
Web based models

of Linear Logic

Thomas Ehrhard

Institut de mathématiques de Luminy

WoLLIC, July 2004

Linear Logic : a refinement of intuitionistic/classical logic where

contraction and weakening have a logical status.

• Contraction and disjunction exist in two different flavors :

multiplicative (⊗ and 1, � and ⊥) and

additive (& and >, ⊕ and 0).

• Exponential modalities give a logical status to structural rules

(! and ?).

• Negation is involutive ((·)⊥).

1

Linear logic has various denotational interpretations where

• formulae are interpreted as objects in some category C

• and proofs as morphisms in C.

The simplest one is the pure relational interpretation in the cat-

egory Rel of sets and relations:

• objects of Rel are sets and

• Rel(S, T) = P(S × T) (relations).

• Usual composition or relations.

2

Interpretation of formulae in Rel.

• S⊥ = S

• S ⊗ T = S × T and 1 = {∗}

• and so S � T = S ×T and ⊥ = {∗} since � is the De Morgan

dual of ⊗ ((E ⊗ F)⊥ = E⊥

� F⊥) and similarly for 1 and ⊥.

• S ⊕ T = S + T and 0 = ∅

• and so S & T = S + T and > = ∅ (duals of ⊕ and 0).

• !S = ?S = Mfin(S) (the finite multisets of elements of S).

3

Two kinds of non trivial structures which can be superimposed

on this simple semantics and which are respected by the inter-

pretations of proofs:

• phase valued coherence structures (with A. Bucciarelli) and

• finiteness structure.

4

I

Phase valued coherence structures

Idea: generalize Girard’s idea of coherence space (sets equipped

with a graph structure, then proofs are interpreted as cliques),

but now coherence takes values in a phase space.

5

Similar ideas developped in

• Girard : On denotational completeness.

• Lamarche : Generalizing coherence spaces and hypercoher-

ences.

• De Paiva and Schalk : Poset-valued sets or How to build

models for linear logics.

The connection with the present work is not very clear (at least

to me). . .

6

A phase space is a pair (M,⊥⊥) where M is commutative monoid

(multiplicative notations, unit e) and ⊥⊥ ⊆ M (no other con-

straint). If U ⊆ M , define

U⊥ = {m ∈ M | mU ⊆ ⊥⊥} .

Then the following facts are straightforward:

• U ⊆ U⊥⊥

• U ⊆ V ⇒ V ⊥ ⊆ U⊥

• and U⊥⊥⊥ = U⊥.

U is a fact if U⊥⊥ = U . So U⊥ is always a fact.

7

Phase spaces provide a natural truth values semantics of (expo-

nential free) linear logic:

Principle : formulae are interpreted as facts and if a formula is

provable, its interpretation contains e.

8

How it works :

• interpret 1 as ⊥⊥⊥ and ⊥ as ⊥⊥ (which is always a fact);

• if U, V are facts, U ⊗ V = (UV)⊥⊥ and of course U � V =

(U⊥V ⊥)
⊥
.

• Interpret 0 as M⊥ and > as M (which is always a fact);

• U ⊕ V = (U ∪ V)⊥⊥ and U & V = U ∩ V (which is always a

fact).

Exponentials require more structure on M . . .

9

Phase valued coherence : given

• a formula of linear logic F whose denotational interpretation

as a set (in Rel) is [F]

• and a family α of elements of [F] (indexed by some set J ⊆ I

where I is a fixed infinite countable set)

we want a fact in some phase space, the “coherence value” of

α in F .

Idea : use a phase space which is itself “indexed” by I.

10

An indexed phase space is a pair (M0,⊥⊥) where

• M0 is a commutative monoid (multiplicative notations, neu-

tral element e) possessing an absorbing element 0

• and ⊥⊥ ⊆ MI
0.

This time, ⊥⊥ has to satisfy some conditions for making the in-

terpretation possible.

11

Conditions on ⊥⊥ ⊆ M I
0:

• Closure under restriction :

if J ⊆ I, then eJ⊥⊥ ⊆ ⊥⊥

where eJ is the family which takes value e on J and 0 outside

J.

And also e∅ ∈ ⊥⊥.

• Homogeneity :

if f, g : J → I are injections, then f∗(⊥⊥) = g∗(⊥⊥)

where f∗ is the reindexing function, f∗(m)j = mf(j).

The second condition means that ⊥⊥ “looks the same every-

where”. This condition is necessary only for interpreting the

exponentials.

12

Example.

M0 = {0, e, τ} with ττ = τ .

For m ∈ MI
0, decide that m ∈ ⊥⊥ if there is at most one index i

such that mi = τ .

A fact F can be described as a graph on I, more precisely as

a collection of unlabelled symmetric edges between distinct el-

ements of I : i 6= j are related in G iff there is m ∈ F with

mi = mj = τ .

One retreives a notion of coherence spaces (very different from

standard ones on exponentials!).

13

Indexed linear logic.

Phase semantics interprets normally formulae of LL.

Given F a formula of LL and α ∈ [F]J (with J ⊆ I), can we see

α as a formula of some version of LL? Yes.

14

A formula A of indexed linear logic has

• an underlying formula A of standard LL,

• a domain d(A) ⊆ I

• and a family 〈A〉 ∈ [A]d(A).

Basic property : for all formula F of LL and all α ∈ [F]J , there

exists A such that A = F , d(A) = J and 〈A〉 = α. But in general,

there will be an infinity of such formulae A.

15

Indexed formulae are defined as follows :

• if J ⊆ I then 1J and ⊥J are formulae with

– d(1J) = d(⊥J) = J,

– 〈1J〉j = 〈⊥J〉j = ∗ ∈ [1] = [⊥] and

– 1J = 1 and ⊥J = ⊥.

• If d(A) = d(B) = J then A ⊗ B and A � B are well defined,

with

– d(A ⊗ B) = d(A � B) = J,

– 〈A ⊗ B〉j = 〈A � B〉j = (〈A〉j, 〈B〉j)

– and of course A ⊗ B = A ⊗ B and A � B = A � B.

16

• 0 and > are formulae, with d(0) = d(>) = ∅, 〈0〉 = 〈>〉 =

the empty family, and of course 0 = 0 and > = >.

• If d(A) ∩ d(B) = ∅ then A ⊕ B and A & B are well defined,

with

– d(A ⊕ B) = d(A & B) = d(A) ∪ d(B),

– 〈A ⊕ B〉j = 〈A & B〉j = 〈A〉j if j ∈ d(A) and

〈A ⊕ B〉j = 〈A & B〉j = 〈B〉j if j ∈ d(B)

– and of course A ⊕ B = A ⊕ B and A & B = A & B.

17

Let us say that a function is locally finite if f−1(i) is finite for

all i.

• If f : d(A) → J is locally finite, then !fA and ?fA are well

defined with

– d(!fA) = d(?fA) = J,

– 〈!fA〉j = 〈?fA〉j = the multiset of all 〈A〉k with f(k) = j

– and of course !fA = !A and ?fA = ?A.

18

Local phase space. Given J ⊆ I, consider the phase space

(MJ
0 ,⊥⊥J) where ⊥⊥J is the projection of ⊥⊥ ⊂ M I

0 onto MJ
0 .

To A we associate A•, a fact of (MJ
0 ,⊥⊥J) where J = d(A).

Main property (thanks to our homogeneity hypothesis) :

this fact depends only on A and 〈A〉.

19

Multiplicatives : like in ordinary phase semantics, for instance

(A ⊗ B)• = (A•B•)⊥⊥

in the space (MJ
0 ,⊥⊥J) where J = d(A) = d(B).

Additives : much more interesting.

L = d(A) and R = d(B) with L ∩ R = ∅.

(A & B)• = {(p, q) ∈ ML∪R
0 ' ML

0 × MR
0 |

p ∈ A•, q ∈ B•}

' A• × B•

This set is always a fact.

(A ⊕ B)• is defined by De Morgan duality.

20

Exponentials : given f : K → J locally finite, we can define a

monoid morphism f∗ : MK
0 → MJ

0 by

f∗(m)j =
∏

f(k)=j

mk .

If d(A) = K, we set

(!fA)• = (f∗(A
•))⊥⊥

and of course (?fA)• is defined by De Morgan duality.

21

Natural question : is there a deduction system for indexed

linear logic corresponding to this phase semantics ? Yes.

A sequent is `J A1, . . . , An with d(Ai) = J for each i.

A few examples of deduction rules (not all of them) : multi-

plicative rules are without surprises, for instance

`J Γ, A `J ∆, B

`J Γ,∆, A ⊗ B

22

Additives are more interesting

`J Γ, A

`J Γ, A ⊕ B

`J Γ, A

`J Γ, B ⊕ A

which implies that d(B) = ∅ since we must have d(A) = J and

d(A) ∩ d(B) = ∅.

`L ΓL, A `R ΓR, B

`L∪R Γ, A & B

with L ∩ R = ∅, all the formulae of Γ have domain L ∪ R, ΓL

is obtained by restricting its formulae to L and similarly for ΓR.

Restriction is easy to define by induction on formulae.

23

Restriction : if d(C) = J and L ⊆ J then CL satisfies

• CL = C

• d(CL) = L

• 〈CL〉 ∈ [C]L is the restriction of 〈C〉 ∈ [C]J to L.

Thanks to the closure under restriction of ⊥⊥, CL
• is the projec-

tion of C• onto ML
0 .

24

Exponentials : there are two groups of rules, weakening/contraction

and dereliction/promotion.

Contraction : take A with domain L ∪ R (L ∩ R = ∅) and let l :

L → J and r : R → J be locally finite functions, and f : L∪R → J

defined by “cases”:

f(i) =

l(i) if i ∈ L

r(i) if i ∈ R

which is also locally finite, then

`J Γ,?lAL,?rAR

`J Γ,?fA

25

Dereliction uses the idea of changing the localization of a for-

mula. If A has domain K and f : K → J is a bijection, we can

define (by induction on A) f∗(A) with

• f∗(A) = A

• d(f∗(A)) = J

• 〈f∗(A)〉j = 〈A〉f−1(j)

Thanks to the homogeneity of ⊥⊥, (f∗(A))• = f∗(A•).

26

In these circumstances, dereliction is

`J Γ, f∗(A)

`J Γ,?fA

Promotion involves composing locally finite functions:

if g : K → J is locally finite,

`K?f1A1, . . . ,?fnAn, B

`J?g◦f1A1, . . . ,?g◦fnAn, !gB

27

Remark : from a proof of `J A, we obtain, by forgetting all

indexing sets and functions, a proof π of ` A in standard linear

logic.

For each j ∈ d(A), remember that 〈A〉j ∈ [A].

Basic property : ∀j ∈ d(A) 〈A〉j ∈ [π]

[π] is the interpretation of π in the category of sets and relations;

it is a subset of [A].

28

And of course the indexed phase semantics of indexed linear logic

enjoys soundness: if `J A then eJ ∈ A• (which is a fact in the

local phase space (MJ
0 ,⊥⊥J)).

So, given F a formula of LL, it is a good idea to say that a

family α ∈ [F]J is coherent (w.r.t. (M0,⊥⊥)) if eJ ∈ A• for some

(equivalently, any) A such that A = F and 〈A〉 = α.

[We have seen that there is always at least one such A.]

29

Indeed, for any proof π of ` F and any family α ∈ [F]J such that

∀j ∈ J αj ∈ [π]

this family α will be coherent with respect to any indexed phase

space.

This is denotational soundness.

30

What about (denotational) completeness?

Amounts to truth-value completeness of indexed phase semantics

w.r.t. indexed linear logic.

But... this completeness does not hold for two (interesting)

reasons:

• the local phase space at ∅ is trivial, so that e∅ ∈ A• whenever

d(A) = ∅: this is a kind of partiality principle;

• (!IdA)• = (Id∗A•)⊥⊥ so that eJ ∈ (A (!IdA)• whereas A (

!IdA = A⊥

� !IdA is not provable in indexed linear logic.

31

This latter fact has consequences also on exponential-free for-

mulae of indexed linear logic.

For instance, if d(A) = d(A′) = L and d(B) = d(B′) = R with

L ∩ R = ∅, then the formula

(A & B) ⊗ (A′ & B′) ((A′ & B) ⊗ (A & B′)

is valid in any indexed phase space, but not provable in indexed

linear logic. The reason is that

!lA ⊗ !rB =!Id(A & B) = A & B

in these spaces (l, r the injections of L, R into L ∪ R).

32

Nevertheless :

• there is a nice, more liberal, system of indexed linear logic

for which completeness holds,

• this system is equivalent to standard indexed linear logic +

these 2 additional principles

• and these two additional principles are incompatible with to-

tality.

Conjecture. . .

33

II

Finiteness spaces: a finitary version of Girard’s

quantitative semantics

Basic observation: the operations which interpret the linear

connectives in Rel are completely standard if we consider the

objects of Rel as bases of vector spaces.

E.g. in finite dimension, if B is a basis of E and C a basis of F ,

then B × C is a basis of E ⊗ F , and in Rel, X ⊗ Y = X × Y .

B+C (disjoint union) is a basis of E⊕F and in Rel, X⊕Y = X+Y .

B∗ ' B is a basis of E∗, the dual of E, and in Rel, X⊥ = X.

34

Problem: due to the exponentials, we are obliged to consider

infinite sets in Rel, that is, infinite-dimensional vector spaces.

Some topology must be used. Which one?

Finiteness spaces are a simple concrete solution to this problem.

Let K be a field and X be a finite set, to be considered as a

basis of the vector space KX. If we identify its dual with KX,

then evaluation for x ∈ KX and x′ ∈ (KX)∗ = KX is given by

〈x, x′〉 =
∑

a∈X

xax′a

Idea : keep this formula valid when X is infinite.

35

This effect can be obtained quite simply.

Given U ⊆ I, define

U⊥ = {u′ ⊆ I | u ∩ u′ finite}

Just as in phase semantics:

• U ⊆ U⊥⊥

• U ⊆ V ⇒ V ⊥ ⊆ U⊥

• and U⊥⊥⊥ = U⊥.

36

A finiteness space is a pair X = (|X|, F(X)) with

F(X) ⊆ P(|X|) and F(X) = F(X)⊥⊥

this is a typical “linear logical relation” definition, cf.

• the proof of strong normalization in Girard’s original TCS

paper on LL, linear “candidats de réductibilité”, and a lot of

other examples in his work (types in the GoI, more recently,

ludics). . .

• Loader-Hyland-Tan’s double gluing.

37

The nice feature of this kind of definition is that it gives for free

a lot of closure properties.

For instance:

• if u ⊆ |X| is finite then u ∈ F(X),

• u ⊆ v ∈ F(X) ⇒ u ∈ F(X),

• u, v ∈ F(X) ⇒ u ∪ v ∈ F(X),

indeed, one has to check that u∪ v ∈ F(X)⊥⊥, that is (u∪ v)∩ u′

finite for all u′ ∈ F(X)⊥.

38

Associated vector space:

K〈X〉 = {x ∈ K
|X| | supp(x) ∈ F(X)}

where supp(x) = {a ∈ |X| | xa 6= 0}.

Vector space because F(X) containes ∅ and is closed under finite

unions.

39

Topology: define the neighborhoods of 0 and the translate ev-

erywhere.

Each u′ ∈ F(X)⊥ determines a basic neighborhood of 0, namely

{x ∈ K〈X〉 | supp(x) ∩ u′ = ∅}

40

Limit cases:

• if F(X) = P(|X|) then K〈X〉 = K|X|,

F(X)⊥ = finite subsets of |X|, product topology (like the

Cantor or Baire space)

• if F(X) = finite subsets of |X| then F(X)⊥ = P(|X|), discrete

topology.

and there is a wide spectrum of possibilities between these two

limit cases.

41

Due to the F(X) = F(X)⊥⊥ definition, we get for free that this

topology is

• Hausdorff

• and complete (each Cauchy sequence converges).

But in general it is not metrizable (and one gets non metrizable

spaces when interpreting LL).

42

Remarks. These topological vector spaces are particular Lef-

schetz “linear topological vector spaces” (1942). See also the

work of Barr, Blute, Scott.

They are very different from the usual topological vector spaces

(Banach, Hilbert. . .): the field is taken with the discrete topol-

ogy and the spaces are totally disconnected.

43

Examples of constructions:

• |X⊥| = |X| and F(X⊥) = F(X)⊥,

• |X ⊗ Y | = |X| × |Y | and

F(X ⊗ Y) = {u × v | u ∈ F(X) and v ∈ F(Y)}⊥⊥

and one shows that in fact

w ∈ F(X ⊗ Y) iff w ⊆ u × v for some u ∈ F(X) and v ∈ F(Y).

44

Then it turns out that

• K〈X⊥〉 is canonically isomorphic to the topological dual of

K〈X〉. A vector x′ ∈ K〈X⊥〉 defines a continuous linear form

on K〈X〉 by

〈x, x′〉 =
∑

a∈|X|

xax′a finite sum!

• More generally K〈X (Y 〉 is canonically isomorphic to the

space L(X, Y) of all continuous linear maps K〈X〉 → K〈Y 〉.

(Maps faithfully represented by infinite matrices, exactly as

in finite dimension.)

Linear implication: X (Y = (X ⊗ Y ⊥)
⊥
.

45

Remark: one might expect that the map

K〈X〉 × K〈X⊥〉 → K

(x, x′) 7→ 〈x, x′〉

is continuous w.r.t. the product topology, but this is not the case

(as soon as |X| is infinite).

Multilinear maps satisfy a weaker condition (hypocontinuity).

46

Exponentials. |!X| is the set of all finite multisets on |X| (the

interpretation of “!” in Rel), one has to define F(!X).

Given u ⊆ |X|, define u! ⊆ |!X| as the set of all finite multisets

on u. Then set

F(!X) = {u! | u ∈ F(X)}
⊥⊥

and one shows that in fact

w ∈ F(!X) iff w ⊆ u! for some u ∈ F(X).

47

Given x ∈ K〈X〉, define x! ∈ K|!X| by

x!
m =

∏

a∈|X|

x
m(a)
a = xm

where m ∈ |!X| is seen as a function m : |X| → N.

Then: supp(x!) = (supp(x))!, hence x! ∈ K〈!X〉.

If X = {∗} then m ∈ N, x ∈ K and xm is just the standard “ xm ”.

In general, m ∈ |!X| is seen as a multi-exponent.

48

So if A ∈ K〈(!X)⊥〉 and x ∈ K〈X〉, the sum

〈x!, A〉 =
∑

m∈|!X|

Amxm

is finite, and we can see A as a kind of K-valued power series.

Remark: for any given x, the sum is finite, but the number of

terms depends on x, so A is not a polynomial in general.

49

In general, an f ∈ L(!X, Y) defines a K〈Y 〉-valued power series

defined on K〈X〉 by

F (x) = f(x!) .

Such a power series can be differentiated.

This corresponds to new constructions on the exponentials.

50

Standard structure of the exponentials:

• ! is a functor,

• ! has a structure of co-monad:

dereliction !X (X and digging !X (!!X,

• each !X is a co-monoid:

weakening !X (1 and contraction !X (!X ⊗ !X.

51

Differential operations correspond to a new structure on !X, in

the opposite direction.

Also it strongly uses the possibility of adding morphisms of the

same type: remember that in our model, L(X, Y) is a vector

space.

For that reason, in this setting, ⊕ and & are the same operation.

52

“Differential” structure of the exponential.

We have a co-dereliction d0 ∈ L(X, !X) with matrix

d0
a,m =

1 if m = [a]

0 otherwise

If f ∈ L(!X, Y), seen as a power series F from K〈X〉 to K〈Y 〉

F (x) = f(x!) ,

then f◦d0 (composed as linear continuous maps) is the derivative

of F at 0

f ◦ d0 = F ′(0) ∈ L(X, Y)

53

We have a co-weakening u ∈ L(1, !X) with matrix

u∗,m =

1 if m = []

0 otherwise

If f ∈ L(!X, Y), seen as a power series F from K〈X〉 to K〈Y 〉,

then f ◦ u (composed as linear continuous maps) is the value of

F at 0

f ◦ u = F (0) ∈ L(1, Y) ' K〈Y 〉

54

And we have a co-contraction m ∈ L(!X ⊗ !X, !X) with matrix

m(l,r),m =

(

m
l

)

if m = l + r [A binomial coefficient]

0 otherwise

If f ∈ L(!X, Y), seen as a power series F from K〈X〉 to K〈Y 〉,

then f ◦m ∈ L(!X ⊗ !X, Y) (composed as linear continuous maps)

is the the power series

G : K〈X〉 × K〈X〉 → K〈Y 〉

(x, y) 7→ F (x + y)

55

Combining these morphims, we can for instance define a mor-

phism

d ∈ L(!X ⊗ X, !X)

by composing !X⊗d0 ∈ L(!X ⊗ X, !X ⊗ !X) and m ∈ L(!X ⊗ !X, !X).

This (and curryfication) allows to transform a power series F

from K〈X〉 to K〈Y 〉 into a power series F ′ from K〈X〉 to K〈X (Y 〉,

the derivative of F :

compose the corresponding linear map f ∈ L(!X, Y) with d.

56

So !X is not only a co-algebra, but also an algebra, and is

equipped with a co-dereliction.

Starting from these observations, we introduced the differen-

tial lambda-calculus and differential interaction nets. Work with

L. Regnier.

57

III

Differential interaction nets

This is an extension of MLL proof-nets (or better, Lafont’s in-

teraction nets, for convenience)

• with � and ⊗ (the MLL part),

• with dereliction, weakening and contraction,

• with co-dereliction, co-weakening and co-contraction

• and without promotion (can be added, but the system al-

ready exists without it). In linear logic, promotion is the only

rule which introduces a “!”, whereas here both co-weakening

and co-dereliction will introduce a “!”.

58

Reduction rules are imposed by the vector space semantics.

Without promotion, the calculus is fundamentally finitary (strongly

normalizes as soon as a DR-correctness criterion is satisfied),

even without types.

Can be seen as a linear logic version of various linearizations

of the lambda-calculus (Boudol’s resource calculus, Kfoury’s lin-

earization).

59

Striking feature: the � /⊗ symmetry of MLL extends to

dereliction (!X (X) / co-dereliction(X (!X)
weakening (!X (1) / co-weakening(1 (!X)

contraction (!X (!X ⊗ !X) / co-contraction (!X ⊗ !X (!X)

in the sense that the reduction rules preserve the symmetry be-

tween these logical rules.

60

An interaction net consists of

• A collection of cells. Each cell has a type which determines

its arity ∈ N. The ports of a cell c are (c,0), . . . , (c, n) where

n is the arity of (the type of) c.

• (c,0) is the principal port of c, the others are auxiliary ports.

• A collection of free ports.

• A collection of wires; each wire connects 2 ports (or 0 port:

loop) and each port is connected to exactly one wire.

61

Typing

Label oriented wires with LL formulae. For a wire w, the two

following typings are identified:

w

A

w

A⊥

The types associated to the cells determine the typing rules.

62

The cells

Par/Tensor:

A

B

A

B

A � B A ⊗ B
⊗�

Weakening/Co-weakening:

? !
?A !A

63

Dereliction/Co-dereliction:

?A !AAA
? !

Contraction/Co-contraction:

?
?A

!
!A

?A !A

?A !A

64

These interaction nets will be called simple nets.

General nets are formal linear combinations of simple nets with

the same free ports. In particular, there is a 0 net (for each

family of free ports).

Nets can be connected to other nets through free ports: this is

“obviously” defined for simple nets and extended by linearity

to arbitrary nets.

In particular, if we connect a 0 net (with free ports Γ,Λ) to a

simple net (with free ports Λ,∆) through ports Λ, we get a 0

net with free ports Γ,∆.

65

Reduction rules

General principle of interaction net: a redex is a simple sub-net

consisting of two cells connected through their principal ports.

Such a redex reduces to a net (here: not necessarily simple)

having the same free ports as the redex.

This net replaces the redex in the context where the redex has

been singled out.

In this kind of setting, confluence is (almost) for free: no critical

pairs.

66

The unique MLL reduction:

A⊥

B⊥

;

A

B
2 2

0

1

0

1

�⊗

A

B

67

Finitary exponential reductions

Weakening/Co-weakening

! ;?

π

B

π

B

;

?A⊥

!

?

constant power series applied to 0

68

Dereliction/Co-dereliction

?
A⊥?A

! ;

AA

!AA
?!

linear power series F defined by π : A (B

F ′(0) : A (B

B

π

B

π
;

A⊥A⊥

69

Contraction/Co-contraction

;!
!A

!A

?

!A

!A

?

!A

!A

!A

!A

!

?A⊥

?A⊥

!

?A⊥

?A⊥

?A⊥

?A⊥

?

!A

!A

!A

70

B

π?
?A⊥

?A⊥

?A⊥

y

z

?A⊥

?A⊥

!
y′

z′

two parameter power series F : A × A → B

one parameter power series F (x, x)

two parameter power series F (y′ + z′, y′ + z′)

71

!

!

?

?
?A⊥

y′

?A⊥
z′

B

π

?A⊥

?A⊥

y

z

two parameter power series F : A × A → B

two parameter power series F (y′ + z′, y′ + z′)

72

Dereliction/Co-weakening

?AA
;

. . .

? !

. . .

0

73

Linear power series applied to 0: the result is 0.

A⊥

0? π

B

!
?A⊥

linear power series from A to B

;

B

74

Co-dereliction/Weakening

A !A
;! ? A

0

75

Derivation (at 0) of a constant power series: the result is 0.

0

A⊥
A⊥

B B

? π!

constant power series from A to B

!A
;

76

Contraction/Co-dereliction

!?
?A A

?A

?A

; + !

!

?A

?A
A

?A

?A

A
!

!

77

B

π?
?A⊥

?A⊥

?A⊥

y

z
!

two parameter power series F : A × A → B

one parameter power series G(x) = F (x, x)

derivative at 0 of G, linear function of y′: G′(0).y′

x
y′

A⊥

78

By Leibniz formula, this should be equal to F ′
y(0,0).y′+F ′

z(0,0).y′

(sum of the two partial derivatives), which corresponds to the

following sum of simple nets

B

π

?A⊥

?A⊥

y

z

!y′
A⊥

!
B

π?A⊥

z!
A⊥

?A⊥
!

y

y′+

79

Dereliction/Co-contraction

!
!A A

!A

!A

; + ?

?

!A

!A
A

!A

!A

A
?

?

?

80

?A⊥

linear power series F from A to B

? π

B

!
A⊥

?A⊥

?A⊥

power series G(y, z) = F (y + z) from A × A to B

y

z

81

By linearity of F , this should be equal to F (y) + F (z) which

corresponds to the following sum of simple nets (observe the role

of weakening: y does not appear in F (z) and symmetrically).

?

?

+π

B

A⊥

?A⊥

?A⊥

y

z
π

B

?A⊥

?A⊥

y

z

?

?
A⊥

82

Danos-Regnier correctness criterion

A switching assigns to each � cell and each contraction cell a

position, 1 or 2.

Given a simple net and a switching we define a graph, e.g.

gives⊗

gives?
1

2

if this contraction cell is assigned the value 2.

83

A simple net is correct if the graphs induced by all switchings

are acyclic (we cannot ask for connectedness). A net is correct

if it is a sum of correct simple nets.

Correctness is preserved under reduction, and correct nets strongly

normalize (even in the untyped setting).

84

What about promotion?

In multiplicative-exponential linear logic, it is the most compli-

cated operation and requires boxes. For instance, if π is a net

with conclusions ?A and B, it can be promoted producing a net

of conclusions ?A and !B:

as many copies of π as required become available.

85

Promotion of π:

?A B

?A !B

π

86

Can be seen as the infinite sum, with 1/n! coefficients, of

!

? !

.

. . .

!

?A ?A

?A !B

!B !B

B

π π

B

[Big triangles are contraction and co-contraction trees.]

87

