
Uniformity and the Taylor expansion of ordinary lambda-termsThomas Ehrhard and Laurent Regnier∗Preuves, Programmes et Systèmes, UMR 7126CNRS and Université Paris Diderot � Paris 7Institut de Mathématiques de Luminy, UMR 6206CNRS and Université de la MéditerranéeThomas.Ehrhard�pps.jussieu.fr and Laurent.Regnier�iml.univ-mrs.frNovember 7, 2007AbstratWe de�ne the omplete Taylor expansion of an ordinary lambda-term as an in�nite linear ombina-tion � with rational oe�ients � of terms of a resoure alulus similar to Boudol's lambda-aluluswith multipliities (or with resoures). In our resoure alulus, all appliations are (multi-)linearin the algebrai sense, i.e. ommute with linear ombinations of the funtion or the argument. Westudy the olletive behaviour of the beta-reduts of the terms ourring in the Taylor expansionof any ordinary lambda-term, using, in a surprisingly ruial way, a uniformity property that theyenjoy. As a orollary, we obtain (that main part of) a proof that this Taylor expansion ommuteswith Böhm tree omputation, syntatially.IntrodutionAlthough the present artile develops a di�erential approah to the lambda-alulus that we initiatedin [ER03℄, it is self-ontained and does not require any tehnial knowledge of [ER03℄. Nevertheless, wethink that the di�erential intuitions developped in that paper are quite helpful for understanding thepresent work, and therefore, we reall them shortly.In [ER03℄, we introdued an extension of the lambda-alulus where terms an be di�erentiated withrespet to their arguments. Typially (in a simply typed version of this di�erential lambda-alulus), if
M is a term of type A→ B and if N is a term of type A, we introdue1 the term DM ·N of type A→ B,to be understood as the derivative of the funtion M with respet to its argument, linearly applied2 tothe value N .Intuitively, in the term DM ·N , the termM is provided with exatly one opy N of its argument, andthis explains why A is still present as an argument type of DM ·N , for the other opies thatM might needin omputing a result. We argued indeed in the introdution of [ER03℄ that the mathematial notion oflinearity, whih is the key onept of di�erentiation (omputing the best possible linear approximation ofa funtion), and the logial notion of linearity (a funtion is linear if it uses its argument exatly one) aredeeply related, as already strongly suggested by the notations, terminology and denotational semantisof linear logi [Gir87℄. The idea of extending linear logi with a di�erential onstrution, expressed asan exponential rule, is even mentioned at the end of [Gir87℄. But, probably beause of the fundamentalinompatibility of this onstrution with both oherene spae semantis and totality, Girard didn't

∗This work has been supported by the ACI projet GEOCAL.1Atually, the syntax of [ER03℄ is more ompliated sine we introdued an expliit notation DiM ·N for the derivative of
M with respet to its ith argument. This has been shown useless by Lionel Vaux in his study of the di�erential lambda-mualulus [Vau05℄.2In standard mathematial notations, the derivative of M is a funtion M ′ assoiating to x ∈ A a linear map M ′(x)from A to B, the di�erential of M at point x; thus M ′ has type A → (A ⊸ B) (where A ⊸ B is the type of linear mapsfrom A to B). With these notations, our DM ·N has type A → B and represents λxA (M ′(x)(N)) so that �DM � ould beonsidered as having type A ⊸ (A → B). But, on purpose, we did not introdue the syntati onstrution DM for nothaving to introdue expliitely linear types in the syntax. 1



explore this diretion further. Taking this idea seriously, we arrived to a di�erential extension of linearlogi presented in [ER06b℄.Sine the di�erential allows to write all the derivatives of a lambda-term, it also allows to write formalTaylor expansions of lambda-terms, and it is quite temting to understand the operational meaning ofsuh expansions. At the end of [ER03℄, we proved a result relating, in a speial ase, the Taylor expansionof a lambda-term to its linear head redution3. More preisely, given two ordinary lambda-termsM and
N suh that (M)N is β-equivalent to a variable ∗, we studied the Taylor expansion of that appliation,whih is the following in�nite linear ombination of di�erential lambda-terms

∞∑

n=0

1

n!
(DnM ·Nn) 0 ,where we use DnM ·Nn for the n-th derivative of M with respet to its �rst parameter (it orrespondsto an n-linear funtion) linearly applied n times to N , that is: D(· · ·DM ·N · · · ) ·N . We showed that,with our redution rules for the di�erential lambda-alulus, in that sum, there is exatly one term whihdoes not redue to 0, and that the order n of that term orresponds to the number of times N arrives inhead position during the linear head redution of (M)N to ∗.Our aim here is to generalize the �nal result of [ER03℄ in two diretions:

• instead of Taylor expanding only one appliation, we want to Taylor expand all the appliationsourring in an ordinary lambda-term;
• instead of onsidering terms whih redue to a variable, we want to onsider all possible situations.We shall show that this generalized Taylor expansion makes sense and we shall give a quite simple expliitformula for the (generalized) Taylor expansion of a lambda-term.Then we shall prove that one an beta-redue the Taylor expansion of a lambda-term and obtaina result whih generalizes the above desribed �nal theorem of [ER03℄. In [ER06a℄, using a version ofKrivine mahine, we shall dedue from the main theorem of the present paper a result expressing thatTaylor expansion and beta-redution of lambda-terms (in the sense of Böhm tree omputation) ommute.Outline. For de�ning this generalized Taylor expansion of lambda-terms, we shall introdue here a�target language� whih is muh simpler than the full di�erential lambda-alulus of [ER03℄, and whihan be seen as a sublanguage of that alulus. Indeed, the general appliation of lambda-alulus will notbe needed anymore, we shall only need iterated �di�erential appliations� followed by an appliation to

0, orresponding to di�erential lambda-terms like (DnM · (N1, . . . , Nn)) 0 (where DnM · (N1, . . . , Nn) isjust a notation for the iterated di�erential appliation D(. . .D(DM ·N1) ·N2) . . . ·Nn). Keeping in mindthat suh a di�erential appliation is �symmetri� in the sense that its value does not hange when wepermute the Nis (this orresponds to the Shwarz Lemma of alulus), in our target language, we replaeordinary appliation by a multi-set-based notion of appliation: given a term s and a �nite multi-set
T = t1 . . . tn of terms4, we allow the formation of a term 〈s〉T to be understood as orresponding to thedi�erential lambda-term (Dns · (t1, . . . , tn)) 0.Interestingly, the alulus we arrive to by these onsiderations is very similar to Boudol's lambda-alulus with multipliities or with resoures (see [Bou93, BCL99℄) and Kfoury's linearized lambda-alulus [Kfo00℄, but we insist on its standard algebrai aspets, supported by the fat that it admitsthe already mentioned quite natural vetor spae model of [Ehr05℄ (�niteness spaes).This alulus has a notion of redution, whih orresponds to the di�erential beta-redution of [ER03℄ :standard substitution is replaed by a linear version of substitution whih an be seen as a partialderivative. For this redution, the alulus enjoys on�uene as well as strong normalization, even in theuntyped ase (from the viewpoint of linear logi, this is due to the fat that the promotion rule is absentfrom this alulus, see also [ER06b℄).3A modi�ed beta-redution onsidered expliitly for the �rst time by De Bruijn and alled by himmini-redution [DB87℄;it is the redution implemented by Krivine's abstrat mahine [Kri85, Kri05℄ and it has been extensively studied by Danosand Regnier, see for instane [DR99℄.4Written as a produt, for reasons whih should be lear if one has in mind the semantis outlined in the �nal setionof [ER03℄ and thoroughly presented in [Ehr05℄, where we insist on the fat that the spae !X has not only a standardo-algebrai struture whih aounts for the strutural rules of logi, but also an algebrai struture, aounting for thismulti-set onstrution. 2



In this resoure alulus, we are now able to de�ne indutively the Taylor expansion M∗ of anordinary lambda-term M : it will be an in�nite formal linear ombination of simple5 resoure terms(with oe�ients in a �eld), and should satisfy, in the ase of an appliation:
((M)N)

∗
=

∞∑

n=0

1

n!
〈M∗〉N∗n ,in aordane with the intended meaning, and with the denotational semantis, of appliation in thisresoure alulus. Of ourse we have to give meaning to the operations involved in that sum, andespeially to the expression N∗n, where N∗ will itself be an in�nite linear ombination of simple terms.As we shall see, this an be done using a version of the multinomial equation that we shall explain inSetion 2.1, and one obtains in that way a diret expression of the Taylor expansion of M :

M∗ =
∑

t∈T (M)

1

m(t)
twhere T (M) is the set of all simple resoure terms whih have �the same shape� as M , and m(t) is apositive integer alled the multipliity oe�ient of t (�mutipliity� beause this number is larger when thas more repeated patterns). Up to some minor variations, the resoure terms whih are in some T (M)are those alled well formed in [Kfo00℄. We haraterize these terms as those whih are oherent withthemselves for a oherene relation on simple resoure terms, and all them uniform (not �well formed�,beause we are very muh interested by the other terms as well, and also beause this usage of theword �uniform� is reminisent of a orresponding notion in denotational semantis, see the disussionsin [BE01℄).The main purpose of the paper is then to study the behaviour of the Taylor expansion of an ordinarylambda-term M when one redues its simple summands, whih are all strongly normalizing, even if Mis not. Let us denote by supp(t) the support of a resoure term t, that is, the set of all simple termswhih appear with a non-zero oe�ient in t (a resoure term will be, by de�nition, a possibly in�nitelinear ombination of simple resoure terms). Let us also denote by NF(t) the normal form of the simpleresoure term t, so that NF(t) is a �nite linear ombination of simple resoure terms with oe�ientswhih are positive integers.Thanks to the uniformity and oherene of the resoure terms whih belong to T (M), the situationis quite simple:

• For two distint simple terms t and t′ in T (M), the supports of NF(t) and NF(t′) are disjoint;
• For that reason, it makes sense to add the normal forms of all the elements t of T (M), getting agenerally in�nite sum s of simple terms with rational oe�ients.
• Moreover, if u ∈ supp(NF(t)) for some t ∈ T (M), the oe�ient of u in NF(t) is m(t)/m(u), andhene the oe�ient of a normal simple term u ourring in the sum s de�ned in the item above isjust 1/m(u).
• Last, all these normal simple terms are oherent with eah other (and in partiular, uniform).So this (generally) in�nite sum s of normal simple terms looks like the Taylor expansion of an ordinarylambda-term, and atually it is the Taylor expansion of the Böhm tree of M ; this omplementary resultis explained in [ER06a℄, using a deorated version of Krivine mahine.1 Syntax1.1 Notation and terminologyIf X is a �nite set, we use |X | for its ardinality. For us the word integer means non-negative integer.5We all simple a resoure term whih is not a linear ombination of resoure terms. Sine all the operations of theresoure lambda-alulus are linear, any term obtained by ombining terms along the syntax of the resoure lambda-alulusan be written in an unique way as a linear ombination of simple terms, exatly as for polynomials in algebra: simpleterms play the role of monomials. 3



In this paper we deal with some kind of power series. This notion involves two kinds of numbers:oe�ients and exponents. Power series have a natural vetor spae (or more generally module) struture,whih requires an addition and a multipliation on oe�ients, more preisely, a semi-ring struture onoe�ients. On the other hand, exponents have to be natural numbers.1.1.1 I-indexed families. Let R and I be sets; we use RI for the set of I-indexed families of elementsof R, or equivalently the set of appliations from I to R. An I-indexed family is denoted as (xu)u∈I oras a map x : I 7→ R, depending on the ontext.1.1.2 Free modules. Suppose R is a ommutative semi-ring: R has a ommutative addition with azero, and a ommutative multipliation that is distributive over addition. Given an I-indexed family x,we use supp(x) for the support of x, that is, the set {u ∈ I, xu 6= 0}.We use R〈I〉 for the subset of RI onsisting of families with a �nite support, that is the free R-module on the set I. Conretely we view R〈I〉 as the set of �nite linear ombinations of elements of Iwith oe�ients in R. We therefore denote the family (xu) in R〈I〉 as the sum∑u∈I xuu whih has only�nitely many nonzero terms.1.1.3 Multi-sets. In the partiular ase where R = N, we may alternatively view R〈I〉 as the freeommutative monoid over I. We use Mfin(I) for the set N〈I〉 and all its elements the �nite multi-setsover I. Finite multisets are ranged over by the letters S, T . . .Let S be a �nite multi-set over I. We all multipliity of u in S the number S(u). The ardinalityof S is the number |S| =
∑

u∈I S(u) and its underlying set is set(S) = {u ∈ I | S(u) 6= 0} (set(S) is justanother notation for supp(S), dediated to multi-sets; we use sometimes the notation u ∈ S instead of
u ∈ set(S)). If n ∈ N, we use Mn(I) for the set of all S ∈ Mfin(I) suh that |S| = n.Let S, T ∈ Mfin(I). The multi-set union of S and T is the multi-set U de�ned by U(u) = S(u)+T (u).This is of ourse the monoid operation on Mfin(I) and its neutral element is the empty multi-set.Depending on the ontext, we use one of two notations for this operation: the additive notation U = S+T(to be used when the multi-sets represent multi-exponents) and the multipliative notation U = ST (tobe used when the multi-sets represent monomials).1.1.4 Multi-sets as monomials. Multi-sets will be used for representing oe�ient-free monomials.Suppose e.g. that I is a set of variables and pik for example two variables u and v in I; then we willwrite upvq for the multi-set where u has multipliity p, v has multipliity q, all the multipliities of theother variables in I being 0. In this ontext, onsidering two multi-set S, T ∈ Mfin(I) as monomials, itis natural to use ST to denote their multi-set union, sine this operation orresponds to the produt ofmonomials. Aordingly, in this ontext, we use 1 for the empty multi-set. As it is standard, given any
u ∈ I, we shall identify the multi-set/monomial u1 with u.1.1.5 Multi-sets as multi-exponents. Let now x be a funtion from I to any ommutative monoid
R and let S ∈ Mfin(I). Then we denote by xS the value ∏u∈I x(u)

S(u) ∈ R of the monomial S underthe valuation x. In this ontext we onsider S as a multi-exponent. If T is another monomial on I thenwe have xSxT = xU where U is, again, the multi-set union of S and T so we are driven, in this ontext,to use an additive notation in order to get the usual equation xSxT = xS+T .We also extend to �nite multi-sets (onsidered as multi-exponents) some notations whih are standardfor integers. We �rst de�ne the fatorial of S as S! =
∏

u∈I S(u)! (this produt having only �nitely manyfators di�erent from 1). Observe that S! = 1 if S is a �set� in the sense that ∀u ∈ I S(u) ∈ {0, 1}. Wede�ne next the multinomial oe�ient
[S] =

|S|!

S!
=

(∑
u∈I S(u)

)
!∏

u∈I S(u)!
∈ Nwhih is the number of distint enumerations of the elements of S (taking repetitions into aount). Forinstane, if u and v are two distint elements of I, then [un−pvp] =
(
n
p

). More generally, if u1, . . . , uk arepairwise distint elements of I and n1, . . . , nk ∈ N with n1 + · · ·+nk = n, then [un1
1 . . . unk

k ] = n!
n1!...nk! =(

n
n1,...,nk

) is the oe�ient of the monomial un1
1 . . . unk

k in the expansion of (u1 + · · ·+uk)
n in the algebraof polynomials with variables u1, . . . , uk, over any �eld of harateristi 0.4



Given S, T ∈ Mfin(I), one de�nes S + T and T ≤ S, as well as S − T if T ≤ S, in the obvious,pointwise way.All these notations are ompatible with standard mathematial pratie. For instane, given S, T ∈
Mfin(I) with T ≤ S, we de�ne the generalized binomial oe�ient

(
S

T

)
=

S!

T !(S − T )!
=
∏

u∈I

(
S(u)

T (u)

)
∈ N (1)where, in the last expression, the binomial oe�ients are the standard ones, de�ned on natural numbers.Observe that (ST) =

(
S

S−T

).Given two valuations x and y from I to some ommutative semi-ring, the binomial equation generalizesto
(x+ y)S =

∑

T≤S

(
S

T

)
xT yS−T .For instane, if u ∈ I is suh that S(u) ≥ 1, then U = S − u is the multi-set de�ned by U(v) = S(v)if v 6= u and U(u) = S(u) − 1. This multi-set S − u orresponds to the multi-set S, from whih oneinstane of u has been removed. One has ( S

S−u

)
= S(u).Also, the lassial Pasal formula holds under the following guise: given S,U ∈ Mfin(I) and u ∈ I,with U ≤ S and S(u) > U(u) > 0, one has

(
S

U

)
=

(
S − u

U

)
+

(
S − u

U − u

)
. (2)1.2 Syntax of the resoure alulusLet V be a ountable set of variables.1.2.1 Simple terms and simple poly-terms. They are de�ned by mutual indution, as follows.Variable: if x is a variable, then x is a simple term.Linear appliation: if s is a simple term and T is a simple poly-term, then 〈s〉T is a simple term, theappliation of s to T .Abstration: if x is a variable and t is a simple term, then λx t is a simple term in whih, as usual, thevariable x is bound.Poly-terms: any �nite multi-set of simple terms is a simple poly-term viewed as a monomial of simpleterms (so we use the multipliative notations for the operations on these multi-sets). The intuitionis that eah of the elements of suh a monomial must be used multi-linearly, that is, exatly asmany times as its multipliity in the monomial.Let ∆ be the set of all simple terms; they will be ranged over by the letters s, t, . . . . Let ∆! = Mfin(∆)be the olletion of all simple poly-terms, whih will be ranged over by the letters S, T, . . . . Then,aording to the notations introdued in 1.1.3, remember that Mn(∆) is the set of all the elements Sof ∆! of the shape S = s1 . . . sn, with si ∈ ∆ for i = 1, . . . , n. We use ∆(!) for ∆ or ∆! when we do notwant to be spei� and then we use the letters σ, τ . . . to range over individuals.When we write 〈s〉 t1 . . . tn (where s, t1, . . . , tn are simple terms), we mean the linear appliation of sto the poly-term t1 . . . tn. When we want to denote iterated appliations, we keep the brakets expliit inorder to avoid onfusions: we write in that ase e.g. 〈· · · 〈s〉 T1 · · ·〉Tp and not 〈s〉T1 · · ·Tp whih wouldbe ambiguous, though ompatible with standard lambda-alulus pratie.As in lambda-alulus, we have bound and free variables in simple (poly-)terms. Standard lambda-alulus tehnis may be applied to this system to de�ne α-equivalene and substitution of a term for avariable into a term.A (poly-)term σ an have various subterms whih are equivalent up to α-equivalene, but neverthelesssyntatially distint. We say that σ is α-anonial if this is not the ase. Clearly, any (poly-)termadmits an α-equivalent α-anonial (poly-)term. We assume all the (poly-)terms we deal with to be in

α-anonial form. For instane, an α-anonial form of the simple poly-term (λxx)(λy y) is (λxx)2.5



If σ is a simple (poly-)term, we use fv(σ) for the set of all free variables of σ.In 2.2.2, we shall assoiate a (generally in�nite) set T (M) of resoure terms with any ordinarylambda-term M . The interested reader an already have a look at the de�nition of T (M) to get moreintuition on the syntax of the resoure lambda-alulus and its onnetion with the syntax of the ordinarylambda-alulus.1.2.2 Size of a simple (poly-)term. We de�ne the size of a simple (poly-)term by the followingindution:
• size(x) = 1;
• size(λx t) = 1 + size(t);
• size(〈t〉T ) = 1 + size(t) + size(T );
• size(t1 . . . tn) = n+

∑n
i=1 size(ti).Conerning the last lause, observe that one has size(T ) = 0 i� T = 1 (the empty simple poly-term).1.2.3 Finite terms and �nite poly-terms. Let R be a semiring with multipliative unit6 1 andlet I be a set. Reall that we use R〈I〉 for the free R-module generated by I, the set of �nite linearombinations with oe�ients in R of elements of I. If f is a funtion from I to some R-module E, weuse f̃ for the funtion R〈I〉 → E whih is de�ned in the obvious way, extending f by linearity.We all �nite terms and �nite poly-terms the elements of R〈∆〉 and R〈∆!〉 respetively, and we extendto these terms our notational onventions: we use letters like s, t, u,. . . for denoting �nite terms andletters like S, T , U ,. . . for denoting �nite poly-terms. Also, we use Greek letters to over both ases.Of ourse, simple (poly-)terms are onsidered as partiular �nite (poly-)terms. Finite ombinations of(poly-)terms are mandatory for being able to de�ne partial derivatives of (poly-)terms, see 1.2.4. Moregeneral (in�nite) linear ombinations will be used later for writing Taylor expansions, see Setion 2.1.A possible intuition behind linear ombinations is to onsider them as non deterministi superimpo-sition of (poly-)terms. The (poly-)term 0 an be onsidered as a kind of �error� or �failure� expressingthat no further omputation is possible. It has probably some similarities with the daemon of Girard'sludis [Gir01℄.We extend by multi-linearity all the onstrutions of the syntax of 1.2.1 to �nite terms and �nitepoly-terms. For instane, if U =

∑
S∈∆! aSS and V =

∑
T∈∆! bTT are elements of R〈∆!〉, the produt

UV ∈ R〈∆!〉 is de�ned as UV =
∑

S,T∈∆! aSbTST =
∑

W∈∆! cWW where cW =
∑

ST=W aSbT ∈ Rvanishes for almost all values of W .Similarly λxu is de�ned by linearity in u and 〈u〉U is de�ned by bilinearity in u and U . In partiular,we have λx 0 = 0 and 〈0〉U = 〈u〉 0 = 0. This bilinearity of appliation justi�es the terminology �linearappliation� for this onstrution. Standard lambda-alulus appliation is de�nitely not linear in theargument (see the introdution of [ER03℄). The point of the Taylor formula is preisely to provide ananalysis of this non-linearity.1.2.4 Partial derivatives. We de�ne now formally the �nite (poly-)term ∂σ
∂x · t where σ is a �nite(poly-)term, x is a variable and t is a �nite term. This will be alled the partial derivative of σ withrespet to x in the diretion t. The intuition is that ∂σ

∂x · t is the (poly-)term σ where exatly oneourrene of x is replaed by the simple term t. Of ourse, sine σ an ontain several ourrenes of
x, there are several ways to perform this substitution, whene the sums whih appear in this de�nition.6At some point, we shall require that eah element of the shape n · 1 (with n ∈ N+) has an inverse, as for instane inthe semiring of positive rational numbers.
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We �rst give the de�nition for σ simple and t �nite:
∂y

∂x
· t =

{
t if y = x
0 otherwise

∂λy s

∂x
· t = λy

( ∂s
∂x

· t
) with the usual proviso that x 6= y and y is not free in t

∂〈s〉T

∂x
· t =

〈 ∂s
∂x

· t
〉
T + 〈s〉

(∂T
∂x

· t
)

∂s1 . . . sn

∂x
· t =

n∑

i=1

s1 . . . si−1

(∂si

∂x
· t
)
si+1 . . . sn .Observe that, due to the last two rules, even when t ∈ ∆ is simple, ∂σ

∂x · t is generally a non-trivial sum,that is, ∂σ
∂x · t is a �nite (poly-)terms whih is generally not simple.The following properties follow from the above de�nition:

∂1

∂x
· t = 0

∂ST

∂x
· t =

(∂S
∂x

· t
)
T + S

(∂T
∂x

· t
)

∂sT

∂x
· t =

( ∂s
∂x

· t
)
T + s

(∂T
∂x

· t
)
.For instane, if s and t are two simple terms, one has ∂s2

∂x · t = 2s
(

∂s
∂x · t

).Lemma 1 Let σ be a simple (poly-)term, x be a variable and t be a simple term. Then, for any τ ∈
supp(∂σ

∂x · t), one has size(τ) = size(σ) + size(t) − 1.The proof is a straightforward indution on σ. The �−1� orresponds to the fat that exatly oneourrene of x disappears in this proess.Finally, we extend the de�nition of the partial derivative ∂σ
∂x ·t to the ase where σ is a �nite (poly-)termby linearity. Partial derivation should be understood as a linear substitution operation. Indeed one showseasily that ∂σ

∂x · t it is linear in t. Moreover, it is lear that ∂σ
∂x · t = 0 as soon as x does not our free in

σ.1.2.5 Iterated partial derivatives. The following lemma expresses that partial derivatives om-mute with eah others. It orresponds to Shwarz Lemma in analysis. Here of ourse the lemma boilsdown to a simple formal veri�ation.Lemma 2 Let σ be a �nite (poly-)term and let s and t be �nite terms. Let x and y be variables suhthat x does not our free in t. Then we have
∂

∂y

(∂σ
∂x

· s
)
· t =

∂

∂x

(∂σ
∂y

· t
)
· s+

∂σ

∂x
·
(∂s
∂y

· t
)and in partiular, when y does not our free in s,

∂

∂y

(∂σ
∂x

· s
)
· t =

∂

∂x

(∂σ
∂y

· t
)
· s .

7



Proof. The seond equation follows easily from the �rst one, whih is proved by indution on the sizeof the simple (poly-)term σ. We just hek the ase where σ = 〈u〉U . One has
∂

∂y

(∂σ
∂x

· s
)
· t =

∂

∂y

(〈∂u
∂x

· s

〉
U + 〈u〉

∂U

∂x
· s
)
· t

=
∂

∂y

(〈∂u
∂x

· s

〉
U
)
· t+

∂

∂y

(
〈u〉

∂U

∂x
· s
)
· t

=

〈
∂

∂y

(∂u
∂x

· s
)
· t

〉
U +

〈
∂u

∂x
· s

〉(∂U
∂y

· t
)

+

〈
∂u

∂y
· t

〉(∂U
∂x

· s
)

+ 〈u〉
( ∂
∂y

(∂U
∂x

· s
)
· t
)so that, applying the indutive hypothesis, we get

∂

∂y

(∂σ
∂x

· s
)
· t =

〈
∂

∂x

(∂u
∂y

· t
)
· s

〉
U +

〈
∂u

∂x
·
(∂s
∂y

· t
)〉

U +

〈
∂u

∂x
· s

〉(∂U
∂y

· t
)

+

〈
∂u

∂y
· t

〉(∂U
∂x

· s
)

+ 〈u〉
( ∂
∂x

(∂U
∂y

· t
)
· s
)

+ 〈u〉
(∂U
∂x

·
(∂s
∂y

· t
))

=

〈
∂

∂x

(∂u
∂y

· t
)
· s

〉
U +

〈
∂u

∂x
· s

〉(∂U
∂y

· t
)

+

〈
∂u

∂y
· t

〉(∂U
∂x

· s
)

+ 〈u〉
( ∂
∂x

(∂U
∂y

· t
)
· s
)

+

〈
∂u

∂x
·
(∂s
∂y

· t
)〉

U + 〈u〉
(∂U
∂x

·
(∂s
∂y

· t
))

=
∂

∂x

(∂σ
∂y

· t
)
· s+

∂σ

∂x
·
(∂s
∂y

· t
)as expeted. 2So we introdue the standard notation

∂nσ

∂x1 · · · ∂xn
· (t1, . . . , tn) =

∂

∂xn

(
· · ·

∂σ

∂x1
· t1 · · ·

)
· tnwhen no xi ours free in any of the simple terms tj . For any permutation f of {1, . . . , n}, we have

∂nσ

∂x1 · · · ∂xn
· (t1, . . . , tn) =

∂nσ

∂xf(1) · · · ∂xf(n)
·
(
tf(1), . . . , tf(n)

) (3)1.2.6 Ordinary substitution. As already mentioned, one an also de�ne a substitution operationof a �nite term t for a variable x in a simple (poly)-term σ, yielding a �nite (poly-)term that we denoteas σ [t/x]. This operation is then extended by linearity on σ to arbitrary (poly-)terms σ. However, justas ordinary lambda-alulus appliation is not linear in the argument, this notion of substitution is notlinear in t, in sharp ontrast with the partial derivative operation de�ned above.This operation will be used essentially when t is the �nite term 0, in whih ase it is a simpleour-hek of x in σ: σ [0/x] is equal to 0 if x ours free in σ and to σ otherwise, see Lemma 3.It will also be used for substituting variables for other variables. In that ase, we write σ [x /x1, . . . , xn]for the (poly-)term σ where the variables x1, . . . , xn are replaed by x.1.2.7 Degree of a simple (poly-)term in a variable. If σ is a simple (poly-)term and x is avariable, the degree of σ in x is the number of free ourrenes of x in σ, taking multipliities intoaount. This number is denoted by degx(σ). For instane, the degree of the simple term 〈x〉 (〈x〉 y2)3in x is 4 and its degree in y is 6. Due to the fat that all the syntati onstrutions of this alulus arelinear, this notion of degree oinides with the standard algebrai one.Typially, if σ is a simple (poly-)term and if a ∈ R, we have σ [ax/x] = adegx(σ)σ. Also, degx(ST ) =degx(S) + degx(T ) when S and T are simple poly-terms, and degx(t1 . . . tn) =
∑n

i=1 degxti when the tisare simple terms. 8



Lemma 3 Let σ be a simple (poly-)term and let t be a simple term. Let x be a variable and let n = degxσ.then ∂σ
∂x · t is a sum σ1 + · · · + σn of n simple (poly-)terms and one has degxσi = degxσ + degxt− 1 foreah i = 1, . . . , p. In partiular, when n = degxσ = 0, one has ∂σ

∂x · t = 0.Last
σ [0/x] =

{
σ if degxσ = 0

0 if degxσ > 0and degx(σ [x /x1, . . . , xm]) =

m∑

i=1

degxi
σ .The proof is by indution on σ. As an example, let us hek the �rst statement, in the ase where

σ = 〈s〉T , s being a simple term and T being a simple poly-term. Then by indutive hypothesis, setting
p = degxs and q = degxT , one has ∂s

∂x · t = s1 + · · · + sp where eah si is a simple term whih satis�esdegxsi = degxs + degxt − 1, and ∂T
∂x · t = T1 + · · · + Tq where eah Tj is a simple poly-term whihsatis�es degxTj = degxT + degxt− 1. But ∂σ

∂x · t =
〈

∂s
∂x · t

〉
T + 〈s〉

(
∂T
∂x · t

)
=
∑p

i=1 〈si〉T +
∑q

j=1 〈s〉Tj ,and this expression is a sum of p + q = degxσ simple terms. Moreover, for i = 1, . . . , p, we havedegx(〈si〉T ) = degxs+degxt−1+degxT = degx(〈s〉T )+degxt−1 and similarly for the other summands,as announed.1.2.8 Big step di�erentiation. Given a simple term σ, a variable x and a simple poly-term T =
t1 . . . tn where the variable x does not appear free, we de�ne

∂x(σ, T ) =
(∂nσ

∂xn
· (t1, . . . , tn)

)
[0/x] ∈ R〈∆(!)〉 (4)whih does not depend on the enumeration t1, . . . , tn of T thanks to Equation (3).By Lemma 3, this expression is non zero i� n = degx(σ).By the same lemma, if x does not our free in any of the tis, then x does not our free in (any ofthe summands of) ∂nσ

∂xn · (t1, . . . , tn).Lemma 4 Let σ be a simple (poly-)term and let T be a simple poly-term, and assume that |T | = degxσ =
n. Then, for any τ ∈ supp(∂x(σ, T )), one has size(τ) = size(σ) + size(T ) − n.The proof is by indution on n, applying Lemma 1 at the indutive step.1.2.9 Extensions of big step di�erentiations. Observe that Formula (4) still makes sense if
σ ∈ R〈∆(!)〉 and t1, . . . , tn ∈ R〈∆〉, and then ∂x(σ, T ) is (n + 1)-linear in σ, t1, . . . , tn and symmetriin t1, . . . , tn. Therefore, for eah n ∈ N, we an onsider ∂x(σ, T ) as a bilinear operation R〈∆(!)〉 ×
R〈Mn(∆)〉 → R〈∆(!)〉.Next, this operation an anonially be extended as a bilinear map R〈∆(!)〉×R〈∆!〉 → R〈∆(!)〉, sine
R〈∆!〉 =

⊕∞
n=0R〈Mn(∆)〉.We use ∂x1,...,xm

(σ, T1, . . . , Tm) for the iterated big step di�erentiation
∂xm

(· · · ∂x1(σ, T1), · · · , Tm) .The value of this expression does not depend on the order we put on the pairwise distint variables
x1, . . . , xm. More preisely, if f is any permutation on {1, . . . ,m}, one has

∂x1,...,xm
(σ, T1, . . . , Tm) = ∂xf(1),...,xf(m)

(σ, Tf(1), . . . , Tf(m)) .1.2.10 Partial derivative vs. substitution. The partial derivative an be understood as a linearsubstitution. Let σ be a simple (poly-)term and let x be a variable. Let n = degx(σ) and let x1, . . . , xn bepairwise distint variables whih do not our free in σ or in t. Let σ′ be a simple (poly-)term obtainedby replaing the n ourrenes of x in σ by the pairwise distint variables x1, . . . , xn. Suh a σ′ will bealled an x-linearization of σ in x1, . . . , xn. For any simple term t, we have
∂σ

∂x
· t =

n∑

i=1

σ′ [t/xi] [x /x1, . . . , xn] . (5)9



This formula extends by linearity to the ase where t is not simple, but we shall not use this fat.Iterating this result, we get the following ruial formula.Lemma 5 Let σ be a simple (poly-)term, let x be a variable and let n = degxσ. Let T = t1 . . . tn be asimple poly-term of ardinality n and assume that x is not free in T . Then
∂x(σ, T ) =

∑

f∈Sn

σ′
[
tf(1)/x1, . . . , tf(n)/xn

] (6)where Sn is the group of all permutations of {1, . . . , n}.This formula ould also be generalized to situations where σ and T are not neessarily simple, but weshall never need suh generalizations.The meaning of the lemma is that ∂x(σ, T ) is obtained by substituting in σ all the n ourrenes of
x by t1, . . . , tn, in all possible ways, the result being the sum of these n! possibilities.1.2.11 Leibniz law and partial derivative. Let σ be a simple (poly-)term and let t be a simpleterm. Let x, x1 and x2 be variables, with x1 6= x2 and x not free in σ. Assume moreover that x1 and x2do not our free in t.The Leibniz law onerns the interation between di�erentiation and ontration, and an be writtenas follows:

∂σ [x /x1, x2]

∂x
· t =

( ∂σ
∂x1

· t
)

[x /x1, x2] +
( ∂σ
∂x2

· t
)

[x /x1, x2] . (7)The hypothesis that x1, x2 /∈ fv(t) is of ourse essential: take for instane σ = t = x1, then the left-handside of the equation is x1 whereas the right-hand side is x.The proof is a simple indution on σ. Iterating, we obtain the following formula.Lemma 6 Let σ be a simple (poly-)term and let T be a simple poly-term. Let x, x1 and x2 be variables,with x1 6= x2, x /∈ fv(σ) and x, x1, x2 /∈ fv(T ). Then
∂x(σ [x /x1, x2] , T ) =

∑

UV =T

(
T

U

)
∂x1,x2(σ, U, V ) .Proof. Let n = degx(σ [x /x1, x2]) = degx1

(σ) + degx2
(σ). If |T | 6= n, the equation holds beause bothexpressions vanish. So assume that |T | = n and let us prove the equation by indution on n.The ase n = 0 is trivial, so assume n = |T | > 0, we an write T = tS for some simple term t and we

10



have
∂x(σ [x /x1, x2] , tS) = ∂x

(∂σ [x /x1, x2]

∂x
· t, S

) by de�nition of ∂x(_,_)

= ∂x

(( ∂σ
∂x1

· t
)

[x /x1, x2] , S
)

+ ∂x

(( ∂σ
∂x2

· t
)

[x /x1, x2] , S
) by Equation (7)

=
∑

UV =S

(
S

U

)(
∂x1,x2

( ∂σ
∂x1

· t, U, V
)

+ ∂x1,x2

( ∂σ
∂x2

· t, U, V
))by indutive hypothesis

=
∑

UV =S

(
S

U

)
(∂x1,x2(σ, tU, V ) + ∂x1,x2(σ, U, tV ))by de�nition of ∂x1,x2(_,_)

=
∑

U ′V =T
t∈U ′

(
T − t

U ′ − t

)
∂x1,x2(σ, U

′, V ) +
∑

UV ′=T
t∈V ′

(
T − t

U

)
∂x1,x2(σ, U, V

′)setting U ′ = tU and V ′ = tV

=
∑

U ′V ′=T
t∈U ′, t∈V ′

((
T − t

U ′ − t

)
+

(
T − t

U ′

))
∂x1,x2(σ, U

′, V ′)

+
∑

U ′V ′=T
t∈U ′, t/∈V ′

(
T − t

U ′ − t

)
∂x1,x2(σ, U

′, V ′) +
∑

U ′V ′=T
t/∈U ′, t∈V ′

(
T − t

U ′

)
∂x1,x2(σ, U

′, V ′) .We onlude, applying Pasal's formula (2) for the �rst of these three sums, and observing that, inthe two last sums, the binomial oe�ients are equal to ( T
U ′

). Indeed, when U ′ and V ′ are suh that
U ′V ′ = T , t ∈ U ′ and t /∈ V ′, we have U ′(t) = T (t), and hene also (T − t)(t) = (U ′ − t)(t), so applyingFormula (1), we get ( T−t

U ′−t

)
=
(

T
U ′

). When U ′ and V ′ are suh that U ′V ′ = T , t /∈ U ′ and t ∈ V ′, one has(
T−t
U ′

)
=
(

T
U ′

) simply beause U ′(t) = 0. 21.3 Redution and normal forms1.3.1 Linear relations. If E and F are two R-modules, we say that a relation ρ ⊆ E×F is linear if itis a linear subspae of the diret produt E×F (in other words, if u ρ u′ and v ρ v′ then au+bv ρ au′+bv′for any a, b ∈ R).Let I be a set. Given a relation ρ ⊆ I × R〈I〉, we de�ne a linear relation R〈ρ〉 ⊆ R〈I〉 × R〈I〉 asthe linear span of ρ in this produt spae and all R〈ρ〉 the linear extension of ρ. Spelling out thisde�nition, we have u R〈ρ〉 v i� we an �nd u1, . . . , un ∈ I, a1, . . . , an ∈ R and v1, . . . , vn ∈ R〈I〉 suhthat u =
∑n

i=1 aiui, v =
∑n

i=1 aivi and ui ρ vi for eah i.1.3.2 Small step (non-deterministi) redution. A redex is a simple term of the shape 〈λx s〉Swhere we always assume that x is not free in S. As usual, this ondition an always be ful�lled by simply
α-onverting the abstration λx s.The redution of suh a redex is de�ned by ases, aording to whether S is empty or not. Theseond ase is non-deterministi as it onsists in hoosing an element u in S and then in omputing apartial derivative of s in the diretion u. The result of suh a redution is a linear ombination of simpleterms, with integer oe�ients.

〈λx s〉 1 β1
∆ s [0/x] ∈ R〈∆〉

〈λx s〉uT β1
∆

〈
λx
( ∂s
∂x

· u
)〉
T ∈ R〈∆〉 ,so that β1

∆ is a relation from ∆ to R〈∆〉, that is β1
∆ ⊆ ∆ ×R〈∆〉.The following is a straightforward, but essential observation.11



Lemma 7 Let t and u be simple terms suh that, for some �nite term t′, one has t β1
∆ t′ and u ∈ supp(t′).Then size(u) < size(t).Proof. If we are in the �rst ase of the de�nition of β1

∆, then size(u) = size(t) − 2 (the abstration andthe appliation disappear). If we are in the seond ase, size(u) = size(t) − 2 as well, by Lemma 1. 21.3.3 Extending β1
∆ to all simple ontexts. By extending this redution to all simple ontexts,we de�ne the one step redution relation on simple terms and on simple poly-terms, β̄1

∆ ⊆ (∆×R〈∆〉)∪
(∆! ×R〈∆!〉). More preisely, we say that σ β̄1

∆ σ′ in one of the following situations:(Redex) σ β1
∆ σ′;(Abs) σ = λx t and σ′ = λx t′ with t β̄1

∆ t′;(App) σ = 〈t〉S and
• σ′ = 〈t′〉S with t β̄1

∆ t′ or
• σ′ = 〈t〉S′ with S β̄1

∆ S′;(Prod) σ is the poly-term uS and σ′ = u′S with u β̄1
∆ u′.Lemma 8 Let t and u be simple terms suh that, for some �nite term t′, one has t β̄1

∆ t′ and u ∈ supp(t′).Then size(u) < size(t).Immediate onsequene of Lemma 7.1.3.4 Linear extension of β̄1
∆. We use β∆ for the re�exive and transitive losure of R〈β̄1

∆〉 ⊆
(R〈∆〉 × R〈∆〉) ∪ (R〈∆!〉 × R〈∆!〉) (the linear extension of β̄1

∆, see 1.3.1). This relation β∆ ⊆ (R〈∆〉 ×
R〈∆〉) ∪ (R〈∆!〉 ×R〈∆!〉) is ontextual (in the obvious sense) by onstrution.Theorem 9 The relation β∆ ⊆ (R〈∆〉 ×R〈∆〉) ∪ (R〈∆!〉 ×R〈∆!〉) has the following properties:

• it is on�uent on R〈∆〉 and on R〈∆!〉,
• and if R = N, it is strongly normalizing7.Proof. The on�uene property is proved as in [ER03℄ (and is simpler in the present ontext). Thenormalization property results from Lemma 8. 2Remark : This untyped alulus is (essentially) strongly normalizing, and so annot represent generalreursive omputations as the lambda-alulus does. Later we shall introdue in�nite sums whih willallow us to enode ordinary lambda-terms, making expliit the potential in�niteness of the lambda-alulus.If σ ∈ ∆(!), we use NF(σ) for the unique normal form of σ, whih is an element of N〈∆(!)〉 (and soan be onsidered as an element of any R〈∆(!)〉).1.3.5 Big step (deterministi) redution. We de�ne now a big step redution relation β̄b

∆ whihis more onvenient for dealing with the problems at hand. The de�nition is the same as the de�nition of
β̄1

∆, replaing the small step redex redution β1
∆ by the following one:

〈λx s〉T βb
∆ ∂x(s, T ) ,where, as usual, one assumes that x is not free in T . Remember from 1.2.8 that the �nite term ∂x(s, T )is 0, unless |T | = degxs.This redution is very similar to the β-redution of the ordinary λ-alulus � (λxM)N β M [N/x] �and for that reason, it is the good notion of redution on simple terms for studying the Taylor expansionof ordinary lambda-terms. Observe that this redution is deterministi, in the sense that the redutionof a redex is uniquely determined by the shape of that redex.7This very strong hypothesis an be weakened a little bit as explained in [ER03℄, but not really signi�antly.12



The relation β̄b
∆ ⊆ ∆ × R〈∆〉 is inluded in β∆, and a simple (poly-)term is normal (that is, redex-free) for one of these redutions i� it is normal for the other one. Therefore, for any σ ∈ ∆(!), we anompute NF(σ) by iteratively applying the redution β̄b

∆ to σ.1.3.6 An expliit formula for normal forms. As in the ordinary lambda-alulus, any simpleterm s an be written (in a unique way) as follows:
s = λx1 . . . λxn 〈· · · 〈t〉T1 · · ·〉Tkwhere t is a simple term whih is either a variable possibly equal to one of the xis, and in that ase wesay that s is in head normal form, or a redex, and in that ase we say that t (or rather, this partiularourrene of t in s) is the head redex of s.We use ∆0 for the set of normal simple terms. We introdue similarly the notations ∆!

0 and ∆
(!)
0 fornormal simple poly-terms and for the union of these two sets.Lemma 10 Let σ be a simple (poly-)term. Then NF(σ) ∈ N〈∆

(!)
0 〉 satis�es the following property.

• If σ = λx1 . . . λxn 〈· · · 〈〈λy s〉S〉T1 · · ·〉Tk then
NF(σ) = ÑF(λx1 . . . λxn 〈· · · 〈∂y(s, S)〉T1 · · ·〉Tk)

=
∑

u∈∆

∂y(s, S)u(λx1 . . . λxn NF(〈· · · 〈u〉T1 · · ·〉Tk)) (8)(Remember that we use ÑF for the linear extension of NF to arbitrary �nite (poly-)terms and that
∂y(s, S)u, the oe�ient of u in the linear ombination of simple terms ∂y(s, S), is an integer.)

• If σ = λx1 . . . λxn 〈· · · 〈y〉T1 · · ·〉Tk then NF(σ) = λx1 . . . λxn 〈· · · 〈y〉NF(T1) · · ·〉NF(Tk).
• If σ = t1 . . . tn then NF(σ) =

∏n
i=1 NF(ti).The proof is based on the fat that, for eah u ∈ supp(∂y(s, S)), one has size(u) < size(〈λy s〉S) byLemma 4. For that reason also, and by the on�uene property, the lemma above an be onsidered asan indutive de�nition of NF and will be used as suh.Let us onlude by a simple example of omputation of a normal form, using the proess presentedin Lemma 10.

NF(
〈
〈λf λx 〈f〉 〈f〉x〉 (λy y)2

〉
z) = 2 NF(〈λx 〈λy y〉 〈λy y〉x〉 z)

= 2 NF(〈λy y〉 〈λy y〉 z)

= 2 NF(〈λy y〉 z)

= 2z .2 The Taylor expansion of ordinary lambda-termsWe show now how to represent ordinary lambda-terms in this alulus by reursively Taylor expandingall ordinary appliations. As remarked above, this requires dealing with in�nite linear ombinations of(poly-)terms.2.1 In�nite terms and poly-terms.2.1.1 In�nite dimensional produt spaes. If M is a set, we use R〈M〉∞ for the R-module of allformal linear ombinations x =
∑

u∈M xuu where (xu) is an arbitraryM -indexed family of salars takenin R (so that R〈M〉∞ = RM ). Let J be a ountable set. We say that a family (xj)j∈J of elements of
R〈M〉∞ is summable if, for eah u ∈ M , the family ((xj)u)j∈J vanishes for almost all values of j. Wethen de�ne its sum x =

∑
j∈J xj by setting xu =

∑
j∈J (xj)u, a �nite sum in R by assumption. This isjust usual onvergene for the produt topology, R being endowed with the disrete topology. If J = N,observe that for this topology, the onvergene of a series is equivalent to the onvergene to 0 of its13



general term. Observe also that all the module operations on R〈M〉∞ are ontinuous (R being endowedwith the disrete topology).If M has a struture of ommutative monoid (with multipliative notation) with the property thatfor eah u ∈ M there are only �nitely many pairs (v, w) ∈ M2 suh that u = vw, then R〈M〉∞ is analgebra, with multipliation given by
xy =

∑

u∈M

(∑

vw=u

xvyw

)
u .Moreover, it is easily heked that this multipliation is ontinuous with respet to the produt topologyon R〈M〉∞ ×R〈M〉∞. In partiular, we have the following summability property for �produt families�.Lemma 11 If x = (xi)i∈I ∈ R〈M〉I∞ and y = (yj)j∈J ∈ R〈M〉J∞ are summable, then the family

x⊗ y = (xiyj)(i,j)∈I×J ∈ R〈M〉I×J
∞ is summable, with a sum equal to (

∑
i∈I xi)(

∑
j∈J yj).2.1.2 Produts of in�nite sums. Consider the partiular ase where M is ∆!, the free ommuta-tive monoid over ∆ (what we say now would hold atually for an arbitrary free ommutative monoid

M). As we have just seen, R〈∆!〉∞ has a anonial struture of ommutative algebra, with ontinuousmultipliation given by
ST =

∑

U∈∆!

(
∑

V W=U

SV TW

)
U (9)for eah S, T ∈ R〈∆!〉∞.We shall always onsider the module R〈∆〉∞ as a submodule of R〈∆!〉∞, by identifying the element

t =
∑

s∈∆ tss of R〈∆〉∞ with the element ∑s∈∆ tss of R〈∆!〉∞ (in this sum, �s� stands for the multisetwhih has s as unique element), this inlusion being ontinuous and admitting a ontinuous left inverse(whih maps T ∈ R〈∆!〉∞ to ∑s∈∆ Tss).If T = (Tj)j∈J is a family of elements of R〈∆!〉∞ and if µ ∈ Mfin(J), remember from 1.1.5 that wewrite T µ =
∏

j∈J T
µ(j)
j ∈ R〈∆!〉∞ (this is a �nite produt sine µ is a �nite multi-set, so it makes sensein the algebra R〈∆!〉∞).Let n ∈ N. Remember from 1.1.3 that we use Mn(J) for the set of all multi-sets over J whoseardinality is n and if µ ∈ Mn(J), remember from 1.1.5 that we have de�ned a multinomial oe�ientas follows: [µ] = n!/
∏

j∈J µ(j)! ∈ N.Lemma 12 Let n ∈ N. Let T = (Tj)j∈J be a summable family in R〈∆!〉∞. Then the family ([µ] T µ)µ∈Mn(J)is summable in R〈∆!〉∞ and the following �multinomial equation� holds:
(∑

j∈J

Tj

)n

=
∑

µ∈Mn(J)

[µ] T µ . (10)Proof. The proof is an easy indution on n, applying Lemma 11 at the indutive step. 2A partiularly simple ase where we shall apply this formula is when eah Tj is a singleton multipliedby a salar, in other words, the sum ∑
j∈J Tj is an element t =

∑
s∈∆ tss of R〈∆〉∞ ⊂ R〈∆!〉∞ (asexplained at the beginning of this paragraph). Then Formula (10) reads

tn =
∑

S∈∆!

[S] tSS (11)where we reall that tS stands for the �nite produt ∏s∈∆ t
S(s)
s .Let T = (Tj)j∈J be a summable family in R〈∆!〉∞ and assume moreover that (Tj)1 = 0 for eah

j ∈ J , where we reall that 1 ∈ ∆! stands for the empty multi-set. Then it is lear that, for eah
µ ∈ Mfin(J), one has

∀S ∈ supp(T µ) |S| ≥ |µ| .From this simple observation, we an derive the following property.14



Lemma 13 Let T = (Tj)j∈J be a summable family in R〈∆!〉∞ suh that (Tj)1 = 0 for eah j ∈ J . Thenthe family ((
∑

j∈J Tj)
n)n∈N is summable in R〈∆!〉∞.2.1.3 Extension of the syntax to in�nite terms and poly-terms. The onstrutions of thesyntax of our resoure alulus an now be extended to these in�nite linear ombinations of sim-ple (poly-)terms in an obvious way, by linearity (and �ontinuity� sine we require the onstruts toommute to arbitrary linear ombinations, not only to �nite ones). For instane, if t =

∑
s∈∆ tssand T =

∑
S∈∆! TSS are arbitrary elements of R〈∆〉∞ and R〈∆!〉∞ respetively, 〈t〉T is de�ned as∑

s∈∆,S∈∆! tsTS 〈s〉S, whih is a perfetly well de�ned element of R〈∆〉∞.But we need to hek arefully that partial derivatives still make sense in that extended setting.Given σ ∈ R〈∆(!)〉∞ and t ∈ R〈∆〉∞, generalizing the linearity properties of partial derivatives statedin 1.2.4, one would like to write
∂σ

∂x
· t =

∑

τ∈∆(!),u∈∆

στ tu

(∂τ
∂x

· u
)where the partial derivatives ∂τ

∂x · u are partial derivatives of simple (poly-)terms, as de�ned indutivelyin 1.2.4. It is not lear however that the in�nite sum above makes sense, that is, it is not lear that thefamily (∂τ
∂x ·u

)
τ∈supp(σ),u∈supp(t)

is summable. This is exatly what expresses the forthoming Lemma 17.2.1.4 Finiteness properties of the partial di�erential of simple (poly-)terms. So we wantto make sense of the expression ∂σ
∂x · t when σ ∈ R〈∆(!)〉∞, t ∈ R〈∆〉∞ and x is not free in t.We need �rst some basi ombinatorial properties of di�erentiation in the ase where the involved(poly-)terms are simple: Lemma 15 expresses that, a simple term t being hosen, it is not possible to�nd in�nitely many pairwise distint simple (poly-)terms σi (i ∈ I) suh that all the sets supp(∂σi

∂x · t)have a ommon element. In other words, the family (∂σi

∂x · t)i∈I is summable, whatever be the family
(σi)i∈I of pairwise distint simple (poly-)terms.Lemma 14 Let n ≥ 1, let σ1, . . . , σn ∈ ∆(!) be pairwise distint and let x be a variable suh thatdegxσi = 1 for i = 1, . . . , n. Let t ∈ ∆ and assume that

σ1 [t/x] = · · · = σn [t/x] (12)Then, for any sequene y1, . . . , yn of pairwise distint variables, whih are not free in t and in the σis,there exists a simple (poly-)term σ suh that degyi
σ = 1 and σi = σ [t/y1, . . . , t/yi−1, x/yi, t/yi+1, . . . , t/yn]for eah i = 1, . . . , n.Of ourse, the dependeny of σ on y1, . . . , yn is trivial: if z1, . . . , zn is another sequene of variablessatisfying the required onditions, the orresponding (poly-)term τ is obtained by substituting zi for yiin σ for eah i.Proof. We proeed by indution on the ommon sizem of the σis: these sizes are equal to size(σ1 [t/x])−size(t) by (12).If m = 0, then all the σis must be equal to the empty poly-term 1, hene we must have n = 1 andwe onlude straightforwardly.Assume next that m = 1 so that σ1 is a variable. Sine degxσ1 = 1, we must have σ1 = x. For i > 1,we have size(σi [t/x]) = size(σi) + size(t) − 1, and we must have σi [t/x] = σ1 [t/x] = t. This impliessizeσi = 1 and hene σi must be a variable, and thus must be equal to x, in ontradition with ourhypothesis that the σis are pairwise distint. Hene we must have n = 1 and one onludes easily (take

σ = y1).Suppose now that m ≥ 2 and that σ1 = 〈s1〉S1. If, for some i > 1, σi is not a linear appliation, then
σi = x and t is a linear appliation. But this is impossible beause size(σ1 [t/x]) = size(s1) + size(S1) +size(t) > size(t) sine size(s1) > 0. So for eah i = 2, . . . , n, the simple (poly-)term σi must be a linearappliation: σi = 〈si〉Si. Sine eah σi has degree 1 in x, we an assume without loss of generality thatthere is p suh that 1 ≤ p ≤ n and 15



• degxσi = 1 and degxSi = 0 for 1 ≤ i ≤ p

• degxσi = 0 and degxSi = 1 for p+ 1 ≤ i ≤ n.Due to the hypothesis (12), the Sis have a ommon value S0 ∈ ∆! for 1 ≤ i ≤ p and the sis have aommon value s0 ∈ ∆ for p + 1 ≤ i ≤ n. Moreover, the sis are pairwise distint for 1 ≤ i ≤ p and the
Sis are pairwise distint for p + 1 ≤ i ≤ n. Let y1, . . . , yn be a sequene of pairwise distint variables.By indutive hypothesis, we an �nd s ∈ ∆, S ∈ ∆!, suh that

• for eah i = 1, . . . , p, the simple term s has degree 1 in yi and
si = s [t/y1, . . . , t/yi−1, x/yi, t/yi+1, . . . , t/yp]

• for eah i = p+ 1, . . . , n, the simple poly-term S has degree 1 in yi and
Si = S [t/yp+1, . . . , t/yi−1, x/yi, t/yi+1, . . . , t/yn].By (12), we have si [t/x] = s0 for 1 ≤ i ≤ p and Si [t/x] = S0 for p + 1 ≤ i ≤ n. Let σ = 〈s〉S. For all

i = 1, . . . , p, we have degyi
σ = 1 and σi = σ [t/y1, . . . , t/yi−1, x/yi, t/yi+1, . . . , t/yn].The ase where m ≥ 2 and σ1 is an abstration is trivial, so let us assume that m ≥ 2 and that σ1 isa poly-term: σ1 = s1S1. By the same reasoning as above, all the σis are of the same shape: σi = siSi.Moreover, sine eah σi is of degree 1 in x, we an assume to have hosen the sis in suh a way thatdegxsi = 1 and degxSi = 0 for eah i. Then we onlude straightforwardly, applying the indutivehyopthesis to s1, . . . , sn (we must have S1 = · · · = Sn by (12) so the sis must be pairwise distint). 2Lemma 15 Let τ ∈ ∆(!), let x be a variable and let t ∈ ∆. There are only �nitely many σ ∈ ∆(!) suhthat τ ∈ supp(∂σ

∂x · t).Proof. Assume that τ ∈ ∩n
i=1 supp(∂σi

∂x · t) for a �nite family (σi)i=1,...,n of pairwise distint simple(poly-)terms. So for eah i = 1, . . . , n, one obtains the simple (poly-)term τ by replaing in the simple(poly-)term σi exatly one of the ourrenes of x by the simple term t, see 1.2.10.Sine x is not free in t, we must have degxσi = degxτ + 1 by Lemma 3. Let d be the ommon degreeof the σis in the variable x. Let us hoose d pairwise distint variables x1, . . . , xd, distint from x andfree in the σis and in t, and, for eah i, let σ′
i be a simple (poly-)terms suh that

• x is not free in σ′
i,

• degxj
σ′

i = 1 for j = 1, . . . , d

• and σi = σ′
i [x /x1, . . . , xd].In other words, σ′
i is an x-linearization of σi, in the sense of 1.2.10. For eah i = 1, . . . , n, we an �nd

f(i) ∈ {1, . . . , d} suh that
τ = σ′

i

[
x/x1, . . . , x/xf(i)−1, t/xf(i), x/xf(i)+1, . . . , x/xd

]
.Up to permutation of the xjs in the σ′

is, we an assume that f(i) = 1 for eah i = 1, . . . , n and, upto permutations of the x2, . . . , xd in the simple (poly-)terms σ′
i [t/x1], we an say that these terms arepairwise equal:

σ′
1 [t/x1] = · · · = σ′

n [t/x1] .But the σis are pairwise distint, so the σ′
is must be pairwise distint as well. Let y1, . . . , yn be pairwisedistint variables, not free in t nor in the σ′

is. By Lemma 14 applied to σ′
1, . . . , σ

′
n, there is a simple(poly-)term σ′ suh that, for i = 1, . . . , n,

• degyi
(σ′) = 1

• and σ′
i = σ′ [t/y1, . . . , t/yi−1, x1/yi, t/yi+1, . . . , t/yn].From this one learly sees that n is upper bounded by the size of τ . 2Lemma 16 generalizes Lemma 15 to the ase where t an vary as well.Lemma 16 Let x be a variable and let τ ∈ ∆(!). There are only �nitely many σ ∈ ∆(!) and t ∈ ∆ suhthat τ ∈ supp(∂σ

∂x · t). 16



Proof. If (σi, ti)i∈I is a family of pairwise distint pairs of simple (poly-)terms and simple terms andif τ ∈ ∩i∈I supp(∂σi

∂x · ti) then eah simple term ti must appear as a sub-term of τ and therefore therean be only a �nite number of distint tis. If I is in�nite, this leads to a ontradition with Lemma 15.Therefore I is �nite and the lemma is proved. 22.1.5 Di�erentiation of in�nite (poly-)terms. Lemma 16 means preisely that the whole familyof �nite (poly-)terms (∂σ
∂x · t

)
σ∈∆(!),t∈∆

is summable. So, for σ ∈ R〈∆(!)〉∞ and t ∈ R〈∆〉∞, it makessense to de�ne the partial derivative ∂σ
∂x · t as follows:

∂σ

∂x
· t =

∑

τ∈∆(!), u∈∆

στ tu
∂τ

∂x
· u ∈ R〈∆〉∞ .And this generalized partial di�erential is bilinear in σ ∈ R〈∆(!)〉∞ and t ∈ R〈∆〉∞. We an derive a bitmore from Lemma 16.Lemma 17 The map (σ, t) 7→ ∂σ

∂x · t from R〈∆(!)〉∞ × R〈∆〉∞ to R〈∆(!)〉∞ is ontinuous (these spaesbeing endowed with the produt topology). In partiular, if (σi)i∈I and (tj)j∈J are summable familiesin R〈∆(!)〉∞ and R〈∆〉∞ respetively (with respetive sums σ and t), then the family (∂σi

∂x · tj)i∈I,j∈J issummable, with sum equal to ∂σ
∂x · t.Proof. By linearity, it su�es to prove ontinuity at the origin (0, 0) of R〈∆(!)〉∞ × R〈∆〉∞. Wetake a neighborhood of 0 in R〈∆(!)〉∞: it is indued by a �nite subset W of ∆(!) (the orrespondingneighborhood of 0 in R〈∆(!)〉∞ is the olletion VW (0) of all θ ∈ R〈∆(!)〉∞ suh that W ∩ supp(θ) = ∅).Then by Lemma 16, for eah ϕ ∈ W , we an �nd two �nite sets Uϕ ⊆ ∆(!) and Vϕ ⊆ ∆ suh that

ϕ 6∈ supp(∂σ
∂x · t) for eah (σ, t) 6∈ Uϕ × Vϕ. Then taking U =

⋃
ϕ∈W Uϕ and V =

⋃
ϕ∈W Vϕ, we have

∂σ
∂x · t ∈ VW (0) for eah σ ∈ VU (0) and t ∈ VV (0). 2So ∂σ

∂x · t ∈ R〈∆(!)〉∞ is well de�ned for all σ ∈ R〈∆(!)〉∞ and t ∈ R〈∆〉∞ and has all the requiredlinearity and ontinuity properties.2.1.6 Big step di�erentiation of in�nite (poly-)terms. We an of ourse iterate this onstru-tion and de�ne ∂nσ
∂x1···∂xn

· (t1, . . . , tn) for arbitrary σ ∈ R〈∆(!)〉∞ and t1, . . . , tn of R〈∆〉∞. Again, thisoperation is linear in eah of its parameters σ, t1, . . . , tn, and is ontinuous in these parameters (for theprodut topology).For that reason, for eah given n ∈ N, we an extend the onstrution ∂x(σ, T ) to σ ∈ R〈∆(!)〉∞ and
T ∈ R〈Mn(∆)〉∞, and this operation is bilinear and ontinuous in σ and T (this generalizes to in�nitesums the linear extension of ∂x(_,_) to R〈∆(!)〉 ×R〈Mn(∆)〉, explained in 1.2.9).The seond linear extension of ∂x(_,_) explained in 1.2.9, to R〈∆(!)〉×R〈∆!〉, an also be generalizedto in�nite sums. Observing indeed that, for σ ∈ ∆(!) and T ∈ Mn(∆), the size of any element of thesupport of ∂x(σ, T ) must be greater than n, we see that, for any σ ∈ R〈∆(!)〉∞ and any T ∈ R〈∆!〉∞,the sequene (∂x(σ, T (n)))n∈N onverges to 0 in R〈∆(!)〉∞ (where we use T (n) for the restrition of T to
Mn(∆), that is T (n) =

∑
S∈Mn(∆) TS S). So the series ∑∞

n=0 ∂x(σ, T (n)) onverges. Its sum is denotedby ∂x(σ, T ); this operation is bilinear and ontinuous in (σ, T ).So all the di�erentiation operations we have onsidered for �nite (poly-)terms make sense in thein�nite ase as well, without any restrition on the in�nite linear ombinations we onsider. This fatwill be used at the end of the present paper, when we shall give a �substitution-oriented� version ofTaylor's formula in Theorem 32.2.1.7 The exponential and the promotion. From now on, we assume that R possesses inversesfor all integers 6= 0.As explained at the beginning of 2.1.2, any t ∈ R〈∆〉∞ an anonially be seen as an element of
R〈∆!〉∞ (identifying u ∈ ∆ with u ∈ ∆!, the multi-set whose only element is u, with multipliity 1). Itis lear that tn → 0 when n→ ∞ so that the following sum onverges (this an also be seen as a trivial17



appliation of Lemma 13):
exp t =

∞∑

n=0

1

n!
tn ∈ R〈∆!〉∞where the exponents orrespond to multipliation in the algebra R〈∆!〉∞. Using Formula (11) of 2.1.2,one an hek that atually

exp t =
∑

T∈∆!

tT

T !
T(remember that, with our notations, T ! =

∏
u∈∆ T (u)! ∈ N

+ and that tT =
∏

u∈∆ t
T (u)
u ∈ R).Without surprises, we have exp 0 = 1 and exp(s + t) = exp s exp t. This operation t 7→ exp torresponds to promotion in linear logi. We ould then reover the ordinary appliation of the lambda-alulus by setting:

(s) t = 〈s〉 exp t . (13)This formula an also be seen as de�ning an enoding of the ordinary lambda-alulus in in�nite resoureterms.The purpose of the sequel is preisely to analyze the properties of this enoding.Remark : applying Lemma 13, this exponential operation ould be de�ned not only for t ∈ R〈∆〉∞but for arbitrary S ∈ R〈∆!〉∞, as soon as S1 = 0. When S1 6= 0, omputing expS involves an in�nitesum of salars, or maybe the use of an �exponential map� eR on the semi-ring R, setting expS =
eR(S1) exp(S − S1 · 1). This idea might lead to an interesting generalization of the promotion of linearlogi.2.2 Complete Taylor expansion of an ordinary lambda-term2.2.1 Multipliity oe�ients. Given a simple term t, we de�ne a positive integer m(t), the mul-tipliity oe�ient of t by the following indutive de�nition.

m(x) = 1

m(λx s) = m(s)

m(〈s〉T ) = m(s)
∏

t∈∆

T (t)! m(t)T (t) = m(s) T ! mTwith our onise notations for arithmeti operations on multi-sets. This de�nition of m is not irular,beause, when de�ning m(〈s〉T ), in the expression mT =
∏

t∈∆ m(t)T (t), the only simple terms t forwhih the value of m(t) is needed are subterms of 〈s〉T .For a poly-term T , we de�ne aordingly m(T ) = T ! mT , so that m(〈s〉T ) = m(s)m(T ). So if
T = tn1

1 · · · t
np
p , with the tis pairwise distint (up to α-onversion), we have

m(T ) =

p∏

i=1

ni!m(ti)
ni .In Setion 4, paragraph 4.2.3, we shall give a preise ombinatorial interpretation of these oe�ients.We shall see that m(t) is the number of permutations of variable ourrenes of t whih preserve thenames of the variables (one annot swap an ourrene of x with an ourrene of y, if x and y aredistint variables) and leave t unhanged (taking into aount the fat that poly-term multipliation isa ommutative operation).As an example, we have m(〈x〉 (〈x〉 y3)2) = 2!(3!)2 = 72.2.2.2 The expansion. Given an ordinary lambda-term M , we de�ne a subset T (M) of ∆ whih isthe olletion of all simple terms having the same shape as M . This set is de�ned as follows, by indutionon M .

T (x) = {x}

T (λxM) = {λx t | t ∈ T (M)}

T ((M)N) = {〈t〉T | t ∈ T (M) and T ∈ Mfin(T (N))} .18



Observe that, as soon as the lambda-term M ontains an appliation, the set T (M) is in�nite. To givean example, the set T (λx (x) (x) y) ontains, among in�nitely many other simple terms, e.g. λx 〈x〉 1,
λx 〈x〉 〈x〉 y, λx 〈x〉 ((〈x〉 1)2 〈x〉 y3), . . .Observe also that T (M) ontains a simple term l(M) whih whih looks very muh like M , andis de�ned by: l(x) = x, l(λxM) = λx l(M) and l((M)N) = 〈l(M)〉 l(N). For instane, l(λx (x)x) =
λx 〈x〉 x. But this simple term l(M), whih is a �linearization� of M , has not the same properties as
M with respet to β-redution (even if M is unsolvable, l(M) is strongly normalizing: in that ase, thenormal form of l(M) is 0).We de�ne the omplete Taylor expansion of an ordinary lambda-term M :

M∗ =
∑

t∈T (M)

1

m(t)
t ∈ R〈∆〉∞ . (14)This expansion satis�es the following lemma, whose last statement means that M∗ an be obtainedby reursively Taylor expanding all appliations inM . This motivates our terminology for this operation.Lemma 18 If x is a variable and if M and N are terms of the standard lambda-alulus, one has

• x∗ = x,
• (λxM)

∗
= λxM∗ and

• ((M)N)
∗

= 〈M∗〉 expN∗ =
∑∞

n=0
1
n! 〈M

∗〉N∗n.Proof. The only interesting ase is the last one. We have
∞∑

n=0

1

n!
〈M∗〉N∗n =

∞∑

n=0

1

n!

〈 ∑

s∈T (M)

1

m(s)
s
〉( ∑

t∈T (N)

1

m(t)
t
)n

=

∞∑

n=0

1

n!

〈 ∑

s∈T (M)

1

m(s)
s
〉( ∑

T∈Mn(T (N))

[T ]
1

mT
T
)

=
∑

s∈T (M)
T∈Mfin(T (N))

1

|T |!
[T ]

1

m(s)mT
〈s〉T

=
∑

s∈T (M)
T∈Mfin(T (N))

1

T !m(s)mT
〈s〉T sine [T ] =

|T |!

T !

= ((M)N)
∗
.

2It must be observed that the oe�ient of t in Formula (14) does not depend on M . This remarkableproperty is lost if we want to de�ne similarly a omplete Taylor expansion for an extension of the ordinarylambda-alulus where �nite linear ombinations of terms are allowed.2.2.3 Outline of the sequel. As explained in the introdution, our aim is to understand the be-haviour of this Taylor expansion with respet to beta-redution. The �rst thing to observe is that theresoure terms ourring in the Taylor expansion of an ordinary lambda-term are oherent with eahother and with themselves (a simple term whih is oherent with itself will be said to be �uniform�), fora binary oherene relation we de�ne below, on simple terms. Then we shall see that the normal formoperator is stable (in the sense of [Ber78℄ and [Gir86℄) with respet to this oherene relation. This isa qualitative property whose main onsequene will be a �non-interferene� e�et: the supports of thenormal forms of two distint terms of the Taylor expansion are disjoint.Last, we shall see that the multipliity oe�ients of uniform terms evolve very simply during bigstep di�erential redution �a quantitative property�.These two main results will lead to our �nal Corollary 34.19



3 Qualitative properties: the oherene relation on simple termsand poly-termsWe de�ne a binary oherene relation ⌢⌣ on simple terms and on simple poly-terms, whih is easilyseen to be symmetri (but neither re�exive nor anti-re�exive). We use the notation ⌢ for the largestanti-re�exive sub-relation of ⌢⌣. The de�nition is by indution on simple terms.
• x ⌢⌣ t′ if t′ = x;
• λx s ⌢⌣ t′ if t′ = λx s′ with s ⌢⌣ s′;
• 〈s〉T ⌢⌣ t′ if t′ = 〈s′〉T ′ with s ⌢⌣ s′ and T ⌢⌣ T ′.
• And, for two simple poly-terms T and T ′, one has T ⌢⌣ T ′ if, for all t, t′ ∈ TT ′, one has t ⌢⌣ t′.Observe �rst that, if s and s′ are simple terms, one has s ⌢⌣ s′ (onsidering s and s′ as simple terms) i�

s ⌢⌣ s′ (onsidering them as singleton poly-terms).This oherene relation is not re�exive: if x and y are distint variable, then xy ⌢⌣ xy does not hold(we shall say that xy is a non-uniform poly-term). It is not transitive either, sine, onsidering x and yas poly-terms, one has x ⌢⌣ 1 ⌢⌣ y, but it is no true that x ⌢⌣ y.We say that a simple (poly-)term σ is uniform if σ ⌢⌣ σ. This orresponds to the notion of well-formedterm in [Kfo00℄ (however, in that paper, the relation orresponding to⌢⌣ is a partial equivalene relationbeause empty multi-sets are not aepted as arguments). Observe that, for two simple poly-terms Tand T ′, one has T ⌢⌣ T ′ i� TT ′ ⌢⌣ 1 i� TT ′ is uniform.A lique for this oherene relation is a subset U of ∆(!) suh that τ ⌢⌣ τ ′ whenever τ, τ ′ ∈ U .In partiular, eah element of a lique must be uniform. Observe by the way that it results from thede�nition that if σ ⌢⌣ σ′ for two simple (poly-)terms σ and σ′, then automatially σ and σ′ are uniform.Lemma 19 If M is a lambda-term, then T (M) is a maximal lique in (∆,⌢⌣).The proof is straightforward. However, not all maximal liques of ∆ are of the shape T (M) for somelambda-term M . For instane, a maximal extension of the lique {〈x〉 1, 〈x〉 〈x〉 1, . . . } annot be of thatshape. Suh maximal liques ould probably be seen as some kind of in�nitary generalized lambda-terms.3.1 Coherene and di�erentiation.Coherene is not preserved by partial di�erentiation. For instane, the poly-term x2 is uniform and y isa uniform term, but ∂x2

∂x · y = 2xy is not uniform if x and y are distint variables.3.1.1 Stability of big-step di�erentiation. However, big step di�erentiation � or, more pre-iesely, the map supp ◦ ∂x � satis�es a �stability� property with respet to the oherene relationwe have de�ned on (poly-)terms, similar to the haraterization of the trae of stable linear fun-tions between oherene spaes in [Gir87, GLT89℄. More preisely, Theorem 20 expresses that the set
{((σ, S), ϕ) | ϕ ∈ supp(∂x(σ, S))} is a lique in the oherene spae (∆(!) ⊗ ∆!) ⊸ ∆(!). That is, the map
f : P(∆(!)) × P(∆!) → P(∆(!)) de�ned by f(U, V ) = ∪σ∈U,S∈V supp(∂x(σ, S)) maps pairs of liques toliques, and is a stable funtion on pairs of liques. The preise statement is given in Theorem 20.Given U,U ′ ⊆ ∆(!), let us write U ⌢⌣ U ′ when ∀σ ∈ U, σ′ ∈ U ′ σ ⌢⌣ σ′. Then U ⌢⌣ U means that Uis a lique.Theorem 20 Let x be a variable. Let σ, σ′ ∈ ∆(!) and S, S′ ∈ ∆!.

• If σ ⌢⌣ σ′ and S ⌢⌣ S′, then supp(∂x(σ, S)) ⌢⌣ supp(∂x(σ′, S′))

• and if, moreover, σ 6= σ′ or S 6= S′, then supp(∂x(σ, S)) ∩ supp(∂x(σ′, S′)) = ∅.
20



Proof. We assume that σ ⌢⌣ σ′ and S ⌢⌣ S′. Let ϕ ∈ supp(∂x(σ, S)) and ϕ′ ∈ supp(∂x(σ′, S′)). Weprove that ϕ ⌢⌣ ϕ′ and that, if moreover ϕ = ϕ′, then σ = σ′ and S = S′. We proeed by indution onthe sum of the sizes of σ and σ′, for σ and σ′ in ∆(!).Assume that σ is a variable y. Then σ′ = y. If y 6= x, we must have S = S′ = 1 sine ϕ ∈
supp(∂x(σ, S)) and ϕ′ ∈ supp(∂x(σ′, S′)) (otherwise at least one of these sets would be empty). So
ϕ = ϕ′ = y and we onlude trivially. If y = x then S and S′ must be singleton multi-sets (otherwiseagain at least one of the two sets supp(∂x(σ′, S′)) and supp(∂x(σ, S)) would be empty). Say S = t and
S′ = t′ (with t, t′ ∈ ∆, t ⌢⌣ t′). Then we have ϕ = t and ϕ′ = t′ and we onlude straightforwardly.The ase where σ is an abstration is trivial.Assume that σ = 〈t〉T (with t ∈ ∆ and T ∈ ∆!). Then by de�nition of oherene we must have
σ′ = 〈t′〉T ′ with t ⌢⌣ t′ and T ⌢⌣ T ′. Sine ϕ ∈ supp(∂x(σ, S)), we must have ϕ = 〈u〉U and there mustexist S1, S2 ∈ ∆! suh that S = S1S2, u ∈ supp(∂x(t, S1)), U ∈ supp(∂x(T, S2)). Similarly, ϕ′ = 〈u′〉U ′and there exist S′

1, S
′
2 ∈ ∆! suh that S′ = S′

1S
′
2, u′ ∈ supp(∂x(t′, S′

1)), U ′ ∈ supp(∂x(T ′, S′
2)). But byde�nition of oherene we have S1 ⌢⌣ S′

1 and S2 ⌢⌣ S′
2 and hene by indutive hypothesis u ⌢⌣ u′ and

U ⌢⌣ U ′, so ϕ ⌢⌣ ϕ′. If furthermore ϕ = ϕ′, then u = u′ and U = U ′ and the indutive hypothesis yields
t = t′, S1 = S′

1 and S2 = S′
2 and we onlude.Assume last that σ and σ′ are poly-terms. If σ = 1, we must have S = 1 (as otherwise supp(∂x(σ, S))would be empty) and there are two sub-ases: the ase σ′ = 1 is straightforward. Let us assume that

σ′ 6= 1 so that we an write σ′ = u′U ′. In that ase we have ϕ = 1 and ϕ′ = v′V ′ with v′ ∈ supp(∂x(u′, S′
1))and V ′ ∈ supp(∂x(U ′, S′

2)) for some S′
1, S

′
2 ∈ Mfin(∆) satisfying S′

1S
′
2 = S′. We have to show that

1 ⌢⌣ v′V ′, or equivalently that {v′} ∪ set(V ′) is a lique. That set(V ′) is a lique results from theindutive hypothesis. So let w′ ∈ set(V ′) and let us show that v′ ⌢⌣ w′. We have w′ ∈ supp(∂x(w′
0, S

′
3))where w′

0 ∈ set(U ′) and S′
3 is a fator of S′

2. We have u′ ⌢⌣ w′
0 and S′

1
⌢⌣ S′

3, hene the indutivehypothesis yields v′ ⌢⌣ w′ as desired. In the present ase we know that ϕ 6= ϕ′ so there is nothing moreto prove.The last sub-ase to onsider is the ase where σ and σ′ are simple poly-terms both distint from
1. Then we an write ϕ = vV and ϕ′ = v′V ′ where v ∈ supp(∂x(t, S1)), V ∈ supp(∂x(U, S2)), v′ ∈
supp(∂x(t′, S′

1)) and V ′ ∈ supp(∂x(U ′, S′
2)) with tU = σ and t′U ′ = σ′, for some S1, S2, S

′
1, S

′
2 ∈ ∆(!)satisfying S1S2 = S and S′

1S
′
2 = S′. One shows exatly as above that ϕ ⌢⌣ ϕ′. If moreover ϕ = ϕ′,then we an take v = v′ and V = V ′ and again we onlude straightforwardly by indutive hypothesis,sine we know that t ⌢⌣ t′ and S1 ⌢⌣ S′

1 (and hene t = t′ and S1 = S′
1) on one hand, and U ⌢⌣ U ′ and

S2 ⌢⌣ S′
2 (and hene U = U ′ and S2 = S′

2) on the other hand. This onludes the proof. 2Corollary 21 Let σ ∈ ∆(!) and S ∈ ∆! be uniform. Then supp(∂x(σ, S)) is a lique.3.1.2 Stability of the normal form operator. As a onsequene of Theorem 20 and Lemma 10,the NF operator � or, more preisely, the map supp ◦ NF � satis�es also a stability property withrespet to the oherene relation we have de�ned on (poly-)terms.Theorem 22 Let σ, σ′ ∈ ∆(!).
• If σ ⌢⌣ σ′, then supp(NF(σ)) ⌢⌣ supp(NF(σ′))

• and if, moreover, σ 6= σ′, then supp(NF(σ)) ∩ supp(NF(σ′)) = ∅.Proof. Let σ, σ′ ∈ ∆(!) and assume that σ ⌢⌣ σ′. Let ϕ ∈ supp(NF(σ)) and ϕ′ ∈ supp(NF(σ′)). Byindution on the sum of the sizes of the simple (poly-)terms σ and σ′, we show that ϕ ⌢⌣ ϕ′ and that, if
ϕ = ϕ′, then σ = σ′.For this purpose, we use Lemma 10.If size(σ)+size(σ′) = 0 then σ and σ′ are poly-terms and σ = σ′ = 1; one onludes straightforwardly.Otherwise, assume �rst that σ is a simple term, we onsider the following ases.

• If σ = λx̄ 〈· · · 〈x〉S1 · · ·〉Sn, then σ′ = λx̄ 〈· · · 〈x〉S′
1 · · ·〉S

′
n with Si ⌢⌣ S′

i for i = 1, . . . , n. Sine ϕ ∈
supp(NF(σ)) and ϕ′ ∈ supp(NF(σ′)), these simple terms are of the shape ϕ = λx̄ 〈· · · 〈x〉T1 · · ·〉Tnand ϕ′ = λx̄ 〈· · · 〈x〉 T ′

1 · · ·〉T
′
n with Ti ∈ supp(NF(Si)) and T ′

i ∈ supp(NF(S′
i)) for eah i. Then weapply the indutive hypothesis for eah i (sine Si ⌢⌣ S′

i) and we onlude.21



• If σ = λx̄ 〈· · · 〈〈λx t〉U〉S1 · · ·〉Sn then σ′ must be of the shape σ′ = λx̄ 〈· · · 〈〈λx t′〉U ′〉S′
1 · · ·〉S

′
nwith of ourse t ⌢⌣ t′, U ⌢⌣ U ′ and Si ⌢⌣ S′

i for eah i. There exists u ∈ supp(∂x(t, U)) and u′ ∈
supp(∂x(t′, U ′)) suh that ϕ ∈ supp(NF(λx̄ 〈· · · 〈u〉S1 · · ·〉Sn)) and ϕ′ ∈ supp(NF(λx̄ 〈· · · 〈u′〉S′

1 · · ·〉S
′
n)).By Theorem 20 we have u ⌢⌣ u′ and hene, sine the size of λx̄ 〈· · · 〈u〉S1 · · ·〉Sn is stritly smallerthan the size of σ (and similarly for λx̄ 〈· · · 〈u′〉S′

1 · · ·〉S
′
n), we have ϕ ⌢⌣ ϕ′ by indutive hypothesis.If moreover ϕ = ϕ′, then the indutive hypothesis implies that u = u′ and Si = S′

i for eah i andhene (applying again Theorem 20), we obtain that σ = σ′.Assume last that σ = S and σ′ = S′ are poly-terms. Let T ∈ supp(NF(S)) and T ′ ∈ supp(NF(S′)),we must show that T ⌢⌣ T ′, so let t, t′ ∈ set(T )∪ set(T ′). We are redued to showing that t ⌢⌣ t′. Thereexists s, s′ ∈ set(S) ∪ set(S′) suh that t ∈ NF(s) and t′ ∈ NF(s′). We know that s ⌢⌣ s′ (by de�nitionof oherene for poly-terms) and moreover, with our de�nition of the size, we have size(s) + size(s′) <size(S) + size(S′). Therefore the indutive hypothesis applies and yields t ⌢⌣ t′ and hene T ⌢⌣ T ′.Assume moreover that T = T ′ = t1 . . . tk. Then S and S′ must be of the shape S = s1 . . . sk and
S′ = s′1 . . . s

′
k with ti ∈ supp(NF(si))∩ supp(NF(s′i)) for eah i, and hene si = s′i for eah i (by indutivehypothesis again). Hene S = S′. 2Corollary 23 Let σ ∈ ∆(!) be uniform. Then supp(NF(σ)) is a lique.4 Quantitative properties: ombinatorial onsiderationsWe shall now study the behaviour of the mutipliity oe�ients of a simple (poly-)term along its bigstep redution. In the present paper, we want to solve this question when the simple (poly-)termunder onsideration appears in the omplete Taylor expansion of an ordinary lambda-term, and hene isuniform. This hypothesis will be extremely useful.For this purpose, we shall �rst observe in Lemma 25 that m(σ) is the number of permutations of thefree or bound variable ourrenes in σ whih respet the variables assoiated with these ourrenesand leave σ unhanged. These permutations form a subgroup of a symmetri group, alled the isotropygroup of σ. This group is generally non trivial beause the multi-set onstrution used in the syntax ofpoly-terms is ommutative. For instane, the term λx

〈
〈z〉x3

〉
y2 has multipliity oe�ient 3! × 2!.Doing that, we shall transform our problem into a ombinatorial group-theoreti one: relate theisotropy group of a term to the isotropy group of the same term where a big step di�erential substitutionhas been performed. This will be the main purpose of the present setion with, as a result, a proof ofthe Uniform Plugging Equation.4.1 A group equationLet G be a �nite group and let L and R be subgroups of G. Then LR = {lr | l ∈ L and r ∈ R} ⊆ Gis not a subgroup of G in general. Nevertheless, the ardinality of this set satis�es the following wellknown equation whih is essential in the forthoming onsiderations.Lemma 24 If L and R are subgroups of a �nite group G, then

|LR| =
|L| |R|

|L ∩R|
.Proof. The set LR is the union of the left osets lR (for l ∈ L), and these osets are either disjoint orequal and have |R| as ardinality. Given l, l′ ∈ L, the left osets lR and l′R are equal subsets of G i�

l−1l′ belongs to the subgroup L ∩ R of G. Therefore, LR is the disjoint union of exatly |L| / |L ∩R|disjoint sets of ardinality |R|, whene the equation. 2We shall also use the fat that if h : G → H is a group homomorphism and G is �nite, then
|h(G)| = |G| / |kerh|.
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4.2 The uniform plugging equationIn order to give a preise de�nition of the group of permutations of variable ourrenes in a simple(poly-)term σ whih leave σ unhanged, we need to separate the various ourrenes of all the vari-ables appearing, free or bound, in σ. This is exatly the purpose of the notion of �multilinear-visible�(poly-)term we introdue now. The idea is to separate the ourrenes in σ by using pairwise distintvariables, produing a term ϕ, and then reovering the original names of variables through a �namingfuntion� (we will use letters p, q. . . for these funtions from variables to variables). Suh a pair (ϕ, p)will be alled a multilinear-visible representation of σ. Beause the permutations we onsider should atalso on the bound ourrenes of σ, all the variables ourring in ϕ will be required to be free.For instane, we shall represent the simple term λx 〈y〉x2 by means of the multilinear-visible term
λx 〈y〉x1x2 where y, x1, x2, x are pairwise distint, together with the funtion p suh that p(y) = y and
p(x1) = p(x2) = x. Observe that the bound variable x is not modi�ed, but it does not appear free inthe multilinear-visible term; the role of the funtion p is preisely to reord the information that thevariables x1 and x2 stand for the two ourrenes of x.Remark : These multilinear-visible (poly-)terms, that we present as partiular (poly-)terms, are justombinatorial artifats, introdued for de�ning leanly the isotropy group of (poly-)terms, they shouldnot be onsidered as �real�, omputationally meaningful, (poly-)terms. We ould have introdued anadditional syntax for these objets, where, for instane, the various ourrenes of a variable x wouldhave been replaed by pairs (x, i) where i is e.g. an integer attahed to this partiular ourrene of x (if
x has n ourrenes in the (poly-)term, n distint values of i would have been used in the orrespondingmultilinear-visible (poly-)term, for distinguishing the various ourrenes of x). We prefered not to doso for avoiding additional bureauray.4.2.1 Multilinear-visible representation of a (poly-)term. Let us say that a simple (poly-)term
ϕ is multilinear-visible if eah variable ourring in ϕ ours exatly one, and ours free in ϕ.Let us say that a partial funtion (substitution) Φ from V to multilinear-visible terms is a multilinear-visible substitution if fv(Φ(x)) ∩ fv(Φ(x′)) = ∅ when x and x′ are two distint elements of Dom Φ (thedomain of Φ). We use fv(Φ) for the disjoint union ⋃x∈Dom Φ fv(Φ(x)).Given a multilinear-visible (poly-)term ϕ and a multilinear-visible substitution Φ, we say that the pair
(ϕ,Φ) is adapted if fv(ϕ) ⊆ DomΦ, and no element of fv(Φ) is bound in ϕ. In that situation, we an applythe substitution Φ to the term ϕ, getting a (poly-)term ϕ[Φ] whih is learly also multilinear-visible.Let ϕ be a multilinear-visible (poly-)term and let p : fv(ϕ) → V be a funtion. We use ϕp for the(poly-)term obtained by substituting eah variable y ourring in ϕ with p(y), in the most naive way(that is, without renaming aptured variables).Let σ be a (poly-)term, we say that (ϕ, p) represents σ if ϕp = σ, a situation whih an be pituredas follows:

x y

funtion p ϕ

x1 x2

· · ·
y1 yn xm

represents σ

x x
· · ·

y y x

Example. The simple term σ = 〈z〉 (z(λy y)2) is represented by the pair (ϕ, p) where
ϕ = 〈z1〉 (z2(λy y1)(λy y2)) and {

p(z1) = p(z2) = z

p(y1) = p(y2) = y
.Clearly, if both (ϕ, p) and (ψ, q) represent σ, there is a (generally not unique) bijetion f : fv(ϕ) →fv(ψ) suh that qf = p and ϕ[f ] = ψ (observe that f is a multilinear-visible substitution, whih is adapted23



to ϕ sine ϕ and ψ have the same lambda-abstrated variables, whih are the lambda-abstrated variablesof σ, and none of the elements of fv(ψ) is lambda-abstrated in ψ, so the notation ϕ[f ] makes sense).This an be proved by indution on σ. If σ is the simple term of the example above, there are two suhbijetions f .4.2.2 Isotropy group of a multilinear-visible (poly-)term. Let us introdue two importantnotations.
• If p : V → V is a �nite partial funtion, we use Sp for the subgroup of SDom p of all bijetions f on

Dom p suh that pf = p: it is a �nite produt of symmetri groups.
• If ϕ is a multilinear-visible (poly-)term and p : fv(ϕ) → V , we use Iso(ϕ, p) for the subgroup of Spwhose elements f satisfy ϕ[f ] = ϕ, sine it is the isotropy group of ϕ for the ation of Sp on themultilinear-visible simple (poly-)terms having the same free variables as ϕ.Example. Consider the following losed simple term:

σ = λx 〈x〉 (λy 〈x〉 y2)2 .We represent this terms by the pair (ϕ, p) where
ϕ = λx 〈x1〉 (λy 〈x2〉 y1y2)(λy 〈x3〉 y3y4) and {

p(x1) = p(x2) = p(x3) = x

p(y1) = · · · = p(y4) = y
.Remember that the poly-terms y1y2, y3y4 and (λy 〈x2〉 y1y2)(λy 〈x3〉 y3y4) are multisets whih have twoelements eah, so they are respetively equal to y2y1, y4y3 and (λy 〈x2〉 y4y3)(λy 〈x3〉 y1y2), for instane.We have Sp ≃ S{x1,x2,x3}×S{y1,y2,y3,y4} (a group with 144 elements). Then Iso(ϕ, p) is the subgroupgenerated by the two transpositions whih swap respetively y1, y2 and y3, y4, and by the permutation fgiven by f(x1) = x1, f(x2) = x3, f(x3) = x2, f(y1) = y3, f(y2) = y4, f(y3) = y1 and f(y4) = y2. Thissubgroup has 8 elements, as easily heked. Observe by the way that m(σ) = 2 × 22 = 8.4.2.3 Combinatorial interpretation. Here is the announed ombinatorial interpretation of themultipliity oe�ients.Lemma 25 Let σ be a (poly-)term, let ϕ be a multilinear-visible (poly-)term and p : fv(ϕ) → V be afuntion suh that (ϕ, p) represents σ. Then |Iso(ϕ, p)| = m(σ).The proof is by indution on σ.4.2.4 Isotropy group of a multilinear-visible substitution. More generally, if Φ is a multilinear-visible substitution and if p : DomΦ → V and q : fv(Φ) → V are funtions, we de�ne the group

Iso(p,Φ, q) = {g ∈ Sq | ∃f ∈ Sp Φ[g] = Φf} ,where Φ[g] stands for the multilinear-visible substitution whih has the same domain as Φ and is givenby Φ[g](x) = Φ(x)[g].Due to the injetivity of Φ as a funtion from variables to multilinear-visible terms, the bijetion fassoiated with g in the de�nition above is uniquely determined, and learly the map g 7→ f is a grouphomomorphism. In other words, Iso(p,Φ, q) omes equipped with a group homomorphism Iso(p,Φ, q) →
Sq, that we shall always denote as π, and whih is uniquely determined by the following property:

∀g ∈ Iso(p,Φ, q) Φ[g] = Φπ(g) . (15)Let Φ, p and q be as above. For eah x ∈ V , p−1(x) is a �nite set whih is empty for almost all xssine p is �nite. Let Tx be the poly-term whih is the multiset of simple terms [Φ(y1)
q
, . . . ,Φ(yn)

q
] where

{y1, . . . , yn} = p−1(x). Then, by Lemma 25, we have
|Iso(p,Φ, q)| =

∏

x∈V

m(Tx) (16)as easily heked. 24



4.2.5 A ombined isotropy set. Assume that we are given ϕ, Φ, p and q as above, with (ϕ,Φ)adapted. Then there is yet another set of permutations whih will play an important role in the sequel,and this set is not a group in general, namely:
Iso(ϕ, p,Φ, q) = {f ∈ Sp | ∃g ∈ Sq (ϕ[Φ])[g] = ϕ[Φf ]} .Lemma 26 Let ϕ be a multilinear-visible (poly-)term. Let Φ be a multilinear-visible substitution suhthat (ϕ,Φ) is adapted. Let p : DomΦ → V and q : fv(Φ) → V. Then

π(Iso(p,Φ, q)) Iso(ϕ, p) ⊆ Iso(ϕ, p,Φ, q) ,where we reall that π is de�ned by equation (15).Proof. Let g ∈ Iso(p,Φ, q) and let f ∈ Iso(ϕ, p). Then ϕ[Φπ(g)f ] = (ϕ[f ])[Φπ(g)] = ϕ[Φπ(g)] sine
f ∈ Iso(ϕ, p) and hene ϕ[Φπ(g)f ] = ϕ[Φ[g]] sine g ∈ Iso(p,Φ, q). But we have ϕ[Φ[g]] = (ϕ[Φ])[g] andso π(g)f ∈ Iso(ϕ, p,Φ, q). 2We shall see that, under some uniformity ondition on the pair (ϕ, p), the onverse inlusion holdsas well. The ruial step for proving this is the forthoming fatorization property, Lemma 27.4.2.6 Uniform pairs. We de�ne when a pair (F, p) is uniform, F being a multilinear-visible poly-term and p : fv(F ) → V a naming funtion. We shall see in Lemma 28 that this notion is equivalentto the onept of uniformity we have already de�ned in Setion 3, using the oherene relation on poly-terms, but we give �rst the following self-ontained de�nition, very suitable to our present ombinatorialonsiderations. The de�nition is by indution. The pair (F, p) is uniform in one of the following situations:

• F = x1 . . . xn where the xis are variables and p(xi) = p(xj) for all i, j;
• F = (λy ϕ1) . . . (λy ϕn) and (ϕ1 . . . ϕn, p) is uniform;
• F = (〈ϕ1〉G1) . . . (〈ϕn〉Gn) and (ϕ1 . . . ϕn, l) and (G1 . . . Gn, r) are uniform, where l and r are theobvious restritions of p.When u is a multilinear-visible simple term, we say that (u, p) is uniform if (F, p) is uniform, where F isthe multilinear-visible poly-term whih has u as single element.4.2.7 The fatorization property of uniform pairs. The main property of uniform pairs is thefollowing fatorization lemma.Lemma 27 (fatorization) Let (ϕ, p) be a uniform pair and let Φ and Φ′ be two multilinear-visiblesubstitutions of domain fv(ϕ). If ϕ[Φ] = ϕ[Φ′], then there exists f ∈ Iso(ϕ, p) suh that Φ′ = Φf .Proof. We an restrit our attention to the ase where ϕ is a poly-term, and the only interesting ase inthe indutive de�nition 4.2.6 of uniformity is obviously the last one. With the notations of that de�nition,we an �nd, by indutive hypothesis, g ∈ Iso(ϕ1 . . . ϕn, l) suh that Λ′ = Λg and h ∈ Iso(G1 . . .Gn, r)suh that P ′ = Ph where Λ,Λ′ and P, P ′ are the restritions of Φ,Φ′ to fv(ϕ1 . . . ϕn) and fv(G1 . . . Gn)respetively. Taking the union f of these two bijetions g and h, we obtain an element f of Sp, and itremains to show that F [f ] = F .For this, it will be su�ient to show that there is an index i suh that ϕ1[g] = ϕi and G1[h] = Gi.We know that there is an i suh that ϕ1[g] = ϕi sine g ∈ Iso(ϕ1 . . . ϕn, l)) (and this i is unique sineeah ϕj ontains at least one variable, and all these variables are distint).We know moreover that (〈ϕ1〉G1 . . . 〈ϕn〉Gn)[Φ] = (〈ϕ1〉G1 . . . 〈ϕn〉Gn)[Φ′] and hene there is a(uniquely determined) j suh that (〈ϕ1〉G1)[Φ

′] = (〈ϕj〉Gj)[Φ], hene ϕ1[Λ
′] = ϕj [Λ], that is ϕ1[Λg] =

ϕj [Λ]. This implies that ϕ1[g] = ϕj (beause Λ is an injetive partial funtion from variables to simpleterms), hene ϕi = ϕj and so we must have j = i. Therefore (〈ϕ1〉G1)[Φ
′] = (〈ϕi〉Gi)[Φ], hene

G1[P
′] = Gi[P ], that is G1[Ph] = Gi[P ]. If G1 = 1 then Gi = 1 and hG1 = Gi holds trivially. Otherwisewe onlude again using the injetivity of P . 2The uniformity hypothesis is essential: take for ϕ the poly-term xy, for p the identity map on {x, y},and de�ne Φ and Φ′ by Φ(x) = x, Φ(y) = y and Φ′(x) = y, Φ′(y) = x. Then ϕ[Φ] = ϕ[Φ′] = ϕ but25



Φ 6= Φ′ and the only element of Iso(ϕ, p) is the identity. The problem is of ourse that the pair (ϕ, p) isnot uniform.Here is another, maybe more illuminating, example: take ϕ = x1 〈x2〉 1 (whih is a multilinear-visiblepoly-term) and let p be de�ned by p(x1) = p(x2) = x. Let Φ and Φ′ be given by: Φ(x1) = 〈x1〉 1,
Φ(x2) = x2, Φ′(x1) = 〈x2〉 1 and Φ′(x2) = x1. Then we have ϕ[Φ] = ϕ[Φ′] = 〈x1〉 1 〈x2〉 1 but there is nopermutation f suh that Φ′ = Φf . Again, the point is that the pair (ϕ, p) is not uniform.We state now the equivalene between the two notions of uniformity introdued so far.Lemma 28 Let σ be a (poly-)term. Let ϕ be a multilinear-visible (poly-)term and p : fv(ϕ) → V be afuntion suh that σ = ϕp. Then σ is uniform (that is σ ⌢⌣ σ) i� the pair (ϕ, p) is uniform.The proof is a straightforward indution on σ.4.2.8 The equation. Let ϕ be a multilinear-visible simple term, Φ be a multilinear-visible substi-tution with Dom Φ = fv(ϕ), p : fv(ϕ) → V and q : fv(Φ) → V be funtions. Assume that the pair (ϕ,Φ)is adapted and that the pair (ϕ, p) is uniform.Let us �rst hek that

π(Iso(p,Φ, q)) Iso(ϕ, p) = Iso(ϕ, p,Φ, q) .Let f ∈ Iso(ϕ, p,Φ, q), that is f ∈ Sp and there exists g ∈ Sq suh that (ϕ[Φ])[g] = ϕ[Φf ], that is(replaing g by its inverse), there exists g ∈ Sq suh that ϕ[Φ] = (ϕ[Φf ])[g] = ϕ[Φ[g]f ].Sine the pair (ϕ, p) is uniform, we an apply Lemma 27 and hene there exists f ′ ∈ Iso(ϕ, p)suh that Φ[g]f = Φf ′. This means that g ∈ Iso(p,Φ, q) and π(g) = f ′f−1. Hene f = π(g−1)f ′ ∈
π(Iso(p,Φ, q)) Iso(ϕ, p). The onverse inlusion holds by Lemma 26.Sine |π(Iso(p,Φ, q))| = |Iso(p,Φ, q)| / |kerπ|, applying Lemma 24 we obtain

|Iso(ϕ, p,Φ, q)| =
|Iso(p,Φ, q)| |Iso(ϕ, p)|

|kerπ| |π(Iso(p,Φ, q)) ∩ Iso(ϕ, p)|
.To onlude, we show that |π(Iso(p,Φ, q)) ∩ Iso(ϕ, p)| = |π(Iso(ϕ[Φ], q))|.Let g ∈ Iso(ϕ[Φ], q). Sine the pair (ϕ, p) is uniform, by Lemma 27 again, there exists f ∈ Iso(ϕ, p)suh that Φ[g] = Φf . In other words Iso(ϕ[Φ], q) ⊆ Iso(p,Φ, q) and also π(Iso(ϕ[Φ], q)) ⊆ Iso(ϕ, p).So π(Iso(ϕ[Φ], q)) ⊆ π(Iso(p,Φ, q)) ∩ Iso(ϕ, p). But the onverse impliation holds as well. Indeed, let

g ∈ Iso(p,Φ, q) be suh that π(g) ∈ Iso(ϕ, p). Then (ϕ[Φ])[g] = ϕ[Φ[g]] = ϕ[Φπ(g)] = ϕ[Φ] and hene
g ∈ Iso(ϕ[Φ], q).Last observe that obviously kerπ ⊆ Iso(ϕ[Φ], q). So

|π(Iso(p,Φ, q)) ∩ Iso(ϕ, p)| = |π(Iso(ϕ[Φ], q))| =
|Iso(ϕ[Φ], q)|

|kerπ|
.So we have proved the following result whih will be essential in the sequel.Theorem 29 (Uniform plugging equation) If ϕ is a multilinear-visible simple term, Φ a multilinear-visible substitution with (ϕ,Φ) adapted, if p : fv(ϕ) → V and q : fv(Φ) → V are funtions and if the pair

(ϕ, p) is uniform, then the following equation holds:
|Iso(ϕ, p,Φ, q)| =

|Iso(p,Φ, q)| |Iso(ϕ, p)|

|Iso(ϕ[Φ], q)|
.The uniformity hypothesis is neessary. Take indeed for ϕ the non uniform poly-term ϕ = x1(〈x2〉 1) (pbeing the onstant funtion xi 7→ x where x is a �xed element of V). Then |Iso(ϕ, p)| = 1. De�ne Φ by

Φ(x1) = 〈y1〉 1 and Φ(x2) = y2 and take for q a onstant funtion q(yj) = y. Then |Iso(p,Φ, q)| = 1, but
ϕ[Φ] = (〈y1〉 1)(〈y2〉 1) so that |Iso(ϕ[Φ], q)| = 2 and the equation above annot hold sine its left handmember must be an integer.5 Reduing the Taylor expansion of an ordinary lambda-termWith the qualitative Theorems 20 and 22 and the quantitative Theorem 29, we have the main tools forstudying the beta-redution of the Taylor expansion of an ordinary lambda-term.26



Extension of NF to in�nite, oherent (poly-)terms. We need �rst to onsider the ase of a singlebig step di�erentiation: for dealing with this ase, we apply the uniform plugging equation straightfor-wardly.Lemma 30 Let σ ∈ ∆(!) be uniform, let x be a variable and let T ∈ ∆!. Let θ ∈ supp(∂x(σ, T )). Thenthe oe�ient ∂x(σ, T )θ of θ in ∂x(σ, T ), whih is a positive integer, is given by
∂x(σ, T )θ =

m(σ)m(T )

m(θ)
.Proof. Observe �rst that our hypotheses imply that |T | = degxσ sine otherwise the set supp(∂x(σ, T ))would be empty. Let ϕ be a multilinear-visible (poly-)term and let p : fv(ϕ) → V be a funtion suhthat ϕp = σ. Then, by Lemma 28, the pair (ϕ, p) is uniform sine σ is. By Formula (6), we an hoosea multilinear-visible substitution Φ and a funtion q : fv(Φ) → V in suh a way that the followingrequirements be ful�lled:

• the pair (ϕ,Φ) is adapted;
• (
∏

p(x′)=x Φ(x′))
q

= T (that is, (Φ, q), when restrited to p−1({x}), represents T );
• if p(x′) 6= x then Φ(x′) = x′ and q(x′) = p(x′) (that is, the substitution Φ ats trivially on allourrenes of variables distint from x);
• θ = (ϕ[Φ])q.By Formula (6), the oe�ient ∂x(σ, T )θ is the number of permutations f ∈ Sn suh that

σ′
[
tf(1)/x1, . . . , tf(n)/xn

]
= θ ,where t1 . . . tn = T , the variables x1, . . . , xn are fresh and σ′ is an x-linearization in x1, . . . , xn of σ. This

x-linearization an be hosen suh that σ′ [t1/x1, . . . , tn/xn] = θ and in that ase the above mentionedset of permutations ontains the identity permutation and is in anonial bijetive orrespondane with
Iso(ϕ, p,Φ, q) (remember that this set is not a group in general) beause Φ ats trivially on the variablesof ϕ whih do not orrespond to x. Therefore we have ∂x(σ, T )θ = |Iso(ϕ, p,Φ, q)|.By Theorem 29, sine (ϕ, p) is uniform, we have

|Iso(ϕ, p,Φ, q)| =
|Iso(p,Φ, q)| |Iso(ϕ, p)|

|Iso(ϕ[Φ], q)|
.and we onlude beause, by Lemma 25, we have |Iso(ϕ, p)| = m(σ) and |Iso(ϕ[Φ], q)| = m(θ), and wehave |Iso(p,Φ, q)| = m(T ) by Equation (16). 2Again, the uniformity ondition is absolutely essential.Two orollaries. We derive two easy orollaries of this formula, before applying it to our main onern,whih is the study of the normal forms of the terms ourring in the Taylor expansion of an ordinarylambda-term.First, we generalize the formula to iterated big step di�erentiation.Proposition 31 Let σ ∈ ∆(!) be uniform, let x1, . . . , xn be pairwise distint variables and let T1, . . . , Tn ∈

∆! be uniform. Let θ ∈ supp(∂x1,...,xn
(σ, T1, . . . , Tn)). Then

∂x1,...,xn
(σ, T1, . . . , Tn)θ =

m(σ)m(T1) · · ·m(Tn)

m(θ)
.
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Proof. It will be enough to deal with the ase n = 2. We have
∂x1,x2(σ, T1, T2)θ = ∂x2(∂x1(σ, T1), T2)θ

=
∑

ρ∈∆(!)

∂x1(σ, T1)ρ∂x2(ρ, T2)θ ,but sine σ and T1 are uniform, supp(∂x1(σ, T1)) is a lique by Theorem 20 and hene there is atmost one ρ ∈ supp(∂x1(σ, T1)) suh that θ ∈ supp(∂x2(ρ, T2)). Hene, sine we have assumed that
θ ∈ supp(∂x1,x2(σ, T1, T2)), there is exatly one suh ρ and we know that this ρ is uniform, so we get,applying twie Lemma 30,

∂x1,x2(σ, T1, T2)θ =
m(σ)m(T1)

m(ρ)
·
m(ρ)m(T2)

m(θ)
=

m(σ)m(T1)m(T2)

m(θ)
.

2The seond orollary is another version of the Taylor formula, whih is now substitution-orientedinstead of being appliation-oriented as in Lemma 18.Theorem 32 LetM and N be ordinary lambda-terms and let x be a variable. One has ∂x(M∗, N∗n) → 0as n→ ∞, and the following equation holds:
(M [N/x])

∗
=

∞∑

n=0

1

n!
∂x(M∗, N∗n) .Proof. The onvergene statement results from the fat that M∗n → 0 and from the ontinuity of ∂x.Just as in the proof of Lemma 18, we have

∞∑

n=0

1

n!
∂x(M∗, N∗n) =

∑

s∈T (M)
T∈Mfin(T (N))

1

m(s)m(T )
∂x(s, T ) .To onlude, observe that the family of sets (supp(∂x(s, T )))(s,T )∈T (M)×Mfin(T (N)) is a partition of

T (M [N/x]) (disjointness results from Theorem 20, and the equality of sets is proved by an easy in-dution on M , using the Leibniz law in the ase where M is an appliation), and then apply Lemma 30.
2Proposition 33 Let σ ∈ ∆(!) be uniform and let θ ∈ supp(NF(σ)). Then m(θ) divides m(σ), and morepreisely

m(σ)

m(θ)
= NF(σ)θ .Proof. We proeed by indution on the size of the simple (poly-)term σ, using Lemma 10. Indeedobserve that when σ is uniform, the terms to whih NF is applied in the �reursive alls� of that lemmaare themselves uniform (the only non-trivial ase is the �rst one, and in that ase our laim results fromTheorem 20 and from the fat that any (poly-)subterm of a uniform (poly-)term is uniform).If σ = λx1 . . . xn 〈· · · 〈x〉T1 · · ·〉Tk then θ = λx1 . . . xn 〈· · · 〈x〉U1 · · ·〉Uk with Uj ∈ supp(NF(Tj)) for

j = 1, . . . , k. By indutive hypothesis, m(Tj)/m(Uj) = NF(Tj)Uj
, but m(σ) = m(T1) · · ·m(Tk) and

m(θ) = m(U1) · · ·m(Uk) and we onlude beause, by multilinearity of appliation,
NF(σ) =

∑

V1,...,Vk

NF(T1)V1 · · ·NF(Tk)Vk
λx1 . . . xn 〈· · · 〈x〉V1 · · ·〉Vk .Assume now that σ = λx1 . . . xn 〈· · · 〈r〉 T1 · · ·〉Tk where r = 〈λx s〉T . Then there exists s′ ∈

supp(∂x(s, T )) suh that θ ∈ supp(NF(λx1 . . . xn 〈· · · 〈s′〉T1 · · ·〉Tk)), and this simple term s′ is unique byTheorem 22, sine supp(∂x(s, T )) is a lique by Theorem 20. By indutive hypothesis,
m(λx1 . . . xn 〈s′〉T1 . . . Tk)

m(θ)
= NF(λx1 . . . xn 〈· · · 〈s′〉T1 · · ·〉Tk)θ .28



But NF(σ) = ÑF(λx1 . . . xn 〈· · · 〈∂x(s, T )〉 T1 · · ·〉Tk) and so NF(σ)θ = ∂x(s, T )s′ NF(λx1 . . . xn 〈· · · 〈s′〉T1 · · ·〉Tk)θ(see Equation (8)). Therefore by Lemma 30 we get
NF(σ)θ =

m(s)m(T )m(λx1 . . . xn 〈· · · 〈s′〉T1 · · ·〉Tk)

m(s′)m(θ)

=
m(s)m(T )m(T1) · · ·m(Tk)

m(θ)

=
m(σ)

m(θ)
.As a last ase, onsider the situation where σ = sp1

1 . . . spk

k is a uniform poly-term, with si ⌢⌣ sj forall i, j, and si and sj not α-equivalent when i 6= j, so that
m(σ) =

k∏

j=1

pj! m(sj)
pj .Then, by Theorem 22, supp(NF(s1)), . . . , supp(NF(sk)) are pairwise disjoint liques and θ is of the shape

θ = U1 . . . Uk with Uj ∈ supp(NF(sj)
pj ) for j = 1, . . . , k, and so the multi-sets Uj are pairwise disjoint,so that

m(θ) = m(U1) · · ·m(Uk) .Let j ∈ {1, . . . , k}, we have m(Uj) = Uj ! mUj so that
m(σ)

m(θ)
=

k∏

j=1

pj! m(sj)
pj

Uj ! mUj

=

k∏

j=1

[Uj]
m(sj)

pj

mUjbut for eah j,
NF(sj)

pj =

(
∑

u∈∆0

NF(sj)uu

)pj

=

(
∑

u∈∆0

m(sj)

m(u)
u

)pj by indutive hypothesis
=

∑

U∈Mpj
(∆0)

[U ]
m(sj)

pj

mU
U by the multinomial identity,so

NF(σ)θ =

k∏

j=1

NF(sj)
pj

Uj

=
k∏

j=1

[Uj]
m(sj)

pj

mUj

=
m(σ)

m(θ)and we are done. 2Given an element τ of R〈∆(!)〉∞, the sum NF(τ) =
∑

θ∈∆(!) τθ NF(θ) does not always onverge (inthe sense of 2.1.1): it an involve in�nite sums of oe�ients. But in the ase where τ is the Taylorexpansion of a lambda-term, it does onverge.Corollary 34 Let M be an ordinary lambda-term and let u ∈ supp(NF(M∗)). Then the sum NF(M∗)onverges and, for any simple term u ourring in that sum, one has NF(M∗)u = 1/m(u). Moreover,there is exatly one simple term s ∈ T (M) suh that u ∈ supp(NF(s)).29



Proof. Remember that M∗ =
∑

s∈T (M)
1

m(s)s and that T (M) is a lique (Lemma 19). Therefore thesupports of the terms NF(s), for s ∈ T (M), are pairwise disjoint, by Theorem 22. Hene, the sum
NF(M∗) =

∑
s∈T (M)

1
m(s) NF(s) onverges, and, for any simple term u whih ours with a non-zerooe�ient in that sum, there is exatly one s ∈ T (M) suh that u ∈ supp(NF(s)), by Theorem 22 again.The oe�ient of u in NF(M∗) is NF(s)u/m(s) = 1/m(u) by Proposition 33. 2Corollary 35 The sum NF(M∗) has the following shape

NF(M∗) =
∑

u∈U

1

m(u)
uwhere U is a set of normal simple terms, whih is a lique (by Theorem 22, sine T (M) is a lique).In [ER06a℄, it is shown, using Krivine mahine, that atually U = T (M0), where BT(M) is the Böhmtree of M . Therefore, we have

NF(M∗) = (BT(M))∗ . (17)In other words, Taylor expansion ommutes with (in�nite) normalization. The analysis developpedin [ER06a℄ shows that the simple term s assoiated with u (in the statement of Corollary 34) representsthe part ofM whih is neessay for omputing the part u ofM0 in Krivine mahine, taking multipliitiesinto aount.Example. Let M be the ordinary lambda-term
M = (λf (f)λx (f)λdx)λz (z) (z) ⋆where ⋆ is a distinguished variable. It is easily seen that M redues to ⋆. By the theorem above, thereis at most one simple term s ∈ T (M) suh that ⋆ ∈ supp(NF(s)). One heks easily that

s =
〈
λf 〈f〉 (λx 〈f〉λdx)2

〉
(λz 〈z〉 〈z〉 ⋆)(λz 〈z〉 1)2is suh a term, and more preisely that s redues to 4⋆, in aordane with the fat that m(s) = 4. Thissimple term an be seen as a �deoration� of M giving an exat quantitative aount of how muh eahsubterm ofM is used during the run of the Krivine's mahine starting with termM (empty environmentand empty stak) and leading to the �nal value ⋆.ConlusionThe main result of this paper, Corollary 35 and its onsequene, Formula (17), show that the situationis as simple and natural as one ould expet. The striking fat, maybe, is not the result itself but itsproof, whih is based on Theorems 22 and 29, and so uses uniformity twie, and eah time in a ruialway. So an essential step in the understanding of the di�erential extension of the funtional paradigmproposed in [ER03℄ will be to examine the behaviour of Taylor expansions in this more general and nonuniform setting.Referenes[BCL99℄ Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. A semantis for lambda aluliwith resoure. Mathematial Strutures in Computer Siene, 9(4):437�482, 1999.[BE01℄ Antonio Buiarelli and Thomas Ehrhard. On phase semantis and denotational semantis:the exponentials. Annals of Pure and Applied Logi, 109(3):205�241, 2001.[Ber78℄ Gérard Berry. Stable models of typed lambda-aluli. In Proeedings of the 5th InternationalColloquium on Automata, Languages and Programming, number 62 in Leture Notes in Com-puter Siene. Springer-Verlag, 1978. 30
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