MPRI 2-02: Call-By-Push-Value and Linear Logic

2015-2016

MPRI 2-02: Call-By-Push-Value and Linear Logic

Syntax of CBPV

Types :
0,0, =lo oY | @Y | (| Fix(o
oT... =p|lp—0o|T
Terms :
M,N...:=x|M | (M/N)|ingM |inoM

| AP M | (M)N | case(M, x1 - N1, x2 - Np)
| pryM | proM | der(M) | fixx'" M

MPRI 2-02: Call-By-Push-Value and Linear Logic

Typing rules

PEM:oc PEM:p1 PEM:g
PEM:lo P (M, M) : 1 @ 2

PEM: p;
PrEiniM: o1 ® 2 Pix:ipkx:g

Px:pbEM:0o PEM:p—oo0 PEN:p
PEMYM:p—0o PE(M)N:o

PHM:lo P,x:lo-M:0o
P+ der(M) : o PHfixx'"M: o

PEM:p1 @ P,xt:p1 M o P,xo:1ppbMy:o
P"C3$€(M,X1 . M]_,X2'M2) .0

PEM:p® e
PEpriM: p;

MPRI 2-02: Call-By-Push-Value and Linear Logic

Values

Values are special terms of positive types :
@ any variable x is a value
o for any term M, the term M' is a value
o if M is a value then in;M is a value for i = 1,2
e if My and M, are values then (My, M) is a value.

One uses letters V, W etc to denote values. If V is a value and
P Vo then o is a positive type .

MPRI 2-02: Call-By-Push-Value and Linear Logic

Reduction rules (weak reduction)

der(M') =, M (Ax? MYV — MV /x]

pri(Vi, Vo) —w V; fixx'7 M —y M [(fixx'7 M)'/x]

M=, M M= M
der(M) —, der(M’) (M)N =, (M'YN

N —, N M=, M
(MYN =, (M)N' priM —, priM’

MPRI 2-02: Call-By-Push-Value and Linear Logic

M1 —w M{ M2 —w Mé
(M, Ma) — (M7, Ma) (M, Ma) — (Mq, M3)

M=, M
in,-M —w in,-M’

case(in; V, x1 - My, x2 - M) —w M; [V /xi]

M=, M
case(M, xy - My, xp - Mp) =, case(M', x1 - My, xa2 - My)

This is a weak reduction (not inside boxes, not under \'s).

Values and abstractions are normal for this reduction.

MPRI 2-02: Call-By-Push-Value and Linear Logic

Relational semantics

[0] is a set, []' is a coalgebra ([¢], hy,) where h, € Rel([], ![¢])
satisfies two commutations (lecture notes). Concretely :

o (a,[b])ehyiffa=b
@ and (a,m + -+ my) € hy iff there are ay, ..., ax € [¢] such
that (a,[a1,...,ak]) € hy and (a;,m;) € hy for i =1,... k.

o [T] =0, [p—o]=I[e] —[o] =[¢] x[o];
o [lo] =!o] = Msn([o]) and (m,[m, ..., m]) € hy, iff
m=my + -+ mg.

MPRI 2-02: Call-By-Push-Value and Linear Logic

o [p1 ® 2] = [p1] @ [p2] = [p1] X [2] and
((a.1> 3_2)7 [(a%a'a%)u ceey (ai?ai)]) € h<P1®<P2 iff
(af,[ajl,...,af(]) €hy, forj=1,2.
o [p1 © 2] = [p1] ® [p2] = {1} x [p1] U {2} x [p2] and
(073)7 [(j17al)7 . '7(jk’aj)]) € h@l@lpz iffjl = :jk :j and
(a,[a1, -, a]) € hy;.

For recursive types, the general definitions based on
embedding/retraction pairs allows to get

[Fix¢ - ¢]' = [p[Fix¢ - ¢/C]]'.

MPRI 2-02: Call-By-Push-Value and Linear Logic

o 1=1T,so0[1]={[]} and ([], k[[]]) for all k € N.

e 1 =1@ . (thatis ¢ = Fix(- (1 @ (), so that an element of [(]
has shape (2,...,(2,(1,[]))...) (represents the integer n
when there are n occurrences of “2”). We denote this element
as 1. An element of h, is a pair (7, k[n]) for k,n € N.

@ One can define a type of lists of integers by A =1® (1 ® \) so
that an element of [A] has shape
(2, (m, (2, (72, ..,(2,(7k, (1,]]))) - --.)))) which represents the
list 7= (n1,...,ng). An element of hy is a pair (i, p[r])
where 7 given list.

MPRI 2-02: Call-By-Push-Value and Linear Logic

@ The type of streams of elements of positive type can be
defined by p, = ¢ ® lp,, so an element of [p,] is a pair
(a,[s1,...,5]) where s1,..., s, are elements of [p,]. For
instance (3, [(0,[(7,[)]), (2,])]) is an element of [p,]. An
element of h,_ is a pair
((a,m1 + -4+ mg),[(a1,m), ..., (ak, mg)]) such that
(a,[a1,---,ak]) € hy.

MPRI 2-02: Call-By-Push-Value and Linear Logic

A term M such that PF M : o where P = (X1 : ¢1,..., Xk : k) is

interpreted as a morphism [M]p € Rel([p1] ® - - @ [¢k], [0]), that
is

[Mlp C [p1] x -+ X [pi] x [o]

When M is a value V' and hence P F V : o for some positive © we
have [V]p € Rel'([p1]' @ -~ @ [pi]', [¢]').

MPRI 2-02: Call-By-Push-Value and Linear Logic

When a; € [pi] for i =1,... k and b € [o] satisfy

(a1,...,ax, b) € [M]p we say that the following semantic judgment
holds :

dP-M:b:o

where ® = (xq 1 a1 : p1,...,Xk : @ : Pk) IS a semantic context.

MPRI 2-02: Call-By-Push-Value and Linear Logic

If & =(x1:a1:p1,...,Xk : 3k : Pk) is a semantic context, we use
P for the ordinary context ® = (xy : p1,..., %k : k) and ® for the
sequence (ay, ..., ak).

There is a “typing derivation system” for these semantic judgments
such that xy : a1 : @1,..., Xk : 3k - ok = M : b: o is derivable iff
(31,.. '7ak7b) € [M]P

We give now the deduction rules for this system.

MPRI 2-02: Call-By-Push-Value and Linear Logic

(9. € he
O x:a:phkxia:yp

The premise of this rule means that the points a; mentioned in ¢
are “concealable”.

O M:ajiofori=1,....k (®,[0r,...,P]) €ho
OFM :[ar,...,a: o

where we also assume that ® = ®; for each i (similar assumptions
in the next rules). The last premise means that the a; in are
k-duplicable.

MPRI 2-02: Call-By-Push-Value and Linear Logic

¢1|—M12312(p1 ¢2}_M2:a2:§02 (67[6\176\2])€h$
S (M, My) : (a1,a2) : 1 ® @2

PFM:a:y; O,x:a:pFM:b:o
SFinM:(i,a): 1D 2 OFA?PM:(a,b): ¢ —o0

O -M:(a,b):p—oo0 Or-N:a:p (67[6\17@])6}‘9

O (M)N:b:o

OFM:[a]:lo
dtder(M):a:o

O M:(a1,a3) 01 ® p2 (a2,[]) € hy,
SFpriM:a:¢r

MPRI 2-02: Call-By-Push-Value and Linear Logic

S M:(a1,a) : o1 o (a1,[]) € hy,
S proM:az:

S M:(l,a1): 01D 2 O1,x:a;,01FNM b0
¢|‘C3$E(M,X1-N1,X2-N2) . bZO'

To be precise one has also to assume that ®,x; : w2 = N2 @ 2, and
of course that (®, [®g, P1]) € he. Similarly :

Og - M:(2,a): 01D 2 Gy, x:a 0Ny b0
O Fcase(M,x; - Ni,xo-Np):b:o

®g,x : [a1,...,ak]:loF-M:a:0 Vi djFfixx'"M:a 0o
S+fixx'"M:a:o

with the additional assumption that (®, [6\0, . ,@]) € he.

MPRI 2-02: Call-By-Push-Value and Linear Logic

The main feature of values is that, if P+ V : ¢ then
[V]p € Rel'([P]', [¢]'), that is :
fOFV:a:pandap,...,a €[], one has (a,[a1,...,a]) € h,
if and only if there are ®q,..., ®, such that :
o ®; = & for each i
@ ;- V :a; :¢foreach i
e and (6,[&3\1,,@]) € he.

MPRI 2-02: Call-By-Push-Value and Linear Logic

Examples of term interpretations

o [Mx?x] ={(a,a)|a€[p]}

o Q7 = fixx'? x satisfies - Q7 : 7. Then [Q°] = 0.

o ()=(Q"), then () : L and [()] = {[I}-

e If n € N one defines n such that - n: ¢ by 0 =iny() and

n+1=inan. Then [n] = {n}.

succ = Ax*iny(x), then F succ: ¢ —o ¢ and

succ = {(m,n+1)| ne N}

o add = \x*fix F'1) \y* case(y,d - 0, z - (succ)(der(f))z) then
Fadd : ¢ —o ¢t —o ¢ and one has
[add] = {(n1, n2, m + n2) | n, n2 € N}.

MPRI 2-02: Call-By-Push-Value and Linear Logic

@ maps =
AFE=0) fix 02 —<00) Ao ((der(F))pryy, ((der(A))pray)).
Then F maps : (¢ —o 1)) — p, —o py is @ map functional for
streams. Then [maps] is the least set of tuples
(([(a, b)) + m1 + -+ my), (a, [s1, - - -, sil), (b [tr, - - -, &]))
such that (mj, (sj, tj)) € [maps] for each i € {1,...,k}.

@ Using this we can define for instance
M = AF(e=9) \x? fix y'P¢ (x, ((maps)f der(y))") such that
FM: (¢ —) — ¢ —o p,. What does this function
compute 7 What is its relational interpretation 7 Execute a few
step of —,-reduction on S = (M)succ' 0 and give the
relational interpretation of S (observe that - S : p,).

MPRI 2-02: Call-By-Push-Value and Linear Logic

