MPRI 2-02: Call-By-Push-Value and Linear Logic

2015-2016

Syntax of CBPV

Types:

$$\begin{split} \varphi, \psi, \dots &:= !\sigma \mid \varphi \otimes \psi \mid \varphi \oplus \psi \mid \zeta \mid \mathsf{Fix}\, \zeta \cdot \varphi \\ \sigma, \tau \dots &:= \varphi \mid \varphi \multimap \sigma \mid \top \end{split}$$

Terms:

$$M, N \dots := x \mid M^! \mid \langle M, N \rangle \mid \operatorname{in}_1 M \mid \operatorname{in}_2 M$$
$$\mid \lambda x^{\varphi} M \mid \langle M \rangle N \mid \operatorname{case}(M, x_1 \cdot N_1, x_2 \cdot N_2)$$
$$\mid \operatorname{pr}_1 M \mid \operatorname{pr}_2 M \mid \operatorname{der}(M) \mid \operatorname{fix} x^{!\sigma} M$$

Typing rules

$$\frac{\mathcal{P} \vdash M : \sigma}{\mathcal{P} \vdash M^{!} : !\sigma} \qquad \frac{\mathcal{P} \vdash M_{1} : \varphi_{1} \qquad \mathcal{P} \vdash M_{2} : \varphi_{2}}{\mathcal{P} \vdash \langle M_{1}, M_{2} \rangle : \varphi_{1} \otimes \varphi_{2}}$$

$$\frac{\mathcal{P} \vdash M : \varphi_{i}}{\mathcal{P} \vdash \operatorname{in}_{i} M : \varphi_{1} \oplus \varphi_{2}} \qquad \overline{\mathcal{P}, x : \varphi \vdash x : \varphi}$$

$$\frac{\mathcal{P}, x : \varphi \vdash M : \sigma}{\mathcal{P} \vdash \lambda x^{\varphi} M : \varphi \multimap \sigma} \qquad \frac{\mathcal{P} \vdash M : \varphi \multimap \sigma \qquad \mathcal{P} \vdash N : \varphi}{\mathcal{P} \vdash \langle M \rangle N : \sigma}$$

$$\frac{\mathcal{P} \vdash M : !\sigma}{\mathcal{P} \vdash \operatorname{der}(M) : \sigma} \qquad \frac{\mathcal{P}, x : !\sigma \vdash M : \sigma}{\mathcal{P} \vdash \operatorname{fix} x^{!\sigma} M : \sigma}$$

$$\frac{\mathcal{P} \vdash M : \varphi_{1} \oplus \varphi_{2} \qquad \mathcal{P}, x_{1} : \varphi_{1} \vdash M_{1} : \sigma \qquad \mathcal{P}, x_{2} : \varphi_{2} \vdash M_{2} : \sigma}{\mathcal{P} \vdash \operatorname{case}(M, x_{1} \cdot M_{1}, x_{2} \cdot M_{2}) : \sigma}$$

$$\frac{\mathcal{P} \vdash M : \varphi_{1} \otimes \varphi_{2}}{\mathcal{P} \vdash \operatorname{pr}_{i} M : \varphi_{i}}$$

Values

Values are special terms of positive types :

- any variable x is a value
- for any term M, the term M! is a value
- if M is a value then $in_i M$ is a value for i = 1, 2
- if M_1 and M_2 are values then $\langle M_1, M_2 \rangle$ is a value.

One uses letters V, W etc to denote values. If V is a value and $\mathcal{P} \vdash V : \sigma$ then σ is a positive type φ .

Reduction rules (weak reduction)

$$\frac{M_{1} \rightarrow_{\mathsf{w}} M'_{1}}{\langle M_{1}, M_{2} \rangle \rightarrow_{\mathsf{w}} \langle M'_{1}, M_{2} \rangle} \frac{M_{2} \rightarrow_{\mathsf{w}} M'_{2}}{\langle M_{1}, M_{2} \rangle \rightarrow_{\mathsf{w}} \langle M_{1}, M'_{2} \rangle}$$

$$\frac{M}{\mathsf{case}(\mathsf{in}_{i} V, x_{1} \cdot M_{1}, x_{2} \cdot M_{2}) \rightarrow_{\mathsf{w}} M_{i} [V/x_{i}]} \frac{M}{\mathsf{in}_{i} M} \frac{M}{\mathsf{om}_{\mathsf{w}} M'}$$

$$\frac{M}{\mathsf{case}(M, x_{1} \cdot M_{1}, x_{2} \cdot M_{2}) \rightarrow_{\mathsf{w}} \mathsf{case}(M', x_{1} \cdot M_{1}, x_{2} \cdot M_{2})}$$

This is a weak reduction (not inside boxes, not under λ 's).

Values and abstractions are normal for this reduction.

Relational semantics

 $[\sigma]$ is a set, $[\varphi]^!$ is a coalgebra $([\varphi], h_{\varphi})$ where $h_{\varphi} \in \mathbf{Rel}([\varphi], ![\varphi])$ satisfies two commutations (lecture notes). Concretely :

- $(a,[b]) \in h_{\varphi}$ iff a = b
- and $(a, m_1 + \cdots + m_k) \in h_{\varphi}$ iff there are $a_1, \ldots, a_k \in [\varphi]$ such that $(a, [a_1, \ldots, a_k]) \in h_{\varphi}$ and $(a_i, m_i) \in h_{\varphi}$ for $i = 1, \ldots, k$.
- $\bullet \ [\top] = \emptyset, \ [\varphi \multimap \sigma] = [\varphi] \multimap [\sigma] = [\varphi] \times [\sigma];$
- $[!\sigma] = ![\sigma] = \mathcal{M}_{\mathrm{fin}}([\sigma])$ and $(m, [m_1, \dots, m_k]) \in \mathsf{h}_{!\sigma}$ iff $m = m_1 + \dots + m_k$.

- $[\varphi_1 \otimes \varphi_2] = [\varphi_1] \otimes [\varphi_2] = [\varphi_1] \times [\varphi_2]$ and $((a^1, a^2), [(a^1_1, a^2_1), \dots, (a^1_k, a^2_k)]) \in \mathsf{h}_{\varphi_1 \otimes \varphi_2}$ iff $(a^j, [a^j_1, \dots, a^j_k]) \in \mathsf{h}_{\varphi_i}$ for j = 1, 2.
- $[\varphi_1 \oplus \varphi_2] = [\varphi_1] \oplus [\varphi_2] = \{1\} \times [\varphi_1] \cup \{2\} \times [\varphi_2]$ and $((j,a),[(j_1,a_1),\ldots,(j_k,a_j)]) \in \mathsf{h}_{\varphi_1 \oplus \varphi_2}$ iff $j_1 = \cdots = j_k = j$ and $(a,[a_1,\ldots,a_k]) \in \mathsf{h}_{\varphi_j}$.

For recursive types, the general definitions based on embedding/retraction pairs allows to get $[\operatorname{Fix} \zeta \cdot \varphi]^! = [\varphi \left[\operatorname{Fix} \zeta \cdot \varphi/\zeta\right]]^!.$

Examples

- $1 = ! \top$, so $[1] = {[]}$ and ([], k[[]]) for all $k \in \mathbb{N}$.
- $\iota=1\oplus\iota$ (that is $\iota=\operatorname{Fix}\zeta\cdot(1\oplus\zeta)$, so that an element of $[\iota]$ has shape $(2,\ldots,(2,(1,[]))\ldots)$ (represents the integer n when there are n occurrences of "2"). We denote this element as \overline{n} . An element of h_{ι} is a pair $(\overline{n},k[\overline{n}])$ for $k,n\in\mathbb{N}$.
- One can define a type of lists of integers by $\lambda = 1 \oplus (\iota \otimes \lambda)$ so that an element of $[\lambda]$ has shape $(2,(\overline{n_1},(2,(\overline{n_2},\ldots,(2,(\overline{n_k},(1,[])))\ldots))))$ which represents the list $\vec{n}=\langle n_1,\ldots,n_k\rangle$. An element of h_λ is a pair $(\vec{n},p[\vec{n}])$ where \vec{n} given list.

Examples

• The type of streams of elements of positive type φ can be defined by $\rho_{\varphi} = \varphi \otimes ! \rho_{\varphi}$, so an element of $[\rho_{\varphi}]$ is a pair $(a,[s_1,\ldots,s_k])$ where s_1,\ldots,s_k are elements of $[\rho_{\varphi}]$. For instance $(\overline{3},[(\overline{0},[(\overline{7},[])]),(\overline{2},[])])$ is an element of $[\rho_{\varphi}]$. An element of $h_{\rho_{\varphi}}$ is a pair $((a,m_1+\cdots+m_k),[(a_1,m_1),\ldots,(a_k,m_k)])$ such that $(a,[a_1,\ldots,a_k])\in h_{\varphi}$.

A term M such that $\mathcal{P} \vdash M : \sigma$ where $\mathcal{P} = (x_1 : \varphi_1, \ldots, x_k : \varphi_k)$ is interpreted as a morphism $[M]_{\mathcal{P}} \in \mathbf{Rel}([\varphi_1] \otimes \cdots \otimes [\varphi_k], [\sigma])$, that is

$$[M]_{\mathcal{P}} \subseteq [\varphi_1] \times \cdots \times [\varphi_k] \times [\sigma]$$

When M is a value V and hence $\mathcal{P} \vdash V : \varphi$ for some positive φ we have $[V]_{\mathcal{P}} \in \mathsf{Rel}^!([\varphi_1]^! \otimes \cdots \otimes [\varphi_k]^!, [\varphi]^!)$.

When $a_i \in [\varphi_i]$ for i = 1, ..., k and $b \in [\sigma]$ satisfy $(a_1, ..., a_k, b) \in [M]_{\mathcal{P}}$ we say that the following semantic judgment holds:

$$\Phi \vdash M : b : \sigma$$

where $\Phi = (x_1 : a_1 : \varphi_1, \dots, x_k : a_k : \varphi_k)$ is a semantic context.

If $\Phi = (x_1 : a_1 : \varphi_1, \dots, x_k : a_k : \varphi_k)$ is a semantic context, we use $\underline{\Phi}$ for the ordinary context $\Phi = (x_1 : \varphi_1, \dots, x_k : \varphi_k)$ and $\widehat{\Phi}$ for the sequence (a_1, \dots, a_k) .

There is a "typing derivation system" for these semantic judgments such that $x_1:a_1:\varphi_1,\ldots,x_k:a_k:\varphi_k\vdash M:b:\sigma$ is derivable iff $(a_1,\ldots,a_k,b)\in [M]_{\mathcal{P}}$.

We give now the deduction rules for this system.

$$\frac{(\widehat{\Phi},[]) \in \mathsf{h}_{\underline{\Phi}}}{\Phi, x : a : \varphi \vdash x : a : \varphi}$$

The premise of this rule means that the points a_i mentioned in Φ are "concealable".

$$\frac{\Phi_i \vdash M : a_i : \sigma \text{ for } i = 1, \dots, k \qquad (\widehat{\Phi}, [\widehat{\Phi_1}, \dots, \widehat{\Phi_k}]) \in h_{\underline{\Phi}}}{\Phi \vdash M^! : [a_1, \dots, a_k] : !\sigma}$$

where we also assume that $\underline{\Phi} = \underline{\Phi_i}$ for each i (similar assumptions in the next rules). The last premise means that the a_i in Φ are k-duplicable.

$$\frac{\Phi_{1} \vdash M_{1} : a_{1} : \varphi_{1} \qquad \Phi_{2} \vdash M_{2} : a_{2} : \varphi_{2} \qquad (\widehat{\Phi}, [\widehat{\Phi_{1}}, \widehat{\Phi_{2}}]) \in h_{\underline{\Phi}}}{\Phi \vdash \langle M_{1}, M_{2} \rangle : (a_{1}, a_{2}) : \varphi_{1} \otimes \varphi_{2}}$$

$$\frac{\Phi \vdash M : a : \varphi_{i}}{\Phi \vdash \text{in}_{i}M : (i, a) : \varphi_{1} \oplus \varphi_{2}} \qquad \frac{\Phi, x : a : \varphi \vdash M : b : \sigma}{\Phi \vdash \lambda x^{\varphi} M : (a, b) : \varphi \multimap \sigma}$$

$$\frac{\Phi_{1} \vdash M : (a, b) : \varphi \multimap \sigma \qquad \Phi_{2} \vdash N : a : \varphi \qquad (\widehat{\Phi}, [\widehat{\Phi_{1}}, \widehat{\Phi_{2}}]) \in h_{\underline{\Phi}}}{\Phi \vdash \langle M \rangle N : b : \sigma}$$

$$\frac{\Phi \vdash M : [a] : !\sigma}{\Phi \vdash \text{der}(M) : a : \sigma}$$

$$\frac{\Phi \vdash M : (a_{1}, a_{2}) : \varphi_{1} \otimes \varphi_{2} \qquad (a_{2}, []) \in h_{\varphi_{2}}}{\Phi \vdash \text{pr}_{1}M : a_{1} : \varphi_{1}}$$

$$\frac{\Phi \vdash M : (a_1, a_2) : \varphi_1 \otimes \varphi_2 \qquad (a_1, []) \in \mathsf{h}_{\varphi_1}}{\Phi \vdash \mathsf{pr}_2 M : a_2 : \varphi_2}$$

$$\frac{\Phi_0 \vdash M : (1, a_1) : \varphi_1 \oplus \varphi_2 \qquad \Phi_1, x : a_1; \varphi_1 \vdash N_1 : b : \sigma}{\Phi \vdash \mathsf{case}(M, x_1 \cdot N_1, x_2 \cdot N_2) : b : \sigma}$$

To be precise one has also to assume that $\underline{\Phi}, x_2 : \varphi_2 \vdash N_2 : \varphi_2$, and of course that $(\widehat{\Phi}, [\widehat{\Phi_0}, \widehat{\Phi_1}]) \in h_{\Phi}$. Similarly :

$$\frac{\Phi_0 \vdash M : (2, a_2) : \varphi_1 \oplus \varphi_2 \qquad \Phi_2, x : a_2; \varphi_2 \vdash N_2 : b : \sigma}{\Phi \vdash \mathsf{case}(M, x_1 \cdot N_1, x_2 \cdot N_2) : b : \sigma}$$

$$\frac{\Phi_0, x : [a_1, \dots, a_k] : !\sigma \vdash M : a : \sigma \qquad \forall i \ \Phi_i \vdash \text{fix } x^{!\sigma} M : a_i : \sigma}{\Phi \vdash \text{fix } x^{!\sigma} M : a : \sigma}$$

with the additional assumption that $(\widehat{\Phi}, [\widehat{\Phi_0}, \dots, \widehat{\Phi_k}]) \in h_{\Phi}$.

The main feature of values is that, if $\mathcal{P} \vdash V : \varphi$ then $[V]_{\mathcal{P}} \in \mathbf{Rel}^!([\mathcal{P}]^!, [\varphi]^!)$, that is :

if $\Phi \vdash V : a : \varphi$ and $a_1, \ldots, a_k \in [\varphi]$, one has $(a, [a_1, \ldots, a_k]) \in h_{\varphi}$ if and only if there are Φ_1, \ldots, Φ_k such that :

- $\Phi_i = \underline{\Phi}$ for each i
- $\Phi_i \vdash V : a_i : \varphi$ for each i
- and $(\widehat{\Phi}, [\widehat{\Phi_1}, \dots, \widehat{\Phi_k}]) \in h_{\underline{\Phi}}$.

Examples of term interpretations

- $[\lambda x^{\varphi} x] = \{(a, a) \mid a \in [\varphi]\}.$
- $\Omega^{\sigma} = \operatorname{fix} x^{!\sigma} x$ satisfies $\vdash \Omega^{\sigma} : \sigma$. Then $[\Omega^{\sigma}] = \emptyset$.
- () = $(\Omega^{\top})^!$, then \vdash () : 1 and [()] = {[]}.
- If $n \in \mathbb{N}$ one defines \underline{n} such that $\vdash \underline{n} : \iota$ by $\underline{0} = \operatorname{in}_1()$ and $\underline{n+1} = \operatorname{in}_2\underline{n}$. Then $[\underline{n}] = \{\overline{n}\}$.
- succ = $\lambda x^{\iota} \operatorname{in}_{2}(x)$, then \vdash succ : $\iota \multimap \iota$ and succ = $\{(\overline{n}, \overline{n+1}) \mid n \in \mathbb{N}\}.$
- add = λx^{ι} fix $f^{!(\iota \multimap \iota)} \lambda y^{\iota}$ case $(y, d \cdot \underline{0}, z \cdot \langle \operatorname{succ} \rangle \langle \operatorname{der}(f) \rangle z)$ then \vdash add : $\iota \multimap \iota \multimap \iota$ and one has [add] = $\{(n_1, n_2, n_1 + n_2) \mid n_1, n_2 \in \mathbb{N}\}.$

- maps = $\lambda f^{!(\varphi \multimap \psi)}$ fix $h^{!(\rho_{\varphi} \multimap \rho_{\psi})} \lambda y^{\rho_{\varphi}} \langle \langle \operatorname{der}(f) \rangle \operatorname{pr}_{1} y, (\langle \operatorname{der}(h) \rangle \operatorname{pr}_{2} y)^{!} \rangle$. Then \vdash maps : $!(\varphi \multimap \psi) \multimap \rho_{\varphi} \multimap \rho_{\psi}$ is a map functional for streams. Then [maps] is the least set of tuples $(([(a,b)]+m_{1}+\cdots+m_{k}),(a,[s_{1},\ldots,s_{k}]),(b,[t_{1},\ldots,t_{k}]))$ such that $(m_{i},(s_{i},t_{i})) \in [\operatorname{maps}]$ for each $i \in \{1,\ldots,k\}$.
- Using this we can define for instance $M = \lambda f^{!(\varphi \multimap \varphi)} \lambda x^{\varphi} \text{ fix } y^{!\rho_{\varphi}} \langle x, (\langle \mathsf{maps} \rangle f \text{ der}(y))^! \rangle$ such that $\vdash M : !(\varphi \multimap \varphi) \multimap \varphi \multimap \rho_{\varphi}$. What does this function compute? What is its relational interpretation? Execute a few step of \multimap_{W} -reduction on $S = \langle M \rangle \text{succ}^! \ \underline{0}$ and give the relational interpretation of S (observe that $\vdash S : \rho_t$).