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. . . bis repetita placent

In 2018 I gave here a talk on a probabilistic model of LL using
measurable cones, based on a joint work with Michele Pagani and
Christine Tasson.

In 2022 we started discussing with Guillaume Geoffroy on the
possible connections between his convex QBSs and cones.

We understood that convex QBSs are similar to cones where an
operation of integration is available, and linear morphisms
preserve integration.

Thanks to the measurability structure of cones, such an integral
is very easy to axiomatize, following the idea of Pettis integral in
topological vector spaces (weak integral, Gelfand-Pettis integral).



Selinger’s cones

A cone is an R≥0 semi module P such that
• x + y = 0⇒ x = 0
• x + y = x ′ + y ⇒ x = x ′

together with a norm ∥_∥ : P → R≥0

• ∥x∥ = 0⇒ x = 0
• ∥λx∥ = λ ∥x∥
• ∥x + y∥ ≤ ∥x∥+ ∥y∥
• positivity: ∥x∥ ≤ ∥x + y∥



Cone order and completeness

Definition
x ≤ y if there is z such that x + z = y

Then z is unique, notation: y − x = z

Fact
This is an order relation.

A cone must also satisfy

Any monotone (xn)n∈N with ∀n ∥xn∥ ≤ 1 has a lub x = supn∈N xn
such that ∥x∥ ≤ 1.



Main example

X a measurable space.

Then FMeas(X ), the set of all nonnegative finite measures on X ,
is a cone with, for all U ∈ σX :
• (µ+ ν)(U) = µ(U) + ν(U), (λµ)(U) = λµ(U)

• ∥µ∥ = µ(U)

• so µ ≤ ν means ∀U ∈ σX µ(U) ≤ ν(U)

• ∥µ∥ = µ(X ) (total variation norm).

Any probabilistic coherence space can be seen as a cone.



Linear and continuous functions

Definition
f : P → Q is linear if f (λ1x1 + λ2x2) = λ1f (x1) + λ2f (x2)

BP = {x ∈ P | ∥x∥ ≤ 1}

Fact
If f is linear then
• f is monotone
• f (BP) is bounded (for the norm)

Definition
f is continuous if f (supn∈N xn) = supn∈N f (xn) for all monotone
and bounded (xn ∈ P)n∈N.



The category of cones

If f : P → Q linear,

∥f ∥ = sup
x∈BP

∥f (x)∥ ∈ R≥0

Definition
Cones is the category of cones and linear and continuous
functions f such that ∥f ∥ ≤ 1.



Example of morphism

For us κ : X ; Y means that κ is a bounded kernel, that is:
• κ : X → FMeas(Y )

• {∥κ(r)∥ = κ(r)(Y ) | r ∈ X} is bounded in R≥0

• for all V ∈ σY the function r 7→ κ(r)(V ) is measurable.

Then κ induces a linear and continuous function

κ̂ : FMeas(X )→ FMeas(Y )

µ 7→ λV ∈ σY ·
∫

r∈X
κ(r)(V )µ(dr)

Problem
There are a lot of linear continuous f : FMeas(X )→ FMeas(Y )
which are not induced by kernels.



And even worse. . .

If f : FMeas(X )→ FMeas(Y ) is linear and continuous the
function

κ′ : X → FMeas(Y )

r 7→ f (δX (r))

is not necessarily a kernel: for V ∈ σY , the function
r 7→ f (δX (r))(V ) has no reason to be measurable.

Of course if f = κ̂ for a kernel κ then κ′ = κ.

So we need. . .
. . . an additional structure on a cone P to speak about
measurability.



Measurability structure on a cone

Ar a full subcategory of the category of measurable spaces and
measurable functions which is closed by cartesian product.
Terminal object 0.

A measurability structure on the cone P is a family
M = (MX )X∈Ar where

MX ⊆ (R≥0)
X×P

is a collection of measurability tests on P.
• If m ∈MX and r ∈ X , m(r ,_) ∈ Cones(P,R≥0);
• If m ∈MX and x ∈ P, m(_, x) : X → R≥0 is measurable;
• If m ∈MX and ϕ ∈ Ar(Y ,X ), then m(ϕ(_),_) ∈MY ;
• If x ̸= y ∈ P, there is m ∈M0 such that m(x) ̸= m(y);

• ∥x∥ = sup
{m(x)
∥m∥ | m ∈M0 \ {0}

}



Example

X ∈ Ar.

Given Y ∈ Ar and U ∈ σX , define

Ũ : Y × FMeas(X )→ R≥0

(s, µ) 7→ µ(U)

andMY = {Ũ | U ∈ σY }.

M is a measurability structure on FMeas(X ).



Measurable paths

A measurable cone is a pair B = (B,MB) where
• B is a cone
• MB is a measurability structure on B.

Definition
A measurable path from X ∈ Ar to B is a function β : X → B
which is bounded (β(X ) bounded in B) and such that:

for all Y ∈ Ar and all m ∈MB
Y , the function

Y × X → R≥0

(s, r) 7→ m(s, β(r))

is measurable.

Remark: B, equipped with its measurable paths, is a QBS.



Lin., cont. and measurable functions

Definition
Let B and C be measurable cones.

A linear and continuous function f : B → C is measurable if, for
any B-measurable path β : X → B, the function f ◦ β is a
C -measurable path X → C .

Example

We consider FMeas(X ) as a measurable cone.

If κ : X ; Y then κ̂ : FMeas(X )→ FMeas(Y ) is a linear,
continuous and measurable functions.

But there are still linear, continuous and measurable
κ̂ : FMeas(X )→ FMeas(Y ) which are not of shape κ̂. . .



Integral of a measurable path

Let β : X → B be a measurable path and µ ∈ FMeas(X ).

Definition
An integral of β wrt. µ is an x ∈ B such that

∀m ∈MB
0 m(x) =

∫
m(β(r))µ(dr)

This Lebesgue integral ∈ R≥0 because m ◦ β : X → R≥0 is a
bounded measurable function and µ is a finite measure.

If x exists, it is unique becauseMB
0 separates B, notation:

x =

∫
β(r)µ(dr)

Similar to the Pettis integral in top. vect. spaces (1938).



Integrable cone

Definition
A measurable cone B is integrable if, for any X ∈ Ar and any
µ ∈ FMeas(X ), all the measurable paths X → B have an integral
wrt. µ.

This is property of B, not a structure.

Definition
Let B and C be integrable cones. A linear and continuous
f : B → C is integrable if it is measurable and, for any
µ ∈ FMeas(X ) and any measurable path β : X → B, one has

f
(∫
β(r)µ(dr)

)
=

∫
f (β(r))µ(dr)



Integration of measurable paths in integrable cones has all the
good properties:
• Fubini theorem
• change of variable
• integrals with parameters
• etc

inherited from the standard Lebesgue integrals wrt. finite
measures.



In a cone, we perform infinite sums which cannot be represented
by integrals wrt. finite measures.

For instance if (xn ∈ B)n∈N such that

∀N ∈ N

∥∥∥∥∥
N∑

n=0

xn

∥∥∥∥∥ ≤ 1

then

∞∑
n=0

xn = sup
N∈N

N∑
n=0

xn

exists and has norm ≤ 1.

Such sums are taken into account by the ω-completeness of
cones.



ICones the category whose objects are the integrable cones and

ICones(B,C ) = {f ∈ Cones(B,C ) | f integrable }

Example

A measurable path Y → FMeas(X ) is a finite kernel κ : Y ; X .

If ν ∈ FMeas(Y ), κ has an integral wrt. ν, namely

κ̂(ν) = λU ∈ σX ·
∫
κ(s)(U) ν(ds) ∈ FMeas(X )

So FMeas(X ) is an integrable cone.



Nice consequences of integration

Let f , g : FMeas(X )→ B be linear continuous and integrable.

If f (δX (r)) = g(δX (r)) for all r ∈ X , then f = g:

if µ ∈ FMeas(X ), we have

f (µ) = f
(∫
δX (r)µ(dr)

)
=

∫
f (δX (r))µ(dr) =

∫
g(δX (r))µ(dr) = g(µ)



Let f : FMeas(X )→ FMeas(Y ) be linear continuous and
integrable.

δX : X → FMeas(X ) is a finite kernel (the identity kernel
actually).

Since f is measurable, f ◦ δX : X → FMeas(Y ) is a measurable
path, ie. a finte kernel X ; Y .

We have f̂ ◦ δX (δX (r)) =
∫

f (δX (r ′)) δX (r)(dr ′) = f (δX (r)).

Hence f = f̂ ◦ δX : f is induced by a finite kernel.



Existence of left adjoints

ICones is locally small and complete, limits are computed as in
Set.

R≥0 is cogenerating: if f ̸= g ∈ ICones(B,C ) there is
h ∈ ICones(C ,R≥0) with h f ̸= h g. BecauseMB

0 separates B.

ICones is well-powered: for any integrable cone B there is a set S
of subobjects (B0, h0 ∈ ICones(B0,B)) such that, for any
subobject (C , h ∈ ICones(C ,B)), there is a (B0, h0) ∈ S and an
iso f ∈ Cones(B0,C ) such that h f = h0. Because Ar is small.

Consequence

For any locally small C, any F : ICones→ C preserving all limits
has a left adjoint. By the special adjoint functor theorem (Freyd).



Internal hom
If B and C are integrable cones, the set P of all linear,
continuous and integrable functions B → C is a cone.

It has a measurability structureM = (MX )X∈Ar where

MX = {β ▷ p | β ∈ Path(X ,B) and p ∈MC
X}

where

β ▷ p : X × P → R≥0

(r , f ) 7→ p(r , f (β(r)))

Fact
In that way one defines a measurable cone B ⊸ C.

This measurable cone is integrable. The proof uses the monotone
convergence theorem.



Integrals are defined pointwise: if θ ∈ Path(X ,B ⊸ C ) and
µ ∈ FMeas(X ), then

f =

∫ C⊸D
θ(r)µ(dr) ∈ C ⊸ D

is given by

f (x) =
∫ C
θ(r)(x)µ(dr)

Fact
_⊸ _ is a functor IConesop × ICones→ ICones defined on
morphisms by pre- and post-composition.



The tensor product

Fact
For each integrable cone, the functor B ⇒ _ : ICones→ ICones
preserves all limits.

So this functor has a left adjoint _⊗B : ICones→ ICones.

Actually ⊗ : ICones× ICones→ ICones is a functor (by
functoriality of _⊸ _).

We have no explicit description of A⊗B!



The cone of paths

If X ∈ Ar, the set of measurable paths X → B has a structure of
cone: operations defined pointwise and

∥β∥ = sup
r∈X
∥β(r)∥ .

Can be equipped with a measurability structure defined as in ⊸ .

This is an integrable cone Path(X ,B), integrals defined pointwise.

Thanks to integration again, Path(X ,B) ≃ (FMeas(X )⊸ B), by

β 7→ λµ ∈ FMeas(X ) ·
∫
β(r)µ(dr)



ICones as a monoidal category

By adjunction we have natural bijection

ΦA,B,C : ICones(A⊗B,C )→ ICones(A,B ⊸ C )

Fact
We have

ΦA,B,C ∈ ICones(A⊗B ⊸ C ,A⊸ (B ⊸ C ))

This gives us the monoidality isomorphisms!



For instance let C = B1⊗ (B2⊗B3), we have

Id ∈ ICones(B1⊗ (B2⊗B3),C )

≃ ICones(B1,B2⊗B3 ⊸ C )

≃ ICones(B1,B2 ⊸ (B3 ⊸ C ))

by the iso of the previous slide

≃ ICones((B1⊗B2)⊗B3,C )

and this gives us α ∈ ICones((B1⊗B2)⊗B3,B1⊗ (B2⊗B3)),
the associator.

Then it is easy to prove that α is a natural iso, that the MacLane
coherence conditions hold etc.

This is essentially the idea of closed categories (Eilenberg & Kelly,
1965). MLL without tensor product?



Theorem
Equipped with ⊗ and 1 = R≥0, the category ICones is an SMCC.

We already know that ICones is cartesian (it is complete).

Fact

&
i∈I

Bi =
{−→x ∈∏

i∈I

Bi | (∥xi∥Bi
)i∈I is bounded

}
∥∥−→x ∥∥ = sup

i∈I
∥xi∥

Fact
ICones is also cocomplete: this is another consequence of the
SAFT. So we have cokernels etc., no clue about how to describe
them concretely!



A function f : Bn → C is n-linear, continuous and integrable if it
is so, separately in each argument.

A function h : B → C is n-homogeneous polynomial is there is an
f : Bn → C which is n-linear, continuous and integrable such that

h(x) = f (x , . . . , x)

Fact
There is only one such n-linear, continuous, integrable and
symmetric f .

It is obtained from h by polarization.



A function f : BB → C is analytic if it is bounded and there is a
family (fn)n∈N such that fn : B → C is n-homogeneous and

∀x ∈ BB f (x) =
∑
n∈N

fn(x) = sup
N∈N

N∑
n=0

fn(x)

Example

f : [0, 1] = BR≥0 → R≥0 given by f (x) = 1−
√

1− x .

Cannot be extended beyond [0, 1].

The (fn)n∈N is unique: for all m ∈MB ,

m(fn(x)) =
1
n!

dn

dxn m(f (tx)) |t=0



Taylor expansion

So when f : BB → C , there are uniquely determined symmetric
multilinear continuous and integrable functions

Dnf (0) : Bn → C

(the derivatives of f at 0) such that

∀x ∈ BB f (x) =
∞∑

n=0

1
n!

Dnf (0) · (x , . . . , x)



Total monotonicity

Analytic functions are
∞×︷ ︸︸ ︷

very, very,. . . monotonic. When this makes
sense:

f (x) ≤ f (x + u)

f (x + u2)− f (x) ≤ f (x + u1 + u2)− f (x + u1)

f (x + u2 + u3)− f (x + u2)− (f (x + u3)− f (x))

≤ f (x + u1 + u2 + u3)− f (x + u1 + u2)

− (f (x + u1 + u3)− f (x + u1))

...



In a more civilized way:

f (x) ≤ f (x + u)

f (x + u1) + f (x + u2) ≤ f (x + u1 + u2) + f (x)

f (x + u1 + u2) + f (x + u2 + u3) + f (x + u1 + u3)

≤ f (x + u1 + u2 + u3) + f (x + u1) + f (x + u2) + f (x + u3)

...



Any analytic function f : BB → C is also Scott continuous: if
(xn ∈ BB)n∈N is monotone then

f (sup
n∈N

xn) = sup
n∈N

f (xn)

The analytic functions f : BB → C form an integrable cone
(norm, measurability structure and integration as in B ⊸ C):

B ⇒a C



The category of analytic functions

ACones(B,C ) = BB ⇒a C , composition as in Set.

Theorem
ACones is a CCC.

For any integrable cone, there is an analytic least fixpoint
operator Y ∈ ACones(B ⇒a B,B) such that

∀f ∈ BB ⇒a B Y(f ) = sup
n∈N

f n(0)

so that Y(f ) is the least fixpoint of f .



The analytic exponential

There is a functor Dera : ICones→ ACones such that

Dera(B) = B and Dera(f ) = f

since f ∈ ICones(B,C )⇒ f ∈ ACones(B,C ) (more precisely,
the restriction of f to BB).

The functor Dera preserves all limits.

So it has a left adjoint Ea : ACones→ ICones.

ΨB,C : ICones(Ea(B),C ) ≃ ACones(B,C )

which induces a comonad !a = Ea ◦ Dera : ICones→ ICones with
counit der and comultiplication dig, and

ICones! ≃ ACones



Promotion

We have

an = ΨB,Ea(B)(Id) ∈ ACones(B, !aB)

the universal analytic function: for any f ∈ ACones(B,C ), there
is exactly one g ∈ ICones(!aB,C ) such that

f = g ◦ an

namely g = Ψ−1
B,C (f ).

For x ∈ BB, we set x !a = an(x) ∈ B!aB.

Remark
If f , g ∈ ICones(!aB,C ) satisfy f (x !a) = g(x !a) for all x ∈ BB,
then f = g.



Cones of finite measures as data-types

Let X ∈ Ar.

We define hX ∈ ICones(FMeas(X ), !aFMeas(X )) by

hX (µ) =

∫
(δX (r))!a µ(dr)

Fact
(FMeas(X ), hX ) is a !a-coalgebra.

We have used the fact that integration is possible in !aFMeas(X ),
a major outcome of this approach!



We must prove

FMeas(X ) !aFMeas(X )

!aFMeas(X ) !a!aFMeas(X )

hX

hX !ahX

digX

FMeas(X )

!aFMeas(X ) FMeas(X )

hXhX

derX

By integrability it suffices to prove the commutations on the
µ ∈ FMeas(X ) of shape µ = δX (r) and this is trivial.



Moreover for ϕ ∈ Ar(X ,Y ), we have the push-foward

ϕ∗ : FMeas(X )→ FMeas(Y )

µ 7→ λV ∈ σY · µ(ϕ−1(V ))

Fact
ϕ∗ is a coalgebra morphism.
ϕ∗ ∈ ICones!((FMeas(X ), hX ), (FMeas(Y ), hY )))

So we have a functor Ar→ ICones! which is easily seen to be
faithful.

If all the objects or Ar are standard Borel spaces (that is, they are
Polish spaces equipped with their Borel σ-algebra), then this
functor is also full.

This is not a serious restriction (discrete N, R, Cantor space
etc. are such).



How to interpret sampling

Imagine we have a programming language which has at the types

σ, τ, · · · := ρ | σ ⇒ τ | · · ·

where ρ is the type of real numbers. We choose Ar with R ∈ Ar.

JσK is a measurable cone, JρK = FMeas(R),
Jσ ⇒ τK = JσK⇒a JτK

If ⊢ M : ρ then JMK ∈ BFMeas(R).

If x : ρ ⊢ N : σ then JNK ∈ ACones(JρK, JσK).

Then we can sample a real number according to the
subdistribution M in N

⊢ sample(x ,M,N) : σ



Considering JNK ∈ ICones(!aFMeas(R), JσK) then we have

JNK hFMeas(R) ∈ ICones(FMeas(R), JσK)

and we take

Jsample(x ,M,N)K = JNK(hFMeas(R)(JMK)) (1)

that is, considering JNK as an analytic function
BFMeas(R)→ JσK,

Jsample(x ,M,N)K =
∫

JNK(δR(r)) JMK(dr)

(1) means that sampling is just a let construct which allows to
use the type ρ in call-by-value.


