
MPRI 2-02 2022-2023 — Semantics
Part II

Denotational semantics of functional languages
and linear logic

Thomas Ehrhard, IRIF, CNRS and Université Paris Cité
ehrhard@irif.fr

https://www.irif.fr/~ehrhard

January 21, 2023

ehrhard@irif.fr
https://www.irif.fr/~ehrhard

These slides are based on my lecture notes:

https://www.irif.fr/~ehrhard/pub/mpri-2020-2021.pdf

https://www.irif.fr/~ehrhard/pub/mpri-2020-2021.pdf

What is Denotational Semantics about?

Denotational semantics (initially mathematical semantics) has
been invented by Christopher Strachey and Dana Scott in 1969.

The goal: provide a mathematical interpretation of programs.
Strachey was promoting such an interpretation since the
beginning of the 1960’s.

What do programs do, independently from the implementation on
a concrete machine?

Strachey’s idea: programs as functions

• A functional program maps “values” to “values”,
• a program (with side effects) maps states (of the machine)

to states.

Problem
What kind of functions acting on what kind of spaces?

D. Scott: the invention of DS

Dana Scott (a logician, student of Alonzo Church), probably
inspired by the Rice Shapiro theorem (1959), found an answer.

Scott was also looking for models of the pure λ-calculus, that is a
“universe” where we can have a non-trivial object X such that

(X ⇒ X) ⊆ X

(impossible in Set, the category of sets and functions, for
cardinality reasons).

Partial recursive functions

A partial recursive function is a partial function N→ N which can
be computed by a program. Partiality: for some values of the
argument, the program may loop.

The partial rec. fun. ϕn: partial recursive functions are defined by
programs which are finite sequences of symbols, and so there are
only countably many programs, we can enumerate them
p0, p1, . . . Then ϕn is the partial recursive function computed by
program pn.

F ⊆ N recursively enumerable: there is an integer n such that

k ∈ F ⇔ ϕn(k) is defined.

Finite function: a partial function θ : N→ N is finite if the set of
n’s such that θ(n) is defined is finite. Any such finite θ is partial
recursive.

Theorem (Rice Shapiro)

Let F be a set of partial recursive functions N→ N such that
{n | ϕn ∈ F} is recursively enumerable. Let ψ : N→ N be partial
recursive.

Then ψ ∈ F if and only if there is a finite function ψ0 ⊆ ψ such
that ψ0 ∈ F.

The hypothesis means ∃k ∈ N such that

∀n ∈ N ϕn ∈ F ⇔ ϕk(n) defined.

Such a k is the (indice of) a program which computes F that we
can see as a semi-decision procedure on recursive functions.

More intuitively but less accurately: let N be the set of partial
recursive functions N→ N and F : N → {0} be “partial
computable”. Then
• if ψ,ψ′ ∈ N with ψ ⊆ ψ′ (as graphs) and F (ψ) = 0 then

F (ψ′) = 0 (F is monotone)
• and if F (ψ) = 0 there is a finite function ψ0 ⊆ ψ such that

F (ψ0) = 0.

Works also replacing {0} with N.

Intuition
A computation takes a finite amount of time and hence, to
produce a finite information (here 0, that is termination), a
program (here F) can explore only a finite part (here ψ0) of its
argument (here ψ).

Dana Scott’s great idea:
denotational semantics = recursion theory − computability

Forget computability, keep only the order theoretic aspects of
Rice Shapiro and generalize it to all types.

Replace N by the set of all partial functions N→ N, not only the
computable ones, ordered by inclusion of graphs.

Then consider partial F : N → N such that
• if f , g ∈ N with f ⊆ g (as graphs) and F (f) = n then

F (g) = n (F is monotone)
• and if F (f) = n there is a finite function f0 ⊆ f such that

F (f0) = n.

This property is exactly Scott continuity!

It can be extended to much more general objects than N :
domains (partially ordered sets with some order-completeness
properties).

Scott and Strachey: use Scott continuous functions to interpret
programs.

Scott: it also works for the pure λ-calculus.

This is the basic idea of Denotational Semantics.

Cartesian closed categories (CCC)

In the 1980’s, one understands that categories are a useful tool
for describing such denotational models, especially when
morphisms are not functions.

The notion of cartesian closed categories (CCC) is the right
setting for describing denotational models of the λ-calculus and
of PCF.

Beyond Scott’s initial idea. . .

Several refinements of Scott continuity:
• sequential functions (many people: Jean Vuillemin, Vladimir

Sazonov, Robin Milner) but does not give a CCC
• stable functions (Gérard Berry, rediscovered by Jean-Yves

Girard) CCC
• sequential algorithms (Berry and Pierre-Louis Curien) CCC

— not functions
• strong stability (Antonio Bucciarelli and E.), a CCC whose

“type 1” morphisms are sequential
• various game models — not functions
• combinations, refinements etc of the above.

Jean-Yves Girard and DS

• In the early 1980’s, Girard develops a model of System F (a
second-order typed λ-calculus he discovered 15 years earlier)
using stable functions on qualitative domains.

• He understands that, in this model, (1) standard implication
can be decomposed using this new implication:
(X ⇒ Y) = (!X ⊸ Y) where X ⊸ Y is a space of linear
stable maps,

• that (2) only very special qd’s arise as interpretations of
types: coherence spaces,
• and that (3) linear stable maps between coherence spaces

lead to involutive linear negation X 7→ (X ⊸ ⊥).

This is at the same time
• the origin of Linear Logic
• and a new approach to denotational semantics based on a

notion of linear morphisms.

Major influence on the development of game models in the
1990’s.

For this reason, the linear logical structure of models is central in
this lecture.

Two basic intuitions about DS

• Before LL: DS was considered as based on Domain Theory,
which was considered as part of Topology because of Scott
continuity. But with topological space having weak
separation properties.
• After LL: DS is closer to Linear Algebra. Although it is not

always possible to add vectors. . .

These two points of view still exist. Our lecture is clearly based
on the second one.

LL is everywhere!

Many models appear to have a linear logical structure or have
been directly defined as models of LL:
• Scott semantics itself (Scott continuous functions on

prime-algebraic complete lattices) though neither Scott nor
Girard did notice
• Hypercoherence semantics (strongly stable functions on

hypercoherence spaces, accounting for sequentiality)
• the relational model (objects are sets, morphisms are

relations)
• models based on linear algebra: Köthe spaces, finiteness

spaces, probabilistic coherence spaces
• and a large number of refinements or combinations of these

models.

Another great idea of Dana Scott: introduce a simple, Turing
complete, functional programming language for defining
denotational interpretations. This is PCF.

Allows to study very cleanly the connection between operational
semantics (execution of programs etc) and DS.

The language PCF

Lecture notes, Sections 1.1, 1.2 and 1.3

Syntax of PCF

PCF = Programming Computable Functions

Published for the first time in a paper by Gordon Plotkin in 1977.

Our version of PCF
A simply typed λ-calculus with one ground data-type (integers)
and a fixpoint operator to implement general recursion.

A,B, . . . := ι | A⇒ B

M,N,P, . . . := x | n | succ(M) | if(M,N, x · P)

| λxA M | (M)N | fix(M)

For each n ∈ N there is a constant n in the language.

Typing rules for PCF

Typing context: Γ = (x1 : A1, . . . , xn : An), xi ’s pairwise distinct
variables. More precisely Γ is a finite partial function from
variables to types.

Γ, x : A ⊢ x : A
Γ ⊢ M : A⇒ B Γ ⊢ N : A

Γ ⊢ (M)N : B

Γ, x : A ⊢ M : B

Γ ⊢ λxA M : A⇒ B

Γ ⊢ M : A⇒ A
Γ ⊢ fix(M) : A

n ∈ N
Γ ⊢ n : ι

Γ ⊢ M : ι

Γ ⊢ succ(M) : ι

Γ ⊢ M : ι Γ ⊢ P : A Γ, z : ι ⊢ Q : A

Γ ⊢ if(M,P, z ·Q) : A

Intuition: pattern matching

Main difference wrt. Plotkin’s PCF: conditional is a case analysis
on M, of type ι:
• (zero) if(0,N, x · P) ; N
• (successor) if(n + 1,N, x · P) ; P [n/x].

Similar to a pattern matching in Ocaml.

Intuition: fixpoint operator

Purpose: define recursive functions.

In Ocaml (or similar functional languages) on can write

let rec f = M

where f can occur free in M, to define f of type A.

For this to make sense we need

Γ, f : A ⊢ M : A .

With a fixpoint operator like ours, this would be written

let f = fix(λf A M)

Substitution

Substitution M [N/x] is defined as usual, terms are considered up
to α-conversion to avoid meaningless variable bindings as in:

(λxA y) [x/y] = λxA x

Replace first the substituted term λxA y with the α-equivalent
λzA y and then apply the substitution:

(λzA y) [x/y] = λzA x .

Operational semantics

How do we compute with this language?

We will provide
• a set of general reduction rules β that turns the language

into a rewriting system
• and a rewriting subsystem βwh which is a deterministic

strategy, turning PCF into a programming language: weak
head-reduction.

This strategy can be implemented by means of an abstract
machine.

Rewriting rules β

They are presented as a deduction system which allows to prove
statements of shape M β M ′ expressing that M reduces to M ′ in
PCF.

Red underlined terms are called redexes.

Axioms. Standard β-reduction:

(λxA M)N β M [N/x]

Fixpoint unfolding:

fix(M) β (M) fix(M)

Case analysis:

if(0,P, z ·Q) β P if(n + 1,P, z ·Q) β Q [n/z]

Successor:
succ(n) β n + 1

Important

To reduce if(M,P, z ·Q) we require M to be an integer constant
n, for instance the reduction

if(succ(N),P, z ·Q) β Q [N/z]

is not valid. The integers are dealt with in Call by Value style.

The deduction rules express that reduction can be performed in
any context.

M β M ′

λxA M β λxA M ′

M β M ′

(M)N β (M ′)N

N β N ′

(M)N β (M)N ′

M β M ′

fix(M) β fix(M ′)

M β M ′

if(M,P, z ·Q) β if(M ′,P, z ·Q)

P β P ′

if(M,P, z ·Q) β if(M,P ′, z ·Q)

Q β Q ′

if(M,P, z ·Q) β if(M,P, z ·Q ′)
M β M ′

succ(M) β succ(M ′)

β preserves types

Lemma (Substitution)

Let P,Q ∈ PCF. If Γ, x : A ⊢ P : B and if Γ ⊢ Q : A, then
Γ ⊢ P [Q/x] : B.

The proof is a simple induction on the typing derivation of P.

Theorem (Subject reduction)

Let M ∈ PCF. If Γ ⊢ M : A et M β M ′, then Γ ⊢ M ′ : A.

The proof is a simple induction on the derivation that M β M ′.
One uses the Substitution Lemma when M = (λxA P)Q and
M ′ = P [Q/x].

Abstract Rewriting Systems (ARS)

An ARS is a pair (T , θ) where T is a set (the “terms”) and θ is a
binary relation on a set T (that is θ ⊆ T × T), a “rewriting
relation”.
• We use θ∗ for the least binary relation ϕ on T such that ϕ is

transitive and reflexive and θ ⊆ ϕ. Given t, t ′ ∈ T , one has
t θ∗ t ′ if and only if there are t1, . . . , tn ∈ T with n ≥ 1 such
that t = t1, t ′ = tn and ti θ ti+1 for i = 1, . . . , n − 1. It is
called the reflexive transitive closure of θ.
• We define similarly θ− as the reflexive closure of θ: t θ− t ′ if

t = t ′ or t θ t ′.
• t ∈ T is θ-normal if there is no t ′ ∈ T such that t θ t ′.

The Church Rosser property

• We say that θ has the Diamond Property (DP) if

∀t, t1, t2 ∈ T t θ t1 and t θ t2 ⇒ ∃t ′ ∈ T t1 θ t ′ and t2 θ t ′

t

t1 t2

t ′

θ θ

θ θ

• and that θ has the Church Rosser Property (CR) if θ∗ has
the Diamond property.

Theorem (PCF is Church Rosser)

The relation β has the Church Rosser property.

We outline a very general and efficient method to this kind of
result: the Tait Martin-Löf method of parallel reductions.

Good to know it because it can be used is many different settings.

Why isn’t PCF trivially CR?

Theorem (Easy)

If θ− has the Diamond Property (DP) then θ has the Church
Rosser property.

Idea of the proof

However β− has not the DP: let I = λx ι x and I ′ = λgι⇒ι g so
that ⊢ I : ι⇒ ι, ⊢ I ′ : (ι⇒ ι)⇒ ι⇒ ι and ⊢ (I ′) I : ι⇒ ι.

M = (λf ι⇒ι (f) (f) 0) (I ′) I

((I ′) I) ((I ′) I) 0 (λf ι⇒ι (f) (f) 0) I

(I) (I) 0

β β

β2 β

Impossible to close this diagram in one step on both sides: on the
left we have to reduce 2 copies of the redex (I ′) I , on the right
only one.

Tait Martin-Löf proof idea

Crucial observation
We can close the diagram reducing only redexes which were
present in the original term, namely:
• M itself
• and (I ′) I

but we need to be allowed to reduce several of them.

We never need to reduce the new redex (I) (I) 0 which has been
created during the reduction.

Sketch of the proof

Strategy of the proof

• Define a parallel reduction relation ρ which performs an
arbitrary number of reduction of redexes present in the initial
term (such as the red and the blue ones), so that
β ⊆ ρ ⊆ β∗ and hence ρ∗ = β∗.
• Prove that ρ has the diamond property.

The parallel reduction ρ

As usual we present it as a deduction system.

M ρ M ′ N ρ N ′

(λxA M)N ρ M ′ [N ′/x]

M ρ M ′ M ρ M ′′

fix(M) ρ (M ′) fix(M ′′)

P ρ P ′

if(0,P, z ·Q) ρ P ′
Q ρ Q ′

if(n + 1,P, z ·Q) ρ Q ′ [n/z]

succ(n) ρ n + 1

n ρ n x ρ x

M ρ M ′

succ(M) ρ succ(M ′)

M ρ M ′

λxA M ρ λxA M ′
M ρ M ′ N ρ N ′

(M)N ρ (M ′)N ′

M ρ M ′

fix(M) ρ fix(M ′)

M ρ M ′ P ρ P ′ Q ρ Q ′

if(M,P, z ·Q) ρ if(M ′,P ′, z ·Q ′)

Relation between ρ and β

In all these statements we assume that Γ ⊢ M : A.

Lemma
If M β M ′ then M ρ M ′.

Easy induction on the derivation that M β M ′. We also use the
following easy property:

Lemma
M ρ M.

Proof by induction on M (or on its typing derivation).

Lemma
Assume that Γ, x : A ⊢ N : B and N β N ′ then
N [M/x] β N ′ [M/x]. Hence N β∗ N ′ ⇒ N [M/x] β∗ N ′ [M/x].

Easy induction on the derivation that N β N ′. Assume for
instance that N = (λyC P)Q and N ′ = P [Q/y] so that the
derivation consists of an axiom.

Then N ′ [M/x] = P [Q/y] [M/x] = P [M/x] [Q [M/x]/y]

because we can assume that y does not occur free in M. And

N [M/x] = ((λyC P)Q) [M/x] = (λxC P [M/x])Q [M/x]

β P [M/x] [Q [M/x]/y]

Lemma
Assume that Γ, x : A ⊢ N : B and M β M ′ then
N [M/x] β∗ N [M ′/x].

Easy induction in the derivation that Γ, x : A ⊢ N : B.

Assume for instance that N = (P)Q with Γ, x : A ⊢ P : C ⇒ B
and Γ, x : A ⊢ Q : C .

By inductive hypothesis we have P [M/x] β∗ P [M ′/x] and
Q [M/x] β∗ Q [M ′/x]. Therefore since
((P)Q) [M/x] = (P [M/x])Q [M/x] we have

N [M/x] (P [M ′/x])Q [M/x] (P [M ′/x])Q [M ′/x]
β∗ β∗

Combining these two results:

Lemma
Assume that Γ, x : A ⊢ N : B, N β∗ N ′ and M β∗ M ′ then
N [M/x] β∗ N ′ [M ′/x].

Using this lemma, one proves

Lemma
If Γ ⊢ M : B and M ρ M ′ then M β∗ M ′. As a consequence
Γ ⊢ M ′ : B.

By induction on the derivation that M ρ M ′. Assume for instance
that M = (λxA P)Q and M ′ = P ′ [Q ′/x] with P ρ P ′ and Q ρ Q ′.

By inductive hypothesis P β∗ P ′ and Q β∗ Q ′ and hence by the
lemma above P [Q/x] β∗ P ′ [Q ′/x], hence

M = (λxA P)Q P [Q/x] P ′ [Q ′/x] = M ′
β β∗

Main properties of ρ

The crucial property of ρ is:

Theorem
Assume that Γ, x : A ⊢ M : B and Γ ⊢ N : A and assume that
M ρ M ′ and N ρ N ′. Then

M [N/x] ρ M ′ [N ′/x] .

The proof is by induction on the derivation that M ρ M ′.

One step in the proof

Assume that M = (λyC P)Q with
• Γ, x : A, y : C ⊢ P : B and Γ, x : A ⊢ Q : C ,
• P ρ P ′ and Q ρ Q ′,
• and M ′ = P ′ [Q ′/y].

We have M [N/x] = (λyC P [N/x])Q [N/x] (we assume that y
does not occur free in N).

The inductive hypothesis (IH) tells us that P [N/x] ρ P ′ [N ′/x]
and Q [N/x] ρ Q ′ [N ′/x].

By definition of ρ we have
M [N/x] ρ P ′ [N ′/x] [Q ′ [N ′/x]/y] = M ′ [N ′/x] because we can
also assume that y is not free in N ′.

Theorem
The relation ρ has the Diamond property: assume that Γ ⊢ M : A
and that M ρ Mi for i = 1, 2. Then there is a term R such that
Mi ρ R for i = 1, 2.

By induction on the structure of M, considering all possible last
rules in the deduction that M ρ M1 and M ρ M2 and applying the
above lemma.

Assume for instance that M = (λyB P)Q and:
• M1 = (λyB P1)Q1 with P ρ P1 and Q ρ Q1

• M2 = P2 [Q2/y] with P ρ P2 and Q ρ Q2.

By IH there are terms P0 and Q0 such that Pi ρ P0 and Qi ρ Q0
for i = 1, 2. By definition of ρ we have
M1 = (λyB P1)Q1 ρ P0 [Q0/y] and by the lemma we have
M2 = P2 [Q2/y] ρ P0 [Q0/y] = R.

Consequences of Church Rosser

Given an ARS θ ⊆ T × T , let ∼θ be the symmetric, reflexive and
transitive closure of θ.

Theorem
If θ is Church Rosser then

∀t1, t2 ∈ T t1 ∼θ t2 ⇔ ∃t ′ ∈ T t1 θ∗ t ′ and t2 θ∗ t ′

Idea of the proof

Uniqueness of value

Another crucial consequence of Church Rosser:

Theorem
Assume that ⊢ M : ι. If there exists n ∈ N such that M β∗ n,
there is only one such n. If M has a value, it has exactly one
value!

If M β∗ n′ for another n′ ∈ N then by Church Rosser there is M ′

such that n β∗ M ′ and n′ β∗ M ′. This implies n = n′.

General recursive functions in PCF

So if ⊢ M : ι⇒ ι we can define a partial function fM : N→ N by

fM(n) =

{
k if (M) n β∗ k

undefined otherwise

Theorem (Turing completeness of PCF)

The class of partial functions f : N→ N such that there exists
⊢ M : ι⇒ ι such that f = fM is exactly the class of all partial
recursive functions.

Weak head reduction

Problem
How do we execute PCF terms in a machine?

In ⊢ M : ι there may be a lot of redexes, which one should we
choose to reduce?

Worse: some sequences of reductions could be infinite whereas
there is n ∈ N such that M β∗ n.

Example

M = (λx ι 0) fix(λz ι z) .

We have M β 0 and M β (λx ι 0) (λz ι z) fix(λz ι z) β M.

Def. of the weak head-reduction βwh

We define a sub-relation βwh of β. The axioms are the same as
for β:

(λxA M)N βwh M [N/x]

fix(M) βwh (M) fix(M)

if(0,P, z ·Q) βwh P if(n + 1,P, z ·Q) βwh Q [n/z]

succ(n) βwh n + 1

But there are much less deduction rules, in other words there are
less contexts where redexes can be reduced.

M βwh M ′

(M)N βwh (M ′)N

M βwh M ′

if(M,P, z ·Q) βwh if(M ′,P, z ·Q)

M βwh M ′

succ(M) βwh succ(M ′)

We have

(λx ι 0) fix(λz ι z) βwh 0

M = (λx ι 0) fix(λz ι z) β̸∗wh M

Notice that βwh is a “deterministic strategy” in the sense that for
any term M there is at most one redex which can be reduced by a
βwh reduction.

Notation

(M)M1 · · ·Mn = (· · · (M)M1 · · ·)Mn

Lemma
If Γ ⊢ M : A, to have M βwh M ′, M must be of shape

M = (H)M1 · · ·Mn

with n ≥ 0 and
• either H is a redex with H βwh H ′ and then

M ′ = (H ′)M1 · · ·Mn

• or H = if(K ,P, z ·Q), K βwh K ′ and
M ′ = (if(K ′,P, z ·Q))M1 · · ·Mn,
• or H = succ(K) (and n = 0), K βwh K ′ and M ′ = succ(K ′).

βwh-normal closed terms of type ι

Fact
If ⊢ M : ι and M is βwh-normal (no βwh-reduction from M) then
M = k for some k ∈ N.

By induction on M.
We can write M = (M0)M1 · · ·Mn where M0 is not of shape
(P)Q.
• If M0 = λxA P we must have n ≥ 1 because ⊢ M : ι and
(M0)M1 βwh P [M1/x] and hence
M βwh (P [M1/x])M2 · · ·Mn hence M is not βwh-normal. So
this case is impossible.
• If M0 = if(K ,P, x ·Q) then we must have ⊢ K : ι and K

must be βwh-normal, which by induction implies K = k for
some k ∈ N but then M0 is not βwh normal and neither is M.

• M0 = fix(P) is impossible because fix(P) βwh (P) fix(P).
• If M0 = succ(P) then we must have ⊢ P : ι and P must be
βwh-normal (by typing we must have n = 0 and if P βwh P ′

then M βwh succ(P ′), contradiction). By inductive
hypothesis P = k for some k ∈ N. Then M βwh k + 1,
contradiction.
• The only left possibility is that M0 = k for some k ∈ N which

implies n = 0 by typing.

βwh is complete

Let ⊢ M : ι. Of course if M β∗wh n then M β∗ n. In a few weeks
we shall be able to prove

Theorem
If M β∗ n then M β∗wh n.

Examples of PCF programs

Addition:

add = λx ι fix(λaι⇒ι λy ι if(y , x , z · succ((a) z)))

with ⊢ add : ι⇒ (ι⇒ ι)

Comparison:

cmp = fix(λcι⇒(ι⇒ι) λx ι λy ι if(x , 0, z · if(y , 1, z ′ · (c) z z ′)))

et on a ⊢ cmp : ι⇒ (ι⇒ ι)

Search:

λf ι⇒ι (fix(λgι⇒ι λx ι if((f) x , x , z · (g) succ(x)))) 0

Morris equivalence

We have a notion of equivalence ∼β on terms, but it is very
weak. For instance the two terms

M1 = λx ι1 λx ι2 if(x1, if(x2, 0, z · 1), z · 1)
M2 = λx ι2 λx ι1 if(x1, if(x2, 0, z · 1), z · 1)

obviously do the same thing (not in the same order). But it is not
true that M1 ∼β M2.

Two terms are Morris (or observationally) equivalent if they can
be used indifferently in any context.

Definition
Let M1 and M2 be such that ⊢ Mi : A for i = 1, 2. We say that
M1 and M2 are observationally equivalent (written M1 ∼ M2) if
for any term C such that ⊢ C : A⇒ ι one has

(C)M1 β
∗
wh 0⇔ (C)M2 β

∗
wh 0 .

The idea behind this definition is that the only type whose values
can be observed (by a human, that is, a finite being) is N.

• This is an equivalence relation (on closed terms of type A).
• The choice of convergence to 0 as a criterion is irrelevant,

we would define exactly the same equivalence relation if we
define M1 ∼ M2 by

(∃n ∈ N (C)M1 β
∗
wh n)⇔ (∃n ∈ N (C)M2 β

∗
wh n)

This is due to the universal quantification on C .

Theorem
Let ⊢ M1,M2 : A. If M1 ∼β M2 then M1 ∼ M2.

Assume M1 ∼β M2.

Let C with ⊢ C : A⇒ ι and assume (C)M1 β
∗
wh 0, which implies

(C)M1 β
∗ 0.

Since M1 ∼β M2 we have (C)M1 ∼β (C)M2 and hence
(C)M2 β

∗ 0 by Church Rosser.

Hence (C)M2 β
∗
wh 0 by completeness of βwh.

If

M1 = λx ι1 λx ι2 if(x1, if(x2, 0, z · 1), z · 1)
M2 = λx ι1 λx ι2 if(x2, if(x1, 0, z · 1), z · 1)

then

M1 ∼ M2

Not easy to prove because of the ∀C in the definition of ∼.

Fact
Easy to prove using denotational semantics: it suffices to prove
that M1 and M2 have the same interpretation in some (adequate)
model.

We’ll see that this implies M1 ∼ M2.

The relational model

Lecture notes, Section 6.7 Relational semantics

What is a categorical model of LL?

A tuple (L, 1,⊗, λ, ρ, α, γ,⊥, !_, der, dig,m0,m2) consisting of:

• a symmetric monoidal closed category (SMCC) which is
cartesian
• together with an object ⊥ of L which turns this SMCC into

a ∗-autonomous category
• and a symmetric monoidal comonad on L.

What we do now
We explain what this means, giving Rel as an example.

Linear Logic: short reminder

Formulas: A, B, A1. . .

positive negative

mutiplicative 1, A⊗ B ⊥, A ` B

additive 0, A⊕ B ⊤, A & B

exponential !A ?A

Linear Negation

Defined by induction on formulas

1⊥ = ⊥ (A⊗ B)⊥ = A⊥ ` B⊥

⊥⊥ = 1 (A ` B)⊥ = A⊥ ⊗ B⊥

0⊥ = ⊤ (A⊕ B)⊥ = A⊥ & B⊥

⊤⊥ = 0 (A & B)⊥ = A⊥ ⊕ B⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

Fact
A⊥⊥ = A

Sequents ⊢ A1, . . . ,An

There is a logical system which allows to build trees π which are
proofs of sequents

.... π

⊢ Γ

And a cut-elimination rewriting system on proofs of the same
sequent π → π′.

Categorical semantics

A category L

A correspondence

A ; JAK object of L
Γ ; JΓK object of L
π ; JπK morphism of L

In such a way that

π → π′ ⇒ JπK = Jπ′K

Main feature: modularity

With each linear connective is associated a functor, for instance

JA⊗ BK = JAK⊗ JBK

With each logical rule, an operation on morphisms. If π is the
proof tree

.... λ

⊢ Γ,A

.... ρ

⊢ ∆,B

⊢ Γ,∆,A⊗ B

then JπK = T (JλK, JρK) where T is a well defined operation on
morphisms.

Methodology

We do not define directly the interpretation on LL.

Rather, we define a general notion of category where the
interpretation is possible and satisfies these requirements
(modularity, invariance by cut-elim).

This is much better because the categorical language is extremely
precise and explicit. Though not always very convenient logically.

It took several years after the discovery of LL, to find the right
categorical setting.

To check that something is a model of LL, it suffices to check
these categorical axioms, without coming back to LL iself.

The category Rel

It is probably the simplest denotational model of LL.

Very roughly: coherence spaces. . . without coherence.

It is also a model of PCF.

Rel as a category

Objects of Rel: all sets.

Rel(E ,F) = P(E × F)

Identity at E : IdE = {(a, a) | a ∈ E}

Composition: if s ∈ Rel(E ,F) and t ∈ Rel(F ,G) then
t s ∈ Rel(E ,G) is

t s = {(a, c) ∈ E × G | ∃b ∈ F (a, b) ∈ s and (b, c) ∈ t}

Fact
Rel is a category.

Isomorphisms in Rel

Remember:

Definition
t ∈ L(X ,Y) is an iso if there is t ′ ∈ L(Y ,X) such that t ′ t = IdX
and t t ′ = IdY . Then we know that there is a unique such t ′, it is
denoted as t−1.

Fact
t ∈ Rel(E ,F) is an iso iff t is (the graph of) a bijection E → F
and then t−1 is the inverse of this bijection.

Symmetric monoidal category (SMC)

Imporant

An SMC is not a category, it is a category equipped with a
monoidal structure, just as a monoid is not a set, but a set
equipped with a structure of monoid.

An SMC is a tuple

(L, 1,⊗, λ, ρ, α, γ)

where
• L is a category
• 1 ∈ Obj(L) and ⊗ is a functor L2 → L
• and λ, ρ, α and γ are natural isomorphisms.

Monoidality isomorphisms in L

λX : 1⊗ X → X

ρX : X ⊗ 1→ X

αX1,X2,X3 : (X1 ⊗ X2)⊗ X3 → X1 ⊗ (X2 ⊗ X3)

γX1,X2 : X1 ⊗ X2 → X2 ⊗ X1

Satisfying coherence diagrams.

Idea: if we consider the isos of the monoidal structure as
rewriting rules, there are “critical pairs”, for instance

(X1 ⊗ X2)⊗ X3 X1 ⊗ (X2 ⊗ X3)

(X2 ⊗ X1)⊗ X3

αX1,X2,X3

γX1,X2⊗X3

then the coherence diagrams explain how to solve these conflicts.

Examples of coherence diagram

(X1 ⊗ X2)⊗ X3 X1 ⊗ (X2 ⊗ X3)

(X2 ⊗ X1)⊗ X3 (X2 ⊗ X3)⊗ X1

X2 ⊗ (X1 ⊗ X3) X2 ⊗ (X3 ⊗ X1)

αX1,X2,X3

γX1,X2⊗X3 γX1,X2⊗X3

αX2,X1,X3 αX2,X3,X1

X2⊗γX1,X3

Mac Lane’s Pentagon

((X1 ⊗ X2)⊗ X3)⊗ X4 (X1 ⊗ X2)⊗ (X3 ⊗ X4)

(X1 ⊗ (X2 ⊗ X3))⊗ X4 X1 ⊗ (X2 ⊗ (X3 ⊗ X4))

X1 ⊗ ((X2 ⊗ X3)⊗ X4)

αX1⊗X2,X3,X4

αX1,X2,X3⊗X4 αX1,X2,X3⊗X4

αX1,X2⊗X3,X4 X1⊗αX2,X3,X4

Mac Lane’s theorem on monoidal
categories

One major effect of these coherence diagrams is that in a
(symmetric) monoidal category L, if X1, . . . ,Xn are objects, if X
and X ′ are two ways of putting parenthesis in X1⊗ · · · ⊗Xn, there
is a unique canonical iso from X to X ′.

Example

n = 5, X = X1 ⊗ ((X2 ⊗ X3)⊗ (X4 ⊗ X5)),
X ′ = (((X1 ⊗ X2)⊗ X3)⊗ X4)⊗ X5.

Using α, we can define several isos from X to X ′. Mac Lane’s
Theorem tells us that they are all equal.

Consequence

We can write X1 ⊗ · · · ⊗ Xn without parentheses.

The other commutations are similar (see the lecture notes).

One special commutation, which holds in Rel, corresponds to the
adjective “symmetric”:

X1 ⊗ X2 X2 ⊗ X1

X1 ⊗ X2

γX1,X2

IdX2⊗X1

γX2,X1

There are other, weaker, possibilities for γ. One of them
corresponds to braided monoidal categories.

Monoidal structure of Rel
We set E1 ⊗ E2 = E1 × E2.

If si ∈ Rel(Ei ,Fi) for i = 1, 2, we set

s1 ⊗ s2 = {((a1, a2), (b1, b2)) | (ai , bi) ∈ si for i = 1, 2}
∈ Rel(E1 ⊗ E2,F1 ⊗ F2)

Fact
⊗ is a functor Rel2 → Rel.

One has to prove that IdE1 ⊗ IdE2 = IdE1⊗E2 and if si ∈ Rel(Ei ,Fi)
and ti ∈ Rel(Fi ,Gi) then

(t1 ⊗ t2) (s1 ⊗ s2) = (t1 s1)⊗ (t2 s2)

All proofs are easy!

1 = {∗}

We have (trivial) natural isomorphisms

λE : 1⊗ E → E

ρE : E ⊗ 1→ E

αE1,E2,E3 : (E1 ⊗ E2)⊗ E3 → E1 ⊗ (E2 ⊗ E3)

γE1,E2 : E1 ⊗ E2 → E2 ⊗ E1

For instance

λE = {((∗, a), a) | a ∈ E}
αE1,E2,E3 = {(((a1, a2), a3), (a1, (a2, a3))) | ai ∈ Ei for i = 1, 2, 3}

and similarly for the others.

Remember that the naturality of γ (for instance) means that if
si ∈ Rel(Ei ,Fi) for i = 1, 2 then the following diagram commutes
in Rel:

E1 ⊗ E2 E2 ⊗ E1

F1 ⊗ F2 F2 ⊗ F1

γE1,E2

s1⊗s2 s2⊗s1

γF1,F2

To prove such a commutation:
• take (a1, a2) ∈ E1 ⊗ E2 and (b2, b1) ∈ F2 ⊗ F1

• prove that

((a1, a2), (b2, b1)) ∈ (s2 ⊗ s1) γE1,E2

⇒ ((a1, a2), (b2, b1)) ∈ γF1,F2 (s1 ⊗ s2)

• and the converse implication.

In this case, the proof is trivial.

Fact
(Rel, 1,⊗, λ, ρ, α, γ) is a symmetric monoidal category (SMC).

Points
In an SMC L, a point of an object X is a morphism x ∈ L(1,X),
PtL(X) = L(1,X).

Can be seen as a functor: PtL : L → Set

If s ∈ L(X ,Y) then

PtL(s) : PtL(X)→ PtL(Y)

x 7→ s x

Points in Rel (up to trivial iso)

PtRel(E) = P(E) and if s ∈ Rel(E ,F) then

PtRel(s) : P(E)→ P(F)

u 7→ s · u = {b ∈ F | ∃a ∈ u (a, b) ∈ s}

Monoidal closedness

(L, . . .) an SMC.

A linear hom object from X to Y (objects of L) is a pair
(X ⊸ Y , ev) where
• X ⊸ Y is an object of L
• ev ∈ L((X ⊸ Y)⊗ X ,Y)

• such that for any s ∈ L(Z ⊗ X ,Y) there is exactly one
morphism cur(s) ∈ L(Z ,X ⊸ Y) such that

Z ⊗ X (X ⊸ Y)⊗ X

Y

cur(s)⊗X

s
ev

Equational characterization

It is useful to know that the linear hom object is characterized by
the following equations:
• ev (cur(s)⊗ X) = s for s ∈ Rel(Z ⊗ X ,Y), this is just the

last commutation
• cur(s) t = cur(s (t ⊗ X)) for s ∈ Rel(Z ⊗ X ,Y) and

t ∈ Rel(T ,Z)

• and cur(ev) = IdX⊸Y .

Definition
The SMC (L, . . .) is closed if any X ,Y ∈ Obj(L) have a linear
hom object (X ⊸ Y , ev).

Since linear hom objects are defined by a universal property, being
closed is a property of an SMC, not an additional structure.

Equivalent definition

An SMC L is closed if for any object Z of L, the functor
Z ⊗_ : L → L has a right adjoint.

Rel is an SMCC

Concretely

E ⊸ F = E × F

ev = {(((a, b), a), b) | a ∈ E and b ∈ F}
∈ Rel((E ⊸ F)⊗ E ,F)

cur(s) = {(c , (a, b)) | ((c , a), b) ∈ s}
∈ Rel(G ,E ⊸ F)

for s ∈ Rel(G ⊗ E ,F).

Linear hom object as a functor

Fact
If L is an SMCC then _⊸ _ is a functor Lop × L → L.
Explicitly, if s ∈ L(X ′,X) and t ∈ L(Y ,Y ′), then
s ⊸ t = cur(u) ∈ L(X ⊸ Y ,X ′⊸ Y ′) where u is the following
morphism:

(X ⊸ Y)⊗ X ′ (X ⊸ Y)⊗ X Y Y ′
(X⊸Y)⊗s ev t

∗-autonomy

Definition
An SMCC L is ∗-autonomous if it is equipped with an objet ⊥ of
L such that the natural morphism

ηX = cur(s) ∈ L(X , (X ⊸ ⊥)⊸ ⊥)

is an isomorphism, where s is the following morphism

X ⊗ (X ⊸ ⊥) (X ⊸ ⊥)⊗ X ⊥γ ev

Then the functor (_)⊥ = _⊸ ⊥ : Lop → L is “involutive up to
iso”.

Fact
With ⊥ = 1 = {∗}, Rel is ∗-autonomous. Indeed

ηE = {(a, ((a, ∗), ∗)) | a ∈ E}

is trivially an iso.

Linear negation

We can identify the functor

_⊸ ⊥ : Relop → Rel

with the functor _⊥ defined by
• E⊥ = E
• and if s ∈ Rel(E ,F) then

s⊥ = {(b, a) | (a, b) ∈ s} ∈ Rel(F ,E)

which is strictly involutive. If we see s as a E × F -matrix then s⊥

is its transpose.

Cotensor or par bifunctor

In a ∗-autonomous category L (using _⊥ for the involutive
dualizing contravariant functor _⊸ ⊥) we have a binary functor

` : L2 → L

• On objects: X ` Y = (X⊥ ⊗ Y⊥)⊥

• and similarly for morphisms.

With ⊥ as unit and suitable natural isos λ′, ρ′, α′ and γ′, this is
another SMC structure on L.

Fact
In Rel this symmetric monoidal structure coincides with
(1,⊗, λ, ρ, α, γ). In particular E ` F = E ⊗ F = E × F.

This is due to the fact that the objects of Rel have no structure,
they are just sets.

In coherence spaces (for instance), 1 and ⊥ are the same object
but ⊗ and ` are distinct functors.

Products and coproducts

We also require L to be cartesian, that is, any finite family (Xi)i∈I
has a cartesian product (X , (pri)i∈I), this means the following.
• X is an objet of L and pri ∈ L(X ,Xi)

• and the following universal property holds: for any object Y
of L and any family (si)i∈I with si ∈ L(Y ,Xi), there is
exactly one s ∈ L(Y ,X) such that ∀i ∈ I pri s = si .

Remark
As usual for objects characterized by a universal property: if
(X ′, (pr′i)i∈I) is another cartesian product of the Xi ’s, there is
exactly one morphism t ∈ L(X ,X ′) such that ∀i ∈ I pr′i t = pri .
Moreover, this morphism t is an iso.

(X , (pri)i∈I) and (X ′, (pr′i)i∈I) are identical in the strongest
categorical sense.

Notations:
• X = &i∈I Xi and in the binary case X = X1 & X2.
• if si ∈ L(Y ,Xi) for each i ∈ I , we use ⟨si⟩i∈I for the unique

element of L(Y ,&i∈I Xi) such that ∀i ∈ I pri ⟨sj⟩j∈I = si . In
the binary case: ⟨s1, s2⟩ : Y → X1 & X2.
• If I = ∅ then X is the terminal object denoted as ⊤,

characterized by: for any object Y of L, the set L(Y ,⊤) is a
singleton {tY }.

Equational characterization

The following properties characterize the cartesian product:
• for any family (si)i∈I with si ∈ L(Y ,Xi) for each i ∈ I one

has ∀i ∈ I pri ⟨sj⟩j∈I = si
• moreover, if t ∈ L(Z ,Y), one has ⟨si⟩i∈I t = ⟨si t⟩i∈I

• and last ⟨pri⟩i∈I = Id&i∈I Xi .

Remark
Most often models of linear logic have cartesian products of all
countable families of objects, not only of finite families.

Cart. prod. as an SM structure

Given si ∈ L(Xi ,Yi) for i = 1, 2, we have si pri ∈ L(X1 & X2,Yi)
for i = 1, 2 and hence we have exactly one morphism

s1 & s2 = ⟨s1 pr1, s2 pr2⟩ ∈ L(X1 & X2,Y1 & Y2)

such that

X1 & X2 Y1 & Y2

Xi Yi

s1&s2

pri pri

si

for i = 1, 2 .

In this way we have defined a functor L2 → L.

• pr2 ∈ L(⊤& X ,X) is an iso (inverse ⟨tX , IdX ⟩).
• pr1 ∈ L(X &⊤,X) is an iso (inverse ⟨IdX , tX ⟩).
• ⟨pr1 pr1, ⟨pr2 pr1, pr2⟩⟩ ∈ L((X1 & X2) & X3,X1 & (X2 & X3))

is an iso (inverse ⟨⟨pr1, pr1 pr2⟩, pr2 pr2⟩).
• ⟨pr2, pr1⟩ ∈ L(X1 & X2,X2 & X1) is an iso (inverse ⟨pr2, pr1⟩).

These isos define another SM structure on L.

Coproduct

We define ⊕i∈I Xi = (&i∈I X⊥i)⊥ and

ini = pr⊥i ∈ L(Xi , ⊕
j∈I

Xj)

then (⊕i∈I Xi , (ini)i∈I) is the coproduct of the Xi ’s in L that is,
we have the following universal property:

for any family of morphisms (si)i∈I with si ∈ L(Xi ,Y), there is
exactly one morphism s ∈ L(⊕i∈I Xi ,Y) such that s ini = si for
each i ∈ I .

The cartesian product in Rel

Given a family (Ei)i∈I of sets, we define

&
i∈I

Ei =
⋃
i∈I

{i} × Ei

prj =
{
((j , a), a) | a ∈ Ej

}
∈ Rel(&

i∈I
Ei ,Ej) for each j ∈ I

Fact
(&i∈I Ei , (pri)i∈I) is the cartesian product of the Ei ’s in Rel.

Given si ∈ Rel(F ,Ei) for each i ∈ I then

⟨si⟩i∈I = {(b, (i , a)) | ∀i ∈ I (b, a) ∈ si}
∈ Rel(F , &

i∈I
Ei)

Coproduct

⊕
i∈I

Ei =

(
&
i∈I

E⊥i

)⊥
= ⊕

i∈I
Ei =

⋃
i∈I

{i} × Ei

inj = pr⊥j ∈ Rel(Ej , ⊕
i∈I

Ei)

=
{
(a, (j , a)) | a ∈ Ej

}

Exponential

Let (L, . . .) be a ∗-autonomous category which is cartesian (that
is, has all finite cartesian products).

An exponential on (L, . . .) is a tuple (!_, der, dig,m0,m2) where
• (!_, der, dig) is a comonad on L
• and (m0,m2) is a symmetric monoidal structure on this

comonad: the Seely isomorphisms.

Let’s explain. . .

Comonad

• !_ : L → L is a functor
• and derX ∈ L(!X ,X) and digX ∈ L(!X , !!X) are natural in X

and moreover:

!X !!X

!X

digX

Id
der!X

!X !!X

!X

digX

Id
!derX

!X !!X

!!X !!!X

digX

digX !digX

dig!X

Seely isomorphisms

m0 : 1→ !⊤
m2

X1,X2
: !X1 ⊗ !X2 → !(X1 & X2)

are isos in L, and m2
X1,X2

is natural in X1 and X2. Moreover some
symmetric monoidality commutations hold such as

(!X1 ⊗ !X2)⊗ !X3 !X1 ⊗ (!X2 ⊗ !X3)

!(X1 & X2)⊗ !X3 !X1 ⊗ !(X2 & X3)

!((X1 & X2) & X3) !(X1 & (X2 & X3))

m2
X1,X2

⊗!X3

α!X1,!X2,!X3

!X1⊗m2
X2,X3

m2
X1&X2,X3

m2
X1,X2&X3

⟨pr1 pr1,⟨pr2 pr1,pr2⟩⟩

or

!X1 ⊗ !X2 !X2 ⊗ !X1

!(X1 & X2) !(X2 & X1)

γ!X1,!X2

m2
X1,X2

m2
X2,X1

!⟨pr2,pr1⟩

Plus an additional diagram (compatibility with dig)

!X ⊗ !Y !(X & Y)

!!(X & Y)

!!X ⊗ !!Y !(!X & !Y)

m2
X ,Y

digX⊗digY

digX&Y

!⟨!pr1,!pr2⟩
m2

!X ,!Y

As usual this allows to define canonically

mn
X1,...,Xn

∈ L(!X1 ⊗ · · · ⊗ !Xn, !(X1 & · · ·& Xn))

This is obtained by combining instances of m2 and associativity
isos of ⊗ and &; the specific combination chosen is irrelevant
thanks to the monoidality commutations.

Remark
We use the fact that !X1 ⊗ · · · ⊗ !Xn without parenthesis makes
sense because (L,⊗) is monoidal, and similarly for X1 & · · ·& Xn
because (L,&) is monoidal.

The comonad in Rel

The canonical choice is to take

!E =Mfin(E) = {finite multisets of elements of E}

Definition
An element ofMfin(E) is a function m : E → N such that

supp(m) = {a ∈ E | m(a) ̸= 0}

is finite.

Notations on multisets

• [] the empty multiset
• m1 + m2,

∑k
i=1 mi defined pointwise

• if a1, . . . , ak ∈ E then m = [a1, . . . , ak] defined by

m(a) = #{i ∈ {1, . . . , k} | ai = a}

• if moreover P is a predicate on {1, . . . , k}, then
m = [ai | P(i)] ∈Mfin(E) defined by

m(a) = #{i ∈ {1, . . . , k} | ai = a and P(i)}

• !E =Mfin(E)

• if s ∈ Rel(E ,F) then

!s = {([a1, . . . , ak], [b1, . . . , bk]) |
k ∈ N and ∀i ∈ {1, . . . k} (ai , bi) ∈ s}

In other words, (m, p) ∈ !s iff we can write m = [a1, . . . , ak]
and p = [b1, . . . , bk] with ∀i ∈ {1, . . . k} (ai , bi) ∈ s.

Example

E = {1, 2}, F = {1, 2, 3}, s = {(1, 2), (2, 2), (1, 3)}.

([1, 1], [2, 3]) ∈ !s ([1, 2], [2, 2]) ∈ !s

([1, 2], [2, 3]) ∈ !s ([1], [2, 3]) /∈ !s

Functoriality of !_

s ∈ Rel(E ,F), t ∈ Rel(F ,G), we must prove that

!E !F

!G

!s

!(t s)
!t

How to prove such a commutation in Rel

Take (m, q) ∈ !E × !G and prove that

(m, q) ∈ !(t s)⇔ (m, q) ∈ !t !s

Assume first (m, q) ∈ !(t s). We can write

m = [a1, . . . , ak] and q = [c1, . . . , ck]

with

∀i ∈ {1, . . . , k} (ai , ci) ∈ t s

so for each i ∈ {1, . . . , k} there is bi ∈ F such that

∀i ∈ {1, . . . , k} (ai , bi) ∈ s and (bi , ci) ∈ t .

We set p = [b1, . . . , bk].

Then we have (m, p) ∈ !s and (p, q) ∈ !t and hence (m, q) ∈ !t !s.

Conversely assume (m, q) ∈ !t !s.

So let p ∈ !F be such that (m, p) ∈ !s and (p, q) ∈ !t.

We can write m = [a1, . . . , ak] and p = [b1, . . . , bk] such that

∀i ∈ {1, . . . , k} (ai , bi) ∈ s

and we can write q = [c1, . . . , ck] with

∀i ∈ {1, . . . , k} (bi , ci) ∈ t

and it follows that ∀i ∈ {1, . . . , k} (ai , ci) ∈ t s and hence
(m, q) ∈ !(t s).

One proves in the same way that !IdE = Id!E .

The comonad structure in Rel

derE = {([a], a) | a ∈ E} ∈ Rel(!E ,E)

digE = {(m1 + · · ·+ mk , [m1, . . . ,mk])

| k ∈ N and m1, . . . ,mk ∈ !E} ∈ Rel(!E , !!E)

These morphisms are natural in E .

Notation
If M = [m1, . . . ,mk] ∈ !!E then ΣM =

∑k
i=1 mi ∈ !E .

With this notation

digE = {(ΣM,M) | M ∈ !!E)} .

A simple lemma

Lemma
Let (m, p) ∈ !s for some s ∈ Rel(E ,F).
Let P = [p1, . . . , pk] ∈ !!F be such that

∑k
i=1 pi = p.

Then there are m1, . . . ,mk ∈ !E such that
• ∀i ∈ {1, . . . , k} (mi , pi) ∈ !s
• m =

∑k
i=1 mi

In other words: if m ∈ !E and P ∈ !!F satisfy (m,ΣP) ∈ !s then
there exists M ∈ !!E such that m = ΣM and (M,P) ∈ !!s.

Proof of the lemma

Write p = [b1, . . . , bn].

Since p =
∑k

i=1 pi we can find I1, . . . , Ik ⊆ {1, . . . , n} pairwise
disjoint such that

⋃k
i=1 Ii = {1, . . . , n} and pi = [bj | j ∈ Ii] for

i = 1, . . . , k .

Since (m, p) ∈ !s we can write m = [a1, . . . , an] with (aj , bj) ∈ s
for j = 1, . . . , n.

For i = 1, . . . , k let mi = [aj | j ∈ Ii], we have
∑k

i=1 mi = m and
∀i ∈ {1, . . . , k} (mi , pi) ∈ !s.

Naturality of digE

Take s ∈ Rel(E ,F) and prove that

!E !F

!!E !!F

!s

digE digF

!!s

Take (m,P) ∈ !E × !!F and prove that

(m,P) ∈ !!s digE ⇔ (m,P) ∈ digF !s .

Assume first (m,P) ∈ !!s digE . So let M ∈ !!E be such that

(m,M) ∈ digE and (M,P) ∈ !!s

This means that we can write M = [m1, . . . ,mk] and
P = [p1, . . . , pk] with

m =

k∑
i=1

mi and ∀i ∈ {1, . . . , k} (mi , pi) ∈ !s .

By the second property we have (
∑k

i=1 mi ,
∑k

i=1 pi) ∈ !s.

Let p =
∑k

i=1 pi , we have (p,P) ∈ digF , (m, p) ∈ !s and hence
(m,P) ∈ digF !s.

Conversely assume (m,P) ∈ digF !s. So let p ∈ !F be such that

(m, p) ∈ !s and (p,P) ∈ digF

Let us write P = [p1, . . . , pk] so that
∑k

i=1 pi = p. By the
Lemma we can find m1, . . . ,mk ∈ !E such that

∑k
i=1 mi = m and

∀i ∈ {1, . . . , k} (mi , pi) ∈ !s.

Let M = [m1, . . . ,mk]. We have (M,P) ∈ !!s and (m,M) ∈ digE
hence (m,P) ∈ !!s digE .

Comonadicity in Rel

Remember: one has to prove the following commutations

!E !!E

!E

digE

Id
der!E

!E !!E

!E

digE

Id
!derE

!E !!E

!!E !!!E

digE

digE !digE

dig!E

Let us prove the last commutation: take (m,M) ∈ !E × !!!E .

Assume first (m,M) ∈ dig!E digE , we prove
(m,M) ∈ !digE digE .

Let M ∈ !!E with (m,M) ∈ digE and (M,M) ∈ dig!E that is

ΣM = m and ΣM = M .

We writeM = [M1, . . . ,Mk] and set
M ′ = [ΣM1, . . . ,ΣMk] ∈ !!E .

Then

ΣM ′ =
k∑

i=1

ΣMi = Σ(

k∑
i=1

Mi) = ΣΣM = ΣM = m

that is (m,M ′) ∈ digE .

For i = 1, . . . , k we have (ΣMi ,Mi) ∈ digE and hence
(M ′,M) ∈ !digE . So (m,M) ∈ !digE digE .

Assume conversely that (m,M) ∈ !digE digE .

Let M ∈ !E with (m,M) ∈ digE and (M,M) ∈ !digE .

We can writeM = [M1, . . . ,Mk] and M = [m1, . . . ,mk] with
(mi ,Mi) ∈ digE , that is ΣMi = mi , for i = 1, . . . , k .

Let M ′ = ΣM so that (M ′,M) ∈ dig!E . We have

ΣM ′ = ΣΣM = Σ(

k∑
i=1

Mi) =

k∑
i=1

ΣMi =

k∑
i=1

mi = m

since (m,M) ∈ digE that is ΣM = m.

This shows that (m,M ′) ∈ digE and hence (m,M) ∈ dig!E digE .

The Seely isomorphisms in Rel

m0 : 1→ !⊤
m2

E1,E2
: !E1 ⊗ !E2 → !(E1 & E2)

are the isos defined by

m0 = {(∗, [])}
m2

E1,E2
= {((m1,m2), 1 ·m1 + 2 ·m2) | mi ∈ !Ei for i = 1, 2}

where l · [a1, . . . , ak] = [(l , a1), . . . , (l , ak)].The inverse of m2
E1,E2

is

{([(1, a1), . . . , (1, ak), (2, b1), . . . , (2, bn)], ([a1, . . . , ak], [b1, . . . , bn]))

| a1, . . . , ak ∈ E1 and b1, . . . , bn ∈ E2}

One has to check the Seely commutations.

Derived structures in a model of LL, with
illustration in Rel

Structural morphisms

In any model of LL (L, . . .) as described, we have

wX ∈ L(!X , 1) weakening

cX ∈ L(!X , !X ⊗ !X) contraction

defined by (remember that L(X ,⊤) = {tX})

!X !⊤ 1

!X !(X & X) !X ⊗ !X

!tX (m0)
−1

!⟨IdX ,IdX ⟩ (m2
X ,X)

−1

Intuition
The elements of !X are discardable and duplicable.

Then (!X ,wX , cX) is a commutative comonoid in L, meaning
that the following diagrams commute.

Coassociativity:

!X !X ⊗ !X (!X ⊗ !X)⊗ !X

!X ⊗ !X !X ⊗ (!X ⊗ !X)

cX

cX

cX⊗!X

α!X ,!X ,!X

!X⊗cX

Comes from the monoidality of m2.

Left coneutrality

!X !X ⊗ !X 1⊗ !X

!X

cX

Id!X

wX⊗!X

λ!X

Cocommutativity

!X !X ⊗ !X

!X ⊗ !X

cX

cX
γ!X ,!X

Promotion

This is sometimes called the lifting of the comonad: given
s ∈ L(!X ,Y), one defined s ! ∈ L(!X , !Y) as

!X !!X !Y
digX !s

In Rel, given s ∈ Rel(!E ,F) and s ! ∈ Rel(!E , !F) is

s ! = {(m1 + · · ·+ mk , [b1, . . . , bk]) | (mi , bi) ∈ s for i = 1, . . . , k}

Comonoid structure of !E in Rel

We have

wE = {([], ∗)} ∈ Rel(!E , 1)
cE = {(m1 + m2, (m1,m2)) | m1,m2 ∈ !E} ∈ Rel(!E , !E ⊗ !E)

Lax symmetric monoidal structure of !_

Remember
The Seely morphisms m0 and m2

X1,X2
are a symmetric monoidal

structure on !_ from the SMC (L,&) to the SMC (L,⊗) which
is strong: the Seely morphisms are isomorphisms.

There is also a symmetric monoidal structure on !_ from (L,⊗)
to (L,⊗) given by morphisms

µ0 : 1→ !1

µ2
X1,X2

: !X1 ⊗ !X2 → !(X1 ⊗ X2)

which are not isos in general: it is a lax SM structure.

µ0 is

1 !⊤ !!⊤ !1m0 dig⊤ !(m0)
−1

and µ2
X1,X2

is

!X1 ⊗ !X2 !(X1 & X2)

!(!X1 ⊗ !X2) !!(X1 & X2)

!(X1 ⊗ X2)

m2
X1,X2

digX1&X2

!(derX1⊗derX2)

!(m2
X1,X2

)
−1

These morphisms satisfy symmetric monoidality commutations
such as

(!X1 ⊗ !X2)⊗ !X3 !X1 ⊗ (!X2 ⊗ !X3)

!(X1 ⊗ X2)⊗ !X3 !X1 ⊗ !(X2 ⊗ X3)

!((X1 ⊗ X2)⊗ X3) !(X1 ⊗ (X2 ⊗ X3))

α!X1,!X2,!X3

µ2
X1,X2

⊗!X3 !X1⊗µ2
X2,X3

µ2
X1⊗X2,X3

µ2
X1,X2⊗X3

!αX1,X2,X3

See the lecture notes for a complete list of these commutations.

As a consequence, we can define canonically

µn
X1,...,Xn

: !X1 ⊗ · · · ⊗ !Xn → !(X1 ⊗ · · · ⊗ Xn)

in accordance with the fact that X1 ⊗ · · · ⊗ Xn makes sense
without parentheses because L is a monoidal category.

Example

The last diagram tells us that, up to associativity of ⊗ (as
specified by the α isos), there is only one way of combining the
µ2 morphisms to obtain

µ3
X1,X2,X3

: !X1 ⊗ !X2 ⊗ !X3 → !(X1 ⊗ X2 ⊗ X3)

Lax monoidal structure in Rel

Remember that in Rel, ⊤ = ∅ and that µ0 is

1 !⊤ !!⊤ !1m0 dig⊤ !(m0)
−1

We have m0 = {∗, []} and
dig⊤ = {(ΣM,M) | M ∈Mfin(Mfin(∅))} hence

dig⊤ = {([], k [[]]) | k ∈ N}

sinceMfin(∅) = {[]}. So

µ0 = {(∗, k [∗]) | k ∈ N}

where km =

k︷ ︸︸ ︷
m + · · ·+ m for any m ∈ [E]. µ0 is not an iso!

And µ2
E1,E2

is

!E1 ⊗ !E2 !(E1 & E2)

!(!E1 ⊗ !E2) !!(E1 & E2)

!(E1 ⊗ E2)

m2
E1,E2

digE1&E2

!(derE1⊗derE2)

!(m2
E1,E2

)
−1

We have

!(derE1 ⊗ derE2)

= {[([a1], [b1]), . . . , ([ak], [bk])], [(a1, b1), . . . , (ak , bk)])

a1, . . . , ak ∈ E and b1, . . . , bk ∈ F}

So

!(derE1 ⊗ derE2) !(m
2
E1,E2

)
−1

= {
([([(1, a1), (2, b1)]), . . . , ([(1, ak), (2, bk)])], [(a1, b1), . . . , (ak , bk)])

| a1, . . . , ak ∈ E and b1, . . . , bk ∈ F}
∈ Rel(!!(E1 & E2), !(E1 ⊗ E2))

then

!(derE1 ⊗ derE2) !(m
2
E1,E2

)
−1

digE1&E2 = {
([(1, a1), (2, b1), . . . , (1, ak), (2, bk)], [(a1, b1), . . . , (ak , bk)])

| a1, . . . , ak ∈ E and b1, . . . , bk ∈ F}
∈ Rel(!(E1 & E2), !(E1 ⊗ E2))

Finally

µ2
E1,E2

= !(derE1 ⊗ derE2) !(m
2
E1,E2

)
−1

digE1&E2 m2
E1,E2

= {
(([a1, . . . , ak], [b1, . . . , bk]), [(a1, b1), . . . , (ak , bk)])

| a1, . . . , ak ∈ E and b1, . . . , bk ∈ F}
∈ Rel(!E1 ⊗ !E2, !(E1 ⊗ E2))

Computes all possible “pairings” between two multisets which
have the same size.

And more generally

µn
E1,...,En

∈ Rel(!E1 ⊗ · · · ⊗ !En, !(E1 ⊗ · · · ⊗ En)) = {
([a1

1, . . . , a
1
k], . . . , [a

n
1, . . . , a

n
k], [(a

1
1, . . . , a

n
1), . . . , (a

1
k , . . . , a

n
k)])

| ai
j ∈ Ei for i = 1, . . . , n and j = 1, . . . , k} .

Generalized weakening and contraction

We have wX1,...,Xn ∈ L(!X1 ⊗ · · · ⊗ !Xn, 1) given by

!X1 ⊗ · · · ⊗ !Xn 1⊗ · · · ⊗ 1 1
wX1⊗···⊗wXn θ

where θ is an iso obtained by combining instances of λ, ρ etc
(again, by Mac Lane’s theorem, θ does not depend on the chosen
combination).

and
cX1,...,Xn ∈ L(!X1⊗· · ·⊗!Xn, (!X1 ⊗ · · · ⊗ !Xn)⊗(!X1 ⊗ · · · ⊗ !Xn))

!X1 ⊗ · · · ⊗ !Xn (!X1 ⊗ !X1)⊗ · · · ⊗ (!Xn ⊗ !Xn)

(!X1 ⊗ · · · ⊗ !Xn)⊗ (!X1 ⊗ · · · ⊗ !Xn)

cX1 ⊗···⊗cXn

θ

where θ is a combination of instances of γ and α (again the
specific chosen combination is irrelevant).

in Rel

We have

wE1,...,En = {(([], . . . , []), ∗)}

and

cE1,...,En

= {((m1 + m′1, . . . ,mn + m′n), ((m1, . . . ,mn), (m′1, . . . ,m
′
n)))

| mi ,m′i ∈ !Ei for i = 1, . . . , n}

Generalized promotion

For interpreting the promotion rule of LL

!A1, . . . , !An ⊢ B

!A1, . . . , !An ⊢ !B

we need a more general kind of promotion in the model: given
s ∈ L(!X1 ⊗ · · · ⊗ !Xn,Y) we need s ! ∈ L(!X1 ⊗ · · · ⊗ !Xn, !Y). It
is given by:

!X1 ⊗ · · · ⊗ !Xn !!X1 ⊗ · · · ⊗ !!Xn

!Y !(!X1 ⊗ · · · ⊗ !Xn)

digX1 ⊗···⊗digXn

µn
!X1,...,!Xn

!s

In Rel, given s ∈ Rel(!E1 ⊗ · · · ⊗ !En,F) we have

s ! = {(
k∑

j=1

m1
j , . . . ,

k∑
j=1

mn
j , [b1, . . . , bk])

| (m1
j , . . . ,m

n
j , bj) ∈ s for j = 1, . . . , k}

Promoted morphisms are discardable
and duplicable

Let s ∈ L(!X1 ⊗ · · · ⊗ !Xn,Y) then

!X1 ⊗ · · · ⊗ !Xn !Y

1

s !

wX1,...,Xn

wY

and

!X1 ⊗ · · · ⊗ !Xn !Y

(!X1 ⊗ · · · ⊗ !Xn)⊗ (!X1 ⊗ · · · ⊗ !Xn) !Y ⊗ !Y

s !

cX1,...,Xn cY

s !⊗s !

Promotion and “substitution”

Let s ∈ L(!X1 ⊗ · · · ⊗ !Xn,Y) and
t ∈ L(!Y1 ⊗ · · · ⊗ !Yk ⊗ !Y ,Z). Then we have

!Y1 ⊗ · · · ⊗ !Yk ⊗ !X1 ⊗ · · · ⊗ !Xn !Y1 ⊗ · · · ⊗ !Yk ⊗ !Y

!Z

Id⊗s !

(t (Id⊗s !))!
t!

Notice that

t (Id⊗ s !) ∈ L(!Y1 ⊗ · · · ⊗ !Yk ⊗ !X1 ⊗ · · · ⊗ !Xn,Z)

Promotion, dereliction and digging

Let s ∈ L(!X1 ⊗ · · · ⊗ !Xn,Y) then

!X1 ⊗ · · · ⊗ !Xn !Y

Y

s !

s
derY

!X1 ⊗ · · · ⊗ !Xn !Y

!!Y

s !

s !!
digY

The Eilenberg-Moore category of !_

Given a model of LL

General idea
These structural properties of “promoted morphisms”
(discardability, duplicability, substitution) can be extended to
more general morphisms: those of the Eilenberg-Moore category.

Given (L, . . .), we can consider the Eilenberg Moore category L!
of the (!_, der, dig) comonad, or category of coalgebras.

The EM category can be defined for any comonad of course, it
does not use the other components of the model L.

Definition
An object of L! is a pair P = (P, hP) where
• P is an object of L
• and hP ∈ L(P, !P) such that

P !P

P

hP

IdP
derP

P !P

!P !!P

hP

hP digP

!hP

Morphisms in L!

Definition
An element of L!(P,Q) is a s ∈ L(P,Q) such that

P Q

!P !Q

s

hP hQ

!s

LL intuition
An object P of L! is an object P equipped with its own structural
rules, as well as its own promotion operation.

Indeed we can equip a P ∈ Obj(L!) with a weakening wP :

P !P 1
hP wP

and a contraction cP :

P !P !P ⊗ !P P ⊗ P
hP cP derP⊗derP

Fact
For any P ∈ Obj(L!), the triple (P,wP , cP) is a commutative
comonoid comon(P) ∈ Obj(Ccom(L)).

Let us explain this. . .

. . .L! is cartesian!

If P and Q are objects of L! then we set

P ⊗Q = (P ⊗Q, hP⊗Q)

where hP⊗Q is

P ⊗Q !P ⊗ !Q !(P ⊗Q)
hP⊗hQ

µ2
P,Q

Fact
P ⊗Q is an object of L!.

This is based on the following commutations in L

!X ⊗ !Y !(X ⊗ Y)

X ⊗ Y

µ2
X ,Y

derX⊗derY
derX⊗Y

and

!X ⊗ !Y !(X ⊗ Y)

!!X ⊗ !!Y !(!X ⊗ !Y) !!(X ⊗ Y)

µ2
X ,Y

digX⊗digY digX⊗Y

µ2
!X ,!Y !µ2

X ,Y

We can see 1 as an object of L!, taking 1 (of L) for 1 and
h1 = µ0 ∈ L(1, !1). One can check indeed that

1 !1

1

µ0

Id1
der1

1 !1

!1 !!1

µ0

µ0 dig1

!µ0

Fact
The object 1 of L! is terminal in L!.

The unique element of L!(P, 1) is ttP given by

P !P 1
hP wP

We have projections pri ∈ L!(P1 ⊗ P2,Pi), for instance pr2 is
defined as

P1 ⊗ P2 !P1 ⊗ P2 1⊗ P2 P2
hP1⊗P2 wP1⊗P2 λP2

And given si ∈ L!(Q,Pi) for i = 1, 2, one can define
⟨s1, s2⟩⊗ ∈ L!(Q,P1 ⊗ P2) as

Q !Q !Q ⊗ !Q Q ⊗Q P1 ⊗ P2
hQ cQ der!Q⊗der!Q s1⊗s2

Remark
It is not completely straightforward to prove that these
morphisms are coalgebra morphisms (especially for the pairing).

Theorem
(P1 ⊗ P2, pr1, pr2) is the cartesian product of P1 and P2 in L!.

The category of commutative comonoids

We have seen that for any objects X1, . . . ,Xn of L, the object
!X1 ⊗ · · · ⊗ !Xn is canonically a commutative comonoid.

We’ll see that this extends to all object of L!.

Definition
An object of Ccom(L) is a triple C = (C ,wC , cC) where
wC ∈ L(C , 1) and cC ∈ L(C ,C ⊗ C) satisfying the following
commutations:

Commutative comonoid

Coassociativity

C C ⊗ C (C ⊗ C)⊗ C

C ⊗ C C ⊗ (C ⊗ C)

cC

cC

cC⊗C

αC ,C ,C

C⊗cC

Left coneutrality

C C ⊗ C 1⊗ C

C

cC

IdC

wC⊗C

λC

Cocommutativity

C C ⊗ C

C ⊗ C

cC

cC
γC ,C

Comonoid morphisms

An element of Ccom(L)(C ,D) is an s ∈ L(C ,D) such that

C D

1

s

IdC
wD

C D

C ⊗ C D ⊗D

s

cC cD

s⊗s

Coalgebras are comonoids

Fact
For any P in L!, we have

cP = ⟨IdP , IdP⟩⊗ ∈ L!(P,P ⊗ P)

wP = ttP ∈ L!(P, 1)

Because L! is cartesian, this turns P into a commutative
comonoid in the SMC (L!,⊗).

Fact
In a cartesian category C, any object has a canonical
commutative comonoid structure (wrt. the monoidal structure of
C induced by the fact that it is cartesian).

Fact
We have a functor L! → Ccom(L) which maps P to (P,wP , cP)
and s ∈ L!(P,Q) to s.

L! is also cocartesian

Remember that two objects X1,X2 of L have a coproduct
(X1 ⊕ X2, in1, in2) with ini ∈ L(Xi ,X1 ⊕ X2).

Given objects P1,P2 of L!, we have, in L

Pi !Pi !(P1 ⊕ P2)
hPi !ini

so we have a unique hP1⊕P2 ∈ L(P1 ⊕ P2, !(P1 ⊕ P2)) such that

hP1⊕P2 ini = !ini hPi for i = 1, 2 .

Fact
P1 ⊕ P2 = (P1 ⊕ P2, hP1⊕P2) is an object of L!. It is the
coproduct of P1 and P2 in L!.

Remark
Remember that L is cartesian (with product &) and cocartesian
(with coproduct ⊕).

There is a major difference: in L!, the product (⊗) distributes
over the coproduct (⊕) as in Set:

(P1 ⊕ P2)⊗Q ≃ (P1 ⊗Q)⊕ (P2 ⊗Q)

but in general

(X1 ⊕ X2) & Y ̸≃ (X1 & Y)⊕ (X2 & Y)

in L.

The Kleisli category

If X is an object of L, then E(X) = (!X , digX : !X → !!X) is an
object of L!, indeed the two following commute by definition of a
comonad:

!X !!X

!X

digX

Id
der!X

!X !!X

!!X !!!X

digX

digX !digX

dig!X

Let s ∈ L(X ,Y), then E(s) = !s ∈ L!(E(X),E(Y)) by naturality
of dig.

Remark
E(X) is the free coalgebra generated by X .

Fact
L!(E(X),E(Y)) ≃ L(!X ,Y)

This bijection ϕ : L!(E(X),E(Y))→ L(!X ,Y) works as follows:

ϕ(s) = derY s

ϕ−1(t) = t ! = !t digX

Intuition
The Kleisli category of !_ is the range of the functor E,
considered as a full subcategory of L!.

Whence the official

Definition
The Kleisli category L! of !_ has
• objects those of L
• and L!(X ,Y) = L(!X ,Y)

• identity at X : IdKl
X = derX ∈ L(!X ,X) = L!(X ,X)

• and composition of s ∈ L!(X ,Y) and t ∈ L!(Y ,Z) given by

t ◦ s = t !s digX = t s !

!X !!X !Y Z
digX

s !

!s t

Example: the category Rel!

The objects are the sets.

Rel!(E ,F) =Mfin(E)× F and IdKl
E = {([a], a) | a ∈ E}.

If s ∈ Rel!(E ,F) and t ∈ Rel!(F ,G) then

t ◦ s = {(m1 + · · ·+ mk , c) | ∃b1, . . . , bk ∈ F

([b1, . . . , bk], c) ∈ t

and (mi , bi) ∈ s for i = 1, . . . , k} .

From L to L!

We define a functor Der : L → L! by
• Der(X) = X
• and if s ∈ L(X ,Y) then

Der(s) = derY s ∈ L!(X ,Y) = L(!X ,Y).

We could call it the “dereliction functor” since it consists in
forgetting that a morphism of L is “linear”.

From L! to L!

We define an “inclusion” functor I : L! → L! by
• I(X) = (!X , digX) which is an object of L!

• and if s ∈ L!(X ,Y) = L(!X ,Y) then
I(s) = s ! ∈ L!(I(X), I(Y)).

Indeed we have

!X !Y

!!X !!Y

s !

digX digY

!(s !)

because !(s !) digX = s !!.

Theorem
The functor I is full and faithful.

This means that, for any X ,Y in L, the function

ϕ : L!(X ,Y)→ L!(I(X), I(Y)) = L!((!X , digX), (!Y , digY))

s 7→ I(s) = s !

is surjective (full) and injective (faithful).

The inverse of ϕ is given by ϕ−1(t) = derY t.

Proof

Let t ∈ L!(I(X), I(Y)), this means

!X !Y

!!X !!Y

t

digX digY

!t

Then

ϕ(derY t) = (derY t)!

= !(derY t) digX

= !derY !t digX

= !derY digY t = t

by the commutation above. For the other direction: derY s ! = s.

Through the functor I, we can see L! as a full subcategory of L!:
the category of free !_-coalgebras.

The free coalgebra functor E : L → L! is just the composit:

E = I ◦ Der

Adjunctions and factorizations of !_

There is an obvious forgetful functor

U : L! → L
P 7→ P t ∈ L!(P,Q) 7→ t ∈ L(P,Q)

Then we have an adjunction

U ⊣ E

L(P,X) ≃ L!(P,E(X)) for P ∈ Obj(L!) and X ∈ Obj(L) .

Fact
The associated comonad U ◦ E coincides with !_: we say that
U ⊣ E is a factorization of !_.

Remark that this adjunction means that we have an even more
generalized promotion: given s ∈ L(P,X), we have
s ! ∈ L!(P,E(X)) that is s ! ∈ L(P, !X) with

P !X

!P !!X

s !

hP digX

!(s !)

actually s ! is

P !P !X
hP !s

In particular if x ∈ PtL(X) = L(1,X) we have s ! ∈ PtL(!X).

There is also a “forgetful functor”

P = U ◦ I : L! → L
X 7→ !X s ∈ L!(X ,Y) 7→ s ! ∈ L(!X , !Y)

and remember that we have defined Der : L → L! (Der(X) = X
and Der(s) = s derX for s ∈ L(X ,Y)). Then we have an
adjunction

P ⊣ Der

L(P(X),Y) = L!(X ,Der(Y)) for X ,Y ∈ Obj(L)

Fact
P ⊣ Der is another factorization of the comonad !_.

Using the fact that (s derX)
! = !s for s ∈ L(X ,Y).

In general there are a lot of possible factorizations of the
comonad; in some sense U ⊣ E is the largest one and P ⊣ Der is
the least one.

The Kleisli category L! is a CCC

L! is cartesian

If (Xi)i∈I is a family of elements of Obj(L) = Obj(L!) then

(&
i∈I

Xi , (prKl
i)i∈I)

with prKl
i = pri der&i∈I Xi = Der(pri) is the cartesian product of

the Xi ’s. Given si ∈ L!(Y ,Xi) for each i ∈ I then

⟨si⟩i∈I ∈ L!(Y , &
i∈I

Xi)

is the unique morphism such that ∀i ∈ I prKl
i ◦ ⟨sj⟩j∈I = si .

Given X ,Y ∈ Obj(L), we define

(X ⇒ Y) = (!X ⊸ Y)

Cartesian closeness, roughly:

L!(Z & X ,Y) = L(!(Z & X),Y)

≃ L(!Z ⊗ !X ,Y) Seely

≃ L(!Z , !X ⊸ Y) L is an SMC

= L!(Z ,X ⇒ Y)

(X ⇒ Y) = (!X ⊸ Y)

Ev = ev (der!X⊸Y ⊗ !X) (m2
!X⊸Y ,X)

−1

!((!X ⊸ Y) & X)

!(!X ⊸ Y)⊗ !X

(!X ⊸ Y)⊗ !X

Y

(m2
!X⊸Y ,X)

−1

der!X⊸Y⊗!X

ev

Fact
(X ⇒ Y ,Ev) is the hom object in L!. This means that, for any

s ∈ L!(Z & X ,Y)

there is a unique Cur(s) ∈ L!(Z ,X ⇒ Y) such that, in L!,

Z & X (X ⇒ Y) & X

Y

Cur(s)&X

s
Ev

We have s ∈ L(!(Z & X),Y), then s m2
Z ,X ∈ L(!Z ⊗ !X ,Y), we

have

Cur(s) = cur(s m2
Z ,X) ∈ L(!Z , !X ⊸ Y) = L!(Z ,X ⇒ Y) .

Interpreting PCF in Rel

Reminder on cpos and fixpoints

Definition
Let D be a partially ordered set. A subset D of D is directed
(filtrant in French) if
• D is not empty
• and ∀x1, x2 ∈ D ∃x ∈ D x1 ≤ x and x2 ≤ x .

Remark :
• If D is directed and x1, . . . , xn ∈ D then
∃x ∈ D ∀i ∈ {1, . . . n} xi ≤ x , easy induction on n. Also true
for n = 0 by the condition D ̸= ∅.
• Hence a finite directed set D has a maximal element, i.e.
∃y ∈ D ∀x ∈ D x ≤ y .
• So directed sets are useful only when they are infinite: they

generalize monotone sequences: if x1, x2 · · · ∈ D such that
∀i xi ≤ xi+1 then {xi | i ∈ N} is directed.

Example

If E is a set, the set Pfin(E) of finite subsets of E is directed for
⊆.

A cpo (complete partial order) is a partially ordered set D such
that any directed set D ⊆ D has a least upper bound (lub)∨
D ∈ D:

Definition (lub)

• ∀x ∈ D x ≤
∨

D
• ∀y ∈ D (∀x ∈ D x ≤ y)⇒

∨
D ≤ y

Remark : When it exists, a lub is unique (it is defined by a
universal property in D considered as a category: a lub is a
colimit).

Let D and E be cpos and f : D → E be monotone.

Fact
If D ⊆ D is directed, then f (D) = {f (x) | x ∈ D} is directed.

Notice that ∀x ∈ D f (x) ≤ f (
∨

D) and hence
∨

f (D) ≤ f (
∨

D).

Definition
f is Scott continuous if, for any directed subset D of D one has
f (
∨

D) ≤
∨

f (D), that is f (
∨

D) =
∨

f (D).

Remark : One can endow D and E with a topology such that
Scott continuity coincides with ordinary topology: this is the
Scott topology.

Example

Let D be the set of partial functions N→ N ordered by inclusion
of graphs (f ≤ g if for all n ∈ N, if f (n) is defined then g(n) is
defined and g(n) = f (n)) and let Σ = {⊥ < ⊤}, both are cpos.
• The function F : D → Σ such that, for all f ∈ D

F (f) =

{
⊤ if ∃n ∈ N f (n) = f (n + 1) = · · · = f (2n) = 0

⊥ otherwise

is monotone and Scott continuous.
• The function G : D → Σ such that, for all f ∈ D

G (f) =

{
⊤ if ∀n ∈ N f (n2) defined and ̸= 0

⊥ otherwise

is monotone, but not Scott continuous.

Fact
Let D be a cpo which has a least element ⊥. Let f : D → D be
monotone and Scott continuous. Then there is x ∈ D such that
• f (x) = x
• and ∀y ∈ D f (y) = y ⇒ x ≤ y .

That is, x is the least fixpoint of f .

One defines (xn)n∈N in D by x0 = ⊥ and xn+1 = f (xn). Then
∀n ∈ N xn ≤ xn+1 (easy induction on n) so D = {xn | n ∈ N} is
directed.

So we can set x =
∨

n∈N xn ∈ D since D is a cpo.

Then by Scott continuity

f (x) =
∨
n∈N

f (xn) =
∨
n∈N

f (xn+1) = x .

Assume that y ∈ D and f (y) = y . We have ⊥ ≤ y and hence by
induction ∀n ∈ N xn ≤ y . Hence x ≤ y .

Function induced by a morphism of L!

In a model L of LL, given t ∈ L!(X ,Y), we have a function

t̂ : PtL(X)→ PtL(Y)

x 7→ t x !

Remember that PtL(X) = L(1,X). This defines a functor
L! → Set:

d̂erX (x) = derX x ! = x

t̂(ŝ(x)) = t
(
s x !
)!

= t s ! x ! = t̂ ◦ s(x)

Observe that PtL(&i∈I Xi) ≃
∏

i∈I PtL(Xi).

In Rel: if u ∈ PtRel(E) ≃ P(E) then we identify u! ∈ PtRel(!E)
with

u(!) =Mfin(u)

Fact
Let t ∈ Rel!(E ,F), then

t̂ : P(E)→ P(F)

u 7→ t · u(!) = {b ∈ F | ∃m ∈Mfin(u) and (m, b) ∈ t}

P(E), ordered by ⊆, is a cpo which has ∅ as least element and
where

∨
D =

⋃
x∈D x .

Fact
The function t̂ is monotone and Scott continuous.

Because the elements of !E are finite multisets.

Let t ∈ Rel!(E ,F).

Let u1 ⊆ u2 in P(E). If b ∈ t̂(u1), there is m ∈Mfin(E) such
that supp(m) ⊆ u1 and (m, b) ∈ t. Then we have supp(m) ⊆ u2
and hence b ∈ t̂(u2). So t̂ is monotone.

Let D ⊆ P(E) be directed. We prove t̂(
⋃

D) ⊆
⋃

t̂(D).

Let b ∈ t̂(
⋃

D). Let m ∈Mfin(E) such that (m, b) ∈ t and
supp(m) ⊆

⋃
D. Let a1, . . . , an be the elements of supp(m). For

each i ∈ {1, . . . , n} let ui ∈ D be such that ai ∈ ui . Since D is
directed there is u ∈ D such that ui ⊆ u for i = 1, . . . , n. We have

supp(m) ⊆ u

and hence b ∈ t̂(u) ⊆
⋃

t̂(D) since u ∈ D.

Least fixpoints in Rel!

Let t ∈ Rel!(E ,E), the map

t̂ : P(E)→ P(E)

is monotone and Scott continuous so it has a least fixpoint,
namely

∞⋃
n=0

t̂n(∅) .

Fact
Let Y(t) =

⋃∞
n=0 t̂n(∅). It is the least subset of E such that:

for any ([a1, . . . , an], a) ∈ t, if a1, . . . , an ∈ Y(t) then a ∈ Y(t).

We want to internalize Y, exhibiting Y0 ∈ Rel!(!E ⊸ E ,E) such
that

∀t ∈ P(!E ⊸ E) Y(t) = Ŷ0(t)

Idea
Define Y0 as the least fixpoint of a morphism

Z ∈ Rel!(!(!E ⊸ E)⊸ E , !(!E ⊸ E)⊸ E)

Fact
Such a Z can be defined in any model L of LL (actually in any
CCC).

We want in L:

Z : !(!(!X ⊸ X)⊸ X)→ !(!X ⊸ X)⊸ X

We take Z = cur(Z ′) for

Z ′ : !(!(!X ⊸ X)⊸ X)⊗ !(!X ⊸ X)→ X

We define Z ′ as follows:

Definition of Z ′

!(!(!X ⊸ X)⊸ X)⊗ !(!X ⊸ X)

!(!(!X ⊸ X)⊸ X)⊗ !(!X ⊸ X)⊗ !(!X ⊸ X)

!(!X ⊸ X)⊗ !(!(!X ⊸ X)⊸ X)⊗ !(!X ⊸ X)

(!X ⊸ X)⊗ !X X

Id⊗ c!X⊸X

Z ′1
θ

Z ′2der!X⊸X ⊗e!

ev

where θ is a suitable combination of instances of α and γ,

and e is
!(!(!X ⊸ X)⊸ X)⊗ !(!X ⊸ X)

(!(!X ⊸ X)⊸ X)⊗ !(!X ⊸ X)

X

der ⊗ Id

ev

So, in Rel, (M,m, a) ∈ e iff M = [(m, a)].

Computing e! in Rel

e! ∈ Rel(!(!(!E ⊸ E)⊸ E)⊗ !(!E ⊸ E), !E)

Let M ∈ !(!(!E ⊸ E)⊸ E), m ∈ !(!E ⊸ E) and a1, . . . , ak ∈ E ,
then

(M,m, [a1, . . . , ak]) ∈ e! ⇔ ∃p1, . . . , pk ∈ !(!E ⊸ E)

M = [(p1, a1), . . . , (pk , ak)] and m = p1 + · · ·+ pk

Computing Z in Rel

Let M ∈ !(!(!E ⊸ E)⊸ E), m ∈ !(!E ⊸ E) and a ∈ E , we have

(M,m, a) ∈ Z ′ ⇔ m = m1 + m2 and (M,m1,m2, a) ∈ Z ′1
⇔ m = m1 + m2 and (m1,M,m2, a) ∈ Z ′2
⇔ m = m1 + m2, (M,m2, [a1, . . . , ak]) ∈ e!

m1 = [c] and ((c , [a1, . . . , ak]), a) ∈ ev

⇔ m = m1 +m2, M = [(p1, a1), . . . , (pk , ak)], m2 = p1 + · · ·+ pk

and m1 = [([a1, . . . , ak], a)]

⇔ M = [(p1, a1), . . . , (pk , ak)]

and m = p1 + · · ·+ pk + [([a1, . . . , ak], a)]

Finally

Explicit description of Z

Z = {([(p1, a1), . . . , (pk , ak)], (p1+· · ·+pk+[([a1, . . . , ak], a)], a))

p1, . . . , pk ∈ !(!E ⊸ E) and a1, . . . , ak , a ∈ E}
∈ Rel(!(!(!E ⊸ E)⊸ E), !(!E ⊸ E)⊸ E)

= Rel!((E ⇒ E)⇒ E , (E ⇒ E)⇒ E)

Fact
Given t ∈ PtL(!X ⊸ X) ≃ L!(X ,X) and
T ∈ PtL(!(!X ⊸ X)⊸ X) we have

̂̂Z(T)(t) = t̂(T̂ (t))

Remember the definition of Z ′

!(!(!X ⊸ X)⊸ X)⊗ !(!X ⊸ X)

!(!(!X ⊸ X)⊸ X)⊗ !(!X ⊸ X)⊗ !(!X ⊸ X)

!(!X ⊸ X)⊗ !(!(!X ⊸ X)⊸ X)⊗ !(!X ⊸ X)

(!X ⊸ X)⊗ !X X

Id⊗ c!X⊸X

Z ′1
θ

Z ′2der!X⊸X ⊗e!

ev

where θ is a suitable combination of instances of α and γ.

In Rel
Let Tn ∈ Rel!(!E ⊸ E ,E) be defined by

T0 = ∅

Tn+1 = Ẑ(Tn) ,

it is a monotone sequence in P(!(!E ⊸ E)⊸ E).

Fact
For t ∈ Rel!(E ,E), we have

∀n ∈ N T̂n(t) = t̂n(∅)

By induction on n. For the inductive step:

T̂n+1(t) =
̂̂Z(Tn)(t) = t̂(T̂n(t)) = t̂(t̂n(∅)) = t̂n+1(∅)

We set

Y0 =

∞⋃
n=0

Tn ∈ Rel!(!E ⊸ E ,E) the least fixpoint of Ẑ

So that, for all t ∈ Rel!(E ,E) one has that

Ŷ0(t) =
∞⋃

n=0

t̂n(∅) is the least fixpoint of t̂

Fact
Y0 is the least subset of !(!E ⊸ E)⊸ E such that if
(mi , ai) ∈ Y0 for i = 1, . . . , n and a ∈ E, then
(m1 + · · ·+ mi + [([a1, . . . , an], a)], a) ∈ Y0.

Example (elements of Y0)

• ([([], a)], a) ∈ Y0 for each a ∈ E
• if a1, . . . , an, a ∈ E then
([([], a1), . . . , ([], an), ([a1, . . . , an], a)], a) ∈ Y0

• etc.

Natural number

In Rel we have an object

N = ⊕
i∈N

1

so that N = N as a set (up to trivial iso).

Successor morphism suc ∈ Rel(N,N) given by

suc = {(n, n + 1) | n ∈ N} .

If n ∈ N, n = {(∗, n)} ∈ Rel(1,N).

N as an object of Rel!

Remember that 1 has a canonical structure of !-coalgebra (object
of Rel!) given by

h1 = {(∗, k [∗]) | k ∈ N}

As a coproduct of copies of 1, N inherits a structure of
!-coalgebra given by

hN = {(n, k [n]) | k , n ∈ N ∈ N} .

N as a commutative comonoid

In particular N has a structure of commutative ⊗-coalgebra

wN = {(n, ∗) | n ∈ N} ∈ Rel(N, 1)
cN = {(n, (n, n)) | n ∈ N} ∈ Rel(N,N⊗ N)

in other words: integers are freely discardable un duplicable.

A morphism for the conditional

There is also an obvious iso

ϕ : 1⊕ N→ N

(1, ∗) 7→ 0 (2, n) 7→ n + 1

Using these ingredients we define
if ∈ Rel(N⊗ !E ⊗ !(!N⊸ E),E) with

if = {(0, [a], [], a) | a ∈ E}
∪ {(n + 1, [], [(k [n], a)], a) | k , n ∈ N and a ∈ E} .

Interpreting PCF types

We interpret types as objects of Rel, that is, as sets.

JιK = N

JA⇒ BK = !JAK⊸ JBK =Mfin(JAK)× JBK

A context Γ = (x1 : A1, . . . , xl : Al) is interpreted as

JΓK = JA1K & · · ·& JAlK

that we consider as an object of Rel!.

Interpreting PCF terms

Given a term M such that Γ ⊢ M : A, we define
JMKΓ ∈ Rel!(JΓK, JAK) = Rel(!JΓK, JAK), by induction on M.
• If M = xi for some i ∈ {1, . . . , l}, then JMKΓ = pri der

!JΓK JΓK JAiK
derJΓK pri

• If M = n for n ∈ N then JMKΓ = n wJΓK

!JΓK 1 N
wJΓK n

If M = succ(P) with Γ ⊢ P : ι, then we have JPKΓ ∈ Rel!(JΓK,N)
and we set

JMKΓ = suc JPKΓ ∈ Rel!(JΓK,N)

!JΓK N N
JPKΓ suc

If M = if(P,Q, z · R) with Γ ⊢ P : ι, Γ ⊢ Q : A and
Γ, z : ι ⊢ R : A then we have

s = JPKΓ ∈ Rel!(JΓK,N) JQKΓ ∈ Rel!(JΓK, JAK)
JRKΓ,z :ι ∈ Rel!(JΓK & N, JAK) = Rel(!JΓK⊗ !N, JAK)

hence t0 = JQK!Γ ∈ Rel(!JΓK, !JAK) and
t+ = cur(JRKΓ,z :ι)! ∈ Rel(!JΓK, !(!N⊸ JAK))

JMKΓ = if (JPKΓ ⊗ JQK!Γ ⊗ Cur(JRKΓ,z :ι)!) c ∈ Rel(!JΓK, JAK)

!JΓK !JΓK⊗ !JΓK⊗ !JΓK N⊗ !JAK⊗ !(!N⊸ JAK)

N

c s⊗t0⊗t+

if

If M = λxB P with Γ, x : B ⊢ P : C and A = (B ⇒ C) then
JPKΓ,x :B ∈ Rel!(JΓK & JBK, JCK) and we set

JMKΓ = Cur(JPKΓ,x :B) ∈ Rel!(JΓK, JBK⇒ JCK) .

If M = (P)Q with Γ ⊢ P : B ⇒ A and Γ ⊢ Q : B then
JPKΓ ∈ Rel!(JΓK, JBK⇒ JAK) and JQKΓ ∈ Rel!(JΓK, JBK) and we
set

JMKΓ = Ev ◦ ⟨JPKΓ, JQKΓ⟩
= ev (JPKΓ ⊗ JQK!Γ) cJΓK

!JΓK !JΓK⊗ !JΓK (!JBK⊸ JAK)⊗ !JBK JAK
cJΓK JPKΓ⊗JQK!Γ ev

If M = fix(P) with Γ ⊢ P : A⇒ A, then we have
JPKΓ ∈ Rel!(JΓK, JAK⇒ JAK) and we set

JMKΓ = Y0 ◦ JPKΓ
= Y0 JPK!Γ

!JΓK !(!JAK⊸ JAK) JAK
JPK!Γ Y0

Substitution lemma

Lemma
Assume that Γ, x : A ⊢ M : B and that Γ ⊢ P : A. Then

JM [P/x]KΓ = JMKΓ,x :A ◦ ⟨IdJΓK, JPKΓ⟩
= JMKΓ,x :A (!JΓK⊗ JPK!Γ) cJΓK

!JΓK JBK

!JΓK⊗ !JΓK !JΓK⊗ !JAK

JM[P/x]KΓ

cJΓK

!JΓK⊗JPK!Γ

JMKΓ,x :A

Soundness theorem

Theorem
Assume that Γ ⊢ M : A and that M β M ′. Then JM ′KΓ = JMKΓ.

The proof consists in applying equations which hold in Rel
(actually in any model of LL with fixpoint operators and
countable coproducts), and the Substitution Lemma.

Semantics of PCF in Rel as a typing system

We present this semantics of PCF in Rel as an

Intersection typing system

General idea
Consider the elements of JAK as types which can be seen as
“quantitative refinements” of A.

When ⊢ M : A, write “a ∈ JMK” as a typing judgment

⊢ M : a : A

The typing rules are just reformulations of the above definition of
the semantics of PCF in Rel.

Semantic typing contexts

General sequents: Φ ⊢ M : a : A where
Φ = (x1 : m1 : A1, . . . , xk : mk : Ak).

Underlying typing context: Φ = (x1 : A1, . . . , xk : Ak).

If Γ = (x1 : A1, . . . , xk : Ak) then
0Γ = (x1 : [] : A1, . . . , xk : k : [] : Ak).

Sum of contexts: if Φ = Ψ so that
Φ = (x1 : m1 : A1 . . . , xk : mk : Ak) and
Ψ = (x1 : p1 : A1 . . . , xk : pk : Ak) then we define
Φ+Ψ = (x1 : m1 + p1 : A1 . . . , xk : mk + pk : Ak).
Φ+Ψ = Φ = Ψ.

Convention
When we write Φ0 +Φ1 or

∑k
i=1 Φi we always assume implicitely

that all the Φi ’s are identical.

Integers

n ∈ N
0Γ ⊢ n : n : ι

Φ ⊢ M : n : ι

Φ ⊢ succ(M) : n + 1 : ι

Φ ⊢ P : 0 : ι Φ0 ⊢ M : a : A Φ, z : ι ⊢ N : A

Φ+ Φ0 ⊢ if(P,M, z · N) : a : A

Φ ⊢ P : n + 1 : ι Φ ⊢ M : A Φ+, z : k [n] : ι ⊢ N : a : A

Φ+ Φ+ ⊢ if(P,M, z · N) : a : A

if Φ = Φ0 = Φ+ and k ∈ N (possibly k = 0).

λ-calculus

mi = [a] mj = [] if j ̸= i

x1 : m1 : A1, . . . , xk : mk : Ak ⊢ xi : a : Ai

Φ, x : m : A ⊢ M : b : B

Φ ⊢ λxA M : (m, b) : A⇒ B

Φ ⊢ M : ([a1, . . . , ak], b) : A⇒ B (Φi ⊢ N : ai : A)ki=1

Φ+
∑k

i=1 Φi ⊢ (M)N : b : B

if ∀i Φ = Φi .

Fixpoint

Φ ⊢ M : ([a1, . . . , ak], a) : A⇒ A (Φi ⊢ fix(M) : ai : A)ki=1

Φ+
∑k

i=1 Φi ⊢ fix(M) : a : A

if ∀i Φ = Φi .

Notice that in particular

Φ ⊢ M : ([], a) : A⇒ A

Φ ⊢ fix(M) : a : A

these are the leaves of the “fixpoint derivation trees”.

Theorem
Assume Γ ⊢ M : B with Γ = (x1 : A1, . . . , xk : Ak).

Let mi ∈ !JAiK for i = 1, . . . , k and b ∈ JBK.

Then (m1, . . . ,mk , b) ∈ JMKΓ if and only if
x1 : m1 : A1, . . . , xk : mk : Ak ⊢ M : b : B is derivable.

The proof is a simple analysis of the definition of JMKΓ by
induction on M.

Let M,M ′ with ⊢ M : ι. We know that if M β∗ n then
JMK = {n}, that is ⊢ M : n : ι. The converse is true. Actually we
can prove better!

Theorem
If ⊢ M : n : ι then M β∗wh n.

It is a normalization theorem (for βwh), we prove it by the
reducibility method.

Idea of the proof

2 phases in the proof:

1 By induction on A we define a relation

⊩A⊆ {M | ⊢ M : A} × JAK

in such a way that M ⊩ι n ⇒ M β∗wh n.

2 We prove that, for all type A

∀a ∈ JAK ⊢ M : a : A⇒ M ⊩A a .

Definition of ⊩A

By induction on A.

We say that M ⊩ι n if ⊢ M : ι and M β∗wh n.

We say that M ⊩A⇒B ([a1, . . . , ak], b) if ⊢ M : A⇒ B and for all
N such that ⊢ N : A we have

(∀i ∈ {1, . . . , k} N ⊩A ai)⇒ (M)N ⊩B b

Expansion lemma

Lemma (Expansion lemma)

If ⊢ M,M ′ : A and M βwh M ′ and if M ′ ⊩A a then M ⊩A a.

The proof is by induction on A. If A = ι, it is an obvious
consequence of the definition of ⊩ι.

Inductive step: A = (B ⇒ C)

Assume that ⊢ M,M ′ : B ⇒ C and M βwh M ′ and let a ∈ JAK be
such that M ′ ⊩A a.

We have a = ([b1, . . . , bk], c) for some c ∈ JCK and
b1, . . . , bk ∈ JBK. We must prove that M ⊩B⇒C ([b1, . . . , bk], c).

So let N be such that ⊢ N : B and N ⊩B bi for i = 1, . . . , k , we
must prove that (M)N ⊩C c . We know that (M ′)N ⊩C c since
M ′ ⊩A a.

Since the property we want to prove holds for C (inductive
hypothesis), it suffices to observe that (M)N βwh (M ′)N.

Indeed: since M βwh M ′, M is not of shape λxB P and hence
(M)N is not a βwh-redex.

We can prove now the main statement which generalizes

⊢ M : a : A⇒ M ⊩A a

to open terms, that is, terms with free variables.

Notation: M ⊩!
A [a1, . . . , an] means that

⊢ M : A and ∀i ∈ {1, . . . , n} M ⊩A ai

Remark :
• M ⊩!

A [] simply means that ⊢ M : A.
• If M ⊩!

A m + m′ then M ⊩!
A m.

Theorem (Interpretation Lemma)

Assume x1 : m1 : A1, . . . , xk : mk : Ak ⊢ M : a : A.

Then for all closed terms N1, . . . ,Nk such that Ni ⊩!
Ai

mi for
i = 1, . . . , k, one has M [N1/x1, . . . ,Nk/xk] ⊩A a.

The proof is by induction on the derivation π of
x1 : m1 : A1, . . . , xk : mk : Ak ⊢ M : a : A.

Important remark

The universal quantification on the Ni ’s is part of the statement
that we prove by induction.

Proof of the Interpretation Lemma

π is
n ∈ N

0Γ ⊢ n : n : ι

so that M = n. Obviously M [N1/x1, . . . ,Nk/xk] = n β∗wh n, that
is M [N1/x1, . . . ,Nk/xk] ⊩ι n.

π is
π1

Φ ⊢ P : n : ι

Φ ⊢ succ(P) : n + 1 : ι

where Φ = (x1 : m1 : A1, . . . , xk : mk : Ak). So M = succ(P).

Let N1, . . . ,Nk be such that Ni ⊩!
Ai

mi for i = 1, . . . , k .

Notation
For any term Q, let Q̃ = Q [N1/x1, . . . ,Nk/xk].

By inductive hypothesis (applied to π1) we know that P̃ ⊩ι n,
that is P̃ β∗wh n.

Then ˜succ(P) = succ(P̃) β∗wh succ(n) by definition of βwh, and
succ(n) βwh n + 1 hence M̃ β∗wh n + 1 that is M̃ ⊩ι n + 1.

π is

ρ
Φ ⊢ P : 0 : ι

π0
Φ0 ⊢ Q : a : A Φ, z : ι ⊢ R : A

Φ+ Φ0 ⊢ if(P,Q, z · R) : a : A

So we have M = if(P,Q, z · R).

Using the notations Φ = (x1 : m1 : A1, . . . , xk : mk : Ak) and
Φ0 = (x1 : m0

1 : A1, . . . , xk : m0
k : Ak) we have

Φ+ Φ0 = (x1 : m1 + m0
1 : A1, . . . , xk : mk + m0

k : Ak).

Let N1, . . . ,Nk be such that Ni ⊩!
Ai

mi + m0
i for i = 1, . . . , k .

So we have Ni ⊩!
Ai

mi for i = 1, . . . , k .

Hence by inductive hypothesis applied to ρ we have P̃ ⊩ι 0, that
is P̃ β∗wh 0.

We have M̃ = if(P̃, Q̃, z · R̃) and hence M̃ β∗wh if(0, Q̃, z · R̃) by
definition of βwh. Hence M̃ β∗wh Q̃.

We also have Ni ⊩!
Ai

m0
i for i = 1, . . . , k .

By inductive hypothesis applied to π0 we have Q̃ ⊩A a and hence
M̃ ⊩A a by the Expansion Lemma.

π is

ρ
Φ ⊢ P : n + 1 : ι Φ ⊢ Q : A

π+
Φ+, z : l [n] : ι ⊢ R : a : A

Φ+ Φ+ ⊢ if(P,Q, z · R) : a : A

So we have M = if(P,Q, z · R).

Using the notations Φ = (x1 : m1 : A1, . . . , xk : mk : Ak) and
Φ+ = (x1 : m+

1 : A1, . . . , xk : m+
k : Ak) we have

Φ+ Φ+ = (x1 : m1 + m+
1 : A1, . . . , xk : mk + m+

k : Ak).

Let N1, . . . ,Nk be such that Ni ⊩!
Ai

mi + m+
i for i = 1, . . . , k .

So we have Ni ⊩!
Ai

mi for i = 1, . . . , k .

Hence by inductive hypothesis applied to ρ we have P̃ ⊩ι n + 1,
that is P̃ β∗wh n + 1.

We have M̃ = if(P̃, Q̃, z · R̃) and hence M̃ β∗wh if(n + 1, Q̃, z · R̃)

by definition of βwh. Hence M̃ β∗wh R̃ [n/z].

We also have Ni ⊩!
Ai

m+
i for i = 1, . . . , k .

And n ⊩ι n.

Hence by inductive hypothesis applied to π+ we have
R̃ [n/z] ⊩A a (whatever be the value of l) and hence M̃ ⊩A a by
the Expansion Lemma.

Remark
The ∀ is required in the statement proven by induction: the
inductive hypothesis is applied with “parameters” N1, . . . ,Nk , n.

π is
mi = [a] mj = [] if j ̸= i

x1 : m1 : A1, . . . , xk : mk : Ak ⊢ xi : a : Ai

so M = xi .

Then M̃ = Ni and since we have assumed that Ni ⊩!
A [a], we have

Ni ⊩A a, that is M̃ ⊩A a.

π is
π1

Φ, x : p : B ⊢ P : c : C

Φ ⊢ λxA P : (p, c) : B ⇒ C

so that A = (B ⇒ C) and M = λxB P.

We have M̃ = λxB P̃ and so we must prove that
λxB P̃ ⊩B⇒C (p, c).

So let Q be such that Q ⊩!
B p, we must prove that

(λxB P̃)Q ⊩C c .

By inductive hypothesis applied to π1, we have P̃ [Q/x] ⊩C c .

Since (λxB P̃)Q βwh P̃ [Q/x] we have (λxB P̃)Q ⊩C c by the
Expansion Lemma.

π is

π0
Φ ⊢ P : ([b1, . . . , bq], c) : B ⇒ C

(
πj

Φj ⊢ Q : bj : B

)
1≤j≤q

Φ+
∑q

j=1 Φj ⊢ (P)Q : c : C

so that M = (P)Q and A = (B ⇒ C).

We can write Φ = (x1 : m0
1 : A1, . . . , x1 : m0

k : Ak) and
Φj = (x1 : mj

1 : A1, . . . , x1 : mj
k : Ak) for j = 1, . . . , q. So that

Φ+
∑q

j=1 Φj = (x1 :
∑q

j=0 mj
1 : A1, . . . , xk :

∑q
j=0 mj

k : Ak).

Let N1, . . . ,Nk be such that Ni ⊩!
Ai

∑q
j=0 mj

i for i = 1, . . . , k .

So we have Ni ⊩!
Ai

m0
i for i = 1, . . . , k .

So by inductive hypothesis applied to π0 we have
P̃ ⊩B⇒C ([b1, . . . , bq], c).

And for each j ∈ {1, . . . , q} we have Ni ⊩!
Ai

mj
i for i = 1, . . . , k .

So by inductive hypothesis applied to πj we have Q̃ ⊩B bj for
j = 1, . . . , q, that is Q̃ ⊩!

B [b1, . . . , bq].

Therefore we have M̃ = (P̃) Q̃ ⊩C c .

π is

π0
Φ ⊢ P : ([a1, . . . , aq], a) : A⇒ A

(
πj

Φj ⊢ fix(P) : aj : A

)
1≤j≤q

Φ+
∑q

j=1 Φj ⊢ fix(P) : a : A

so that M = fix(P).

We can write Φ = (x1 : m0
1 : A1, . . . , x1 : m0

k : Ak) and
Φj = (x1 : mj

1 : A1, . . . , x1 : mj
k : Ak) for j = 1, . . . , q. So that

Φ+
∑q

j=1 Φj = (x1 :
∑q

j=0 mj
1 : A1, . . . , x1 :

∑q
j=0 mj

k : Ak).

Let N1, . . . ,Nk be such that Ni ⊩!
Ai

∑q
j=0 mj

i for i = 1, . . . , k .

So we have Ni ⊩!
Ai

m0
i for i = 1, . . . , k .

So by inductive hypothesis applied to π0 we have
P̃ ⊩A⇒A ([a1, . . . , aq], a).

And for each j ∈ {1, . . . , q} we have Ni ⊩!
Ai

mj
i for i = 1, . . . , k .

So by inductive hypothesis applied to πj we have fix(P) ⊩B aj for
j = 1, . . . , q, that is fix(P̃) ⊩!

B [a1, . . . , aq].

Hence (P̃) fix(P̃) ⊩A a.

Since M̃ = fix(P̃) βwh (P̃) fix(P̃) we have M̃ ⊩A a by the
Expansion Lemma.

Completeness theorem for βwh

We have proven

Theorem
If ⊢ M : ι and n ∈ JMK then M β∗wh n.

As a consequence

Theorem (Completeness of βwh)

Assume that ⊢ M : ι. If M ∼β n then M β∗wh n.

We have JMK = JnK = {n} and hence M β∗wh n.

The strategy βwh produces the value of any term M which has a
value (for ⊢ M : ι).

About observational equivalence

Remember that we have defined the observational equivalence for
PCF terms:

Definition
Let M1 and M2 be such that ⊢ Mi : A for i = 1, 2. We say that
M1 and M2 are observationally equivalent (written M1 ∼ M2) if
for any term C such that ⊢ C : A⇒ ι one has

(C)M1 β
∗
wh 0⇔ (C)M2 β

∗
wh 0 .

With M1 and M2 such that ⊢ Mi : A for i = 1, 2, let us write

M1 ∼Rel M2

if JM1K = JM2K. This is an equivalence relation (the equivalence
induced by the model on terms).

Theorem (Adequacy of Rel)

M1 ∼Rel M2 ⇒ M1 ∼ M2

So we can use the model to prove observational equivalence.

Proof of the adequacy of Rel

Let M1 and M2 be such that ⊢ Mi : A for i = 1, 2 with
JM1K = JM2K.

Let C be a term such that ⊢ C : A⇒ ι and assume that
(C)M1 β

∗
wh 0.

Hence J(C)M1K = {0}.

But J(C)M1K = Ev ◦ ⟨JCK, JM1K⟩ (in Rel!). Hence
J(C)M2K = {0}.

By the theorem we have proven this implies (C)M2 β
∗
wh 0.

The converse implication is proven in the same way.

Example

Take A = (ι⇒ (ι⇒ ι)) and

M1 = λx ι1 λx ι2 if(x1, if(x2, 0, z · 1), z · 1)
M2 = λx ι1 λx ι2 if(x2, if(x1, 0, z · 1), z · 1)

Then using the semantic typing system one can prove that

JMiK = {([0], ([0], 0))}
∪ {([n], ([p], 1)) | n, p ∈ N and not n = p = 0}

for i = 1, 2, hence M1 ∼Rel M2 and hence M1 ∼ M2.

But M1 and M2 are β-normal: they cannot be identified by
reduction.

Remark : If we have side effects in the language such as
• a global or local memory where one can read and write
• or input-outputs (read or write in a file etc)

then the terms M1 and M2 are no more equivalent.

Rel is not fully abstract

This proof method for ∼ is not complete: it is not true that, for
any M1,M2 such that ⊢ M1,M2 : A,

M1 ∼ M2 ⇒ JM1K = JM2K

If a model satisfies this condition, it is said fully abstract. Let
ΩA = fix(λxA x). Notice that Ωι βwh Ωι and hence JΩιK = ∅.

Example

For i = 1, 2, consider the closed term

Mi = λf ι⇒ι⇒ι · if((f) 0Ωι, if((f) Ωι 0,

if((f) 1 1,Ωι, z · i), z · Ωι), z · Ωι)

of type (ι⇒ ι⇒ ι)⇒ ι.

Then defining ai ∈ J(ι⇒ ι⇒ ι)⇒ ιK for i = 1, 2 as

ai = (([([0], [], 0), ([], [0], 0), ([1], [1], 1)]), i)

one has ai ∈ JMiK and ai ̸∈ JM3−iK so JM1K ̸= JM2K.

But in coherence spaces (for instance) M1 and M2 are interpreted
as ∅, hence M1 ∼ M2. Because ([0], [], 0) ˇ ([], [0], 0).

Probabilistic coherence spaces

General goal

Interpret program acting on uncertain data.

For instance, given
• a PCF term M such that ⊢ M : ι⇒ ι

• and a “term” P of type ι which reduces to 0 with probability
1/3, to 4 with probability 1/2 and to 7 with probability 1/6,

what is the probability that (M)P reduces to 42?

Moreover, the term M can also “flip coins” during its execution to
make some choices.

Coefficients

We cannot restrict our attention to probabilities ∈ [0, 1], we have
to consider more general coefficients.

These coefficients will be in R≥0 = {λ ∈ R | λ ≥ 0}. No negative
coefficients.

Very rarely we will consider coefficients in R≥0 = R≥0 ∪ {∞}.
Notice R≥0, with the usual order on numbers, is a cpo (any
subset of R≥0 has a least upper bound (lub) in R≥0).

For multiplication to be Scott-continuous, we set 0×∞ = 0.

General idea of PCS

Let I be a set of “elementary data”, we want to consider subsets
of (R≥0)

I whose elements will be considered as generalized
“distributions of probabilities” over I .

Example (integers)

I = N, we will represent the type of natural numbers as the set of
all x ∈ (R≥0)

N such that
∑∞

n=0 xn ≤ 1.

Why not
∑∞

n=0 xn = 1? Because we want also to consider partial
programs of type ι, with probability 1−

∑∞
n=0 xn to diverge.

Duality of PCS

Let x , x ′ ∈ (R≥0)
I , consider x as a “probabilistic” data and x ′ as

an observer. Then we represent the probability that the
observation x ′ succeeds on x as

⟨x , x ′⟩ =
∑
i∈I

xix ′i

Intuition:
• xi is the “probability” that x produces i
• x ′i is the weight, the significance, that the observer x ′ gives

to value i .

So we expect that ⟨x , x ′⟩ ≤ 1.

Given D ⊆ (R≥0)
I , we define

D⊥ =
{
x ′ ∈ (R≥0)

I | ∀x ∈ D ⟨x , x ′⟩ ≤ 1
}

So D⊥ is the set of all “observations” which make sense against
all the “data” of D.

Lemma
Let D, E ⊆ (R≥0)

I , then
• D ⊆ E ⇒ E⊥ ⊆ D⊥

• and D ⊆ D⊥⊥.

As a consequence D⊥⊥⊥ = D⊥ . In other words, D⊥⊥ = D iff
D = E⊥ for some E ⊆ (R≥0)

I .

Avoiding ∞ coefficients

Notation: if i ∈ I we use ei for the element x of (R≥0)
I such that

xj = 0 if j ̸= i and xi = 1.

Let D ⊆ (R≥0)
I and assume that for some i ∈ I we have

∀x ∈ D xi = 0 .

Then λei ∈ D⊥ for all λ ∈ R≥0. So if we want D⊥ to be
complete (in the sense of complete partial orders), this will
require to introduce ∞ coefficients.

We prefer to avoid this to have a well behaved Kleisli category of
the ! that we will define, where morphisms will be analytic
functions.

Dually if for some i ∈ I we have

∀λ ∈ R≥0 λei ∈ D

then all the elements of x ′ ∈ D⊥ will satisfy x ′i = 0.

So we consider only sets D ⊆ (R≥0)
I such that

∀i ∈ I 0 < sup
x∈D

xi <∞ .

Definition
A probabilistic coherence space (PCS) is a pair X = (|X |,PX)
where
• |X | is a set and PX ⊆ (R≥0)

|X | called the web of X
• PX⊥⊥ ⊆ PX (that is PX⊥⊥ = PX)
• and, for all a ∈ |X |,

0 < sup
x∈PX

xa <∞ .

Then we define X⊥ = (|X |,PX⊥), which is also a PCS.

A PCS is down-closed and convex

Given a set I and x , y ∈ (R≥0)
I , we write x ≤ y if ∀i ∈ I xi ≤ yi .

This is an order relation on (R≥0)
I .

Lemma
Let X be a PCS and let x ∈ PX. Let y ∈ (R≥0)

|X | be such that
y ≤ x. Then y ∈ PX.

Let x , y ∈ PX and let λ ∈ [0, 1]. Then λx + (1− λ)y ∈ PX.

For the first statement, let x ′ ∈ PX⊥ , we have
⟨y , x ′⟩ ≤ ⟨x , x ′⟩ ≤ 1 and hence y ∈ PX⊥⊥ = PX .

For the second statement, let x ′ ∈ PX⊥ . Continuity of addition
and multiplication show that
⟨λx + (1− λ)y , x ′⟩ = λ⟨x , x ′⟩+ (1− λ)⟨y , x ′⟩ ≤ λ+ 1− λ = 1
hence λx + (1− λ)y ∈ PX⊥⊥ = PX .

A PCS is a cpo

Theorem
The poset (PX ,≤) is a cpo.

Let D ⊆ PX be directed. We define x ∈ (R≥0)
|X | by

∀a ∈ |X | xa = supy∈D ya. We prove that x ∈ PX⊥⊥ = PX . This
amounts to proving that ∀x ′ ∈ PX⊥ ⟨x , x ′⟩ ≤ 1. So let x ′ ∈ PX⊥ .

We have

⟨x , x ′⟩ =
∑

a∈|X |

xax ′a

= sup
I∈Pfin(|X |)

∑
a∈I

xax ′a

= sup
I∈Pfin(|X |)

sup
y∈D

∑
a∈I

yax ′a by cont. of × and +

= sup
y∈D

sup
I∈Pfin(|X |)

∑
a∈I

yax ′a

= sup
y∈D
⟨y , x ′⟩ ≤ 1 .

The converse is also true

It is good to know that conversely (although we will not use this
property here):

Theorem
Let P ⊆ (R≥0)

I be such that:
• ∀x , y ∈ (R≥0)

I (x ≤ y and y ∈ P)⇒ x ∈ P
• ∀D ⊆ P D directed⇒ supD ∈ P (remember that

x = supD ∈ R≥0
I

is given by xi = supy∈D yi for each i ∈ I)
• ∀x , y ∈ P, ∀λ ∈ [0, 1] λx + (1− λ)y ∈ P
• and ∀i ∈ I 0 < supx∈P xi <∞.

Then P⊥⊥ ⊆ P (that is P⊥⊥ = P) and (I ,P) is a PCS.

The proof is essentially an application of the Hahn-Banach
theorem.

The norm of a PCS

Given x ∈ PX we define

∥x∥X = sup
x ′∈PX⊥

⟨x , x ′⟩ ≤ 1

We have
• ∥x∥X = 0⇒ x = 0, indeed for each a ∈ |X | there is ε > 0

such that εea ∈ PX⊥ hence ∥X∥X ≥ ⟨x , εea⟩ = εxa. So
∥x∥X = 0⇒ ∀a ∈ |X | xa = 0.
• Let λ ∈ [0, 1], we have ∥λx∥X = λ∥x∥X .
• Let x , y ∈ PX such that x + y ∈ PX . Then
∥x + y∥X ≤ ∥x∥X + ∥y∥X .

Indeed ∥x + y∥X = supx ′∈PX⊥ (⟨x , x ′⟩+ ⟨y , x ′⟩) ≤ ∥x∥X + ∥y∥X .

Matrices

Let I and J be sets, an I × J-matrix is an element s of R≥0
I×J

.

Given x ∈ R≥0
I

we define

s · x =

(∑
i∈I

si ,jxi

)
j∈J

∈ R≥0
J

application of matrix s to vector x .

If K is another set and t ∈ R≥0
J×K

we define

t s =

∑
j∈J

si ,j tj ,k


i∈I , k∈K

∈ R≥0
I×K

the product of the matrices s and t.

Morphisms of PCS

Let X and Y be PCSs. A morphism from X to Y is a
|X | × |Y |-matrix s such that

∀x ∈ PX s · x ∈ PY .

This implies that s ∈ (R≥0)
|X |×|Y | (no infinite coefficients): let

a ∈ |X | and ε > 0 be such that εea ∈ PX .

Then s · εea = ε(sa,b)b∈|Y | ∈ PY ⊆ (R≥0)
|Y |.

The category of PCSs

Pcoh(X ,Y) the set of these morphisms.

Identity morphism IdX ∈ (R≥0)
|X |×|X | given by

(IdX)a,a′ =

{
1 if a = a′

0 otherwise.

Let s ∈ Pcoh(X ,Y) and t ∈ Pcoh(Y ,Z), then t s ∈ Pcoh(X ,Z).

Indeed let x ∈ PX , we have s · x ∈ PY , hence
(t s) · x = t · (s · x) ∈ PZ .

Morphisms as functions

Fact
The morphisms of Pcoh are fully determined by their functional
behaviour:

Let s, s ′ ∈ Pcoh(X ,Y).

(∀x ∈ PX s · x = s ′ · x)⇒ s = s ′

Assume that ∀x ∈ PX s · x = s ′ · x . Let a ∈ |X | and b ∈ |Y |. Let
ε > 0 be such that εea ∈ PX . We have

(s · εea)b = (s ′ · εea)b

that is sa,b = s ′a,b for all a ∈ |X |, b ∈ |Y | since (s · εea)b = εsa,b.

Characterizing linear maps on PCS

Fact
Let s ∈ Pcoh(X ,Y), then the function s̃ : PX → PY defined by
s̃(x) = s · x satisfies
• if x(1), x(2) ∈ PX are such that x(1) + x(2) ∈ PX then

s̃(x(1) + x(2)) = s̃(x(1)) + s̃(x(2)) and as a consequence s̃
is monotone (because
x(1) ≤ x(2)⇔ ∃x ∈ PX x(1) + x = x(2))
• if x ∈ PX and λ ∈ [0, 1] then s̃(λx) = λs̃(x)
• and s̃ is Scott continuous: for any D ⊆ PX directed,

s̃(supD) ≤ supx∈D s̃(x).

Conversely for any function f : PX → PY with these properties,
there is an s ∈ Pcoh(X ,Y) such that f = s̃ (and this s is unique).

From relations to matrices

Given u ⊆ I × J, that is u ∈ Rel(I , J), we define
mat(u) ∈ (R≥0)

I×J (the incidence matrix of u) by

mat(u)i ,j =

{
1 if (i , j) ∈ u

0 otherwise.

Then mat(IdI) = Id where IdI is the diagonal relation. And also,
if u ⊆ I × J and u ⊆ J × K are graphs of bijections, then

mat(v u) = mat(v)mat(u)

where v u is composition in Rel and mat(v)mat(u) is composition
of matrices.

Isomorphisms of PCSs

A priori an iso in Pcoh could be a complicated matrix.

A strong iso from X to Y is a bijection ϕ : |X | → |Y | such that

∀x ∈ (R≥0)
|X | x ∈ PX ⇔ mat(ϕ) · x ∈ PY

considering ϕ as a relation from |X | to |Y |.

And then ϕ−1 is a strong iso from Y to X with
mat(ϕ−1) = mat(ϕ)−1.

Theorem
Any iso of PCS is a strong iso.

Exercise!

Terminology

We use the wods “strong iso” to speak about ϕ (the bijection) or
about mat(ϕ) (the matrix), depending on the context.

An important equation

Let x ∈ R≥0
I

and y ∈ R≥0
J
, we define x ⊗ y ∈ R≥0

I×J
by

(x ⊗ y)i ,j = xiyj .

Lemma
Let x ∈ R≥0

I
, y ′ ∈ R≥0

J
and s ∈ R≥0

I×J
. Then

⟨s · x , y ′⟩ = ⟨s, x ⊗ y ′⟩ =
∑

i∈I , j∈J

si ,jxiy ′j .

X ⊸ Y is a PCS

Let X and Y be PCSs and s ∈ (R≥0)
|X |×|Y |. We have

s ∈ Pcoh(X ,Y)⇔ ∀x ∈ PX , ∀y ′ ∈ PY⊥ ⟨s · x , y ′⟩ ≤ 1

⇔ ∀x ∈ PX , ∀y ′ ∈ PY⊥ ⟨s, x ⊗ y ′⟩ ≤ 1

Let X ⊸ Y be (|X | × |Y |,Pcoh(X ,Y)), we have just seen that

P(X ⊸ Y) =
{
x ⊗ y ′ | x ∈ PX and y ′ ∈ PY⊥

}⊥
Therefore P(X ⊸ Y) = P(X ⊸ Y)⊥⊥.

Let a ∈ |X | and b ∈ |Y |. We can find ε > 0 such that εea ∈ PX
and εeb ∈ PY⊥ . Let also M ∈ R>0 be such that
∀x ∈ PX xa ≤ M and ∀y ′ ∈ PY⊥ y ′b ≤ M.

We have ε2ea,b = εea ⊗ εeb and hence
∀s ∈ P(X ⊸ Y) ⟨s, ε2ea,b⟩ ≤ 1, that is
∀s ∈ P(X ⊸ Y) sa,b ≤ ε−2.

We have M−2ea,b ∈ P(X ⊸ Y). Indeed, let x ∈ PX and
y ′ ∈ PY⊥ , we have ⟨M−2ea,b, x ⊗ y ′⟩ = M−2xay ′b ≤ M−2M2 = 1.

This shows that X ⊸ Y is a PCS.

Transpose of a matrix

Lemma
The swap bijection γ : |X | × |Y | → |Y | × |X | such that
γ(a, b) = (b, a) is a strong iso from X ⊸ Y to Y⊥ ⊸ X⊥ .

It maps t ∈ Pcoh(X ,Y) to t⊥ ∈ Pcoh(Y⊥ ,X⊥) given by
t⊥b,a = ta,b, the transpose of the matrix t.

_⊥ is a functor Pcoh→ Pcohop: Id⊥X = IdX and (t s)⊥ = s⊥ t⊥ .

This functor is involutive: X⊥⊥ = X and t⊥⊥ = t.

Lemma
∀x ∈ PX , ∀y ′ ∈ PY⊥ ⟨t · x , y ′⟩ = ⟨x , t⊥ · y ′⟩.

Indeed ⟨t · x , y ′⟩ = ⟨x , t⊥ · y ′⟩ =
∑

a∈|X |, b∈|Y | ta,bxay ′b.

Tensor product of PCS

Definition
1 = ({∗} , {(∗, λ) | λ ∈ [0, 1]}), we shall simply write P1 = [0, 1].

X ⊗ Y = (X ⊸ Y⊥)⊥ .

So |X ⊗ Y | = |X | × |Y | and
P(X ⊗ Y) = {x ⊗ y | x ∈ PX and y ∈ PY }⊥⊥.

A linear morphism on a tensor product is fully characterized by its
values on “pure tensors”. Precisely:

Lemma
Let X1, X2 and Y be PCSs. Let
t ∈ (R≥0)

(|X1|×|X2|)×|Y | = (R≥0)
|X1⊗X2⊸Y |.

We have t ∈ Pcoh(X1 ⊗ X2,Y) iff
∀x(1) ∈ PX1, x(2) ∈ PX2 t · (x(1)⊗ x(2)) ∈ PY

Assume first that t ∈ Pcoh(X1 ⊗ X2,Y). Let x(1) ∈ PX1 and
x(2) ∈ PX2. Then we have x(1)⊗ x(2) ∈ P(X1 ⊗ X2) and hence
t · (x(1)⊗ x(2)) ∈ PY .

Conversely assume that
∀x(1) ∈ PX1, x(2) ∈ PX2 t · (x(1)⊗ x(2)) ∈ PY .

We prove that t⊥ ∈ Pcoh(Y⊥ , (X1 ⊗ X2)
⊥). So let y ′ ∈ PY⊥ ,

we prove that t⊥ · y ′ ∈ P(X1 ⊗ X2)
⊥ .

We have (X1 ⊗ X2)
⊥ = X1 ⊸ X⊥2 . It suffices to prove that

∀x(1) ∈ PX1 (t⊥ · y ′) · x(1) ∈ PX⊥2 . So it suffices to prove that

∀x(1) ∈ PX1, x(2) ∈ PX2 ⟨(t⊥ · y ′) · x(1), x(2)⟩ ≤ 1 .

We have

⟨(t⊥ · y ′) · x(1), x(2)⟩ =
∑

a1∈|X1|, a2∈|X2|, b∈|Y |

t(a1,a2),bx(1)a1x(2)a2y
′
b

= ⟨t · (x(1)⊗ x(2)), y ′⟩
≤ 1

By our assumption about t.

So t⊥ ∈ Pcoh(Y⊥ , (X1 ⊗ X2)
⊥) and hence

t = t⊥⊥ ∈ Pcoh(X1 ⊗ X2,Y).

Functoriality of ⊗ in PCSs

Let t(i) ∈ R≥0
Ii×Ji for i = 1, 2.

We define t(1)⊗ t(2) ∈ R≥0
(I1×I2)×(J1×J2) by

(t(1)⊗ t(2))(i1,i2),(j1,j2) = t(1)i1,j1t(2)i2,j2

Lemma
Given x(i) ∈ R≥0

Ii for i = 1, 2, we have

(t(1)⊗ t(2)) · (x(1)⊗ x(2)) = (t(1) · x(1))⊗ (t(2) · x(2))

Easy computation

Fact
Let s(i) ∈ Pcoh(Xi ,Yi) for i = 1, 2. Then
s(1)⊗ s(2) ∈ Pcoh(X1 ⊗ X2,Y1 ⊗ Y2).

Indeed, by the previous lemma, it suffices to prove that

∀x(1) ∈ PX1, x(2) ∈ PX2 (s(1)⊗ s(2))·(x(1)⊗ x(2)) ∈ P(Y1 ⊗ Y2)

This results from

(s(1)⊗ s(2)) · (x(1)⊗ x(2)) = (s(1) · x(1))⊗ (s(2) · x(2))

and s(i) ∈ Pcoh(Xi ,Yi).

We have proven:

Lemma
⊗ is a functor Pcoh2 → Pcoh.

Indeed IdX1 ⊗ IdX2 = IdX1⊗X2 .

And if s(i) ∈ Pcoh(Xi ,Yi) and t(i) ∈ Pcoh(Yi ,Zi) for i = 1, 2,
then

(t(1) s(1))⊗ (t(2) s(2)) = (t(1)⊗ t(2)) (s(1)⊗ s(2))

Lemma
Let X1, X2 and Y be PCSs. Then the bijection

α : |(X1 ⊗ X2)⊸ Y | → |X1 ⊸ (X2 ⊸ Y)|
((a1, a2), b) 7→ (a1, (a2, b))

is a strong iso from (X1 ⊗ X2)⊸ Y to X1 ⊸ (X2 ⊸ Y).

We need to prove that

mat(α) ∈ Pcoh(X1 ⊗ X2 ⊸ Y ,X1 ⊸ (X2 ⊸ Y)) .

So let t ∈ P(X1 ⊗ X2 ⊸ Y), we have to prove that
mat(α) · t ∈ P(X1 ⊸ (X2 ⊸ Y)).

Given x(i) ∈ PXi for i = 1, 2, we have to prove that
((mat(α) · t) · x(1)) · x(2) ∈ PY .

This results from

((mat(α) · t) · x(1)) · x(2) = t · (x(1)⊗ x(2))

and t ∈ P(X1 ⊗ X2 ⊸ Y).

Conversely we must prove that

mat(α−1) ∈ Pcoh(X1 ⊸ (X2 ⊸ Y),X1 ⊗ X2 ⊸ Y)

so let t ∈ P(X1 ⊸ (X2 ⊸ Y)) and let us prove that
mat(α−1) · t ∈ P(X1 ⊗ X2 ⊸ Y).

By the last lemma, it suffices to prove that for all x(1) ∈ PX1 and
x(2) ∈ PX2 we have (mat(α−1) · t) · (x(1)⊗ x(2)) ∈ PY .

This results from the assumption that t ∈ P(X1 ⊸ (X2 ⊸ Y))
and from

(mat(α−1) · t) · (x(1)⊗ x(2)) = (t · x(1)) · x(2) .

So mat(α)⊥ = mat(α−1) is a strong iso from
(X1 ⊸ (X2 ⊸ Y))⊥ = X1 ⊗

(
X2 ⊗ Y⊥

)
to

(X1 ⊗ X2 ⊸ Y)⊥ = (X1 ⊗ X2)⊗ Y⊥ .

Taking Y = X⊥3 , this shows that α is a strong iso from
(X1 ⊗ X2)⊗ X3 to X1 ⊗ (X2 ⊗ X3).

We have obvious strong isos λ from 1⊗ X to X given by
λ(∗, a) = a, ρ from X ⊗ 1 to X and γ from X1 ⊗ X2 to X2 ⊗ X1
(given by γ(a1, a2) = (a2, a1)).

In that way we turn Pcoh into a symmetric monoidal category.
Notice that α, λ, ρ and γ are defined exactly as in Rel. So the
commutation of the coherence diagrams holds.

Monoidal closeness

Given PCSs X and Y we define ev ∈ (R≥0)
((X⊸Y)⊗X)⊸Y by

ev((a,b),a′),b′ =

{
1 if a = a′ and b = b′

0 otherwise.

By this definitions, it follows that if t ∈ P(X ⊸ Y) and x ∈ PX ,
then

ev · (t ⊗ x) = t · x ∈ PY .

It follows that ev ∈ Pcoh((X ⊸ Y)⊗ X ,Y) by the usual lemma.

Then (X ⊸ Y , ev) is the linear hom object of X and Y .
Indeed, given s ∈ Pcoh(Z ⊗ X ,Y), define
t = cur(s) ∈ (R≥0)

|Z⊸(X⊸Y)| by

cur(s)c,(a,b) = s(c,a),b .

Then

∀z ∈ PZ , x ∈ PX (cur(s) · z) · x = s · (z ⊗ x) ∈ PY

and hence

1 ∀z ∈ PZ cur(s) · z ∈ P(X ⊸ Y)

2 and t = cur(s) ∈ Pcoh(Z ,X ⊸ Y).

Pcoh is ∗-autonomous

We take ⊥ = 1, that is ⊥ = ({∗} , [0, 1]).

Then the standard morphism

ηX = cur(ev γ) ∈ Pcoh(X , (X ⊸ ⊥)⊸ ⊥)

is a strong iso (the underlying bijection maps a to ((a, ∗), ∗)).

Simply because we have a strong iso θ : X⊥ → (X ⊸ ⊥): as a
bijection on the webs, θ(a) = (a, ∗). Indeed we have

(mat(θ) · x ′) · x = ⟨x , x ′⟩ =
∑

a∈|X |

xax ′a

for all x , x ′ ∈ (R≥0)
|X |.

And hence x ′ ∈ PX⊥ iff mat(θ) · x ′ ∈ P(X ⊸ ⊥).

Then the fact that η is a strong iso comes from X⊥⊥ = X which
holds by definition of a PCS.

Cartesian product

Let (Xi)i∈I be a collection of PCSs. We define X = &i∈I Xi as
follows:
• |X | =

⋃
i∈I {i} × |Xi | = &i∈I |Xi | (in Rel)

• and, given x ∈ (R≥0)
|X |, x ∈ PX iff ∀i ∈ I mat(pri) · x ∈ PXi .

Remember that pri ∈ Rel(&j∈I |Xj |, |Xi |) is the i-th projection of
the cartesian product in Rel.

pri = {((i , a), a) | a ∈ |Xi |}.

By this definition we have that PX ≃
∏

i∈I PXi (isomorphic as
partially ordered sets), by the mapping x 7→ (mat(pri) · x)i∈I .

If follows that for all d = (i , a) ∈ |X |

0 < sup
x∈PX

xd = sup
y∈PXi

ya <∞ .

Fact

P(&
i∈I

Xi) =
{

mat(ini) · x ′ | i ∈ I and x ′ ∈ PX⊥i
}⊥

This is simply because ⟨x ,mat(ini) · x ′⟩ = ⟨mat(pri) · x , x ′⟩.

It follows that X⊥⊥ = X and hence X = &i∈Xi Xi is a PCS.

Observe also that by definition of this PCS, we have

∀i ∈ I mat(pri) ∈ Pcoh(&
j∈I

Xj ,Xi)

From now on we write pri instead of mat(pri).

Fact
(&i∈I Xi , (pri)i∈I) is the cartesian product of the Xi ’s in Pcoh.

Take X = &i∈I Xi as above.

Let t(i) ∈ Pcoh(Y ,Xi) for each i ∈ I , let t ∈ (R≥0)
|Y |×|X | be

defined by

∀b ∈ |Y |, ∀i ∈ I , ∀a ∈ |Xi | tb,(i ,a) = (t(i))b,a .

Then

∀y ∈ PY , ∀i ∈ I mat(pri) · (t · y) = t(i) · y ∈ PXi .

That is ∀y ∈ PY t · y ∈ PX and hence t ∈ Pcoh(Y ,&i∈I Xi).

Then t is the unique element of Pcoh(Y ,&i∈I Xi) such that

∀i ∈ I mat(pri) t = t(i)

which shows that (&i∈I Xi , (pri)i∈I) is the cartesian product of the
Xi ’s in Pcoh.

As usual we write t = ⟨t(i)⟩i∈I .

Coproducts

Since Pcoh is ∗-autonomous it has coproducts (⊕i∈I Xi , (ini)i∈I)
with

⊕
i∈I

Xi = (&
i∈I

X⊥i)⊥

and already defined injections.

ini is the matrix associated with the i-th injection in Rel:

{(a, (i , a)) | a ∈ |Xi |}

so that ini = pr⊥i (as relations and as matrices).

Fact

P(⊕
i∈I

Xi) =

{
x ∈ P(&

i∈I
Xi) |

∑
i∈I

∥pri · x∥Xi ≤ 1

}

Proof in the lecture notes.

Example

• P(1 & 1) ≃ {(x1, x2) | x1, x2 ∈ [0, 1]}
• P(1⊕ 1) ≃ {(x1, x2) | x1, x2 ∈ [0, 1] and x1 + x2 ≤ 1}

(probabilistic booleans)
• P((1⊕ 1) & (1⊕ 1)) ≃
{(x1, x2, x3, x4) | ∀i xi ∈ [0, 1], x1 + x2 ≤ 1 and x3 + x4 ≤ 1}
•

P((1 & 1)⊕ (1 & 1)) ≃ {(x1, x2, x3, x4) | ∀i xi ∈ [0, 1],

x1 + x3 ≤ 1, x1 + x4 ≤ 1, x2 + x3 ≤ 1 and x2 + x4}

Exponential

Given x ∈ (R≥0)
I and m ∈Mfin(I) (finite multisets of elements

of I), we define

xm =
∏
i∈I

xm(i)
i ∈ R≥0 .

In other words, if m = [i1, . . . , ik]:

xm =

k∏
h=1

xih

Definition of !X

Then we define x (!) ∈ (R≥0)
Mfin(I) by

x (!)
m = xm

for each m ∈Mfin(I).

Finally, given a PCS X we define !X by |!X | =Mfin(|X |) and

P(!X) =
{

x (!) | x ∈ PX
}⊥⊥

.

Hence by definition P(!X)⊥⊥ = P(!X).

We must prove that ∀m ∈Mfin(|X |) 0 < supu∈P(!X) um <∞.

Let m = [a1, . . . , ak] ∈Mfin(|X |). For each i ∈ {1, . . . , k} we can
find εi > 0 such that εieai ∈ PX for i = 1, . . . , k . Then let ε > 0
be such that ε ≤ εi for i = 1, . . . , k .

Then εeai ∈ PX for each i and hence x = ε
k+1

∑k
i=1 eai ∈ PX (we

use k + 1 instead of k to avoid division by 0).

Then x (!)
m = xm = εk

(k+1)k > 0 and since x (!) ∈ P(!X) we have
supu∈P(!X) um > 0.

Similarly let M ∈ R≥0 be such that
∀x ∈ PX , ∀i ∈ {1, . . . , k} xai ≤ M.

Let x ∈ PX , we have

⟨x (!),
1

Mk em⟩ =
1

Mk xm =
1

Mk

k∏
i=1

xai ≤ 1

Hence 1
Mk em ∈ P(!X)⊥ .

Therefore ∀u ∈ P(!X) ⟨u, 1
Mk em⟩ ≤ 1, that is

∀u ∈ P(!X) um ≤ Mk .

Fact
!X is a PCS.

Analytic functions in Pcoh

Let t ∈ Pcoh(!X ,Y). If x ∈ PX then x (!) ∈ P(!X) and hence

t · x (!) ∈ PY

We define t̂ : PX → PY by t̂(x) = t · x (!).

Fact
Let t ∈ (R≥0)

|!X⊸Y |. One has t ∈ P(!X ⊸ Y) iff
∀x ∈ PX t · x (!) ∈ PY .

If t ∈ (R≥0)
|!X⊸Y | we have t · x (!) ∈ PY because x (!) ∈ P(!X).

Conversely assume that ∀x ∈ PX t · x (!) ∈ PY . We prove that
t⊥ ∈ Pcoh(Y⊥ ,P(!X)⊥).

Notice first that

P(!X)⊥ =
{

x (!) | x ∈ PX
}⊥⊥⊥

=
{

x (!) | x ∈ PX
}⊥

.

Let y ′ ∈ PY⊥ , we prove that t⊥ · y ′ ∈ P(!X)⊥ . So let x ∈ PX , it
suffices to prove that ⟨t⊥ · y ′, x (!)⟩ ≤ 1.

This comes from ⟨t⊥ · y ′, x (!)⟩ = ⟨y ′, t · x (!)⟩ and from our
assumption about t.

Fact (unary functional characterization)

Let s, t ∈ Pcoh(!X ,Y). If ŝ = t̂ then s = t.

Idea of the proof: we can express the values of sm and tm using
the derivatives of the function ŝ = t̂ at 0. Since the derivatives
depend only on the function, this shows that sm = tm. See the
lecture notes.

Remark : This means that the morphisms of Pcoh! can be
considered as functions. As we shall see, composition in Pcoh!

coincides with composition of the corresponding functions.

A function f : PX → PY such that there is an s ∈ Pcoh(!X ,Y)
is called an analytic function. Then s is the power series of f .

Example (analytic function on 1)

What is an s ∈ Pcoh(!1, 1) = P(!1⊸ 1)?

First we can identify |!1⊸ 1| with N, so s ∈ (R≥0)
N.

The condition s ∈ Pcoh(!1, 1) means that ∀x ∈ P1 s · x (!) ∈ P1,
that is ∀x ∈ [0, 1]

∑∞
n=0 snxn ∈ [0, 1]. That is

∑
n∈N sn ≤ 1.

f (x) = xk (for k ∈ N) is analytic, f (x) = 1
7 + 1

3x2 + 8
21x7 is

analytic. The function f : [0, 1]→ [0, 1] defined by f (x) = 2x − x2

is not analytic (although it is monotone and Scott continuous).

The function f (x) = ex−1 and g(x) = 1−
√

1− x2 are analytic.

Example (analytic function on the booleans)

What is an s ∈ Pcoh(!(1⊕ 1), 1) = P(!(1⊕ 1)⊸ 1)?

We can identify |!(1⊕ 1)⊸ 1| with N× N, so s ∈ (R≥0)
N×N.

Then the condition s ∈ Pcoh(!(1⊕ 1), 1) can be written:
∀λ ∈ [0, 1]

∑
n,k∈N sn,kλn(1− λ)k ≤ 1.

For each λ ∈ [0, 1] and n ∈ N we have λn(1− λ)n ≤ 1/4n and
hence if we set for instance

sn,k =

{
2n if n = k ≥ 1

0 otherwise

then s ∈ Pcoh(!(1⊕ 1), 1). So the function
f (x , y) =

∑∞
n=1 2nxnyn is analytic.

Notice that the coefficients of f are unbounded. This example
shows why the coefficients have to be in R≥0 and not only in
[0, 1].

Analytic functions of several arguments

Fact
Let s ∈ (R≥0)

|!X1⊗···⊗!Xk⊸Y |.

One has s ∈ Pcoh(!X1 ⊗ · · · ⊗ !Xk ,Y) iff for all
x(1) ∈ PX1, . . . , x(k) ∈ PXk one has

s · (x(1)(!) ⊗ · · · ⊗ x(k)(!)) ∈ PY .

Fact
Let s, t ∈ Pcoh(!X1 ⊗ · · · ⊗ !Xk ,Y). If for all
x(1) ∈ PX1, . . . , x(k) ∈ PXk one has

s · (x(1)(!) ⊗ · · · ⊗ x(k)(!)) = t · (x(1)(!) ⊗ · · · ⊗ x(k)(!))

then s = t.

Use unary functional characterization and monoidal closeness of
Pcoh in an easy induction on k .

Notation: ŝ(x(1), . . . , x(k)) = s · (x(1)(!) ⊗ · · · ⊗ x(k)(!)). It is
k-ary analytic function.

Linear maps are analytic

If s ∈ Pcoh(X ,Y) then the associated linear function
f = s̃ : PX → PY given by f (x) = s · x is analytic.

The associated power series t ∈ Pcoh(!X ,Y) is given by

tm,b =

{
sa,b if m = [a]

0 otherwise.

Monotonicity and Scott continuity

Fact
Let f : PX → PY be analytique, and let s ∈ Pcoh(!X ,Y) be
such that f = ŝ (the power series of f).

Then f is monotone and Scott continuous.

Observe that f (x) = s̃(x (!)) = s · x (!) and we know that s̃ is
monotone and Scott continuous. So it suffices to prove that the
function

δ : PX → P(!X)

x 7→ x (!)

is monotone and Scott continuous.

Easy: it suffices to check that for each m ∈ |!X | the map x → xm

from PX to R≥0 is monotone and Scott continuous. This comes
from the monotonicity and Scott continuity of multiplication in
R≥0.

The exponential of a morphism

Given m ∈Mfin(I) and p ∈Mfin(J), we define L(m, p) as the set
of all pairings of m and p: multisets r ∈Mfin(I × J) such that

∀i ∈ I
∑

j∈Mfin(J)

r(i , j) = m(i)

∀j ∈ J
∑

i∈Mfin(I)

r(i , j) = p(j) .

Notice that if r ∈ L(m, p) then #r = #m = #p (where
#m =

∑
i∈I m(i)). So if L(m, p) ̸= ∅ we must have #m = #p.

If m ∈Mfin(I), we set m! =
∏

i∈I m(i)!.

Given r ∈ L(m, p), we set[
p
r

]
=

p!
r !

=
∏
j∈J

p(j)!∏
i∈I r(i , j)!

Notice that p(j)!∏
i∈I r(i ,j)! ∈ N because p(j) =

∑
i∈I r(i , j). For

instance (10 = 2 + 2 + 3 + 3)

10!
2!23!2

=
10!
2432 = 25200

Multinomial coefficient.

Remark : Let n, n1, . . . , nk ∈ N be such that n = n1 + · · ·+ nk ,
then the multinomial coefficient

n!
n1! · · · nk !

is the number of sets {I1, . . . , Ik} of k pairwise disjoint subsets of
{1, . . . , n} such that I1 ∪ · · · ∪ Ik = {1, . . . , n}.

See the lecture notes for a similar combinatorial interpretation of[
p
r

]
for r ∈ L(m, p).

Example

I = {1, 2, 3}, J = {1, 2}, m = 5[1] + 3[2] + 5[3] and
p = 8[1] + 5[2]. Notice that #m = #p = 13.

Let
r = 3[(1, 1)] + 2[(2, 1)] + 3[(3, 1)] + 2[(1, 2)] + [(2, 2)] + 2[(3, 2)],
we have r ∈ L(m, p) and[

p
r

]
=

p!
r !

=
8!× 5!

3!× 2!× 3!× 2!× 1!× 2!
= 16800 .

Definition of !s

Let s ∈ (R≥0)
I×J . Then we define !s ∈ (R≥0)

Mfin(I)×Mfin(J).

We set

!sm,p =
∑

r∈L(m,p)

[
p
r

]
s r

Notice that L(m, p) is a finite set, so this sum is finite.

Remember that s r =
∏

i∈I ,j∈J s r(i ,j)
i ,j .

Fact (crucial property)

∀x ∈ (R≥0)
I !s · x (!) = (s · x)(!) .

This is proven by a simple computation (see the lecture notes).
As a consequence:

Fact
For all s ∈ Pcoh(X ,Y) we have !s ∈ Pcoh(!X , !Y).

Indeed, by the crucial property above it suffices to prove that
∀x ∈ PX !s · x (!) ∈ P(!Y). This comes from s · x ∈ PY and from
!s · x (!) = (s · x)(!).

Dereliction

Let derX ∈ (R≥0)
|!X |×|X | be given by

derX m,a =

{
1 if m = [a]

0 otherwise

that is derX = mat(der|X |).

Then we have ∀x ∈ PX derX · x (!) = x ∈ PX and hence
derX ∈ Pcoh(!X ,X) by the crucial property again.

Digging

Let digX ∈ (R≥0)
|!X |×|!!X | be given by

digX m,M =

{
1 if m = ΣM

0 otherwise

that is digX = mat(dig|X |). Remember that if
M = [m1, . . . ,mk] ∈ |!!X | then ΣM = m1 + · · ·+ mk ∈ |!X |.

Then we have ∀x ∈ PX digX · x (!) = x (!)(!) ∈ P(!!X) and hence
digX ∈ Pcoh(!X , !!X) by the crucial property again.

Naturality of der

We have to prove that if s ∈ Pcoh(X ,Y) then

!X !Y

X Y

!s
derX derY

s

Let s(1) = derY !s and s(2) = s derX . By one of the lemmas
above, it suffices to prove that ∀x ∈ PX ,

s(1) · x (!) = s(2) · x (!).

This is easy:

s(1) · x (!) = derY · (!s · x (!)) = derY · (s · x)(!) = s · x

and
s(2) · x (!) = s · (derX · x (!)) = s · x .

All commutations of naturality and comonadicity are proven in
the same way.

Another example

!X !!X

!!X !!!X

digX

digX dig!X
!digX

We take x ∈ PX , we have

(dig!X digX) · x (!) = dig!X · (digX · x (!))

= dig!X · x (!)(!) = x (!)(!)(!)

(!digX digX) · x (!) = !digX · x (!)(!) = x (!)(!)(!)

Strong monoidality of the comonad

The bijections

m0 : |1| → |!⊤|
∗ 7→ []

m2
|X1|,|X2| : |!X1 ⊗ !X2| → !(|X1 & X2|)

(m(1),m(2)) 7→ 1 ·m(1) + 2 ·m(2)

where i · [a1, . . . , ak] = [(i , a1), . . . , (i , ak)] induce strong isos

mat(m0) ∈ Pcoh(1, !⊤)
mat(m2

|X1|,|X2|) ∈ Pcoh(!X1 ⊗ !X2, !(X1 & X2))

simply denoted as m0 and m2
X1,X2

.

All required diagrams are satisfied, let us check for instance

!X ⊗ !Y !(X & Y)

!!(X & Y)

!!X ⊗ !!Y !(!X & !Y)

m2
X ,Y

digX⊗digY

digX&Y

!⟨!pr1,!pr2⟩
m2

!X ,!Y

Observe first that m̂2
X ,Y (x , y), that is m2

X ,Y ·
(
x (!) ⊗ y (!)

)
, is equal

to ⟨x , y⟩(!).

Let s = m2
!X ,!Y (digX ⊗ digY) and t = !⟨!pr1, !pr2⟩ digX&Y m2

X ,Y ,
it suffices to prove

∀x ∈ PX , y ∈ PY s ·
(
x (!) ⊗ y (!)

)
= t ·

(
x (!) ⊗ y (!)

)
.

We have

s ·
(
x (!) ⊗ y (!)

)
= m2

X ,Y ·
(
x (!)(!) ⊗ y (!)(!)

)
= ⟨x (!), x (!)⟩(!)

and

t ·
(
x (!) ⊗ y (!)

)
= (!⟨!pr1, !pr2⟩ digX&Y) · ⟨x , y⟩(!)

= !⟨!pr1, !pr2⟩ · ⟨x , y⟩(!)(!)

= (⟨!pr1, !pr2⟩ · ⟨x , y⟩(!))(!)

= ⟨!pr1 · ⟨x , y⟩(!), !pr2 · ⟨x , y⟩(!)⟩(!)

= ⟨(pr1 · ⟨x , y⟩)(!), (pr2 · ⟨x , y⟩)(!)⟩(!)

= ⟨x (!), y (!)⟩(!)

Conclusion: Pcoh is a model of classical LL!

The associated cartesian closed category

It is the category Pcoh!:
• Objects: the PCSs.
• Pcoh!(X ,Y) = Pcoh(!X ,Y)

• Identity is IdKl
X = derX ∈ Pcoh!(X ,X) so that

ÎdKl(x) = derX · x (!) = x . That is ÎdKl is the identity function.

• And if s ∈ Pcoh!(X ,Y) and t ∈ Pcoh!(Y ,Z) then
t ◦ s = t s ! = t !s digX so that

t̂ ◦ s(x) = t · (s ! · x (!))

= t · (s · x (!))(!)

= t̂(ŝ(x))

that is t̂ ◦ s = t̂ ◦ ŝ. Notice indeed that
s ! · x (!) = !s · x (!)(!) = (s · x (!))(!).

This is very important: composition (and identities) in Pcoh!

coincides with composition (and identities) of functions, when
considering the morphisms of Pcoh! as functions.

Pcoh! as a category of functions.

This means that we have a faithful (but not full!) functor
U : Pcoh! → Set which maps X to PX
and s ∈ Pcoh!(X ,Y) to ŝ.

If (Xi)i∈I is a family of objects of Pcoh then

U(&
i∈I

Xi) ≃
∏
i∈I

U(Xi)

More precisely U preserves cartesian products.

Pcoh! is a CCC with (X ⇒ Y) = (!X ⊸ Y) and
Ev ∈ Pcoh!((X ⇒ Y) & X ,Y) is

!((X ⇒ Y) & X)

!(!X ⊸ Y)⊗ !X

(!X ⊸ Y)⊗ !X

Y

(m2
X⇒Y ,X)

−1

der⊗!X

ev

It follows that, if s ∈ P(X ⇒ Y) and x ∈ PX

Êv(⟨s, x⟩) = (ev (der ⊗ !X)) · ((m2
X⇒Y ,X)

−1 · ⟨s, x⟩(!))

= (ev (der ⊗ !X)) ·
(
s(!) ⊗ x (!)

)
= ev ·

(
s ⊗ x (!)

)
= ŝ(x)

And if s ∈ Pcoh!(Z & X ,Y) then Cur(s) ∈ Pcoh!(Z ,X ⇒ Y) is
characterized by the fact that for each z ∈ PZ , the element
t = Ĉur(s)(z) of P(X ⇒ Y) is characterized by

∀x ∈ PX t̂(x) = ŝ(⟨z , x⟩)

In other words evaluation and curryfication are defined exactly as
in the CCC Set.

Contraction, weakening

As in any model of LL, we have a weakening and a contraction
morphism

wX ∈ Pcoh(!X , 1) cX ∈ Pcoh(!X , !X ⊗ !X)

We have, for all x ∈ PX :

wX · x (!) = 1

cX · x (!) = x (!) ⊗ x (!)

If y ∈ Pcoh(1,Y) (that is y ∈ PY) then

(̂y wX)(x) = y

and if s ∈ Pcoh(!X ⊗ !X ,Y)

(̂s cX)(x) = ŝ(x , x)

Integers

Remember we have defined N = (N,PN) with

PN =

{
x ∈ (R≥0)

N |
∑
n∈N

xn ≤ 1

}
.

That is N = ⊕n∈N 1.

So we have a strong iso 1⊕ N ≃ N induced by the following
bijection

θ : |1⊕ N| → |N|
(1, ∗) 7→ 0

(2, n) 7→ n + 1

In particular suc = mat(θ) in2 ∈ Pcoh(N,N) characterized by
s̃uc(u)0 = 0 and s̃uc(u)n+1 = xn. In other words
s̃uc(u) =

∑∞
n=0 unen+1.

Remember that if s ∈ Pcoh(X ,Y) and x ∈ PX , s̃(x) = s · x that
is s̃ is the linear function induced by s).

As in Rel we can define

if ∈ Pcoh(!N⊗ !X ⊗ !(!N⊸ X),X)

characterized by

îf(u, x , s) = u0x +

∞∑
n=0

un+1ŝ(en).

Remember that en ∈ PN is characterized by (en)k = δn,k (= 1 is
n = k and = 0 if n ̸= k).

Its matrix is given by

ifm,p,q,a =


1 if m = [0], p = [a] and q = []

1 if m = [n + 1], p = [] and q = [(k [n], a)]

for some n, k ∈ N
0 otherwise

for m ∈Mfin(N), p ∈Mfin(|X |),
q ∈Mfin(|!N⊸ X |) =Mfin(Mfin(N)× |X |) and a ∈ |X |.

Least fixed points of analytic functions

Given s ∈ Pcoh!(Y ,Y), we know that the function ŝ : PY → PY
is Scott continuous so ŝ has a least fixed point
supn∈N ŝn(0) ∈ PY .

Remember that

ŝ : PY → PY

x 7→ s · y (!) =

 ∑
m∈Mfin(|Y |)

sm,aym


a∈|Y |

Least fixed point operator

As in Rel we can apply this to Y = ((X ⇒ X)⇒ X) and to the
morphism Z ∈ Pcoh!((X ⇒ X)⇒ X , (X ⇒ X)⇒ X) such that,
for S ∈ P((X ⇒ X)⇒ X)

T = Ẑ(S) ∈ P((X ⇒ X)⇒ X) = Pcoh!(X ⇒ X ,X)

satisfies that, for all s ∈ P(X ⇒ X),

T̂ (s) = ŝ(Ŝ(s)) .

The fact that Z is a morphism in Pcoh! comes from the cartesian
closeness of that category.

Fact
Then Y, the least fixed point of Z, satisfies

Y ∈ PY = Pcoh!(X ⇒ X ,X)

and

∀s ∈ Pcoh!(X ,X) Ŷ(s) = sup
n∈N

ŝn(0)

It is not obvious at all, at first sight, that the map
s 7→ supn∈N ŝn(0) is analytic!

This fact uses positivity of coefficients!

Define a sequence fn : [0, 1]→ [0, 1] by

f0(x) = 0

fn+1(x) = x + fn(x)− xfn(x) = x + (1− x)fn(x)

so that f1(x) = x , f2(x) = 2x − x2, f3(x) = 3x − 3x2 + x3. . . ,
fn(x) = 1− (1− x)n. Then for all x ∈ [0, 1] the sequence
fn(x) ∈ [0, 1] is monotone with sup f (x) such that

f (x) =

{
0 if x = 0

1 if x > 0

so that f is not even continuous!

What comes next?

We can now use this model to interpret an extension of PCF with
a random primitive for instance a constant which reduces to 0
with probability 1/2 and to 1 with probability 1/2.

For this language, reduction will be probabilistic: if ⊢ M : ι, M
has a probability pn ∈ [0, 1] to reduce to n, for each n ∈ N.

We will also have a denotational semantics: JMK ∈ PN.

Adequacy: ∀n ∈ N pn = JMKn.

Next week: part III of MPRI 2-02, by Michele Pagani.

	What is Denotational Semantics about?
	The language PCF
	The relational model
	Derived structures in a model of LL, with illustration in Rel
	Interpreting PCF in Rel
	Semantics of PCF in Rel as a typing system
	Probabilistic coherence spaces

