences, we know that strong sta-
bility corresponds exactly to Kahn-Plotkin sequentiality (typically, ground types and
products of them will be interpreted as domains equipped with linear coherences). But
the coherence induced on the exponentiation (function space) of two such domains
equipped with linear coherences is generally not linear. So a very natural question
arises: are strongly stable functionals Kahn-Plotkin sequential? Unfortunately, as it is
stated, this question does not make any sense. Actually, there is in general no notion of
cell on the space of strongly stable functions from a domain to another domain which



makes the evaluation sequential. (Remember that there is a notion of cell for function
spaces only in the framework of sequential algorithms). What we present here is a con-
struction which shows that “any strongly stable function” (not exactly any, but at least
those which arise in the strongly stable model of PCF) is the “extensional component”
(in a generalized sense) of a sequential algorithm. More precisely, we construct a CCC
where objects are triples (£, X, 7). In such a triple, £ is a “sequential structure”, that
is a domain F, equipped with a set of cells £* and an additional structure called “ac-
cessibility relation”, X is a hypercoherence, and 7 is a function from E, to qD (X)) (the
qualitative domain induced by X). The function 7 has to be linear, strongly stable
(w.r.t. the linear coherence induced by E* on FE, and the coherence induced by the
hypercoherence X on gD (X)) and onto. This last requirement is absolutely essential
for our purpose; the intuition behind such a triple (£, X, ) is the following: F, is a
space of sequential algorithms, qD (X) is a space of strongly stable functions, and =
is the “forgetful” operation which sends any sequential algorithm on its (generalized)
extensional component. Then, saying that 7 is onto means that any strongly stable
function is in some sense the extensional component of a sequential algorithm.
When one tries to perform this construction, two main problems arise:

o First of all, not all sequential algorithms can be “projected” on strongly stable
functions, but only the “extensional” ones. Consider the following well known
counter-example. From Bool? to Bool (where Bool is the type of booleans),
one can define a “strict and” program, that is a program which computes the
“and” of its two arguments in such a way that both of these arguments are
used, even when one of them is “false”. More precisely, one can define two
essentially different such silly “and” programs: the first one uses first its first
argument, and the second one uses first its second argument. These programs
are called respectively “left strict and” and “right strict and”. In the strongly
stable model of PCF, these two programs have exactly the same semantics, but
their interpretations as sequential algorithms are different, and even unbounded.
However, the extensional components of these sequential algorithms are equal
to the unique strongly stable interpretation of the two programs. It is possible
to define a sequential algorithm of type (Bool?> — Bool) — Bool which sends
the “left strict and” on “true” and the “right strict and” on “false”. Now this
sequential algorithm cannot be projected on a strongly stable functional, since
that functional should send on different values one and the same strongly stable
function.

We solve this problem by adding an extensionality constraint on sequential algo-
rithms. This constraint is naturally expressed using the “projections” .

e Secondly, the requirement that 7 should be onto is not sufficient for building the
exponentiation in our category in general. We need a kind of “uniform surjec-
tivity” which is expressed as a lifting property. Surprisingly enough, proving the
lifting property for the extensional projection of the exponentiation becomes then
a simple abstract categorical calculation.

In that way, we build a category where the objects are the triples (F, X, 1) previ-
ously described (with 7 satisfying the lifting condition), and a morphism between two
such objects (F, X,7) and (F,Y,7') is a sequential algorithm from F to F which is



extensional with respect to 7 and 7’. We prove that this category is cartesian closed.
When we define the exponentiation (G, Z, 1) of two objects (E, X, 7) and (F,Y,7’) we
take of course for Z the hypercoherence which is the exponentiation of X and Y in
the category of hypercoherences and general strongly stable functions. Then the sur-
jectivity of I states that any strongly stable function from X to Y is the extensional
component of some sequential algorithm.

The model of PCF constructed in this way can be considered as a model of “exten-
sional sequential algorithms”. We can define a functor from this model to the model
of hypercoherences and strongly stable functions, using the extensional projections 7.
This functor is full and commutes to the cartesian product and exponentiation. Then
it is easy to see that any equation (or inequation) on PCF which holds in the model
of extensional sequential algorithms also holds in the model of hypercoherences and
strongly stable functions. In this technical sense, we can say that the model of hy-
percoherences and strongly stable functions is “sequential”. We consider this result as
very important because it establishes a strong connection between the “explicit” ap-
proach to sequentiality (sequential algorithms) and the “implicit” one (strongly stable
functions). This means that strong stability has a computational interpretation, and
this fact was not obvious at first sight.

The paper consists of three sections. In the first section, we recall some basics of
domain theory, and the ground definitions and results of the theory of strongly stable
functions. We also describe briefly the model of hypercoherences. In the second section,
we give an abstract theory of sequential algorithms. This theory is analogous to the one
presented in [BE3], but the objects we consider here satisfy an additional requirement
(internal sequentiality) which is essential for relating strong stability to sequentiality.
We had to perform again all the constructions of [BE3] in this modified framework. The
last section contains the construction of our model of extensional sequential algorithms,
and the proof of the syntactic result mentioned above. A very short appendix outlines
the syntax of PCF and the notion of model considered here.



Contents

1 Preliminaries
1.1 Preliminaries about sets and relations . . ... ... ... ........
1.2 Preliminaries in domain theory . .. ... ... ... .. ... ......
1.3 Traces . . . . o o e e e e
1.4 Qualitative domains and coherence spaces . . . . .. ... ... .. ...
1.5 dI-domains with coherence . . . . . . . .. . .. ... ... .. ... ...
1.6 Hypercoherences . . . . . . . . . . . . e

2 An abstract theory of sequential algorithms

2.1 Sequential structures and sequential algorithms . . . . .. ... .. ...

2.2 Strongly stable functions and sequential algorithms on sequential struc-
tures . . . . L e e e

2.3 Properties of the stableorder . . . . . .. ... . ... ... ... ...

2.4  Finite retractions . . . . .. .o Lo oo

2.5 Substructures . . . . . ..

2.6 The category of sequential structures and sequential algorithms . . . . .

3 Extensional projections
3.1 Two particular sequential structures . . . ... ... ... ... .....
3.2 Extensionally projected sequential structures . ... ... ... .....
3.3 Comparison with the model of hypercoherences . . . . .. ... .. ...

ESEENEEN |



1 Preliminaries

1.1 Preliminaries about sets and relations

Let F and F be two sets. If C' C E x F, we denote by C7 or Cg the first projection
of C' and by C5 or C'r its second projection. We say that C' is a pairing of F and F if
Ci=Fand Cy = F.

The disjoint union of E and F will be denoted by E 4+ F and represented by
G=(Ex{1})U(F x{2}). If C C G, we denote by Cy = {a € E | (a,1) € C} its first
component and by Cy = {b € F | (b,2) € C} its second component.

Definition 1 Let E and F be sets. Let R C E X F be a binary relation. Let A C E
and B C F. We say that A and B are paired under R if (A X B) N R is a pairing of
A and B.

Assume that A C E and B C F are paired under R C E x F. If R is the relation
“e”, we say that A is a multisection of B and we write A1 B. If F = F is an ordered
set, and if the relation R is the order relation on E, we say thalt A is Egli-Milner less
than B w.r.t. this order relation and we write A T B (usually there will not be any
possible confusion about the order involved).

So A < B means that A C |JB and that AN b is non empty for all b € B. And
A C B means that any element of A is less than an element of B and any element
of B is greater than an element of A (this corresponds to the Egli-Milner relation in
power-domains theory).

Obviously, the relation C is a preorder on F.

If £ is a set, we denote by Pg (F) the set of its finite and non-empty subsets. We
write  Cg F when z is a finite and non-empty subset of £.

If E and F are sets, if F is a set of functions from FE to F and if z € F, we denote
by F(z) the set {f(z) | f € F}.

1.2 Preliminaries in domain theory

If D is a poset and z,2’ € D, the notation « | 2’ means that z and z’ are bounded in
D.

We shall use the abbreviations “lub” for “least upper bound” and “glb” for “greatest
lower bound”.

A complete partial order (cpo for short) is a poset where any directed family has a

lub.
Definition 2 A cpo D is bounded complete iff any bounded subset of D has a lub.

We shall use the abbreviation becpo for “bounded-complete cpo”.

Observe that a beepo has always a least element (the lub of () which will be denoted
by L.

In a beepo, any non-empty subset has a glb. Actually, one can define equivalently
a beepo as a cpo which has a least element and where any non-empty subset has a glb.



Definition 3 Let D be a beepo and let D' C D, that we consider as a poset with
the order induced by D. One says that D' is a sub-bcepo of D if for any A C D',
if A is bounded in D, then its lub (in D) belongs to D'. We say that such a D' is a
multiplicative sub-bcepo of D if furthermore, for any x, a2’ € D', if x and 2’ are bounded
(in D, or equivalently in D'), their glb (in D) belongs to D'.

Obviously, a sub-beecpo D' of a beepo D is a beepo, and the inclusion map preserves all
the existing lub’s. If D’ is a multiplicative sub-bccpo, then the inclusion map commutes
furthermore to binary bounded meets.

Definition 4 Let D be a beecpo. One says that D is distributive if, for x,2',y € D
such that x and @' are bounded, one has

(zvaYAy=(zAy)V(a'Ay).

The notion of linear open subset of a beepo will play an important role in this work,
because it will modelize the intuitive notion of question or cell over a datatype. They
are those subsets of the domain whose characteristic map (taking its values in the two
points Sierpinsky domain {L < T}) is linear. Here is a direct definition:

Definition 5 Let D be a becpo. A subset a of D is called linear open if:
o « is upper-closed (that is, if © € o and &' > « then 2’ € a).

e a is closed under non-empty, finite and bounded glb’s (equivalently, if z,2' € «
are bounded, then z Az’ € a).

o a is completely prime, that is, if A C D is bounded and if \| A € «a, then AN«
s non-empty.

In particular, L ¢ a. The empty linear subset of D will often be noted L. One denotes
by DL the set of all linear open subsets of D.

Definition 6 Let D be a beepo and let () be a subset of D+. One says that () separates
D locally if, whenever z,z' € D are bounded and salisfy

Vae@ zcasir’ ca
one has z = z'.

Lemma 1 Let D be a beepo such that there exists a subset of D+ which separates D
locally. Then D is distributive.

Proof: Let @ be a subset of D' which separates D locally. Let x, ',y € D be such
that 2 and 2’ are bounded. We have to prove that (zVz')Ay = (2 Ay)V(z'Ay) and for
this we can assume that «, 2’ and y are bounded (otherwise, replace y by (z vV a') A y).
We clearly have (zVz')Ay > (zAy)V(2z'Ay). Solet a € ) be such that (zVa')Ay € a.
Then one has y € a and z V 2’ € «, that is z € @ or 2’ € a. Assume for instance that
x € a. Then, since z and y are bounded, one has z A y € a, and we conclude. "



Definition 7 Let D and D' be beepo’s. A funclion [ : D — D' is continuous if it
commutes to directed lub’s. It is stable if it is continuous and commutes to finite and
bounded glb’s. It is linear if it is stable and commutes to all existing finite lub’s.

Observe that a linear open subset of a bccpo D can alternatively be viewed as a
linear map D — O, where O is the two point domain {L, T} with L < T.

Observe also that if D is a beepo and if D' is a multiplicative sub-beepo of D, then
the inclusion map from D’ to D is linear, so that any element of D+, when restricted
to D', defines an element of D'*.

Definition 8 Let D and D' be two beepo’s, and let f,g : D — D' be lwo continuous
functions. One says that f is extensionally less than g if, for all x € D, one has
f(z) < g(x). One says that f is stably less than g if for all x,y € D such that z <y
one has f(z) = f(y) Ag(x).

Definition 9 Let D be a beepo. One says that an element & of D is compact (or
isolated) if, for all A C D directed, if V A > =, there exists y € A such that y > z.
The element © of D is said to be prime if the same property holds for any A C D
bounded.

One says that D is algebraic if any element of D is the lub of ils compact lower
bounds, and one says that D is w-algebraic if it is algebraic and if the set of its isolated
points is enumerable.

One says that D is prime-algebraic if any element of D is the lub of its prime lower
bounds.

One says that D has the I-property if any compact element of D has only finitely
many lower bounds.

Observe that L is always compact, but never prime (since L = \/0).
In a partial order, one calls w-chain an w-indexed increasing chain of elements. In
a cpo, any w-chain has a lub, because an w-chain is a particular case of directed set.

Lemma 2 Let D and D' be two w-algebraic beepo’s. A function from D to D' is
continuous iff it commutes to the lubs of all w-chains.

Of course, bounded completeness does not play any role in the previous lemma, which
holds for arbitrary w-algebraic cpo’s. But we do not need this generality here.

Definition 10 A Scott-domain is an w-algebraic beepo.

Definition 11 A dI-domain is a distributive bcepo which is w-algebraic and has the
I-property.

The following is due to Winskel (see [W]), and is proved by induction on isolated
elements.

Proposition 1 If D is dI-domain, then D is prime-algebraic.



If D is dI-domain, we denote by K(D) the set of its compact elements and by |D|
the set of its prime elements.

It is well known that the category dI of dI-domains and stable functions is cartesian
closed. We recall briefly how the product and the exponentiation are defined in this
category.

Proposition 2 Let D and D' be two dI-domains. The sel D x D', endowed with the
product order, is a dI-domain which is the product of D and D' in the category dI.

Proposition 3 Let D and D' be two dI-domains. The set [D — D']s of all stable
functions from D to D' endowed with the stable ordering is a dI-domain which is the
exponentiation of D and D' in the category dI. Furthermore:

o If F C[D — D'ls is bounded or directed, and if x € D, then

VA)) =V J(z).

fer
o If F C[D — D']g is non-empty, finite and bounded, and if x € D, then

(ANF)w) = N f(z) .

feF

1.3 Traces

We define the notion of trace of a stable function, which allows for a “concrete” repre-
sentation of these functions and simplifies the study of the function spaces in the stable
case.

In this section, D and D’ are two fixed dI-domains.

Definition 12 Let f: D — D’ be a stable function. The trace of f is the subsel tr ( f)
of K(D) x |D'| defined by:

tr(f) = {(a,q) € K(D) x |D'| | ¢ < f(a) and a minimal with this property}
The stable functions are completely characterized by their traces.

Proposition 4 Let f : D — D' be a stable function, and let x be any element of D.
Then

Je)=\{gl3a<az (a,q)€tr(f)}
Furthermore, traces behave very nicely with respect to the stable ordering.

Proposition 5 Let f,g: D — D' be stable functions. Then f is less than g (w.r.l. the
stable ordering) iff tr (f) is a subset of tr(g).

Linear functions have a very simple characterization in terms of traces.

Proposition 6 Let f: D — D' be a stable function. f is linear iff tr(f); is a subset
of | D|.

One defines also traces for the linear open subsets of a dI-domain.

10



Definition 13 Let o € D. The trace of a is the set
tr(a) ={p€|D||p€ a and p minimal} .
Then one has:

Proposition 7 Let o € Dt and let 2 € D. Then x € a iff there exists p € tr(a) such
that p < z.

The characterizations of linear open subsets’ traces is very simple: if u C |D|, then
w is the trace of an element of D+ iff the elements of u are pairwise unbounded.
1.4 Qualitative domains and coherence spaces

We are now interested in a special kind of dI-domains.

Definition 14 Let (V,<) be a poset with a least element L. An atom in V is an
element of V. which is different from 1 and which has no other lower bounds than L
and itself.

Definition 15 A dI-domain D is said to be atomic if all its prime element are atoms.
Now we define a “concrete” representation of atomic dI-domains based on [G1].

Definition 16 A qualitative domain (gD for short) is a set E such that:
o [fec F ande Ce, thene' € E.
o I/ is closed under directed unions.

The elements of F are sometimes called states of the qD F.

If F is a qualitative domain, then F (ordered by C) is an atomic dI-domain, where
the isolated elements are the finite elements of F and the prime elements are the
elements of F which are singletons. Conversely, if D is an atomic dI-domain, then the
set of all subsets of |D| which are bounded in D is a qualitative domain.

This establishes a one-to-one correspondence between atomic dI-domains and qual-
itative domains.

If £ is a qualitative domain, the set |E| = {a | {a} € E} is called web of F (so the
web of E is the set of prime elements of E, if we consider F as a dI-domain).

The interesting property of qualitative domains is the following:

Proposition 8 The category of qualitative domains and stable functions is a full sub-
CCC of the category of dI-domains and stable functions.

There is a sub-class of the class of qualitative domains which is also of interest in
the theory of stable functions:

Definition 17 A qualitative domain F is said to be a coherence space if it has the
following property: for any x C |F|, if

Va,a' €z {a,d’} € F

then x € F.

11



So a coherence space F is completely defined by a reflexive and symmetric relation
on |E|. Observe that a coherence space can also be viewed as a dI-domain which is
atomic and where a family of points is bounded as soon as it is pairwise bounded (this
property is sometimes called coherence in the literature).

Proposition 9 The category of coherence spaces and stable functions is a full sub-CCC
of the category of qualitative domains and stable functions.

If E is a qualitative domain, we define the coherence space E+ as follows: ‘EJ“ = |E|

and {a,a'} € ELiff a = @’ or {a,a’} ¢ E. Then we consider E1 as a set of questions
on E and we say that a data @ € E answers a question a € Et iff a na £ 0. If 2
answers a then it is easily checked that z N« is a singleton. Observe that E+ is the
space of traces (in the sense of definition 13) of all linear open subsets (see definition 5)
of F, considered as a dI-domain, so our notations are consistent.

1.5 dI-domains with coherence

In [BE4], we have developed a theory of strongly stable functions in the framework of
dI-domains with coherence. Let us give the main definitions and results of this theory.

Definition 18 A dI-domain with coherence (dIC for short) is a pair (E,C(FE)) where
E is a dI-domain and C (E) is a subset of Pf;, (F) satisfying the following properties:

o For any u € E, the singleton {u} is in C (F).
o IfA€C(F) and if B € P§, (F) satisfy BT A, then B € C(E).

o IfDy,....,D, (withn > 1) is a family of directed subsets of E such that, for any
wy € Di,...,u, € D, one has {uy,...,u,} € C(E), then {\/ D1,...,\V D,} €
C(E).

By abuse of notation, we shall sometimes denote a dIC (E,C(F)) simply by E. If F is
a dIC, the elements of C (F) will be called the coherent subsets of E.

And now we define a notion of morphism between two such objects:

Definition 19 Let E and F be two dIC’s. A strongly stable function f: F — F is a
function f: E — F which is Scott-conlinuous and such that, for any A € C (E),

J(Ayec(r) and  NJf(A)=J(\A).

Observe that any strongly stable function is stable, because any non-empty, finite
and bounded subset of a dIC is coherent. The category of dIC’s and strongly stable
functions will be denoted by dIC.

Proposition 10 The category dIC is cartesian closed.

We do not give the proof which can be found in [BE4]. We just describe the cartesian
product and the exponentiation in that category. So, let F and F' we two dIC’s.
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The cartesian product of F and F is the dl-domain F X F equipped with the
following coherence:

C(ExF)={CePi,(ExF)|CyeC(FE) and Cy€C(F)}.

The projections and the pairing of two functions are defined are usual.

The exponentiation is more difficult to describe. First of all, the set of all strongly
stable functions from F to F, equipped with the stable order, is a dI-domain . Now
on G we want to define a coherence C (G') such that, at least, the evaluation morphism
Ev: G x E — F defined by Ev(f,u) = f(u) be strongly stable. We simply take the
greatest (with respect to inclusion) coherence satisfying this last requirement. That is:

C(G) = {FePi(G)|VECGXE

Ev(&) e C(F
(&= F and & € C(E)) = { EVE/\)E) =(/\ %V(g) I
We denote by E — F' this exponentiation (G,C(G)), which lies in the category dIC
and satisfies the required conditions.

1.6 Hypercoherences

In [E], we have introduced the notion of hypercoherence as a simplified framework where
strong stability makes sense. We recall here the basic definitions and the properties of
this model of PCF that we use in the sequel.

Definition 20 A hypercoherence X is a pair (|X|,I' (X)) where |X| is an enumerable
set (the web) and I' (X) is a subset of Pg (|X|) (the atomic coherence) such that, for
any a € | X|, one has {a} € T (X).

If X is a hypercoherence, we denote by I'* (X') and call strict atomic coherence of X the
set of all elements of I' (X') which are not singletons (observe that X can be described
by I'* (X)) as well as by T'(X)).

Out of a hypercoherence, we define a qualitative domain with coherence, that is a
dI-domain with coherence where the underlying dI-domain is a qualitative domain.

Definition 21 Let X be a hypercoherence. We define qD (X)) and C(X) as follows :
aD(X) = {z C |X|| Yu Gy [X| u C o= ue I(X))

and

C(X)={AC5, aD(X) |Vu C, | X| ud A= uel (X)}.

gD (X)) will be called the qualitative domain generated by X and ils elements will be
called the states of qD (X), and C (X) will be called the state coherence generated by
X. The couple (¢D (X),C (X)) will be denoted by DC (X). The set of finite states of
gD (X)) will be denoted by qDg,, (X). The set of elements of C (X) which have at least
two elements will be denoted by C* (X).

13



It is clear that qD (X) is always a qualitative domain, and its web is |X| by our
only requirement about hypercoherences. Observe also that qDC (X)) is a dIC.

The morphisms between hypercoherences that we shall consider in this paper are
the strongly stable functions. There is also a notion of linear morphisms between
hypercoherences; their theory is developed in [E]. If X and Y are hypercoherences, a
strongly stable function from X to Y is a strongly stable function from the dIC qDC (X))
to the dIC qDC(Y).

We denote by HCohF'S the category of hypercoherences and strongly stable func-
tions.

Let X and Y be hypercoherences. Let X x Y be the hypercoherence defined by
IXxY|=|X|+|Y]|and w e I'(X xY) if wCf | X X Y| and

(wg=0=w €T(X)) and (wy=0=wyel(Y)).

Let X — Y be the hypercoherence Z whose web is the set of all (z,b) where z € qD (X))
is finite and b € |Y|, and whose atomic coherence is given by: w € I' (Z) if w € Pg (|Z])
and

w1 €C(X)= (wy € I'(Y) and (#wy = 1= #wy = 1))

or equivalently
w1€C(X):>IU2€F(Y) and w1€C*(X):>w2€F*(Y)
Then we have the following result:

Proposition 11 If X and Y are hypercoherences, then
qDC(X xY)=qDC(X)xgDC(Y) and ¢DC(X —Y)=qDC(X)— qDC(Y).

In that proposition, the exponentiation qDC (X ) — qDC(Y') is of course taken in the
category dIC (and similarly for the cartesian product), and its domain component is
the set of traces of all strongly stable functions from qDC (X)) to ¢DC(Y') ordered by
inclusion, which is isomorphic to the set of all strongly stable functions from qDC (X))
to qDC(Y") stably ordered; this domain is a qualitative domain.

So the category of hypercoherences and strongly stable functions is equivalent to a

full sub-CCC of dIC.

2 An abstract theory of sequential algorithms

As already mentioned in the introduction, Concrete Data Structures (CDS’s) provide
a semantics of PCF where all terms are interpreted by sequential algorithms, that is,
basically, sequential functions equipped with an explicit “evaluation strategy” which
specifies how the function explores its input. An exhaustive account of sequential
algorithms on CDS’s can be found in [C1]. Let us just say that a CDS is a structure out
of which one can define a domain (the domains definable in this way are called “concrete
domains”) which is naturally equipped with a set of “cells”. An element of the domain
is then obtained by filling some cells with values. An important component of a CDS
is its “accessibility relation”: given an element z of the associated domain, there are
some cells which are said to be accessible from x. This means that we are allowed to
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increase z by filling some of these cells by values. Among all CDS’s, Curien pointed
out in [C1] that the subclass of sequential CDS’s has good closure properties. A CDS is
sequential if its accessibility relation satisfies a condition which means intuitively that,
given a cell and an element = of the associated domain, there is a “deterministic” way
of making this cell accessible from z. This condition is called “internal sequentiality”.

In [BE3], we have developed a theory of sequential algorithms where, instead of
considering CDS’s, we axiomatize directly a notion of domain equipped with “cells” or
“questions”, which are described as linear open subsets of the domain. We called these
objects “sequential structures”. In this work, we observed that sequential structures
had to be equipped with an accessibility relation in order to make the category of
sequential structures and sequential algorithms cartesian closed.

The object of this section is to give a precise account of the theory of sequential
structures. In contrast with [BE3], the sequential structures presented here will have
to satisfy a further axiom which corresponds to the internal sequentiality of sequential
CDS’s.

The sequential structures presented here are probably slightly more general than
sequential CDS’s, but this is not the real technical reason why we introduce them. The
point is that, for the purpose of section 3, sequential structures seem easier to handle

than CDS’s.

2.1 Sequential structures and sequential algorithms

Since w-algebraicity and [-property in the “extensional” sequential structures that we
shall introduce in section 3 will be a bit problematic, we introduce the notion of se-
quential structure in two steps.

Definition 22 A pre-sequential structure (PSS for short) is a tuple E = (E,, E*,FE)
where B, is a bounded complete cpo, E* is an enumerable subset' of E+ containing L
and locally separating E,, and F-5C FE, X E* is a binary relation satisfying the following
arioms:

(PSS1) For any u € E,, utg L. For anyu € E, and a € E*, if u € a then u /g o.
(PS5S2) If u € Ey and o € E* salisfy u € «, then there exists u' < u such that ' Fg a.
(PSS3) Ifu € Ey and o € E* satisfy u b o, and if v’ > u satisfies v’ ¢ a, then v’ Fg a.

(PSS4) If D C E is directed and satisfies \| D g a for a € E*, then there exists uw € D

such that w b a. (This condition will be called internal continuity in the sequel.)

(PS5S5) If w € E, and o € E* satisfy v ¢ o and u /g «, then there exvists o/ € E*
such that u Fg o and for any u' > u, if v’ b5 a, then «' € o'. (This condition
will be called internal sequentiality in the sequel, and o' will be called internal
sequentiality index for a at u.)

"More precisely, E* is a set of formal objects with a distinguished element L, and “€” should be
considered as a relation, called filling relation, on E.x x E* which is linear in its first component and
such that z € L never holds.
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If Eis a PSS, if u € E,, we denote by E the set {a € E, | u kg a}. The elements
of E* are sometimes called cells of E. If 2 € a, one says that the cell « is filled in x.
If « Fg a, one says that the cell « is accessible from .

Definition 23 A PSS F is a sequential structure if it enjoys furthermore the two
following properties:

o F, isw-algebraic.

o Ifu € FE, is compact, then there are only finitely many o € E* such that u € a.

Lemma 3 If E is a sequential structure, then E. is a dI-domain.

Proof: We already know that F, is distributive by lemma 1. So we just have to prove
that F, enjoys the I-property.

For u € E,, let |u| be the set {a € E, | u € a}. If v’ < u, we know that if |u/| = |u]
then w = «’' by local separation. But if u is compact, then |u| is finite, since E is a
sequential structure. So if w is compact, v has finitely many lower bounds. n

Lemma 4 Let FE be a PSS, and let u,u' € FE, be bounded. Let o € E*. If utp o and
' Fga, then u Au' Fg a. This property will be called internal stability.

Proof: Let u,u’ € F, be bounded, and let a € E* be such that u -5 a and v’ Fg a.
Assume that uAu' /g a. Let o € E* be an internal sequentiality index for a at u A w’.
By internal sequentiality, we have u € o’ and u’ € o/, whence the contradiction, by
stability of . .

Now we introduce the notion of sequential algorithm which, as already mentioned,
is reminiscent of the notion of abstract algorithm defined in [C1].

Definition 24 Let E and F be PSS’s. A sequential algorithm from FE to F is a pair
(f,¢) where f : E, — F, is a Scott-continuous function, and for all u € E,, @, is a
function F}‘(u) — B satisfying the following arioms:

e p,(L)=1
o Ifu<u and if B € Ffy then
f(u') e p=u €puB)
This condition is called sequentiality.

o Ifu<u and if B € Ffy then

W ¢ pu(B) = pu(B) = pul(B)

This condition is called permanence.

o If D C F is directed and if § € F}‘(VD) is such that gavD(ﬁ) # L1, then there
exists w € D such that f(u) Fg B and ¢, (8) = cva(ﬁ) This condition is called
continuity (of ¢).
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Lemma 5 If (f, ) is a sequential algorithm, then f is a stable function.
The proof is easy, it is similar to the proof of lemma 4.

Definition 25 Let E and F be PSS’s. Let (f,¢),(g,¢): E — F be sequential algo-
rithms. One says that (f, @) is stably less than (g,) and writes (f,¢) < (g,v) iff f
is extensionally less than g and, for any uw € FE, and § € F)T(u), if eu(B) # L, then

g(u) ¢ B and ¢¥u(B) = @u(B).

Definition 26 Let E,F and G be PSS’s. The identity algorithm E — FE is the pair
(Id,¢) where Id is the identity and v, is the identity for all w € E,.. It will often be
simply denoted by 1d.

If (f,e): E— F and (g,%¢): FF — G are two sequential algorithms, their composi-
tion (h,0): E — G is given by

hu) = g(f(w)) and 0.(7) = pu(dsw)(7))
and will be denoted by (g,v)o (f, ).

One should check that (g,%)o (f,¢) is actually a sequential algorithm. We leave this
verification to the reader (the proof can also be found in [BE3]).

And so we define a category where the objects are sequential structures and the
morphisms are sequential algorithms. Let us call SeqSt this category.

2.2 Strongly stable functions and sequential algorithms on sequential
structures

The goal of this section is to relate formally the notion of “sequential function” (ie. con-
tinuous function having an “evaluation strategy”) to the notion of “sequential algo-
rithm” (ie. continuous function equipped with an “evaluation strategy”). More pre-
cisely, we want to relate sequential algorithms to strongly stable functions (w.r.t. the
linear coherence on a sequential structure, see below the precise definition). The inter-
nal sequentiality condition will be essential in order to relate sequential functions to
strongly stable functions.
We first define a notion of sequential functions between sequential structures.

Definition 27 Let E and F be sequential structures and let f : F, — F, be a Scott-
continuous function. One says that f is sequential if for all u € Ey, for all § € ij(u),

there exists a € E such that, for all u' > wu, if f(u') € B then «' € a. Such an « is
called sequentiality index of f for g at w.

Here we can notice a slight difference between our notion of sequentiality and the Kahn
and Plotkin’s notion. They would have said:
“One says that f is sequential if, for all u € F,, for all § € ij(u)

e either there is no u’ > u such that f(u') € 3

e or there exists a € E such that, for all ' > u, if f(u') € § then ' € .”
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Actually, in our framework, Kahn and Plotkin’s definition is equivalent to ours,
because we have added in the sets of questions the empty question L.

Now we prove that a sequential function can be endowed with an “evaluation strat-
egy”, giving rise to a sequential algorithm in the sense of definition 24. This proof does
not use the internal sequentiality axiom.

Proposition 12 Let E and F be sequential structures. If (f, @) : E — F is a sequential
algorithm, then f is a sequential function. Conversely, if [ : E. — F. is a sequential
function, there exists ¢ such that (f,¢) is a sequential algorithm E — F.

Proof: The first part of the proposition is obvious (by the definition of sequential
algorithms).

Now let f : E. — Fi be a sequential function. We define the family (¢,) by well
founded induction on the finite elements of E, (which is a dI-domain).

Let wug, u1,... be an enumeration of all finite elements of F, such that, if v < u,,
then the index ¢ of u in the enumeration is such that ¢ < n. (Such an enumeration is
easy to build from a given enumeration, because there are only finitely many elements
below a finite element.) We define ¢,,, by induction on n.

Let n € w. We assume (inductive hypothesis) that ¢, is defined for all ¢ < n and
that, for 7,5 < n,

(1) For any u € Fy, if u; < u,if § € F?(ui) and if f(u) € B, then u € ¢,,(5). This
means that ¢y, (f) is a sequentiality index of f for § at ;.

(2) If u; and u; are bounded, if 3 € F)T(Ui)ﬂij(uj), and if u; & oy, (8) and u; ¢ @, (8),
then ¢y, () = @y, (3). This coherence condition corresponds to the permanence
condition. Observe that when we assume that u; < u;, that condition is exactly
the permanence of the sequentiality index between u; and u;.

Now, let g € F}k(un)' There are two cases:

(a) Either there exists ¢ < n such that u; < u,, 8 € Ffy,y and up ¢ @u;(3). In
that case, we choose such an index ¢ and we set @, (8) = @y, (). This cell does
not depend on the choice of :. Actually, if 7 < n is another index satisfying the
same condition, then u; and u; are bounded by u,, and we have u; ¢ ¢, () and
u; & pu;(B), because u, ¢ @y, (3) and u, ¢ ¢, (3). So, by inductive hypothesis,
@ui(ﬂ) = Pu; (ﬂ)

(b) Or, for all i < n, if u; < u, and g € F*(ui), then u,, € @y, (). Then, we choose a
sequentiality index a of f for 8 at u,. We set ¢,,(8) = a.

Let u > u, and let 8 € F}‘(un) be such that f(u) € 8. If there exists ¢ < n such that
u; < Uy, B E F}‘(ui) and u, ¢ ¢,,(8) = a, then ¢, (3) = a (case (a)). But we have
uw > u; and f(u) € B, so by inductive hypothesis, we conclude that v € a. If there is
no such ¢ (case (b)), we have chosen for a = ¢, () a sequentiality index of f for § at
Uy, so we conclude directly that v € @. So condition (1) holds for u, in both cases.

Now let us check condition (2). So let j < n be such that u; and w,, are bounded,
let € Ff, N F7,,, be such that u; ¢ ©u,(B). There are two cases:
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o Either (a) holds, then we have taken ¢, (3) = @4, (8) where ¢ < n is such that
U < Uy, B € F}‘(Ui) and u, ¢ ©y,(B). Assume that u, ¢ ¢, (8). Then we
have u; ¢ ¢, (B) since u; < uy,, and so, by inductive hypothesis (2), we have

ous(B) = Puy (8).

¢ Or (b) holds. We prove that u, € ¢, (8) and that will prove that our second
hypothesis holds for the sequence uy, ..., u,. Let k£ < n be such that uy = u;Au,.
Then we know that § € F7,,, (because f is stable), and we have u,, € ¢y, (3) by
our hypothesis about w,. So, since u; and u,, are bounded, we must have u; ¢
©uy,(3), and thus, by inductive hypothesis, ¢y, (8) = ¥y, (8) and we conclude.

This achieves the construction of ¢, for all w € F, finite. If u € F, is not finite and if
B e F;(u)’ there are two cases:

e Either there exists u’ < u finite such that § € F}‘(u,) and u ¢ @u(3) and then

we take @, () = @w(B). This does not depend on the choice of u' because of
condition (2).

e Or there is no such «’. Then we take ¢,(3) = L.

And now ¢, is defined for all w € E,. Proving that (f,¢) is a sequential algorithm is
easy, using conditions (1) and (2). .

Lemma 6 A function [ : E, — F, is sequential iff it salisfies the following condition:
For allu € E, and all p € F*, if f(u) ¢ B, there exists a € E* such that u ¢ o, and,
for all v’ > w, if f(u') € 3, then v’ € a.

This condition will be called global sequentiality.

Proof: We use in an essential way the internal sequentiality of £ and F.

First, let f be sequential, and let us prove that f is globally sequential. Let 3 € F*
be such that f(u) ¢ 8. If g € F)T(u), then a sequentiality index « of f for 8 at u satisfies
the required condition. Otherwise, by internal sequentiality, we can find 8’ € F* such
that 8’ € F}‘(u) and, if v > f(u) and g € F*, then v € 3. Now let a be a sequentiality
index of f for 5" at u. Let «’ > u be such that f(u') € 3. Then there exists v < f(u')
such that § € Fy, and thus such that » € §’. So we have f(u') € §’, and thus «’ € a.

If f is globally sequential, the proof that f is sequential is similar to the previous
one. One must use internal sequentiality in F. n

Definition 28 Let E be a sequential structure. A subset A of E, is linearly coherent
if it is finite and satisfies the following condition: for all o € E*, if for all u € A one
has u € a, then N A € a. We denote by C" (E) the set of all linearly coherent subsets
of E.

Let E and F be sequential structures. A function [ : FE, — Fj is strongly stable if
it is Scoll-continuous and, for all A € C* (E), one has f(A) € CY(F) and f(\A) =

A J(A).
The proof of the following result can be found in [BEA4].

Proposition 13 A function f: E, — F is globally sequential iff it is strongly stable.
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We can summarize the content of this section as follows:

Proposition 14 If (f,¢): E — F is a sequential algorithm, then f is strongly stable.
Conversely, if f: E. — F, is strongly stable, one can find ¢ such that (f,¢) is a
sequential algorithm from FE to F.

2.3 Properties of the stable order

We establish now some properties of the poset of sequential algorithms from one PSS
to another. More precisely, we prove that this poset is a beepo and that composition
of sequential algorithms is a continuous operation. This result will be essential when
we shall deal with finite retractions for function spaces.

Lemma 7 Let E and F be two PSS’s, and let (f,¢),(g,¢): E — F be two sequential
algorithms. If (f,¢) < (g,%), then f is stably less than g.

Proof: Let u < u'. We have f(u) < f(u') A g(u). Let 3 € F* be such that
f(u') A g(u) € B, and assume that f(u) ¢ 5. By internal sequentiality, we can assume
that f(u) Fp 3. By sequentiality, we have u' € ¢,(8). Hence ¢,(3) # L, and hence
by stable ordering g(u) ¢ (3, and this is a contradiction. .

Definition 29 Let E and F' be PSS’s. We denote by AS(FE, F') the poset of sequential
algorithms from E to F (stably ordered).

Lemma 8 Let E and F be PSS’s. The poset AS(E, F) is a cpo.

Proof: Let D be a directed family of sequential algorithms F — F. Its lub (g,%) is
defined as follows:

o g(u) = V(f,w)eD f(u)

o Let G ¢ Fg*(u). If there exists (f,¢) € D such that g € F}‘(u) and ¢, (8) # L, then
¥u(B) = @u(B) and otherwise, 1,(5) = L. This does not depend on the choice
of (f,¢) because D is directed for the stable order of sequential algorithms.

Let us prove that (g, ) is indeed a sequential algorithm. Let u,u’ € E, be such that
u < v, and let 3 € F;(u). By internal continuity, we can find (f,) € D such that

f(u) kg B. Since D is directed, we can assume that all its elements have that property.

o Assume that g(u') € 3. Let (f,¢) € D be such that f(u’) € . By sequentiality,
we have u' € ¢, (), hence ¢, () # L, hence 1, (8) = pu(3) and thus u’ € 1, ().

o Assume that u' ¢ ¥, (8). Then for all (f,¢) € D, we have u’ ¢ ¢,(5) and we
conclude.
e Let D C E* be directed, let 3 € Fg*(\/D) be such that L/JVD(/ﬁ’) # 1. Let

(f,¢) € D be such that g € F;(\/D) and ¢VD(ﬂ) = govD(/ﬁ’). By continuity of ¢
we can find w € D such that f(u) Fp 8 and govD(ﬂ) = u(B). Since @, (3) # L,
we have g(u) Fr 8 and ¥, (8) = ¢u(8) = @va(ﬁ)
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Proving that (g,) is actually the lub of D is easy. .

Lemma 9 The poset AS(E, F) is bounded complete.

Proof: Let (f,¢),(g,v¢) € AS(E, F) be two sequential algorithms bounded by (h,7n) €
AS(E, F). We define (I, \) as follows

o l(u)=[(u)Vg(u)

o Let B € Fy,. If f(u) Fr B and ¢,(3) # L, then A\,(83) = @u(B). Similarly if
g(u) Fr B and ¥,(3) # L. If neither of these conditions hold, set A, (8) = L.
This definition makes sense because (f,¢) and (g,v) are bounded. Actually, if
fu) Fr B, g(u) Fr B, pu(B) # L and ¥,(5) # L, then we know that ¢,(8) =
u(B) = nu(B)-

Let us prove that (I, A) is a sequential algorithm. Let u,u’ € F, be such that u < v/,
and let 3 € Fl*(u)

o Assume that [(u') € 8. Then f(u') € B or g(u') € 3. Assume that f(u') € 5. We
know that f(u) = f(u') Al(u) (since f is stably less than /) and hence f(u) Fr 3,
by internal stability. By sequentiality of (f,¢), we conclude.

o Assume that u’ ¢ A,(3). We can assume that f(u') Fr 8 or g(u') Fr 3, otherwise
the result is obvious. Assume for instance that f(u’) bz 3. Since f(u) = f(u') A
l(u), we get by internal stability f(u) Fr 3. We can assume that A, (8) = pu(3)
(if this is not the case, make the same reasonment with (g,)). We conclude
using permanence of (f, ¢).

e Continuity of A is easy to check.

Again, we omit the proof that ([, X) is actually the lub of (f,¢) and (g, ). .
Since AS(FE, F') is bounded complete, it has glb’s for all non-empty subsets. These

glh’s are hard to characterize in general, but the case of two bounded algorithms is
easy and important for what follows.

Lemma 10 Let (f,¢),(g,v) € AS(E, F) be two sequential algorithms which are bounded.
Then their glb (1, \) is defined by

l(w) = f(u)Ag(u)
pu(B) = Yu(B) i f(u) Fr B, g(u) Fr B,
M(B) = eu(B) # L and $u(B) # L

L otherwise

This characterization makes sense precisely because (f,¢) and (g,%) are bounded.
Actually, this forces ¢,(3) and ©,(5) to have the same value when they are both
defined and different from L.

We omit the verification that (I, A) is actually a sequential algorithm, and that it is

the glb of (f,¢) and (g,v) in AS(E, F).
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Lemma 11 Composition is a Scotl-continuous function from AS(E,F) x AS(F,G)
(equipped with the product order) to AS(E,G).

Proof: We prove first that composition is monotone. Let (f,¢),(f’,¢’) € AS(E, F)
and (g,),(, ¥") € AS(F,G) be such that (£,) < (f,¢/) and (g, ) < (¢', ). Let
(h,m)=(g,%)o (f,¢)and (A',7n") = (¢',¢") o (f',¢'). Obviously, h < h' extensionally.
Let u € Ey and v € G}, and assume that a = n,(7) # L. Let 8 = ¢4,(7), we have

h(u)?

a = pu(B). Since (f,¢) < (f',¢"), we have f(u) Fr f and ¢, (8) = wu(F).

Since @ # L, we have also § # L, and hence, since (g,%) < (¢',¢'), we have
g'(f(w)) Fg v and ¢}(u)('y) = (. By sequentiality and permanence of (¢’, ') we have
¢}l(u)(’/) = ¢}(u)(7) because f'(u) ¢ 5. So we conclude.

Let D C AS(E, F) x AS(F,G) be directed. The two projections Dy C AS(E, F)
and Dy C AS(E,F) of D are directed. Let (I,A\) = V Dy and (m,p) = \VDz. Let
(k,k) = (m,p) o (I,A) and (K, r) = V{(g,¥) o (f;¢) | ((f,¢),(9,¢)) € D}. We
have (k', k') < (k, k) because composition is monotone. So let us prove the converse
inequality. Let w € E, and 7 € G};(u) be such that s,(y) # L. Using the fact
that D is directed, we can find a couple ((f,¢),(g,%)) € D such that g(f(u)) Fa 7
and £y (7) = pu(¥yw)(7)). By definition of (£',«') we have also k'(u) Fg 7 and

!

K, (7) = @u(¥s)(7)), and we conclude. .

2.4 TFinite retractions

The object of this section is to define the finite retractions, which are a tool for spec-
ifying in a “uniform” way algebraicity for PSS’s. This tool is very useful for proving
algebraicity for the spaces of “extensional” sequential algorithms that we shall define
in section 3. We have used the same tool in [BE2] for a similar reason. Let us stress
that our terminology is non-standard: what we call here “retraction” is usually called
“projection” in the litterature of denotational semantics. We prefer to avoid the use of
the word “projection” here because it will be used with a completely different meaning
in the sequel.

We have here to deal with a stupid problem: in a PSS F, there may exist elements
«a of E* different from L which are not filled by any element of F.. Obviously, these
elements do not play any role in the structure of F, but we are obliged either to reject
them by a specific axiom, but this would complicate all the theory of PSS’s, or to take
them carefully under consideration when defining the finite retractions which have to
generate in a finite way the whole structure of F, including these dummy questions a.
For the sake of simplicity, we have chosen this second solution.

Definition 30 Let E be a PSS. A dummy question of F is an element a of E* such
that for any u € E. one has u ¢ . A dummy set of E is a subset V of E* any element
of which is a dummy question of E.

Definition 31 Let FE be a PSS. A retraction on E is a continuous functionr : E, — E,
such that r < Id for the stable order.
If r is a retraction on E, we denote by |r| the set

Ir|={a€ E*|Ju € E, r(u) € a}
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Observe that a retraction r is stable and satisfies r o = r. This is due to the fact that
r < Id for the stable order.
Let 7 be a retraction on a PSS F and let V be a dummy set of . We define a
family of functions p7V : E:(u) — EZ (for v € E,) as follows:
vy ) oa ifaelrlUV and u ¢ o
pu(a) = { 1 otherwise

Lemma 12 Ifr is a retraction on a PSS E and V is a dummy set of E, then (r,p™")
is a sequential algorithm on E such that (r,p"") < Id.

Proof: We first prove that (r,p™") is a sequential algorithm. Let a € E:(u) and let
v € F, be such that v > w.

e Assume first that r(v) € a. Then obviously a € |r|. Furthermore, since r(u) =
r(v) A u, we have u ¢ a. Hence p7V(a) = a and v € p2V(a) since v > r(v).

e Assume now that v ¢ p»V(a). If p7V(a) = L, we obviously have also p"¥(a) =
L. Otherwise, we know that o € || UV, that pl;V(a) = o and hence that v ¢ a.

So we conclude that p7'Y(a) = a.

The continuity of p”V is left to the reader.
Now we check that (r,p™") < Id. Solet u € E, and a € E7(,y be such that

pV(a) £ L. This implies that « ¢ a, and hence 1,(a) = a and this concludes the
proof. .

Lemma 13 Let FE be a PSS.

o Letr and s be lwo retractions on F and let V and W be lwo dummy sels of ' such
that V.C W. 1If, for all u € E, one has r(u) < s(u), then (r,p™V) < (s, p*"W).

o Let (ry)new is a family of retractions of E such that r,(u) < rpy1(u) for alln € w
and u € E, and \/, o, rn(u) = u. Let (Vy)new be a family of dummy sets of E
such that V,, C V11 for all n € w and such that | V,. is the set of all dummy
questions of E. Then

new

\/ (Tn,p”“v”) = (Id,.) .

new
Proof: We keep the notations of the lemma.

o Let uw € E, and a € EJ,,, and assume that pV(a) # L. This means that

a € |r|UV and that u ¢ . Since |r| C |s| and V C W, we have a € |s| UW, and
since s(u) < u, we have s(u) ¢ a and we conclude.

o Let (r,p) = Vypew(Tn,p"™""). Then obviously r = Id. Let u € F, and let
a € E¥. Let n be such that r,(u) Fg a (we can find such an index n by internal
continuity). If o is not dummy, we can assume that a € |r,|. If a is dummy,
we can assume that a € V. In both cases, we have pZ’“Vn(a) = «, and thus

pu(@) = a.
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Definition 32 Let E be a PSS. A finite retraction on E is a retraction v on E such
that:

o The set r(E,) is finite.
o The set |r| is finile.

Definition 33 Let F be a PSS. A generating system of finite retractions (GSFR for
short) on E is a family of finite retractions (ry,)ne, on E such that:

o Foralln € w andu € E,, ro(u) < rppq(u).
o Forallue Ey, \, e, mn(u) = u.

Observe that if (r,)ne, is @ GSFR on FE, one actually has r, < r,yq for the stable
order, and not only for the extensional order. This is due to the fact that r, < Id and
Tnt1 < Id in the stable order.

Proposition 15 Let E be a PSS. If E admits a GSFR, then E is a sequential structure.

Proof: Let (r,)ne. be a GSFR on E.

First, since (r,,)new is a stably increasing family of stable functions with finite images
and having Id as lub, we know by standard considerations that E, is a dI-domain (see
for instance [B1]). So we only have to prove that any isolated element of F, answers
only to a finite number of questions of E*. So let w € F, be isolated and let n € w be
such that r,(u) = u. Let @ € E* be such that v € a. Then obviously & € |r,|, which
is finite by hypothesis, and we are done. .

From now on, we call sequential structure only a PSS equipped with a GSFR.

2.5 Substructures

The notion of sub-PSS that we introduce now is essential for the theory of extensional
sequential algorithms presented in section 3. Actually, roughly speaking, the space
of extensional sequential algorithms will be a sub-PSS of the space of all sequential
algorithms.

Definition 34 Let F be a PSS and let S C F,. One says that S defines a sub-PSS of
E if:

(1) S is a multiplicative sub-beepo of E..

(2) For any uw € S and any o € E*, if u € «, then there exists u' € S such that
w <wuandu Fga.
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Let E be a PSS, and let 5 defining a sub-PSS of E. We know that S is a beepo,
since F, is. Observe first that any element of F* can be seen as a linear open subset
of 5. So we consider F* as a set of linear open subsets of S which obviously separates
S locally. Now if we set F, = 5, F* = E* and if we take for Fr the restriction of kg
to S (that is, if v € S and o € E*, we say that u Fp o iff u Fg a), then the tuple
(Fy, F*,FF) becomes a PSS, because of condition (2) in the previous definition. The
PSS defined in this way from S will be called the “sub-PSS of E defined by 5”.

Lemma 14 Let E and E' be PSS’s. Let S C E, and §' C E', which define the sub-
PSS’s F and F' of E and E' respectively. Let (f,¢): E — F be a sequential algorithm
such that, for any u € S one has f(u) € S'. Then, by restriction to S, (f,¢) defines a
sequential algorithm from F to F'.

The proof is completely straightforward.
One of the main interests of finite retractions is that they are easily transferred to
substructures:

Lemma 15 Let E be a sequential structure, and let (r,) be its associated sequence of
finite retractions. Let S C F, be a sub-bcepo of F, defining a sub-PSS F of E. If, for
any n € w and for any u € S one has r,(u) € S, then the family (r,) defines a GSFR
for F.

Again, the proof is completely straightforward.

In the situation described by the previous lemma, we shall say that S defines a
sequential substructure of F, or that the sub-PSS of E defined by 5 is a sequential
substructure of F.

2.6 The category of sequential structures and sequential algorithms

The main goal of this section is to prove that the category of sequential structures and
sequential algorithms is cartesian closed.

The first step is to define the cartesian product. This is essentially trivial.

Let F and F be two sequential structures. Let G be defined by: the dI-domain G,
is the product of the dI-domains F, and F, and G* is the disjoint sum of F* and F™,
with bottoms collapsed, that is G* = ({1} x E*)U ({2} x F*)and (1,1)=(2,1) = L.
Then we define (u,v) € v, for (u,v) € G and v € G* as follows: (u,v) € (1,a) iff
u € a and (u,v) € (2,0) iff v € B. The accessibility relation is defined similarly:
(u,v)Fe (1,a) iff ubg a, and (u,v) Fo (2,0) iff vFF S.

Proposition 16 G is a sequential structure, and it is the cartesian product E X F of
E and F in the category SeqSt.

Proof: It is easy to prove that all the required conditions are fulfilled by G. Let us
just check internal sequentiality and build a GSFR for this product.

Let us first check internal sequentiality. Let (u,v) € G and 7 € G* be such that
(u,v) ¢ v and (u,v) g 7. Assume that 7 is of the shape (1,«). Then u ¢ o and
u i/g a, and thus, since F enjoys internal sequentiality, there exists o’ € EX such that,
for any o' > w, if v’ Fg a, then «’' € a. Now, it is clear that (1,a') is an index of
internal sequentiality in G for v at (u,v). So G has a structure of PSS.
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Next, if (ry,) is the GSFR of E and if (s,) is the GSFR of F, it is clear that the
family (4,)ne. defined by ¢, (u,v) = (r,(u), s,(v)) is a GSFR for G.
To finish, let us just say that the first projection (p',71): G — FE is defined by

p'(u,v)=u and 7r(1u7v)(a) =(1,a),

that the second one is defined similarly, and that,if (f,¢): H — F and (¢,¢): H — F
are sequential algorithms, their pairing (h,n): H — G is defined by:

hw) = (f(w),g(w))

m(la) = ¢

M(2,8) = Yu

u

Now we describe the exponentiation in the category SeqSt. ILet F and F be

two sequential structures. We stepwise define a sequential structure K which is the
exponentiation of £/ and F in SeqSt.

First, K. is AS(E, F'), the poset of sequential algorithms from E to F. We know

that it is a bounded complete cpo. We define now K*, the set of cells for sequential
algorithms.

Definition 35 An element of K* is a pair (ug, 3) where ug € E, is finite, and § € F*.
We collapse all the cells of the shape (ug, L) on L € K*.

Observe that K* is an enumerable set, since F is w-algebraic and F* is enumerable.
Now we define the filling and accessibility relations of K.

Definition 36 Let (f,¢) € K. and (ug,3) € K*.

o (f ) € (uo,B3) iff fug) € B and ug minimal with that property (and then one

says that (f,¢) fills (uo, ) extensionally), or f(ug) Fr B, ¢u,(8) # L and if
u < ug and f(u) Fp B, then ug € ¢u(B) (and then one says that (f,y) fills

(ug, ) intensionally). Furthermore, one never has (f,) € L.

. (f7 99) Fr (’U'Oaﬁ) Zﬁf(uO) Fr ﬂ; S‘Quo(ﬁ) =1 and, qu < ug and f(u) Fr ﬁ; then
ug € @u(B). Furthermore, (f,¢) Fx L always holds.

Lemma 16 The filling relation of K is linear in ils first component.

Proof:

o Let D C K, be a directed family of sequential algorithmms and let (ug, 3) € K*.
Let (g,v) =V D. Assume that (g, %) € (ug, 3). There are two cases:

— g(uo) € B and uo is minimal with that property. Since g(uo) = V(y,,)ep f(u0);
there exists (f,¢) € D such that f(ug) € 5. The minimality of ug for this

(f.¢¢) is obvious, since (f, ) < (9.4).

— 9(uo) br B, Yu(B) # L, and if u < ug and g(u) b B, then ug € Py().
Let (f,¢) € D be such that f(ug) Fr 8 and ¢, (8) = @u,(5). Let v < ug
be such that f(u) Fr 5. By permanence for (f, ), we have ¢,(8) # L, so

wu(B) = ¥u(5). Hence ug € @, (F), and thus (f, ) € (ug, 5).
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o Let (f1,¢1),(f% ?) € K. be bounded. Let (g,v) be their lub. Checking that if
(g,%) € (ug, 3) then (f*,¢") € (ug,3) for i = 1 or i = 2 is similar to what we did
in the case of directed families of algorithms.

o Let (f1,01),(f% ¢?) € K. be bounded. Let (g,%) be their glb. We know that
g(u) = fl(u) A f?(u). Furthermore, if g(u) Fz 3, there are two cases:

— Fither we have fi(u) Fr 38 and ¢! (8) # L for i = 1 and for i = 2. Then we
know that ¢1(8) = ¢2(8) and we have 1,(8) = ¢L(3).
— Or this is not the case, and then 1, (8) = L.

Assume that (f*, ¢") € (ug, B) for i = 1,2. In fact, since (f1, p') and (f2, p?) are
bounded, there are only two cases:

— Fither fi(uo) € ( and ug minimal, for ¢ = 1 and for 2 = 2. In that case, we
have g(ug) € § and the minimality of ug is obvious.

— Or, for both values of i, we have f'(ug) Fp 3, ¢% (8) # L, and if u < ug
is such that fi(u) Fp ﬂ, then wy € % (03). By internal stability, we have

g(ug) Fr 8. Furthermore, we know that ¢} (8) = @2 (8), and 1y, (8) is
the common value of these two expressions. So we have ©,,(8) # L. The
minimality of ug is easily checked.

We shall often use the following “minimization principle”:

Lemma 17 Let (f,¢) € K., letu € E, andlet § € F}‘(u). Let us denote by A(f, ¢, u, )
the set of all finite lower bounds ug of u such that f(uo) Fr f and u ¢ @y (3). Then

o cither A(f,p,u, ) is empty
o or it has a least element uq, and one has @, (3) = ©u(5).

Furthermore, if ¢, (8) # L, then A(f,¢,u,B) is not emply, and one has (f,¢) €

(/\A(f7 SO? u7 /3)7/3)' And} Zf@u(ﬁ) = J_ andA(f? SD? u? /3) % ®} then (f7 SO) '_I{ (/\A(f7 997 u?

The proof of this fact is left to the reader.

Lemma 18 K* separates K, locally.

Proof: Let (f,¢),(g,%) € K, be such that (f,¢) < (g,¢) and |(f,¢)| = |(g,?)|.
We have to prove that (g,%¢) < (f,¢). Let u € E,, we prove that g(u) < f(u). Let
B € |g(u)|. Then by stability of g and 3, we can find ug < u finite and minimal such
that g(uo) € B. Then we have (uo, 8) € [(g,¢)| = [(f, ). But since (f,¢) < (g,%),
we cannot have f(ug) Fr 8 and ¢y (8) # L, so in fact f(ug) € 8, and hence f(u) € 3,
thus by local separation in F' we have f(u) > g(u).

Now let u and § be such that g(u) Fr 3 and ¢,(8) # L. Using the minimiza-
tion principle, we can find ug < u finite such that (9,v) € (up,3), and this filling is
intensional, because g(ug) Fr B and ¢, (3) = ©¥u(8). We know that (f,¢) € (uo, 5),
and since we have f(ug) ¢ 5 (because f(ug) < g(up)), we must have f(ug) Fr S and
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Yuo (B) # L, and hence, since (f, @) < (g,%), we have @, (8) = ¥y, (8) = Yu(), so by
sequentiality and permanence of (f,¢) we get f(u) Fr  and ¢,(8) = ¥u(3) and we
conclude. .

Lemma 19 Let (f,¢) and (uo, ) be such that (f,¢) € (ug,B). Then there exists
(9,v) € K, such that (g,v) < (f,¢) and (g,¢) Fi (uo,3).

Proof: We have f(ug) € 8 or f(ug) Fr 8. So we can choose v < f(up) such that
v Fp 3. We define (g, ) as follows:

o If ue E,, then g(u) = f(uAup)Av

o If v € Fg*(u), then

i) = { Punsa(r) I S0 A U0) Fr 7, 0 Punao(7) and 2 w0 % 7 £ 5

] L otherwise .

We prove first that (g,)is a sequential algorithm. Let u,u’ € E. be such that u < o/,
and let v € Fg"(u).

e Assume that g(u') € v, that is f(u' A ug) Av € y. Thus one has f(u A ug) Fr 7,
otherwise one would have f(u A wug) € 7 (since g(u) Fr 7), and this would lead
to a contradiction, since f(u A ug) and f(u' A ug) A v are bounded. So, by
sequentiality of (f, ), we get u' A ug € @unuy (7). From that, we can also deduce
that u ¢ @yau,(7) (since u and u’ A ug are bounded). Last, one has v # 3, since
v ¢ fand v € . So we conclude that u' € 1,(7).

o Assume that u' ¢ 9,(7). We prove that ¥ (v) = ¥,(7), considering several
cases:

— If f(u Aug) t/F 7, this means that f(u A ug) € 7, and the same will hold for
u' since u' > u. So P (7) = L.

— If f(uAug) Fr v and u € @uny(7), assume that f(u' A ug) Fr v and
' & Py (7). We have u' € @yny,(7) (since v’ > u), and thus @yay(7) #

Culaug (7) (since w' ¢ pyiay, (7)), hence w' A ug € @unuy(7) (by permanence),
and this is a contradiction, since u and u' A ug are bounded. So once again

we get ¥y (7) = L.
— If flu Aug) Fr v and u ¢ @uay(7), but w > ug and v = 3, then we also
have u’ > wug, and thus ¥ (7) = L.

— Assume now that we are in the interesting case, that is: f(u A wo) Fr 7,
U & Qurue(y) and u > ug = 7 # B. Then we know that u' ¢ @unu(7)
(this is our hypothesis) hence w' Aug ¢ @unu,(7), hence f(u' A wp) Frp v
and @unue(7) = Puinue(7), and thus w' ¢ puiay, (7). Assume that u' > ug
and ¥ = 3. Then we certainly have u ? ug, that is u A ug < ugp. Thus,
since (f,¢) € (uo,B), we have ug € pyuay(3), that is uy € 9, (8) and
this is contradictory because u’' > wug. So w' > wg = v # [, and thus

7/%’(7) = L/Ju(ﬂ)/)
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e The continuity property is easy.

Now, we check that (g,v¢) < (f,¢). The fact that, for all u € E,, g(u) < f(u) is
obvious. Let w and 7 be such that g(u) Fr v and ¥,(7) # L. Then we know that
fluhug) Frpy and u & ©uay, (7). Thus f(u) Fr v and @u(7) = Guaw(7) = Yul(y) and

we conclude.

Last we check that (g,%) Fx (uo, ). First, we have g(ug) = v Fr  and ¥y, (8) =
L. Next, let u < ug be such that g(u) Fr 3. Remember that (f,¢) € (ug, 3). We have
f(u) ¢ B by the minimality property of ug, and thus f(u) Fr 8 and ug € ¢, (8). But
we have ¥, () = pu(3) because u A ug = u and u # ug and we conclude. ]

Lemma 20 K enjoys the internal continuity property.

Proof: Let (ug,) € K* and let D C K, be directed and such that \/ D Fx (uo, ).
Let (g,¢) = VD. One has g(ug) Fr 3, and since g(uo) = V(y,,)ep f(to), one can
find, by internal continuity of F, an algorithm (f°,¢%) € D such that f(uo) Fp B.
Furthermore, for any v € E, such that u < ug and g(u) Fr 3, one has ug € ¥, (5).
Hence, for any such w, one can find (f*, ¢*) € D such that f“(u) Fr 0 and ¢¥(8) =
¥u(B) (by the characterization of (g,v) =\ D given in the proof of lemma 8). Since
D is directed, and since there are only finitely many u € FE, such that u < ug, we can
find (f,») € D which is greater than (f°,¢°) and all the (f*, ¢*)’s. It is clear now
that (f, ) satisfies (f, @) Fx (ug, §). .

Lemma 21 K enjoys the internal sequentialily property.

Proof: Let (f,¢) € K, and (up,3) € K* be such that (f,¢) ¢ (uo, ) and (f,¢) Vx
(ug, B). We distinguish two cases:

o Assume first that f(up) Fr . Then we can also assume that ¢,,(8) = L,
otherwise there is no (g,v¢) > (f,¢) such that (g,v¢) Fx (ug,3) and we can
take 1 as internal sequentiality index. We have A(f,ga,uo, ) # 0 (this set
contains ug); let u; be the glb of this set. We know that (f, ¢) Fx (u1,3), let us
check that (u1,/3) is an internal sequentiality index. Let (g,%) > (f, %) be such
that (g,v¢) Fx (uo,3). Then we have g(ug) Fr 3, and also g(uq) Fr 3, since
flur) < g(ur) < g(uo). But ug < ug (because (f,¢) ¥k (uo,B), (f,¢) Fr (u1,3)
and u; < ug), so ug € ¥y, (8) (because (g,%) Fx (uo,3)), and thus ¢, (5) # L.
Let now u € FE, be such that v < uy and g(u) Fr 8. Then we have f(u) Fr 3,

because f(u) = g(u) A f(u1). Thus, by the minimality property of uq, we have
ur € @u(B), thus u(B) # L, hence ¢u(8) = @u(B), so ur € ¢u(B) and we

conclude.

e Assume now that f(ug) I/r 5. Then we can assume that f(ug) ¢ 5. Let 3’ be
an internal sequentiality index for § at f(ug). Let uy = AA(/f, ¢, uo,3). We
distinguish two subcases:

— Assume first that ¢, (3') # L. Let (g,v) be such that (g,%) > (f,¢),
and assume that (g,v) Fr (uo,8). Since (f,¢) < (g,%) and ¢, (3') # L,
we have g(u1) Fp ﬂ and ¥y, (8") = ¢, (6"). But we have g(ug) Fr S,
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and thus g(up) € f' (since 4’ is an internal sequentiality index), hence by
sequentiality, ug € 1y, (3"), that is ug € ., (8') and this is a contradiction.
So there is no such (g, %), and we can take L as internal sequentiality index.
— Assume now that ¢, (8') = L. Then we have (f,¢) Fx (u1,5'). Let (g,%)
be such that (g,%) > (f,¢) and (g, %) Fx (uo, 3). Then we have g(ug) Fr 3
and thus g(ug) € 3, hence ug € ¥y, (') and ¥y, (8") # L. If w < uy is such
that g(u) Fp 8, we have f(u) kg (' because f(u) = g(u) A f(uy), and thus

w1 € gu(B), 50 Bu(B) = @u(B'). Thus (g,) € (uz, #) and hence (uy, §') s

an internal sequentiality index for (ug, 5) at (f,¢).

Proposition 17 K is a PSS.

It is a consequence of the previous lemmas. The only properties that we have not
proved are PSS1 and PSS3. The corresponding verifications are easy and left to the
reader.

We want now to build a GSFR for K, so that K equipped with this GSFR will be
a sequential structure.

Lemma 22 Lel r and s be finite retractions on F and F respectively. Let V and W
be finite dummy sets of E and F respectively. Then the map S, v,sw (that we simply
note S here) which is defined by
S: K, — K,
(f,9) = (s,p"")o(f )0 (r,p"Y)

s a finile retraction on K.

Proof: First, we know that S is well defined and continuous (by lemma 11). Let
(f,¢) € K. Then the algorithm (g,v) = 5(f, ¢) is defined by:

o Foru e E,, g(u) = s(f(r(u))).
o Foru e F, and § € F;(u)v

Pu(B) = { j’_: @r(u)(ﬂ) gtlﬂlevaiSJeU W and f(r(u)) ¢ fand a € |[r|UV and u ¢ a.

We prove first that S < Id for the stable ordering. The fact that this inequation holds in
the extensional ordering is a consequence of lemmas 11 and 12. So let (f, @), ([, ¢') €

K, be such that (f,¢) < (f',¢'). Let (g,¢) = S(f,») and let (¢',¢") = S(f',¢'). We
just have to prove that (h,8) < (g,v) where (h,0) = (¢',¥") A (f, ).
Using the stable inequalities r < 1d, s < Id and f < f/, we get:

g(w) = s(f'(r(uw)) A f(u))
= ¢'(v) As(f(w))
g'(w) A f(u) As(f'(u))
e g'(u)

= h(u) since g'(u) < s(f'(u)).
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Now let u € E, and 8 € F}f(u) be such that a = 6,(08) # L. This implies that f(u) Fr 8
and ¢u(f8) = a, and also that g € [s|UW, a € [r|UV, s(f'(r(w))) Fr B, f/(r(u)) ¢
and g‘o;(u)(ﬁ) = a. The only thing we have to check is that ¢, (,)(8) = @. But if this were
not the case we would have by permanence u € ¢,(,)(3), hence o' = ¢,,y(3) # L,
and hence, since (f,¢) < (f',¢'), we would conclude that go’r(u) = o # «a which is
contradictory.

Now let ug be a finite element of F, and § be an element of F*, and assume that
(9,v) € (ug, ). By the minimality condition on wug, it is clear that r(ug) = wug since
r(ug) < ug. So ug € r(Ey). Furthermore, we must have s(f(ug)) € 3 or 8 € |s| UW.
So in both cases 8 € |s| U W. But both sets 7(E,) and |s| U W are finite. So there are
only finitely many (ug, 3) such that (g,¢) € (uo, 8).

To conclude the proof, we just have to check that S takes only a finite amount of
different values. But, for (f, ) € K., observe that (g,¢) = S(f, ) has the following
properties :

o The function g takes its values in s(Fy) and is completely known when its values
on r(E) are known. Since both these sets are finite, there are only finitely many
possible such g’s.

e Let wu e F,. If g € Fg*(u) and if ¢,(3) # L, then certainly § € |s| UW and
Yu(B) € |r| U V. Since both these sets are finite, there are only finitely many
possible ¢,’s. Observe furthermore that ¢, is completely determined by t, ().
Since there are only finitely many possible values for r(u), we conclude that there
are only finitely many possible ’s.

u

Now let (74)new and (s, )new be GSFR’s for E and F respectively. Let (V,,)new

and (W), )new be increasing families of finite dummy sets of E and F' respectively such

that |, ¢, Vn contains all the dummy questions of £ and similarly for (J,c, Wy. Such

families of dummy sets exist because E* and F* are enumerable. For n € w, let us
simply denote by 5, the finite retraction S, v, s,.Ww,-

Lemma 23 The family (S,)new is a GSFR for K.

This is a consequence of lemmas 11 and 13.
So now K can be considered as a sequential structure, equipped with its GSFR

(Sn)nEu;-
To complete the proof that the category SeqSt is cartesian closed, we give the

evaluation map and we describe the exponential transposition.

Lemma 24 Let (Ev,e): K X E — F be defined by:
Ev(f,¢,u) = f(u)

and, when f(u) Fr 0,

(2, 0u(8)) if ou(B) # L
erou(B) =1 (LIANA(S @, u,8),8)) if eu(B) = L and A(f,¢,u,8) # L

1 otherwise

Then (Ev,¢) is a sequential algorithm.
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Proof: Let (f,p) € K., u € E, and § € F)f(u). The proof that (f,¢,u) FrxE
€(f,¢,u)(B) is straightforward. We prove sequentiality and permanence for (Ev,¢). Con-
tinuity is left to the reader. Let (g,%) € K. be such that (¢g,v) > (f,¢) and v € E, be
such that v > w.

e We prove first sequentiality. Assume that g(v) € 5. We have to prove that
(9,¢,v) € e(s,0u) (). We distinguish several cases.

— First, if @, (8) # L, then we know that g(u) Fr 5 and ¥, (8) = ¢u(F). By
sequentiality of (g,v), we have v € ¥, (8) and we conclude.

— Assume now that ¢,(3) = L and that A(f, ¢, u,3) is non-empty, and let
up be its glb. We have to prove that (g,v) € (uo,3). If g(ug) € 3, then
ug is minimal with that property since, if u < ug satisfies g(u) € 3, then
flu) = g(u) A f(ug), thus f(u) Frp 3, thus ¢,(3) # L by minimality of
ug. So assume that g(ug) Fr B. Since g(v) € B we have v € 9, (3)
and thus ¥,,(8) # L. If uy < ugp satisfies g(u;) Fr [ then we also have
f(uq) b B (since f(ur) = f(uo) A g(u1)), and then by minimality of ug we
get ug € @y, (B) = ¥y, (8) and we conclude.

— Last assume that ¢,(8) = L and that A(f,¢,u,8) = . Then we know
that for any wp < w finite such that f(ug) Fr 3 we have u € ¢, (8) (and
thus « is not finite). Let vy < v be finite such that g(vg) € 3 (such a vg
can be found since g is continuous). Let ug = vg A u. We have f(ug) =
f(wo) A f(u) = g(vo) A f(v) A f(u) = g(vo) A f(u) and hence f(uo) Fr B,
and hence we get u € ¢,,(0) so @y, () # L, hence, since (f,¢) < (g,?),
we have ¢g(ug) Fr  and ¥y, (8) = @u,(3). Then, since g(vg) € 3, we get by
sequentiality vg € @y, (3). On the other hand we have seen that u € ¢, (5),
hence ug = w A vg € @yu,(3) and this is a contradiction, so that case is
impossible.

e Now we prove permanence, so assume that (g, ¢, v) ¢ £(s,,.)(8). Again we have
to distinguish cases.

— First, assume that ¢,(3) # L. Then we have g(u) Fr 8 and ¢, (5) = @u.(5),
hence v ¢ ¢, (8) and we conclude by permanence of (g, ).

— Assume now that ¢, () = L and that A(f, ¢, u, ) # 0. Let ug be the glb
of that set. Then f(ug) Fr B, ¢u,(3) = L and wp is minimal with this
property. If we had ¢g(ug) € B then ug would be minimal with this property,
and this is impossible, since by hypothesis (g,%) ¢ (uo, 5). Actually, assume
that there exists u < ug such that g(u) € §. Then we have f(u) Fr 3 (since
f(u) = f(ug) A g(u)) and thus ¢,(8) # L (since ug is minimal such that
©uo(B) = L), whence the contradiction because (f,¢) < (g,%). So g(ug) Fr
B. Similarly we get ©,,(3) = L (and thus g(v) Fr § and ¥,(3) = L). The
minimality of ug with respect to that property is clear (use again the fact
that (f,¢) < (9,9)),80 €(g,4,0)(B) = (uo, B) (since u < v), and we conclude.

— Last, assume that ¢,(8) = L and that A(f, ¢,u,3) = 0. We check first that
g(v) Fp 3. If this were not the case we would have g(v) € 3, thus we could
find vg < v finite such that g(vg) € 5. Setting ug = vg A u, we would get
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S(uo) = f(vo) A f(u) = g(vo) A f(0) A f(u), so f(uo) Fr B, s0 u € uy(B),
hence also g(ug) Fr § and ¥y, (3) = ¢u,(3). By sequentiality of (g, ), one
would also get vy € ¥y, (8), and so vg A u € ¥y, (3) and this would be a
contradiction. Omne checks similarly that ¢,(3) = L. Last we prove that
A(g,¢,v,8) = 0. Solet vg € A(g,¢,v,3). Let ug = vg A u. As above,
one checks that f(ug) Fr 8, and u € @y (3). So g(ug) Fr § and 1, (8) =

Puo(3)- Hence vg & tyy () (since u € thyo(B)), hence 1y, (B) = puo(B8) # L
and this is in contradiction with our hypothesis that vo € A(g, %, v, 3).

The sequential algorithm (Ev,e) will be our evaluation morphism.

Lemma 25 Let G be a sequential structure and let (f, ) : G X E — F be a sequential
algorithm. Then one defines a sequential algorithm (g,v): G — K by setting:

o g(w) = (f" ¢") where (f*, ") : E — F is the sequential algorithm defined by
fYu) = f(w,u) and, if § € Frww

@5(ﬂ) _ { Q if@(w,ﬂ)(ﬂ) = (Q,Oz)

Tl L otherwise

b Zf (fwysow) |_IX" (uovﬂ)) then

b0, ) = { T P (B) = (1,7)

1 otherwise

Proof: One has to prove the following things :

(f",¢") is a sequential algorithm from F to F for all w.

The map g is Scott-continuous.

If (fw799w) |_K (u07ﬁ)7 then w '_G ¢w(u07ﬁ)'

And last: (g, %) enjoys sequentiality and permanence.

All these verifications are rather easy and we leave them to the reader (see also [BE3]
for more details). .

To prove that K is the exponentiation of ' and F in the category SeqSt, it remains
to check that some categorical equations relating evaluation and exponential transpose
hold. For these verifications, we refer to [BE3]. The exponentiation K of £ and F will

be denoted by AS(E, F) in the sequel.
So now we conclude:

Proposition 18 The category SeqSt is cartesian closed.

3 Extensional projections

We have now enough material about sequential algorithms for the construction of the
category of “extensionally projected sequential structures” we aim at.
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3.1 Two particular sequential structures

We first define a sequential structure which corresponds to the “vertical” domain of
natural numbers. This sequential structure will be useful for proving continuity for the
projections of sequential algorithms. Let @ be the sequential structure defined by:

e W, is the total order of natural numbers, completed by atop T. (L=0< 1<
L.<T)

e & is the set of all questions (n) (for n € w), plus an empty question L, where
(n) is defined by:
ke(n) iff k>n.

e The accessibility relation is defined by:

ktg(n) iff k=n.

Next we define a family of sequential structures which will be useful for proving
strong stability of the projections of sequential algorithms. More precisely, we shall
show that any coherent set in a hypercoherence can be seen as the image by a strongly
stable function of a coherent set in a cartesian product of “flat hypercoherences”.

Let n > 0 be an integer. We denote by I,, the sequential structure defined by:

o [,, is the flat domain with non-bottom elements 1,...,n and a bottom L.
o I,” is the set {L,*} where  is defined by w €  iff u # L.
e One has u by, *xiff u = L.

Define also a hypercoherence J,, by |J,| = {1,...,n} and T'(J,) = {{¢} | i € |Ja|}.
Let n > 1. We denote by e; the element (n —i+1,...,n—1,1,1,...,n — %) of
(In—1"), (fori=1,...,n), so that

er = (L,1,2,...,n—1)
e = (n—1,1,1,...,n—2)
en = (1,2,...,n—1,1)

Then observe that {ej,...,e,} € C"(I,,_1™) but that no proper subset (with cardinality
> 2)of {e1,...,e,}isin C*(I,_1™). Actually, if Ais such a subset of {e1,...,e,}, there
exists clearly an index j € {1,...,n} such that, for any # € A, the j-th component
of z is different from L (take a j such that e; ¢ A). Then since A is not a singleton,
these j-th components have different values because we have defined the e;’s as circular
permutations of ey. It follows that A is not linearly coherent. Of course, there are many
other ways of defining the e;’s in such a way that the family {ey,...,e,} be “minimal”
coherent.

Observe also that, up to a canonical isomorphism, ((I,_1™),,C" (I,_1™)) is simply
qDC (J,-1"), and e;, considered as an element of qD (J,—1"), is the state {(1,n — ¢ +
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1),...,(t=1,n=1),(i4+ 1,1),...,(n,n —i)}. We shall use this identification freely in
the sequel. The family {ey,...,e,} constitutes a generalization of the Berry’s family,
which will play an important role in the sequel for the following reason:

Lemma 26 Let X be a hypercoherence. Let xy,...,z, € qD(X) be such that A =
{£1,...,2,} €C(X). Let x = =y ; and

t={(L,a)|aea}U{(eai)|ie{l,...,n}, a; € x;\ a} .

Then t is the trace of a strongly stable function fA from I,_1" to X which salisfies
fA(e;) = z; for all .

Proof: This amounts to showing that
t=H(0,a)| a €z} U{(ea)]|ie{l,...;n}, a; € x;\ z}

is in qD (J,—1™ — X). Let w C ¢ be non-empty and such that wq € C(J,—1"). There
are two cases:

e Either ) € wy. Then there exists a € wy such that @ € z, and thus wy < A, so
wy € T'(X). Furthermore, if w; is a singleton {a}, then we must have (0,a) € ¢,
hence a € z. This clearly implies that wy = {0}.

e Or wy C {ey,...,e,}. If wy is a singleton {e;} then we have wy C z;, so wy €
I'(X). Otherwise, we know that wy = {e1,...,e,} because wy € ch (I,-1"), and
so wy <4 A, thus wy € T'(X). Furthermore, in that case, wy cannot be a singleton.
Actually, if w, were {a}, we would have a € z; \ « for any ¢ € {1,...,n}, that is

ac ﬂ?:l(wi \ w) = @

So ¢ is the trace of the strongly stable morphism f*: .J,_1™ — X. We denote by f4
the corresponding strongly stable function (I,,_1"), — qD (X)) which is given by:

FHe)=Hal3e' <e(dha)et}.

We have f4(e;) = 2 U (z; \ 2) = «; and this concludes the proof. .

3.2 Extensionally projected sequential structures

We define our category of extensionally projected sequential structures, and we prove
its cartesian closedness.
We give first the definition of the objects of this category:

Definition 37 Anextensionally projected sequential structure (ESS) is a triple (E, X, )
where E is a sequential structure, X is a hypercoherence and 7 : (E,,C'E) — qDC (X)
s a strongly stable linear function satisfying the following lifting property:

For any sequential structure F and for any strongly stable function f : (F,,C" (F)) —
qDC (X)), there exists a strongly stable (and thus sequential) function f': F. — E. such
that mo f' = f.

Furthermore, the GSFR (r,)new of E is assumed to be m-extensional, that is: for
all w,u' € By, if 7(u) = w(u') then n(rp(u)) = w(ry(u')).

Last, the relation -5 must salisfy the following requirement: if u Fg «, then there
exists u' < u such that v' Fg a and 7w(u') = 0 (we say that the relation bg is w-flat).
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The lifting property is the basic requirement about ESS’s. It insures that 7 is onto, and
in an uniform way. Specifically, as we shall see, it insures that for any state coherent
subset A of ¢D (X ), on can find a linearly coherent subset of F, which is projected by
mon A.

Strong stability and linearity of 7 are essential technical requirements for the con-
struction of the exponentiation in the category of ESS’s we are defining.

The 7-flatness condition is technically essential, as it will become clear in the follow-
ing proofs. It has also an intuitive meaning: the accessibility structure of E is purely
intensional; it has no extensional counterpart in X.

The morphisms are simply sequential algorithms satisfying an extensionality re-
quirement expressed in terms of 7:

Definition 38 Let P = (E,X,7) and Q = (F,Y,n') be two ESS’s.
An extensional sequential algorithm (or simply sequential algorithm ) from P to Q)
is a sequential algorithm (f, ) : E — F which is m-extensional, that is: if u,u’ € F,

satisfy w(w) = ('), then 7'(f(uw)) = 7'(f(u')).

Definition 39 The category ESS is the category whose objects are the ESS’s and
whose morphisms are the (extensional) sequential algorithms between ESS’s.

Let us now state and prove the lemma which is the key of our construction:
Lemma 27 Let P = (E, X, 7) be an ESS.

o Ifupg < a1 <...1is an increasing w-chain in X, then there exists and increasing
w-chain ug < uy < ... in E, such that 7(u;) = x; for all 1.

o If w1,...,2, € qD(X) are such that {x1,...,2,} € C(X), then there ewist
Uty ..., Uy, € B, such that {uy,...,u,} € CY(E) and 7(u;) = »; for all i.

Proof: Let 29 < 27 < ... be an increasing w-chain in qD (X). Let f: @, — qD (X)
be defined by f(n) = x, and f(T) = V,c, #n. Then f is obviously Scott-continuous.
Furthermore, f is strongly stable because any non-empty and finite subset of {z;} is
bounded and thus coherent, and the preservation of non empty (linearly coherent) glb’s
is obvious since w, is totally ordered. So, by the lifting property of 7, there exists a
sequential function f’:@, — FE, such that 7o f' = f. Let u; = f/(i) (for ¢ € w). Then
up < uy < ...is an increasing w-chain such that 7(u;) = z; for all 7.

Let A= {z1,...,2,} € C(X). We consider the function f4 : (I,_1"), — qD(X)
introduced in lemma 26. This function is strongly stable and satisfies f4(e;) = x; for all
i. By the lifting property, we can find a sequential function f’: (I,_1"), — E. such that
fA=mofl. Let u; = f'(e;). Since f'is strongly stable, we have {u1,...,u,} € C*(E)
and we conclude, since for all i we have m(u;) = 7(f'(e;)) = fA(e;) = ;. ]

As an easy consequence of this lemma, it appears that, in an ESS (E, X, 7), the
function 7 is surjective (onto).

Proposition 19 Let P = (E,X,n) and Q = (F,Y,n') be ESS’s. Then R = (E X

F, X xY,nx') is an ESS, and it is the cartesian product of P and () in the category
ESS.
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The proof is a straightforward verification.

Now, let P = (E,X,7)and @ = (F,Y,7’) be two fixed ESS’s. We want to define
their exponentiation, an ESS (H, Z,1I).

For Z, we have no choice: we take X — Y, the exponentiation of X and Y in the
category HCohF'S.

Now we define H as a sub-PSS of AS(E, F). Let L be the poset of extensional
sequential algorithms from P to @), ordered by the stable ordering of sequential algo-
rithms.

Lemma 28 The poset L is a multiplicative sub-beepo of AS(E, F).

Proof: Let B C L be bounded in AS(E, F'). Let (g,%) be its lub in AS(E, F'). It will
be sufficient to prove that (g,v) € L, i.e. to prove that (g, ¢) satisfies the extensionality
requirement. Let u,u’ € E, be such that m(u) = n(u’). Then we have

o) = #(\ S)
(fo)eB
= \/ 7(f(«)) since 7' is linear
(fiv)eB
=V ©(f(u)
(fiv)eB

= #(g(w)) -

For bounded binary meets, we proceed similarly, using the stability of 7’ n

Lemma 29 The poset L defines a sub-PSS of AS(E, F).

Proof: Let (f,¢) € L and let (ug,5) be such that (f,¢) € (ug, ). We have to prove
that there exists (g,%) € L such that (g,%) < (f, ») and (g,¢) Fass,r) (uo, B)-

We construct (g, ) as in the proof of lemma 19, but we use furthermore the fact
that we can choose our v such that n’(v) = (. This insures that, for any u € E,, we
have 7'(g(u)) = 0, and thus (g, ) is extensional for a trivial reason. ]

Now let H be the sub-PSS of AS(E, F') defined by L.

We know that E is equipped with an extensional GSFR (r)new, and that F is
equipped with an extensional GSFR (s,)ne,. From these, we build a GSFR (9, )new
for AS(FE, F') as we did when we stated and proved lemma 23. It is easily checked that,
if (f,¢) € L, then one has S™(f,¢) € L for any n € w. Then by lemma 15, we can
state the following

Lemma 30 H is a sequential substructure of AS(E, F).

Definition 40 Let (f,¢) € H.. We call extension of (f, ) and denote by II( f, ¢) the
Junction g : qD (X)) — qD (V) defined by:

g(z) =7'(f(u)) where u € E, is such that m(u) =z .
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This definition makes sense, because 7 is surjective, and because (f, @) is extensional.

Lemma 31 If (f,¢) € H., then II(f, @) is a strongly stable function X — Y.

Proof: Let g =1I(f, ¢).

e We check first that ¢g is Scott-continuous. Let zg < z1 < ... be an w-chain in
gD (X). Applying lemma 27, we can find an w-chain up < wy; < ... in E, such

that 7(w;) = «; for all i. Since 7 is continuous, we have 7(V ;) = V 7(w;) = V 2,
thus g(\V/ 2;) = 7'(f(\V ;). Hence, since 7" and f are continuous, we conclude.

o Let z1,...,2, € gD (X) be such that {@q,...,2,} € C(X). By lemma 27, we can

find a family uy,...,u, € E, such that {uy,...,u,} € C¥(E) and 7(u;) = z; for
t= L...,n We have {g(wi)}izl,...,n = {ﬂ-l(f(ui))}iZI,...,nv thus {g(wi)}izl,...,n €

C(Y), since f and 7’ are strongly stable. Furthermore, since 7 is strongly stable,

we have 7(A ;) = Am(ug) = A, hence g(Azs) = #(/(Aus)) = Ar'(F(ws)) =
Ag(z;) since f and 7' are strongly stable.

So now we can consider II as a function H, — qD (7).

Lemma 32 The function I is linear and strongly stable.

Proof:

o Let us check first that IT is monotone. Let (f,¢) € E, and (f',¢') € E, be such

that (f,¢) < (f',¢'), let ¢ = TI(f,) and ¢’ = TI(f',¢'). Let z,2" € ¢D (X) be
such that z < 2/, and let u,u’ € E, be such that v < u', and n(u) = 2 and
m(u') = 2’ (such u and ' can be found, by lemma 27). We have

g(z) =

because f < f’ (for the stable ordering), and because 7’ is stable (for it is strongly
stable).

Let B C H, be a bounded family of extensional sequential algorithms, and let
(h,0) be its lub. By monotonicity of II, the set II(B) is bounded. We know
that for u € Ex, h(u) = V(s,,)esf(u). Let g = II(h,0). We have to prove that
g=VII(B). Let 2 € qD(X) and let u € E, be such that 7(u) = 2. We have

g(x) = 7'(h(u))



= \/ 7'(f(u)) since 7' is linear
(fio)eB

o Let (f1 o), ..., (f™ ¢") be a family of elements of H, such that
{(f5eY), .. (")} eCH(H). Fori=1,...,n,let g¢ = II(fi,¢").

— First, we prove that Ag® = TI(f,¢) where (f,¢) = N ([}, ¢"). Let g =
II(f,¢). Since II is monotone, we certainly have ¢ < Ag'. Let = € gD (X)
and let u € E, be such that 7(u) = z. The set & = {((f%,¢%),u) | i =
1,...,n}isin C* (H x E) (for & € CY(H) and & € C¥(E)), and since Ev
is sequential and thus strongly stable, we have Ev(A &) = AEv(E), that
is f(u) = A fi(w). So g(z) = 7'(Afi(w)). But Ev(E) € C¥(F) and 7' is
strongly stable, thus g(z) = A(g'(z)). Since (Ag*)(z) < Alg'(z)) (because
the stable ordering is contained in the extensional ordering), we conclude
that indeed g = A ¢'.

— We prove next that {g’-}i:17...,n €C(Z). Solet z1,...,2, € qD (X) be such
that {z1,...,2,,} € C(X). Let I be a pairing of {1,...,n} and {1,...,m}.
Let uy,...,u, € E, be such that {uy,...,u,} € C¥ (E) and 7(u;) = @; for
all i. We know that the set 7 = {((f%,¢*),u’) | (4,5) € I'} is in CV(H x E)
(for Ty € CV(H) and T, € C¥(F)) and hence Ev(Z) € C"(F) (because
Ev is sequential, and thus strongly stable). Since 7’ is strongly stable,
we get m/(Ev(Z)) € C(Y), that is {g'(z;) | (i,5) € I} € C(Y). Now we
have to show that (Ag¢*)(Az;) = /\(Z-,]-)E[(gi(:vj)). But we have seen above
that Ag* = g where g = II(A(S*,¢"), so (Ag")(Az;) = g(Az;). But
9(A2) = 7/(J(A ), where (£, 9) = A% ) (since 7(Auj) = Ay, and
by definition of g). Since Ev is strongly stable, we have A(Ev(Z)) = Ev(AZ),
that is A(Ev(Z)) = f(A ;). So we get, applying 7’ to both members of this
last equation, and using the strong stability of 7/, /\(i,j)e[(gi(wj)) =g(Azj)
and we conclude.

So II is strongly stable, and this achieves the proof of the lemma.

Lemma 33 The function 11 has the lifting property.

Proof: Let G be a sequential structure, and let h : G« — qD (Z) be a strongly stable
function. We consider h as a morphism in the category dIC, which is cartesian closed
(see section 1.5). In that category, we can transpose h in A’ : G x ¢D (X) — qD(Y)
which is strongly stable. But 7 : E, — qD (X ) is also a morphism in that category, so,
in dIC, we can construct [ = A'o(Id x 1) : G x E, — ¢D (Y'), which is strongly stable.
But 7/ enjoys the lifting property, so we can find a strongly stable m : G, x E, — F, such
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that 7'om = [. Since m is strongly stable, we can find a g such that (m,p) : GXE — F
is a sequential algorithm. Now, let (k,k) : G — AS(FE, F) be the exponential transpose
of (i, 1) in the category SeqSt of sequential structures and sequential algorithms.

e In fact, (k,x) is a sequential algorithm G — H. We just have to prove that,
if w € Gy, then k(w) € H,.. Let (f,¢) = k(w). We have to prove that this
sequential algorithm is extensional. But if v € E., we have f(u) = m(w,u), so
' (f(u)) = (w,u) = h'(w,7(u)), and the extensionality is obvious and we can
apply lemma 14.

o Now we check that Il o k = h. Let w € G. The function g = II(k(w)) is defined
by g(z) = 7'(m(w,u)), where v € E, is such that 7(u) =z (for « € ¢D (X)). So
g(z) = K(w,z) = h(w)(z), by definition of the exponentiation in dIC, and we
conclude.

Lemma 34 The triple (H,Z,11) is an ESS.

Proof: There remain only a few things to prove.

e For all n € w, the finite retraction 5™ is Il-extensional. Let (f,¢),(f,¢") € H
be such that II(f,¢) = II(f',¢'). Let (g,9) = S™(f,¢) and (¢',¢") = S™(f', ¢').
Let z € qD (X), and let u € F, be such that m(u) = z. We have

(g, ¢)(z) = 7'(g(u))
= 7'(s"(f(r"(u))))
= 7'(s"(f'(r"(w))))

because 7'(f(r"(u))) = «'(f'(r"(w))) since M(f, ) = T(f',¢"), and because

(s™,0™) is extensional. And we conclude.

o If (f,¢) Fm (uo, ), then we have seen in the proof of lemma 29 how to build
an algorithm (g,v) € H, such that (g,¢) < (f,¢) and (g,%¢) Fg (ug, ). Fur-

thermore, we constructed (g,%) in such a way that, for any u € FE,, one has
7'(g(u)) = @. This clearly means that TI(g,v) = # and we conclude that g is
II-flat.

And this achieves the proof. "
Lemma 35 The ESS (H,Z,11) is the exponentiation of P and @) in the category ESS.
Proof: We define evaluation and abstraction using lemmas 24 and 25 and the fact

that H is a sub-PSS of AS(E, F). Let us prove for instance that (Ev,¢) is indeed an

extensional sequential algorithm H x F — F. We just have to prove extensionality.
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Let (f,¢),(f,¢") € Hs be such that II( f,¢) = II(f',¢'), and let w,u’ € E, be such
that 7(u) = 7(u'). We have

T (Bv(f,p,u)) = 7'(f(u))
= fye)(m(u)) by definition of I
e (W(U/)) by hypothesis

The remainder is left to the reader. n

The exponentiation of P and @ in ESS will be denoted by [P — Q].
Theorem 1 The category ESS is cartesian closed.

In fact, it is a A-category and thus a model of PCF.

3.3 Comparison with the model of hypercoherences

If P=(FE,X,7)is an ESS, let us denote by II(P) the hypercoherence X and if
Q = (F,Y,n') is another ESS and (f,¢): P — @ a sequential algorithm, let us denote
by II(f,¢) = II(f,¢) : X — Y its extension (which is a morphism in HCohFS, as we
have seen).

Proposition 20 The operation I is a functor ESS — HCohFS which commutes to
cartesian product and exponentiation.

Proof: Let P=(E,X,7),Q = (F,Y,n')and R = (G, Z,7") be ESS’s. First, let us
check that IT is functorial. If 2 € ¢D (X ) and u € E, is such that 7(u) = z, we have
II(Id)(z) = 7(u) = . Then, let (f,p): P — @ and (g,?¢) : @ — R be sequential

algorithms. We have

(I(g,¢) o ([, 0))(z) = (g, ¥)(7'(f(u)))
= 7"(g(f(u))
= II((g,¢)o ([, ¢))(2)

Next, by definition of product and exponentiation in ESS we have II(P x Q) =
II(P) x II(Q) and II([P — Q]) = [TI(P) — II(Q)]. It remains simply to check that the
projections (of the cartesian product) and the evaluation morphism (of the exponenti-

ation) are preserved by the functor TI. Let us check this property for the evaluation.
Solet g € qD([X — Y]), and let 2 € qD(X). Let w € E be such that 7(u) = z, and
let (f,): P — @ be a sequential algorithm such that II( f, ¢) = g. We have

II(Ev,e)(g,2) = =

and we conclude. n
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Observe also that both ESS and HCohF'S are A-categories and that II is a functor
of A-categories (typically, IT is monotone w.r.t. the cpo structure of hom-sets). We
consider now these categories as models of PCF (see a description of the syntax in the
appendix), interpreting the basic type ¢ in the usual way (flat domain). To be more
precise, this means:

o []FSS = (¢1,1,1d) where ¢ is the sequential structure whose dI-domain is the
flat domain of natural numbers, and whose set of linear properties is {L,x*}
(filling and accessibility relations defined like in section 3.1 for I,,) and I is the
hypercoherence defined by |I| = w and I' (I) = {{n} | n € w}. Of course, one has
gD ()= (¢1), up to a trivial isomorphism.

e And [L]HCthS =T
If M7 is a term of PCF with free variables among the list 27!, ..., 27¥, we consider
its semantics in the model M as a morphism

k
[AM]“M . H[Ui]AA _ [U]J\/l )

i=1
Lemma 36 If o is a lype of PCF, one has

H([U]ESS) — [U]HCOhFS
and if M? is a term of PCF with free variables o7, ..., a7¥, then
H([M]ESS) — [LM]HCOhFS )

This is a direct consequence of proposition 20, using the categorical computation of
semantics (see [C1]).
As an immediate corollary, we get:

Theorem 2 Let M and N be two terms of PCF with the same type. Then
ESSE=M =N = HCohFS M =N .

And this means that the model of hypercoherences is at least as good as the model
of (extensional) sequential algorithms. This implication is not an equivalence since for
instance the “left strict and” and the “right strict and” are equal in HCohFS and
different in ESS.

A similar result could as well be proved for inequational theories instead of equa-
tional ones (for the functor IT preserves also the order between morphisms).

Appendix: syntax and semantics of PCF

We work with a version of PCF which has ¢, the type of natural numbers as single
ground type. We shall denote by o1,...,0, — o the type o1 — (... — o), so that any
type can be written oy,...,0, — ¢. (The only type constructor is “
cartesian product in the syntax.)

—”: there is no
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The language is based on a certain number of basic constants which are given with
an integer arity. If ¢ is a constant of arity k, then its typeis ¢ — ... — ¢ (with k arrows)
that we also write ¥ — ¢. If the arity of ¢ is 0, then ¢ is simply a constant of type ¢. The
terms are then constructed using application, A-abstraction and fix-point combinators
(for any type o, we have a fix-point combinator Y (e=0)=0 of type (0 — 0)— o).
Terms must be typable in Curry’s system of simple types based on the only ground
type ¢.

The notion of model of PCF we consider here is the one used by Berry in his thesis
(see [B1], chapter 3.5). A model M consists essentially of a cartesian closed category (in
fact, a A-category) also denoted by M, of the choice of an object [¢]™ of M interpreting
the type ¢ in the model, and of morphisms of M interpreting the basic constants of
the language; if ¢ is a constant of arity k, its interpretation [¢]™ must be a morphism
from ([(])* to [(]™ in the category M. The interpretations of terms are then defined
using standard categorical constructions (see [C1, LS] for example).

If M is a model of PCF, we use the following notations :

o If o is a type of PCF, [0]™ will be the object of M which interprets o in the

model.
o If M is a term of PCF of type o with free variables among z1, ..., z, of respective
types o1,...,0,, then the semantics of M is a morphism [M]™ from I, [o;]™
to [¢]M in M.
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