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What is Denotational Semantics about?



Denotational semantics (initially mathematical semantics) has
been invented by Christopher Strachey and Dana Scott in 1969.

The goal: provide a mathematical interpretation of programs.
Strachey was promoting such an interpretation since the
beginning of the 1960's.

What do programs do, independently from the implementation on
a concrete machine?

Strachey's idea: programs as functions

® A functional program maps “values’ to “values”,

® a program (with side effects) maps states (of the machine)
to states.

What kind of functions acting on what kind of spaces?



D. Scott: the invention of DS

Dana Scott (a logician, student of Alonzo Church), probably
inspired by the Rice Shapiro theorem (1959), found an answer.

Scott was also looking for models of the pure A-calculus, that is a
“universe” where we can have a non-trivial object X such that

(X=X)CX

(impossible in Set, the category of sets and functions, for
cardinality reasons).



Partial recursive functions

A partial recursive function is a partial function N — N which can
be computed by a program. Partiality: for some values of the
argument, the program may loop.

The partial rec. fun. ¢,: partial recursive functions are defined by
programs which are finite sequences of symbols, and so there are
only countably many programs, we can enumerate them

Po, P1, ... Then @, is the partial recursive function computed by
program py.

F C N recursively enumerable: there is an integer n such that

k € F < @p(k) is defined.

Finite function: a partial function 8 : N — N is finite if the set of
n's such that 6(n) is defined is finite. Any such finite 6 is partial
recursive.



Theorem (Rice Shapiro)

Let F be a set of partial recursive functions N — N such that
{n| @n € F} is recursively enumerable. Let ¢ : N — N be partial
recursive.

Then ¢ € F if and only if there is a finite function ¥y C 9 such
that g € F.

The hypothesis means dk € N such that
VneN ¢, € F < @r(n) defined.

Such a k is the (indice of) a program which computes F that we
can see as a semi-decision procedure on recursive functions.



More intuitively but less accurately: let N be the set of partial
recursive functions N — N and F : N’ — {0} be “partial
computable”. Then
e if i, ¢’ € N with ¢ C 4’ (as graphs) and F(9) = 0 then
F(y') =0 (F is monotone)
e and if F(¥) = 0 there is a finite function g C % such that
F(wo) = 0.
Works also replacing {0} with N.

Intuition

A computation takes a finite amount of time and hence, to
produce a finite information (here 0, that is termination), a
program (here F) can explore only a finite part (here 1) of its
argument (here ).



Dana Scott's great idea:

denotational semantics = recursion theory — computability

Forget computability, keep only the order theoretic aspects of
Rice Shapiro and generalize it to all types.

Replace N by the set of all partial functions N — N, not only the
computable ones, ordered by inclusion of graphs.
Then consider partial £ : AV — N such that
e if f,g € N with f C g (as graphs) and F(f) = n then
F(g) = n (F is monotone)
® and if F(f) = n there is a finite function fy C f such that
F(fo) = n.



This property is exactly Scott continuity!

It can be extended to much more general objects than N:
domains (partially ordered sets with some order-completeness
properties).

Scott and Strachey: use Scott continuous functions to interpret
programs.

Scott: it also works for the pure A-calculus.

This is the basic idea of Denotational Semantics.



Cartesian closed categories (CCC)

In the 1980's, one understands that categories are a useful tool
for describing such denotational models, especially when
morphisms are not functions.

The notion of cartesian closed categories (CCC) is the right
setting for describing denotational models of the A-calculus and
of PCF.



Beyond Scott’s initial idea. . .

Several refinements of Scott continuity:

® sequential functions (many people: Jean Vuillemin, Vladimir
Sazonov, Robin Milner) but does not give a CCC

e stable functions (Gérard Berry, rediscovered by Jean-Yves
Girard) CCC

® sequential algorithms (Berry and Pierre-Louis Curien) CCC
— not functions

® strong stability (Antonio Bucciarelli and E.), a CCC whose
“type 1" morphisms are sequential

® various game models — not functions

® combinations, refinements etc of the above.



Jean-Yves Girard and DS

In the early 1980's, Girard develops a model of System F (a
second-order typed A-calculus he discovered 15 years earlier)
using stable functions on qualitative domains.

He understands that, in this model, (1) standard implication
can be decomposed using this new implication:

(X =Y)=(1X — Y) where X — Y is a space of linear
stable maps,

that (2) only very special qd’s arise as interpretations of
types: coherence spaces,

and that (3) linear stable maps between coherence spaces
lead to involutive linear negation X — (X — ).



This is at the same time
® the origin of Linear Logic

® and a new approach to denotational semantics based on a
notion of linear morphisms.

Major influence on the development of game models in the
1990's.

For this reason, the linear logical structure of models is central in
this lecture.



Two basic intuitions about DS

e Before LL: DS was considered as based on Domain Theory,
which was considered as part of Topology because of Scott
continuity. But with topological space having weak
separation properties.

e After LL: DS is closer to Linear Algebra. Although it is not
always possible to add vectors. ..

These two points of view still exist. Our lecture is clearly based
on the second one.



LL is everywhere!

Many models appear to have a linear logical structure or have
been directly defined as models of LL:

Scott semantics itself (Scott continuous functions on
prime-algebraic complete lattices) though neither Scott nor
Girard did notice

Hypercoherence semantics (strongly stable functions on
hypercoherence spaces, accounting for sequentiality)
the relational model (objects are sets, morphisms are
relations)

models based on linear algebra: Kothe spaces, finiteness
spaces, probabilistic coherence spaces

and a large number of refinements or combinations of these
models.



Another great idea of Dana Scott: introduce a simple, Turing
complete, functional programming language for defining
denotational interpretations. This is PCF.

Allows to study very cleanly the connection between operational
semantics (execution of programs etc) and DS.



The language PCF



Lecture notes, Sections 1.1, 1.2 and 1.3



Syntax of PCF

PCF = Programming Computable Functions

Published for the first time in a paper by Gordon Plotkin in 1977.

Our version of PCF

A simply typed A-calculus with one ground data-type (integers)
and a fixpoint operator to implement general recursion.

AB, ... =t|A=B

M,N,P,...:.=x|n]| succ(M) | if(M,N,x-P)
| AXAM | (MYN | fix(M)

For each n € N there is a constant n in the language.



Typing rules for PCF

Typing context: ' = (x1 : A1, ..., Xn © Ap), X;'s pairwise distinct
variables. More precisely I is a finite partial function from
variables to types.

IEM:A=B TEN:A
r,X:Al—X:A I'F(M)N:B

x:AFM:B TFM:A=A
FTEAM:A= B THEfix(M): A




neN Fr=M:.
lEn:v Thsucc(M):e
Fr=M:. rN=-P: A MNz:tFQR:A

MHif(M, P z-Q): A



Intuition: pattern matching

Main difference wrt. Plotkin's PCF: conditional is a case analysis
on M, of type v:

® (zero) if(0,N,x-P)~ N
® (successor) if(n+1,N,x-P)~ P[n/x].

Similar to a pattern matching in Ocaml.



Intuition: fixpoint operator

Purpose: define recursive functions.

In Ocaml (or similar functional languages) on can write
letrecf =M

where f can occur free in M, to define f of type A.

For this to make sense we need

MfF:AFM:A.

With a fixpoint operator like ours, this would be written

let £ = fix(AFA M)



Substitution

Substitution M[N/x] is defined as usual, terms are considered up
to a-conversion to avoid meaningless variable bindings as in:

(A y) [x/y] = AxA x

Replace first the substituted term Ax” y with the a-equivalent
Az”y and then apply the substitution:

(A2 y) [x/y] = 22" x.



Operational semantics

How do we compute with this language?

We will provide

® a set of general reduction rules B that turns the language
into a rewriting system

® and a rewriting subsystem (B, which is a deterministic
strategy, turning PCF into a programming language: weak
head-reduction.

This strategy can be implemented by means of an abstract
machine.



Rewriting rules 3

They are presented as a deduction system which allows to prove
statements of shape M 3 M’ expressing that M reduces to M’ in
PCF.

Red underlined terms are called redexes.

Axioms. Standard 3-reduction:

(AXAM)N B M[N/x]

Fixpoint unfolding:

fix(M) B (M) fix(M)




Case analysis:

if(0,P,z-Q)B P if(n+1,P,z-Q)B Q[n/z]

Successor:

succ(n)Bn+1

Important

To reduce if(M, P,z - Q) we require M to be an integer constant
n, for instance the reduction

if(succ(N), P, z- Q) B Q[N/z]

is not valid. The integers are dealt with in Call by Value style.



The deduction rules express that reduction can be performed in

any context.
MpB M

AXAM B AXAM
MB M NB N
(M)NB(M)N  (M)N B (M) N
MB M
fix(M) B fix(M")




MB M

if(M, P, z-Q)Bif(M,P,z- Q)
PGP

if(M,P,z-Q)Bif(M, P, z-Q)
QB Q

if(M, P,z Q) Bif(M,P,z- Q)
MB M
succ(M) B succ(M’)




B preserves types

Lemma (Substitution)

Let P,Q € PCF. IfT,x:AFP:B andifT - Q: A, then
M- P[Q/x]: B.

The proof is a simple induction on the typing derivation of P.

Theorem (Subject reduction)
Let M e PCF. IfTEM:Aet MB M, thenT =M : A.

The proof is a simple induction on the derivation that M 3 M.
One uses the Substitution Lemma when M = (Ax* P) @ and
M = P[Q/x].



Abstract Rewriting Systems (ARS)

An ARS is a pair (T,6) where T is a set (the “terms”) and 0 is a
binary relation on a set T (thatis 6 C T x T), a “rewriting
relation”.

® \We use 6* for the least binary relation ¢ on T such that ¢ is
transitive and reflexive and 6 C . Given t,t' € T, one has
t 0* t' if and only if there are tq, ..., t, € T with n > 1 such
thatt=1t;, t' =tpand t; 0t fori=1,..., n—1.1tis
called the reflexive transitive closure of 6.

e We define similarly 8~ as the reflexive closure of 8: t 8= t' if
t=tortht.

o tc T is 0-normal if thereisno t' € T such that t 0 t'.



The Church Rosser property

® We say that 6 has the Diamond Property (DP) if

Ve, ti, b € TtOtiandtOt, =3It € T t;0t and t, 0 t/

¢ and that 6 has the Church Rosser Property (CR) if 6* has
the Diamond property.



Theorem (PCF is Church Rosser)
The relation B has the Church Rosser property.

We outline a very general and efficient method to this kind of
result: the Tait Martin-Lof method of parallel reductions.

Good to know it because it can be used is many different settings.



Why isn't PCF trivially CR?

Theorem (Easy)

If 6~ has the Diamond Property (DP) then 6 has the Church
Rosser property.




|dea of the proof



However B8~ has not the DP: let | = Ax*x and I’ = Ag*™* g so
that F/:v=1, FI':(t=)=cv=ctand E(I")]:t=1.

M= (A= () (A O) ()]

(o

Impossible to close this diagram in one step on both sides: on the
left we have to reduce 2 copies of the redex (/') /, on the right
only one.



Tait Martin-Lof proof idea

Crucial observation
We can close the diagram reducing only redexes which were
present in the original term, namely:

® M itself

e and (/") /

but we need to be allowed to reduce several of them.

We never need to reduce the new redex (/) (/) O which has been
created during the reduction.




Sketch of the proof

Strategy of the proof

e Define a parallel reduction relation p which performs an
arbitrary number of reduction of redexes present in the initial
term (such as the red and the blue ones), so that
B C pCB* and hence o :,6*._

® Prove that p has the diamond property.



The parallel reduction p

As usual we present it as a deduction system.

MoM  NpN MoM — MpM"
AXAMYN p M [N'/x]  fix(M) p (M) fix(M")

PpP QpQ
if(0,P,z-Q)p P if(n+1, P, z-Q)p Q'[n/z]

succ(n) pn+1



npn xpx

Mo M Mo M MoM NpN
succ(M) psucc(M') AxAM pXxAM  (M)N p (M) N
Mp M

fix(M) p fix(M")
MoM PpP  QpQ
if(M,P,z-Q) pif(M', P,z Q)




Relation between p and 3

In all these statements we assume that ' = M : A.

Lemma
If M B M then M p M.

Easy induction on the derivation that M 8 M’. We also use the
following easy property:

Lemma
Mp M.

Proof by induction on M (or on its typing derivation).



Lemma
Assume that T, x: A-N: B and N B N’ then
N[M/x] B N'[M/x]. Hence N B* N' = N[M/x] B* N' [M/x].

Easy induction on the derivation that N 8 N'. Assume for
instance that N = (Ay© P) Q and N = P[Q/y] so that the
derivation consists of an axiom.

Then N'[M/x] = P[Q/y][M/x] = P[M/x][Q [M/X]/y]

because we can assume that y does not occur free in M. And

N[M/x] = (A€ P) Q) [M/x] = (\x© P[M/x]) Q[M/x]
B PIM/XIQ[M/x]/y]



Lemma

Assume that I, x : A-N: B and M 8 M’ then
N[M/x] B* N[M'/x].

Easy induction in the derivation that ', x : A+ N : B.

Assume for instance that N = (P)Q with I, x: AFP: C=B
and L x:AFQ: C.

By inductive hypothesis we have P [M/x] B* P[M’/x] and
Q[M/x] B* Q[M'/x]. Therefore since

((P) Q) [M/x] = (P[M/x]) Q [M/x] we have

NIM/x] 2 (PIM//X]) QIM/x] —2 (PIM'/x]) Q[M/x]



Combining these two results:

Lemma

Assume that T, x: AN : B, NgB* N and M 3* M’ then
N [M/x] B* N'[M'/x].




Using this lemma, one proves

Lemma

IfT=M: B and M p M' then M B* M'. As a consequence
r-m:B.

By induction on the derivation that M p M’. Assume for instance
that M = (Ax* P) Q and M’ = P’ [@'/x] with P p P" and Q p Q'.

By inductive hypothesis P 8* P’ and Q 8* @’ and hence by the
lemma above P [Q/x] B* P'[Q'/x], hence

M=0xAP)Q —2 PIQ/x] 2 PIQ/x] = M



Main properties of p

The crucial property of p is:

Theorem

Assume that T, x : A M : B andTl = N : A and assume that
Mp M and N p N'. Then

MI[N/x] p M [N'/x] .

The proof is by induction on the derivation that M p M.



One step in the proof

Assume that M = (Ay© P) Q with

o x:Ay:CHP:BandTl',x:AFQ: C,

e PpP and Qp @,

e and M' = P'[Q']y].
We have M [N/x] = (A\y© P[N/x]) Q[N/x] (we assume that y
does not occur free in N).

The inductive hypothesis (IH) tells us that P [N/x] p P'[N'/x]
and Q[N/x] p Q" [N'/x].

By definition of p we have

MI[N/x] p P'[N'/x][Q'[N'/x]/y] = M'[N'/x] because we can
also assume that y is not free in N'.



Theorem

The relation p has the Diamond property: assume thatT = M : A
and that M p M; for i = 1,2. Then there is a term R such that
M;p R fori=1,2.

By induction on the structure of M, considering all possible last
rules in the deduction that M p My and M p M, and applying the
above lemma.

Assume for instance that M = (Ay® P) Q and:
* My = (AyBP1) Qi with Pp Py and Qp Q
® My = P>[Q2/y] with P p P and Q p Q».
By IH there are terms Py and Qg such that P; p Py and Q; p Qo
for i = 1,2. By definition of p we have
M; = (A\yB P1) Q1 p Po[Qo/y] and by the lemma we have
Mo = P> [Q2/y] p Po[Qo/y] = R.



Consequences of Church Rosser

Given an ARS8 C T x T, let ~g be the symmetric, reflexive and
transitive closure of 6.

Theorem
If 6 is Church Rosser then

Vti,th €T ti~gtoea It €T 16t and t, 8° ¢/



|dea of the proof



Uniqueness of value

Another crucial consequence of Church Rosser:

Theorem

Assume that = M : . If there exists n € N such that M B* n,
there is only one such n. If M has a value, it has exactly one
value!

If M B* n’ for another n” € N then by Church Rosser there is M’
such that n 8* M’ and n’ B* M’'. This implies n = n'.



General recursive functions in PCF

Soif M : 1= we can define a partial function fy; : N — N by

undefined otherwise

Theorem (Turing completeness of PCF)

The class of partial functions f : N — N such that there exists
F M : 1= such that f = fy; is exactly the class of all partial
recursive functions.



Weak head reduction

Problem
How do we execute PCF terms in a machine?

In = M : ¢ there may be a lot of redexes, which one should we
choose to reduce?

Worse: some sequences of reductions could be infinite whereas
there is n € N such that M B* n.

Example

M = (Ax*0) fix(Az* z) .
We have M 30 and M B (Ax* Q) (A\z* z) fix(Az" z) B M.



Def. of the weak head-reduction Gy

We define a sub-relation B, of 3. The axioms are the same as
for B:

(AXA M) N Bun M [N/X]

fix(M) Bwn (M) fix(M)

if(0,P,z-Q)Bwh P if(n+1,P,z-Q)LBwn Q[n/z]

succ(n) Bwh N+ 1



But there are much less deduction rules, in other words there are
less contexts where redexes can be reduced.

M Buyn M’
(M)N Bun (M) N
M Bun M’
if(M,P,z- Q) Buwn if(M',P,z-Q)
M Buyn M’
succ(M) Bwh succ(M")

We have



Notice that By is a “deterministic strategy” in the sense that for
any term M there is at most one redex which can be reduced by a
Bwh reduction.



(MYMy - My = (- (M) My ) M,

Lemma
IfT =M : A, to have M By M', M must be of shape

M = (H) My -+ M,

with n > 0 and
e ejther H is a redex with H Byn H' and then
M = (H) My - M,
® or H=Iif(K,P,z-Q), K Bwh K" and
M = (if(K', P,z Q)) My -+ My,
® or H=succ(K) (and n=0), K Bunh K" and M’ = succ(K’).



Bwn-normal closed terms of type ¢

If =M :vand M is Byn-normal (no Bwn-reduction from M) then
M = k for some k € N.

By induction on M.
We can write M = (M) My - -- M, where My is not of shape
(P)Q.
e If My = Ax” P we must have n > 1 because - M : ¢ and
(Mo) My .Bwh P[Ml/X] and hence
M Buh (P [M1/x]) Mz - -+ My hence M is not Byh-normal. So
this case is impossible.
* If My =if(K,P,x- Q) then we must have - K : ¢ and K
must be Byn-normal, which by induction implies K = k for
some k € N but then My is not B, normal and neither is M.



® Moy = fix(P) is impossible because fix(P) Bwn (P) fix(P).

¢ |f My = succ(P) then we must have F P : ¢ and P must be
Buwh-normal (by typing we must have n =0 and if P Byp P’
then M By succ(P’), contradiction). By inductive
hypothesis P = k for some k € N. Then M Byn k + 1,
contradiction.

® The only left possibility is that My = k for some k € N which
implies n = 0 by typing.



Bwh 1s complete

Let = M : . Of course if M By, nthen M [3* n. In a few weeks
we shall be able to prove

Theorem
If M B* n then M B, n.



Examples of PCF programs

Addition:

add = Ax* fix(Aa"="* Ay*if(y, x, z - succ((a) z)))
with  Fadd:t=(t=1)

Comparison:

cmp = fix A=) Axt Ayt if(x, 0, z - if (v, 1, 2/ - (¢) 2 Z')))
etona Fcmp:i=(t=1)

Search:

AFE (fix(Ag ™ AxUif ((F) x, x, z - (g) suce(x)))) 0



Morris equivalence

We have a notion of equivalence ~g on terms, but it is very
weak. For instance the two terms

My = Axg Axs if(xq, if(x2, 0, z - 1),
Mo = x5 Axg if (xq,if(x2,0,z-1),z- 1)

z-1)

obviously do the same thing (not in the same order). But it is not
true that My ~g M.

Two terms are Morris (or observationally) equivalent if they can
be used indifferently in any context.



Definition
Let M; and M5 be such that = M, : A for i = 1,2. We say that

My and Mo are observationally equivalent (written My ~ Mo) if
for any term C such that = C : A= one has

(C) My Ban 0 < (C) M2 By Q.

The idea behind this definition is that the only type whose values
can be observed (by a human, that is, a finite being) is N.



® This is an equivalence relation (on closed terms of type A).

® The choice of convergence to 0 as a criterion is irrelevant,
we would define exactly the same equivalence relation if we
define M; ~ M, by

(F3neN (C)M; By, n) < (Ine N (C) Mz By, 0)

This is due to the universal quantification on C.



Theorem
Let = My, M>: A, If My ~g3 My then My ~ M>.

Assume My ~g M.

Let C with = C: A=+ and assume (C) M B, 0, which implies
(C) M, B* 0.

Since My ~g My we have (C) My ~g (C) M» and hence
(C) M, B* 0 by Church Rosser.

Hence (C) M> B, 0 by completeness of Byn.



My = Axg A5 if(xq, if (%2, 0, z - 1),
Mo = Axg Axs if (x2, if (x1, 0, z -

=
\.‘_/
N N

then
My ~ My

Not easy to prove because of the VC in the definition of ~.

Easy to prove using denotational semantics: it suffices to prove
that My and M, have the same interpretation in some (adequate)
model.

We'll see that this implies My ~ M.



The relational model



Lecture notes, Section 6.7 Relational semantics



What is a categorical model of LL?

A tuple (£,1,®, X, p,a,7,L,! _,der,dig,m% m?) consisting of:

® a symmetric monoidal closed category (SMCC) which is
cartesian

® together with an object L of £ which turns this SMCC into
a *k-autonomous category

® and a symmetric monoidal comonad on L.

What we do now

We explain what this means, giving Rel as an example.



Linear Logic: short reminder

Formulas: A, B, A;...

positive negative

mutiplicative 1, AR B 1, A®B
additive 0, Ae B T, A& B

exponential 1A 7A




Linear Negation

Defined by induction on formulas

1t =1 (A® B): = AL 3 Bt
1t = (A% Bt =Alt e Bt
ot=T (Ae B)t = At & Bt
T = (A& B): =At o Bt
(1At =24L (At =141

ALL = A



Sequents - A1, ..., A,

There is a logical system which allows to build trees 7 which are
proofs of sequents

o
T
And a cut-elimination rewriting system on proofs of the same
sequent ™ — 7.



Categorical semantics

A category L
A correspondence
A~ [A] object of £

[~ [I] objectof £
m~ [r] morphism of £

In such a way that

T = [n] =[]



Main feature: modularity

With each linear connective is associated a functor, for instance

[A® B] = [Al® [B]

With each logical rule, an operation on morphisms. If 7 is the
proof tree

LA P
FTA FAB
FILAA®B

then [7] = T([A]. [o]) where T is a well defined operation on
morphisms.



Methodology

We do not define directly the interpretation on LL.

Rather, we define a general notion of category where the
interpretation is possible and satisfies these requirements
(modularity, invariance by cut-elim).

This is much better because the categorical language is extremely
precise and explicit. Though not always very convenient logically.

It took several years after the discovery of LL, to find the right
categorical setting.

To check that something is a model of LL, it suffices to check
these categorical axioms, without coming back to LL iself.



The category Rel

It is probably the simplest denotational model of LL.
Very roughly: coherence spaces... without coherence.

It is also a model of PCF.



Rel as a category

Objects of Rel: all sets.

Rel(E, F) =P(E x F)

Identity at E: |dg ={(a,a) | a€ E}

Composition: if s € Rel(E, F) and t € Rel(F, G) then
tseRel(E,G)is

ts={(a,c)e ExG|3beF (ab)esand(bc)ect}

Rel /s a category.



Isomorphisms in Rel

Remember:

Definition

te L(X,Y)isaniso if there is t' € L(Y, X) such that t’ t = Idx
and tt' = Idy. Then we know that there is a unique such t’, it is
denoted as t1.

Fact

t € Rel(E, F) is an iso iff t is (the graph of) a bijection E — F
and then t=1 is the inverse of this bijection.



Symmetric monoidal category (SMC)

Imporant

An SMC is not a category, it is a category equipped with a
monoidal structure, just as a monoid is not a set, but a set
equipped with a structure of monoid.

An SMC is a tuple
(£,1,®, X p, o)

where
® [ is a category
® 1€ Obj(£) and ® is a functor L2 — L
® and A, p, o and -y are natural isomorphisms.



Monoidality isomorphisms in £

Ax 1 X =X
px X ®1— X
ax, x.x; - (X1 ®Xo) @ Xz = X1 @ (Xo @ X3)
Yxp X 0 X1 @ Xo — Xo @ X



Satisfying coherence diagrams.

Idea: if we consider the isos of the monoidal structure as
rewriting rules, there are “critical pairs”, for instance

QX X, X3

(X1 ® X2) ® X3
YXq. X ®X3l

(Xo® X1) ® X3

X1 ® (X2 @ X3)

then the coherence diagrams explain how to solve these conflicts.



Examples of coherence diagram

(03
(X1 ®X2) @ X3 DRSS X @ (Xo ® X3)
X1 X ®X3l l’Yxl Xp®X3
(Xo®X1) ® X3 (X2 ® X3) ® X1

QX Xy ,x3l laxzx&xl

Xo®vx,,
Xo ® (Xl & X3) 2P Xo® (XS ® Xl)



Mac Lane's Pentagon

OX, ®©Xo, X3, X4

(X1 ® Xo) ® X3) @ X4 (X1 ® Xo) ® (X3 ® Xz)
0UXy X5, X5 ®X4l laX1vX2,X3®X4
(Xl &® (X2 X X3)) ® Xy X1 ® (X2 X (X3 X X4))

e /
' R4
Xl ®OLX2 ,X3.X4

X1 ® (X2 ® X3) ® Xa)



Mac Lane’s theorem on monoidal
categories

One major effect of these coherence diagrams is that in a
(symmetric) monoidal category L, if Xi,..., X, are objects, if X
and X’ are two ways of putting parenthesis in X; ® - - - ® X, there
is a unique canonical iso from X to X'.

Example
n=>5 X=X ®((X®X3)®(Xs®Xs)),
X' = (((X1 ® X2) @ X3) ® Xa) ® Xs.

Using a, we can define several isos from X to X’. Mac Lane's
Theorem tells us that they are all equal.

Consequence

We can write X1 ® - - - ® X, without parentheses.



The other commutations are similar (see the lecture notes).

One special commutation, which holds in Rel, corresponds to the
adjective “symmetric”™:

X1 ® X2 X2 ® X1
ldX& l’yxg,xl
X1 @ Xz

There are other, weaker, possibilities for v. One of them
corresponds to braided monoidal categories.



Monoidal structure of Rel
We set E1 ® E» = E1 X E».
If s; € Rel(E;, Fj) for i = 1,2, we set

51 ® S = {((81, 22), (bl, bz)) | (a,-, b,‘) €S fori =1, 2}
S ReI(E1 R E F® Fg)

® is a functor Rel> — Rel.

One has to prove that Idg, ® Idg, = ldg, g, and if s; € Rel(E;, F))
and t; € Rel(F;, G;) then

(1 ® ) (51 @) =(t151) ® (2 52)

All proofs are easy!



1={x}

We have (trivial) natural isomorphisms

AE1I®E—=E
e E®1—=E
QE, B> E; - (E1®E2)®E3—>E1®(E2®E3)
YE, B E1®@E = B ® E

For instance

e ={((xa),a)|ac E}
ag 6.6 = {(((a1, a2), a3), (a1, (a2, a3))) | a; € E; for i = 1,2,3}

and similarly for the others.



Remember that the naturality of v (for instance) means that if
s; € Rel(E;, F;) for i = 1, 2 then the following diagram commutes
in Rel:

YE;.,
EL®E —5 55
51®52l l52®51
YFy,
F®F ﬂ F®F

To prove such a commutation:
® take (31, 22) € £ ® E5 and (bg, bl) cEF®FA

® prove that

((a1, a2), (b2, b1)) € (52 ® s1) VE,.5,
= ((a1, a2), (b2, b1)) € VF.F, (51 @ 2)

® and the converse implication.

In this case, the proof is trivial.



(Rel, 1, ®, A\, p, o, 7y) is a symmetric monoidal category (SMC).



Points

In an SMC L, a point of an object X is a morphism x € £(1, X),
Ptz (X) = L(1, X).

Can be seen as a functor: Pty : L — Set
If s € L(X,Y) then

PtL(S) : PtL(X) — PtL(Y)
X SX

Points in Rel (up to trivial iso)
Ptrel(E) = P(E) and if s € Rel(E, F) then

PtRe|(S)Z7D(E)—>P(F)
u—s-u={beF|3Jacu(ab)es}



Monoidal closedness

(L,...)an SMC.
A linear hom object from X to Y (objects of £) is a pair
(X — Y, ev) where

e X —o Y is an object of L

seve L((X—Y)®X,Y)

e such that for any s € £L(Z ® X, Y) there is exactly one
morphism cur(s) € £(Z, X — Y) such that

cur s)®X (X . Y o X

\J



Equational characterization

It is useful to know that the linear hom object is characterized by
the following equations:
® ev (cur(s) ® X) =s for s € Rel(Z ® X, Y), this is just the
last commutation
e cur(s)t =cur(s (t® X)) for s € Rel(Z ® X, Y) and
teRel(T,2)

® and cur(ev) = ldx—y.



Definition

The SMC (L, ...) is closed if any X, Y € Obj(L) have a linear
hom object (X — Y, ev).

Since linear hom objects are defined by a universal property, being
closed is a property of an SMC, not an additional structure.

Equivalent definition

An SMC L is closed if for any object Z of £, the functor
Z® L — L has a right adjoint.




Rel is an SMCC

Concretely

E—-F=ExF
ev={(((a,b),a),b)|ac Eand be F}
€ Rel((E — F)®E,F)
cur(s) = {(c.(a b)) [ ((c., a), b) € s}
€ Rel(G,E — F)

fors e Rel(G® E, F).



Linear hom object as a functor

If L isan SMCC then — is a functor L°P x L — L.
Explicitly, if s € L(X', X) and t € L(Y,Y’), then

s —o t=cur(u) € L(X — Y, X" — Y') where u is the following
morphism:

(X—Y)®s

(X - Y)® X X—oY)eX 25y L5V




x-autonomy

Definition

An SMCC L is x-autonomous if it is equipped with an objet L of
L such that the natural morphism

nx = cur(s) € L(X,(X — L) — 1)
is an isomorphism, where s is the following morphism
X®(X—ol) — (X—OJ_)®X*>J_

Then the functor (_ )t = — 1 : L% — L is “involutive up to
ISO".



With 1. =1 = {x}, Rel is x-autonomous. Indeed

ne ={(a ((a, ), %)) | a€ E}

Is trivially an iso.



Linear negation

We can identify the functor
_ —o 1 :Rel°” — Rel

with the functor _+ defined by
e EL=F
¢ and if s € Rel(E, F) then

st ={(b,a)| (a b) € s} € Rel(F,E)

which is strictly involutive. If we see s as a £ x F-matrix then st
is its transpose.



Cotensor or par bifunctor

In a *-autonomous category £ (using _+ for the involutive
dualizing contravariant functor = —o L) we have a binary functor

L% L

® Onobjects: X B Y = (Xt ® Y+)+
® and similarly for morphisms.

With L as unit and suitable natural isos X, o/, @’ and </, this is
another SMC structure on L.



In Rel this symmetric monoidal structure coincides with
(1,® N, p,,7). Inparticular E® F=E®F =E x F.

This is due to the fact that the objects of Rel have no structure,
they are just sets.

In coherence spaces (for instance), 1 and L are the same object
but ® and % are distinct functors.



Products and coproducts

We also require £ to be cartesian, that is, any finite family (Xj)je,
has a cartesian product (X, (pr;)ies), this means the following.
® X is an objet of £ and pr; € L(X, X;)
® and the following universal property holds: for any object Y
of £ and any family (s;)ie; with s; € L(Y, Xj), there is
exactly one s € L(Y, X) such that Vi € | prjs = s;.



Remark

As usual for objects characterized by a universal property: if
(X', (prt)ier) is another cartesian product of the X's, there is
exactly one morphism t € £(X, X") such that Vi € / pri t = pr;.
Moreover, this morphism t is an iso.

(X, (pri)ier) and (X', (pr’)ic) are identical in the strongest
categorical sense.



Notations:

® X = &jc; Xj and in the binary case X = X1 & Xo.

e if s, € L(Y, X;) for each i € I, we use (s;j)jc; for the unique
element of L(Y, &ijes X;) such that Vi € [ pr; (sj)je; = si. In
the binary case: (s1,5): Y — X1 & X».

e |f | = () then X is the terminal object denoted as T,
characterized by: for any object Y of £, the set L(Y, T) is a
singleton {ty}.



Equational characterization

The following properties characterize the cartesian product:

e for any family (sj)ie; with s; € L(Y, X;) for each / € | one
has Vi € | pr;(sj)je; = i

® moreover, if t € L(Z,Y), one has (sj)ic; t = (Si t)jecs
® and last (prj)ie; = Idg,., x;-



Most often models of linear logic have cartesian products of all
countable families of objects, not only of finite families.



Cart. prod. as an SM structure

Given s; € L(X;, Y;) for i = 1,2, we have s;jpr; € L(X1 & X2, Y))
for i = 1,2 and hence we have exactly one morphism

s1 & sp = (s1pri, Sppro) € L(X1 & Xo, Y1 & Y2)
such that

51&sp

Xl&X2 E— Yl&YQ

pr[l J/prl- for / == 1, 2 .

X; ———— Y,

In this way we have defined a functor £2 — L.



® pro € L(T & X, X) is an iso (inverse (tx, ldx)).

® pry € L(X & T, X)is aniso (inverse (ldx, tx)).

® (prypro, (propri, pro)) € L((X1 & Xo) & X3, X1 & (X2 & X3))
is an iso (inverse ({(pry, pri pro), pro pro)).

® (pro, pri) € L(X1 & Xo, X2 & Xq) is an iso (inverse (pro, pry)).

These isos define another SM structure on L.



Coproduct

We define ®jc; Xi = (&ie/ X,'L)J_ and
inj = pr,-L € L(Xi, D X))
Jel

then (e X, (inj)ier) is the coproduct of the X;'s in £ that is,
we have the following universal property:

for any family of morphisms (s;)ie; with s; € L(Xj, Y), there is

exactly one morphism s € L(®je; Xj, Y) such that sin; = s; for
each / € /.



The cartesian product in Rel

Given a family (Ej)je; of sets, we define

& Ej = U{/} X E;
el i€l
pr;={((.a).a) | a€ E;} € Rel(& Ej, Ej) foreach €l

i€l

(&ies Ei, (pri)ier) is the cartesian product of the E;’s in Rel.

Given s; € Rel(F, E;) for each i € | then

(sidier ={(b,(1,a)) | Vi€ (b, a) € si}

€ Rel(F, & E))
iel



Coproduct

_@E,:(&Ei) _@E Ui < &

el i€l icl

inj —pr € Rel(E;, @ Ei)

={(a.(.a)) IaEEJ’}



Exponential

Let (£,...) be a x-autonomous category which is cartesian (that

is, has all finite cartesian products).

An exponential on (£,...) is a tuple (!, der, dig, m%, m?) where
® (! ,der,dig) is a comonad on L

® and (m® m?) is a symmetric monoidal structure on this
comonad: the Seely isomorphisms.

Let's explain. ..



Comonad

! L — Lisa functor
e and derx € L£(!X, X) and digx € L£(!X,!1X) are natural in X

and moreover:

X 29 x P RLLINNTIY
\ lder.x \ l'derx
Ix 29, x
digxl l!digx
digix
nx 9%, x



Seely isomorphisms

ml:1—1IT

mgﬁ SIX @1 = (X1 & X2)
are isos in L, and m§<1 X is natural in X7 and X5. Moreover some

symmetric monoidality commutations hold such as

(X1 @ X)) ®@1X3 el X1 @ (IXo ®1X3)
m3, X2®ngl l!X1®m2X2'X3
(X & X2) @ 1Xa X1 @ 1(Xo & X3)

l((Xl &XQ) &X3) <pr1 prlv<pr2 pl’l,pr2>>) |(X1 & (X2 &X3))



or
YiXq.1X

X1 ® X IXs @ 1X3
mil,XQl lmiz)ﬁ
(X1 & Xo) — 2P0y, 8 X))

Plus an additional diagram (compatibility with dig)

2
mx vy

IX® 1Y I(X & Y)
ldigx&v
digx ®digy (X &Y)

l!<!pr1,!prz>
I(IX & 1Y)

Yy

m2
HX ey — X" |



As usual this allows to define canonically

mgq X, eLIIX1®-@1X,, (X1 & & X))

This is obtained by combining instances of m? and associativity
isos of ® and &; the specific combination chosen is irrelevant
thanks to the monoidality commutations.

Remark

We use the fact that | X; ® - - - ® |.X,, without parenthesis makes
sense because (£, ®) is monoidal, and similarly for X; & --- & X,
because (£, &) is monoidal.



The comonad in Rel

The canonical choice is to take

lE = Mgn(E) = {finite multisets of elements of E}

Definition
An element of Mg, (E) is a function m : E — N such that

supp(m) = {a € E | m(a) # 0}

is finite.



Notations on multisets

[] the empty multiset

my -+ mo, Zf-;l m; defined pointwise

ifa;, ..., ax € Ethen m=1Jay,..., ak| defined by
m(a) = #{i € {1,... .k} | a = a}
if moreover P is a predicate on {1, ..., k}, then

m = [a; | P(i)] € Mgn(E) defined by

m(a) =#{ie{1,..., k} | aj=aand P(i)}



o IE = Mgn(E
* if s € Rel(E,

j.l\/

) then

E={1,2}, F={1,2,3}, s = {(1,2),(2,2), (1,3)}.

(1.1 [2.3)€!s (1.2, [22])¢€!s
(1.2l [23))els  ([1].[2.3]) ¢!s



Functoriality of |

s € Rel(E, F), t € Rel(F, G), we must prove that

IE —= 5 IF

!(ts»)\,4 l”
G

How to prove such a commutation in Rel

Take (m, g) € !E x G and prove that

(m,q) €!(ts) < (m,q) eltls



Assume first (m, q) € !(ts). We can write

with
Vie{l, ..., k} (ai.c)ets
so for each i € {1, ..., k} there is b; € F such that

Vie{l, ..., k} (ai,bj) €sand (bj,c)et.

Then we have (m, p) € Is and (p, g) € !t and hence (m, q) € 't !s.



Conversely assume (m, q) € !t!s.
So let p € !F be such that (m, p) € Is and (p, q) € 't.

We can write m=[ay, ..., ag] and p=[by,..., by] such that

ViE{l ..... k} (b,‘,C,')Et

and it follows that Vi € {1, ..., k} (aj, ci) € ts and hence
(m,q) € !(ts).



One proves in the same way that lldg = Idig.



The comonad structure in Rel

dere = {([a],a) | a€ E} € Rel(!E, E)
dige = {(m1+ -+ mg, [m, ..., mg])

These morphisms are natural in E.



It M=[m,..., my] € NE then ZM:Zle;G!E.
With this notation

dige = {(EM, M) | M € 1E)} .



A simple lemma

Lemma

Let (m, p) € !s for some s € Rel(E, F).
Let P=[p1,..., px| € WF be such that Zf-;l pi = p.
Then there are mq, . . ., my € |E such that
e Vie{l, ..., k} (mi, pi) €ls
o m=3,m,
In other words: if m € |E and P € \\F satisfy (m, £P) € s then
there exists M € l1E such that m = XM and (M, P) € lls.



Proof of the lemma

Write p=[b1, ..., by].

Since p = Zf-;l p; we can find I, ..., Ik €A{1,..., n} pairwise
disjoint such that Uf;l i=A{1,..., n} and p; = [b; | j € 1] for
i=1,..., k.

Since (m, p) € !s we can write m = [ay, ..., ap) with (aj, bj) € s
forj=1,..., n

Fori=1,..., klet m; =1[a; | j € I}], we have S5 | m; = m and

vied{l, ..., k} (mj, pj) €ls.



Naturality of digg

Take s € Rel(E, F) and prove that

IE —5 4 IF

diggl J’digF

ng s, nr
Take (m, P) € 1E x IIF and prove that

(m, P) € s dige & (m, P) € digr !s.



Assume first (m, P) € lls dige. So let M € I1E be such that

(m, M) € dige and (M, P) € lls

m:Zm,- and Vie{l,..., k} (mj, pj) €ls.
i=1
By the second property we have (fozl m;, Zle pi) € !s.

Let p = Zf;l pi, we have (p, P) € digg, (m, p) € !s and hence
(m, P) € digge !s.



Conversely assume (m, P) € dige !s. So let p € IF be such that
(m,p)€ls and (p, P) e dige

Let us write P = [p1, ..., pk| so that Ef;l p;i = p. By the
Lemma we can find mq, ..., my € |E such that Zf-(:l m; = m and
vied{l, ..., k} (mj, pj) €ls.

Let M =[my,..., mg]. We have (M, P) € lls and (m, M) € digg
hence (m, P) € !ls digg.



Comonadicity in Rel

Remember: one has to prove the following commutations

digge digge
— —

s InE I1E InNE
\ J(dehE N J!der,_:
1E
2%, g

ng Y9 g



Let us prove the last commutation: take (m, M) € 1E x IIE.

Assume first (m, M) € dig,e dige, we prove
(m, M) € ldigge digg.

Let M € IE with (m, M) € dige and (M, M) € dig,¢ that is
YM=m and XIM=M.

We write M = [M;, ..., My] and set
M =[EM, ..., M € IE.

k k
M =Y "IM =% M)=IIM=IM=m
i=1 =1
that is (m, M) € digg.

Fori=1,..., k we have (XM;, M;) € dige and hence
(M', M) € ldige. So (m, M) € ldige dige.



Assume conversely that (m, M) € ldige digg.
Let M € |E with (m, M) € digg and (M, M) € Idigg.
We can write M = [My, ..., My] and M = [mq, ..., my] with

k k k

M =SxM =5 M)=) SM=> m=m

i=1 i=1 i=1
since (m, M) € digg that is XM = m.
This shows that (m, M’) € digg and hence (m, M) € dig,g digg.



The Seely isomorphisms in Rel

ml:1—IT

szl 'E1®|E2—>|(E1&E2)

are the isos defined by

m® = {(+ 1)}

szl’E2 ={((m,m2),1-my +2-myp) | mj€!lE fori=1,2}

where /- [a1, ..., al =1[(/,a1), ..., (1, ak)]. The inverse of m2E1,Ez is
{(l(1, a1), ..., (1, ak), (2, b1), ..., (2, bp)]. ([a1, - - -, axl, [b1, ..., bn]))
| a1,..., ax € E1 and b, ..., b, € Ex}

One has to check the Seely commutations.



Derived structures in a model of LL, with
illustration in Rel



Structural morphisms
In any model of LL (£, ...) as described, we have

wx € L(!X,1) weakening
cx € L(IX, !X ®!1X) contraction

defined by (remember that £(X, T) = {tx})

Itx (m%)~*

IX®I1X

Intuition

The elements of I.X are discardable and duplicable.



Then (!X, wx, cx) is a commutative comonoid in £, meaning
that the following diagrams commute.

Coassociativity:

IX — X 5 iXeIX —X2 L (X @ 1X) 91X
Cxl lalx,!x,!x
IX @ 1X X » IX @ (IX ® 1X)

Comes from the monoidality of m?.



Left coneutrality

IX =25 1X @1x O

Idix

Cocommutativity
IX —X 5 1IX®1X

IX® X

11X

8

IX



Promotion

This is sometimes called the /ifting of the comonad: given
s € L(1X,Y), one defined s' € L(1X,!Y) as

X 29 X ey
In Rel, given s € Rel(!E, F) and s' € Rel(!E,!F) is

s ={(m+-+m[b ..., be]) | (mj, bi) € sfori=1



Comonoid structure of 'E in Rel

We have

we = {([]. 9)} € Rel(E, 1)
ce ={(m1 4+ mo, (M1, m)) | m,my €!E} € Rel(lE,'E®E)



Lax symmetric monoidal structure of |

Remember

The Seely morphisms m® and milvxz are a symmetric monoidal
structure on ! from the SMC (£, &) to the SMC (£, ®) which
is strong: the Seely morphisms are isomorphisms.

There is also a symmetric monoidal structure on ! from (£, ®)
to (£, ®) given by morphisms

ul:1—11
/1,§<1’X2 : !Xl & !X2 — !(Xl ®X2)

which are not isos in general: it is a lax SM structure.



0 digT I(m°)

nT

2 .
and i, x, is

m2
X @ 1Xo —— 2225 Xy & Xo)
2 -1

11X (M3 x,) ldi%%
I(! ! =

L@ 1Xo) 2 (X & Xo)
l!(derxl(@derxz)

|(X1 & XQ)



These morphisms satisfy symmetric monoidality commutations
such as

(1X1 © 1) @ 1Xs 2221 @ (1X @ 1X3)
uil,@@!x{ l!xl®u2x2,x3
(X1 @ X2)®1X3 X1 @ 1(Xo ® X3)
“il ®Xp.X3 l lp&l Ko®Xs3

loxy X0,

(X1 © X2) ® X3) (X1 ® (X2 ® X3))

See the lecture notes for a complete list of these commutations.



As a consequence, we can define canonically

x, X1 @ @1X, 2 (X1 ®--- @ X,)

in accordance with the fact that X; ® - - - ® X, makes sense
without parentheses because L is a monoidal category.

Example

The last diagram tells us that, up to associativity of ® (as
specified by the a isos), there is only one way of combining the
w? morphisms to obtain

Ng(l,xz,)g X @ X ®1X3 = (X1 ® Xo ® X3)



Lax monoidal structure in Rel

Remember that in Rel, T = () and that u° is

(mo)™!

RELNE TS ' 11

We have m® = {x,[]} and
digT = {(EM, M) | M € Mgn(Mgn(0))} hence

digr = {([]. X[[1]) | K € N}
since M, (0) = {[]}. So
u® = {(x k[+])) | k € N}

k
e e . .
where km ="m+ -+ m for any m € [E]. uY is not an iso!



m
IE, @16 —— 22 5 (F, & E»)
ldigEl&EQ
(M, 6,)
(1E; ® 1Ey) 2 W(E, & E>)
l!(derE1 ®derg, )
(E; ® E)

We have

I(derg, ® derg,)

= {[([au]. 1)), - - ([ak]. [B6D], [(@1, b1), - (

ai, ..., ax € E and by, .



So

-1
I(derg, ® derg,) !(m2E1,E2) =1

(LI, a1), (2, b)), - -+ ([(L, k), (2, b)D] (a1, b1), - - - (3K, bi)])

€ Rel(!(Ey & B), \(Ey ® E2))
then

I(derg, ® derg,) !(m251,52)_1 digger, = 1{
([(L,a1) (2, b1), ..., (1, a), (2, b)) [(ar, b1), - - ., (ak. b)])
|al ..... ax € E and by, ..., bkEF}
€ Rel(I(E; & E>), (E1 © E>))



Finally

ut, g, = (derg, @ derg,) (M, ) digg,ee, M, g = {
(([az, - - ak), [b1, ... be]). [(a1, b1), . . ., (ak, bi)])
| a1,..., ax € E and by, ..., bx € F}
€ Rel(1E; ® 16, |(Ey @ B))

Computes all possible “pairings” between two multisets which
have the same size.



And more generally

n

E1®---®Ep))
oAl
n and j

.....



Generalized weakening and contraction

We have wy,,  x, € L(!X1 ® - ®1X,, 1) given by

Wx, @ @Wx, 0

X1 @ @Iy, —— g @1 21

where 6 is an iso obtained by combining instances of X, p etc
(again, by Mac Lane's theorem, 6 does not depend on the chosen
combination).



and
Cxy X, ELIX1® @I, (IX1®--@1X,) (X1 ® - ®1X,))

Cxy @ ®Cx,

IX) @ @1y — s (X @ 1X) @ @ (1X, @ 1Xp)

le

(X1 ®- - @1X) @ (IXy @+ @ 1X,)

where 6 is a combination of instances of «y and a (again the
specific chosen combination is irrelevant).



We have

and

in Rel



Generalized promotion

For interpreting the promotion rule of LL

we need a more general kind of promotion in the model: given
SELIXI®--@1X,, Y)weneed s' € L(IX; @+ @1X,, 1Y) It
is given by:

digx, ®--®digx,,
IX;® - @IX, — X @@ X,




In Rel, given s € Rel(lE; ® --- ® 1E,,, F) we have

| (m}, .. my, bj) € s forj=1

.....



Promoted morphisms are discardable
and duplicable

Let s L(IX1 ®---®1X,, Y) then

IX;®@---®@1X, —— 1Y

and

(X1 ® - @1X) @ (X1 ®@1X,) 25 1Y @Y



Promotion and “substitution”

Let s € L(IX; ® -~ @ 1X,, Y) and
teL(lY1®--- @Y, ®1Y,Z). Then we have

IV, @ @Y, @1X, @ @1X, 225, 1y, @...01Y, oY

¢!
(t (Id®s"))! é

t(ldes)eL(IV1@ @IV, @ !X @ ®1X,, 2)

Notice that



Promotion, dereliction and digging

Let s L(IX1 ®---®1X,, Y) then

X1 ®-- ®|Xn*>|Y

\ l"

IX1®---® X, 4)'\/

\ ldlgy

ny






The Eilenberg-Moore category of |

Given a model of LL

General idea

These structural properties of “promoted morphisms”
(discardability, duplicability, substitution) can be extended to
more general morphisms: those of the Eilenberg-Moore category.

Given (L, ...), we can consider the Eilenberg Moore category L
of the (!, der, dig) comonad, or category of coalgebras.

The EM category can be defined for any comonad of course, it
does not use the other components of the model L.



An object of £ is a pair P = (P, hp) where
® P s an object of £
® and hp € L(P,!P) such that



Morphisms in £'

An element of £'(P, Q) is a s € L(P, Q) such that

_s

o
[a)

hp ho

o<
(_



LL intuition

An object P of £' is an object P equipped with its own structural
rules, as well as its own promotion operation.

Indeed we can equip a P € Obj(L£’) with a weakening wp:

P > P — 1
and a contraction cp:
hp cp derp®derp
P » 1P —— IPQIP ———— PQP

For any P € Obj(L"), the triple (P, wp, cp) is a commutative
comonoid comon(P) € Obj(Ccom(L)).

Let us explain this. ..



L' is cartesian!

If P and Q are objects of £' then we set

P2 Q=(P®Q, hpeg)

where hpgq is

P ® Q is an object of L.



This is based on the following commutations in £

|X®'Y*> (X®Y)

d
derx®m l erxey

X®Y

and

IX®1Y ' (X ®Y)

di9x®digyl J/digXQon
2 11,2

X @1y 2% 10X @ 1Y) % (X @ Y)



We can see 1 as an object of £', taking 1 (of £) for 1 and
hy = u® € £(1,'1). One can check indeed that

0
1 1% n
\ lderl p,ol ldigl
10
n—*5m

The object 1 of L' is terminal in L'.
The unique element of £'(P, 1) is ttp given by

hp wp

PP

1



We have projections pr; € L' (P1 ® Py, P;), for instance pr is
defined as

hp, ®P> wp, ®P> Ap,
P1®P2—> |P1®P2—> 1®P2*> lD2



And given s; € £'(Q, P;) for i = 1,2, one can define
(s1,9)% € LY(Q, P ® P>) as

hQ cQ der!9®der!9 51055
Q510 1001 Y g 292,

It is not completely straightforward to prove that these
morphisms are coalgebra morphisms (especially for the pairing).

Theorem
(P1 ® Pa,pry, pry) is the cartesian product of Py and Py in L'



The category of commutative comonoids

We have seen that for any objects Xi, ..., X, of L, the object
X1 ®---® !X, is canonically a commutative comonoid.

We'll see that this extends to all object of £'.

Definition

An object of Ccom(L) is a triple C = (C, w¢, cc) where
wc € L(C, 1) and cc € L(C, C ® C) satisfying the following
commutations:



Commutative comonoid

Coassociativity




Left coneutrality

C

Cocommutativity



Comonoid morphisms

An element of Ccom(£)(C, D) is an s € L(C, D) such that

C—=D c—>——D
J’WD CC\L JCD
Idc
1 CoC-=2,pwD



Coalgebras are comonoids

Fact
For any P in L', we have
cp = (ldp, 1dp)® € L'(P, P & P)
wp = ttp € ,C!(P, 1)

Because £' is cartesian, this turns P into a commutative
comonoid in the SMC (£', ®).

Fact

In a cartesian category C, any object has a canonical
commutative comonoid structure (wrt. the monoidal structure of
C induced by the fact that it is cartesian).



We have a functor L' — Ccom(L) which maps P to (P, wp, cp)
and s € L'(P, Q) tos.



L' is also cocartesian

Remember that two objects X1, X5 of £ have a coproduct
(Xl @& Xs,ing, in2) with in; € E(X,‘, X1 XQ)

Given objects Py, P> of £, we have, in £

!in,-

P; Ly 1P I(P1 & P»)

so we have a unique hp,gp, € L(P1 @ P>, !(P1 @ P»)) such that
hpl@p2 iﬂ,‘ = !in,— hp,. fori=1,2.

P1 & P> = (P& Pa, hp,ep,) Is an object of L'. It is the
coproduct of Py and Py in L.



Remark

Remember that £ is cartesian (with product &) and cocartesian
(with coproduct @).

There is a major difference: in £', the product (®) distributes
over the coproduct (&) as in Set:

(PLeP)@Q~(PL®Q)d (P2® Q)
but in general
(Xl @Xz)& Y # (Xl& Y)@(XQ& Y)

in L.



The Kleisli category

If X is an object of £, then E(X) = (1.X, digx : IX = 11X) is an
object of £', indeed the two following commute by definition of a
comonad:

1x 99 y1x X 99, x
k‘ J’dergx digxl J’!digx
1X nx 49 gnx

Let s € £L(X, Y), then E(s) = !s € L'(E(X), E(Y)) by naturality
of dig.

Remark
E(X) is the free coalgebra generated by X.



L'(E(X),E(Y)) ~ L(1X, Y)

This bijection ¢ : £'(E(X), E(Y)) — L£(!X, Y) works as follows:

The Kleisli category of | is the range of the functor E,
considered as a full subcategory of £'.




Whence the official
The Kleisli category £y of I has
® objects those of £
® and Li(X,Y)=L(IX,Y)
e identity at X: Id§! = derx € L(1X, X) = £i(X, X)
® and composition of s € £(X, Y) and t € £i(Y, Z) given by

tOS:t!sdigX:ts!

digx

X 9Xonx Syt 7
\_/

s!




Example: the category Rel,

The objects are the sets.
Rel,(E, F) = Mg, (E) x F and Id¥' = {([a],a) | a € E}.
If s € Rel,(E, F) and t € Rel,(F, G) then



From L to L,

We define a functor Der : £ — L, by
® Der(X) =X
® and if s € L(X, Y) then
Der(s) =dery s € Li(X,Y) = L(!X,Y).
We could call it the “dereliction functor” since it consists in
forgetting that a morphism of L is “linear”.



From £ to L'

We define an “inclusion” functor | : £; — L' by
® |(X) = (!X, digx) which is an object of L'
® and if s € £i(X,Y) = L(!X,Y) then

I(s) = s' € L£'(1(X), I(Y)).
Indeed we have |
IX —=— 1y
digxl ldigy

nx 0y

because !(s') digy = s'.



Theorem
The functor | is full and faithful.

This means that, for any X, Y in L, the function

@ Li(X,Y) = LX), 1(Y)) = £1((1X, digx), (1Y digy))

s 1(s) =

is surjective (full) and injective (faithful).

The inverse of @ is given by ¢~ 1(t) = dery t.



Proof
Let t € £'(I(X),1(Y)), this means

IX —L 51y

digxl ldigv

nx —t.ny
Then

o(dery t) = (dery t)'
= I(dery t) digx
= ldery It digx
= ldery digy t=1t¢

by the commutation above. For the other direction: dery s' =s.



Through the functor |, we can see £ as a full subcategory of £':
the category of free | -coalgebras.

The free coalgebra functor E : £ — L' is just the composit:

E =10 Der



Adjunctions and factorizations of |

There is an obvious forgetful functor
U:2' =2
P—P tel'(P.Q)w—tcL(P,Q)
Then we have an adjunction

UHE
L(P, X) ~ L'(P,E(X)) for P € Obj(£") and X € Obj(L).

The associated comonad U o E coincides with ! _: we say that
U - E is a factorization of | _.



Remark that this adjunction means that we have an even more
generalized promotion: given s € L(P, X), we have
st € £'(P,E(X)) that is s' € £L(P, 1X) with

P —2 51X

hpl ldigx
)

P 20 X

| .
actually s is

hp p Is 1X

P

In particular if x € Ptz(X) = £(1, X) we have s' € Ptz(1X).



There is also a “forgetful functor”

P=Uol:L =L
X=X seLi(X,Y)—s eL(IX, 1Y)

and remember that we have defined Der : £ — L (Der(X) = X
and Der(s) = s derx for s € £L(X, Y)). Then we have an
adjunction

P - Der
L(P(X),Y)=Li(X,Der(Y)) for X, Y € Obj(£)

P = Der is another factorization of the comonad ! .

Using the fact that (s derx)' = Is for s € £(X, Y).



In general there are a lot of possible factorizations of the
comonad; in some sense U - E is the largest one and P - Der is
the least one.



The Kleisli category L, is a CCC

L, is cartesian
If (Xi)ies is a family of elements of Obj(L) = Obj(L:) then

(& Xi, (pr)ier)
i€l

with pr,KI = pr; derg, , x; = Der(pr;) is the cartesian product of
the Xj's. Given s; € Li(Y, X;) for each i € | then

(siVier € Li(Y, % Xi)

is the unique morphism such that Vi € / pr,K' o (Sj)jel = Si.



Given X, Y € Obj(L), we define
(X=Y)=(IX—Y)
Cartesian closeness, roughly:

L(Z&X,Y)=L((Z&X),Y)

(1Z®!X,Y) Seely

(I1Z,1X — Y) L isan SMC
(Z. X =Y)

12

12

L
L
L



(X=Y)=(X—Y)

Ev =ev (derx—y ® !X) (m!2X—oY,X)_1

I((1X — Y) & X)
(M oy )™
11X — V)@ 1X
derix oy ®!X
(IX — Y) ® 1X

ev

Y




(X = Y, Ev) is the hom object in Ly. This means that, for any
seLi(Z&X,Y)
there is a unique Cur(s) € Li(Z, X = Y) such that, in L,

Cur( 5)&X (X Y Y

\ lEv

We have s € L(I(Z & X),Y), then sm? , € L(IZ®!X,Y), we
have

Cur(s) =cur(smz x) € L(1Z, )X — Y) = L(Z, X = Y).



Interpreting PCF in Rel



Reminder on cpos and fixpoints

Let D be a partially ordered set. A subset D of D is directed
(filtrant in French) if

® D is not empty
® and Vxi,x € DIx € D x3 < x and x» < x.



Remark:

e |f D is directed and xq, ..., X, € D then
dx € DVie{1,...n} x; <x, easy induction on n. Also true
for n = 0 by the condition D # 0.

® Hence a finite directed set D has a maximal element, i.e.
dyeDVxeDx<y.

® So directed sets are useful only when they are infinite: they
generalize monotone sequences: if x1, xo - -+ € D such that
Vi xi < xjy1 then {x; | i € N} is directed.

If E is a set, the set Pg,(E) of finite subsets of E is directed for
C.



A cpo (complete partial order) is a partially ordered set D such
that any directed set D C D has a least upper bound (lub)
VD e D:

Definition (lub)

e VxeDx<\/D
*VyeD((VxeDx<y)=VD<y

Remark: When it exists, a lub is unique (it is defined by a
universal property in D considered as a category: a lub is a
colimit).



Let D and & be cpos and f : D — £ be monotone.

If D C D is directed, then f(D) = {f(x) | x € D} is directed.
Notice that Vx € D f(x) < f(\/ D) and hence \/ f(D) < f(\/ D).

Definition
f is Scott continuous if, for any directed subset D of D one has

f(V D)<V (D), thatis f(\V D) =V f(D).

Remark: One can endow D and £ with a topology such that
Scott continuity coincides with ordinary topology: this is the
Scott topology.



EI]E

Let D be the set of partial functions N — N ordered by inclusion
of graphs (f < g if for all n € N, if f(n) is defined then g(n) is
defined and g(n) = f(n)) and let ¥ = {_L < T}, both are cpos.

® The function F : D — X such that, for all f € D

F(f) =

T fdneNf(n)=f(n+1)=---=1(2")=0
1 otherwise

is monotone and Scott continuous.
® The function G : D — X such that, for all f € D

T ifYn €N f(n?) defined and # 0
G(f) = .
1 otherwise

iIs monotone, but not Scott continuous.



Let D be a cpo which has a least element 1.. Let f : D — D be
monotone and Scott continuous. Then there is x € D such that
* f(x)=x
® andVy € D f(y)=y =x<y.
That is, x is the least fixpoint of f.
One defines (xp)nen in D by xo = L and xp+1 = f(xn). Then
Vn € N x, < xp4+1 (easy induction on n) so D = {x, | n € N} is

directed.



So we can set x = /.y Xn € D since D is a cpo.

Then by Scott continuity

Fx) =\ f(xa) = \/ Flmp1) = x.

neN neN

Assume that y € D and f(y) = y. We have L <y and hence by
induction Vn € N x, < y. Hence x < y.



Function induced by a morphism of £,

In @ model £ of LL, given t € £;(X, Y), we have a function
t:Pte(X) = Pte(Y)
X = t X'

Remember that Ptz (X) = £(1, X). This defines a functor
L, — Set:

d/er\x(x) =deryx x' = x
!

tB(x) =t (sx') =ts'x' = tos(x)



Observe that Ptg(&,‘e/ X,‘) ~ Hiel Ptc(X,').
In Rel: if u € Ptrel(E) =~ P(E) then we identify u' € Ptre(!E)
with

u) = M (v)



Let t € Rel,(E, F), then

t:P(E) = P(F)
u—t-u) ={be F|3Ime Mg,(u) and (m, b) € t}

P(E), ordered by C, is a cpo which has () as least element and
where \/ D = J,cp x.

Fact

The function t is monotone and Scott continuous.

Because the elements of |E are finite multisets.



Let t € Rel\(E, F).

Let up C o in P(E). If b € t(uy), there is m € Mgy (E) such
that supp(m) C vy and (m, b) € t. Then we have supp(m) C uy
and hence b € t(up). So t is monotone.

Let D C P(E) be directed. We prove t(|J D) C Ut(D).

Let b € t(UD). Let m € Mgy(E) such that (m, b) € t and
supp(m) CUUD. Letay,..., ap be the elements of supp(m). For

eachie{1,..., n} let uj € D be such that a; € u;. Since D is
directed there is u € D such that uy; Cufori=1,..., n. We have
supp(m) C u

and hence b € t(u) C |J*(D) since u € D.



Least fixpoints in Rel,

Let t € Rel,(E, E), the map
t:P(E) — P(E)

is monotone and Scott continuous so it has a least fixpoint,

namely
o

).

n=0



Let Y(t) = U2 t"(D). It is the least subset of E such that:
for any ([a1, . . ., anl,a) et ifag, ..., an € Y(t) then a € Y(t).

We want to internalize ), exhibiting Vo € Reli(!E — E, E) such
that

Vt e P(IE — E)  Y(t) = Jo(t)

Define ) as the least fixpoint of a morphism

Z € Rel|(I(1E — E) — E,1(IE —o E) — E)



Such a Z can be defined in any model L of LL (actually in any
CCQ).

We want in L:

Z: (X —o X)— X) = I(IX — X) — X
We take Z = cur(Z’) for

Z' (11X = X) — X) @ 11X — X) = X

We define Z’ as follows:



Definition of Z’

!(!(!X —o X) —o X) ® !(!X —o X)

ld® cix—ox

I(I(IX —o X) = X) @ I(IX — X) @ I(IX — X)
0

!(!X —o X) ® !(!(!X —o X) —o X) ® !(!X —o X)

der!XﬂX@e!\
(IX — X)® !X & X

where 6 is a suitable combination of instances of a and v,

=




and e is
!(!(!X —o X) —o X) ® !(!X —o X)

lder ®Id

(!(!X —oX) —oX)® !(!X—OX)

|ev

X
So, in Rel, (M, m, a) € e iff M = [(m, a)].



Computing €' in Rel

e' e Rel(I(I(1E — E) — E)® I(IE — E), IE)

Let Me (I(!E - E) — E), me (lE — E)and ay, ..., ax € E,
then



Computing Z in Rel

Let M e l(I(!E — E) - E), me |(lE — E) and a € E, we have

(M, m,a) € Z2' & m=my + my and (M, my, mp, a) € Z]
& m=my+myand (my, M, mp, a) € Z4

S m=my+my (M, my, a1, ..., ax]) € ¢
m1 = [c] and ((c, [a1, ..., ax]), a) € ev
Sm=m+m, M=[(p1,a1) ..., (Pk. ak)], m2 = pr+--- =+ pk
and m; = [([a1, ..., ax], a)]

S M= [(p1, 31) ..... (pk, ak)]
and m=p1+---+pc+[([o1, .. ax), a)]



Finally

Explicit description of Z

€ Rel(I(I(lIE < E) - E),|(1E — E) — E)
=Rel((E=E)=E (E=E)=E)



Given t € Ptp(1X — X) ~ L£i(X, X) and
T € Ptz (1(1X —o X) —o X) we have

—

Z(T)(t) =T (1))



Remember the definition of Z’

!(!(!X —o X) —o X) ® !(!X —o X)

ld® cix—ox

I(I(IX —o X) = X) @ I(IX — X) @ I(IX — X)
0

!(!X —o X) ® !(!(!X —o X) —o X) ® !(!X —o X)

der!XﬂXN
(IX — X)® !X & X

where 6 is a suitable combination of instances of a and .

=




In Rel
Let T, € Rel\(!1E — E, E) be defined by

To=10

7—n—i-l - Z(Tn) y

it is a monotone sequence in P(I(!E — E) —o E).

For t € Rel\(E, E), we have

VneN Th(t) =1"(0)

By induction on n. For the inductive step:

— ~ — ~

Tova(t) = Z(Ta)(t) = E(To(1) = EE () = T(0)



We set

Yo=|J Th€Rel(IE — E,E) the least fixpoint of Z
n=0

So that, for all t € Rel,(E, E) one has that

Vo(t) = U (@) s the least fixpoint of £
n=0

Vo Is the least subset of |(1E — E) —o E such that if
(mj,aj)) €Yo fori=1,..., n and a € E, then
(m+--+mi+[([e1,.... an], a)], a) € Yo.



Example (elements of ))

® ([([]. @)]. @) € Vo for each a € E
®ifag,..., an, a € E then

(I, ax). - - - (. an), ([a1. - - -, an), a)], a) € Vo

® ctc.



Natural number

In Rel we have an object

N= &1
ieN

so that N = N as a set (up to trivial iso).

Successor morphism suc € Rel(N, N) given by

suic={(n,n+1)| neN}.

If ne N, n={(* n)} € Rel(1,N).



N as an object of Rel'

Remember that 1 has a canonical structure of !-coalgebra (object
of Rel') given by

hy = {(+ k[*]) | k € N}

As a coproduct of copies of 1, N inherits a structure of
I-coalgebra given by

hn = {(n, k[n]) | k, n € N e N}.



N as a commutative comonoid

In particular N has a structure of commutative ®-coalgebra

wn = {(n,*) | n € N} € Rel(N, 1)
cn = {(n, (n,n)) | ne N} € Rel(N,N® N)

in other words: integers are freely discardable un duplicable.



A morphism for the conditional

There is also an obvious iso

p:1dN—N
(1,x)—0 (2,n)—n+1

Using these ingredients we define
ifeRelN® !E ® (IN — E), E) with

if ={(0.[a].[l.a) | a € E}
U{(n+1.[.[(k[n], a)],a) | k,n € N and a € E}.



Interpreting PCF types

We interpret types as objects of Rel, that is, as sets.

[t] =N
[A = B] = 1[A] — [B] = Mg ([A]) x [5]

A context ' = (x1 : A1, ..., x; 1 Ay) is interpreted as
[Ml=[A] &---&[A]

that we consider as an object of Rel,.



Interpreting PCF terms

Given a term M such that ' = M : A, we define
[M]r € Rel([T]. [A]) = Rel(![I'], [A]). by induction on M.
® If M=x; forsomeie{l,..., I}, then [M]r = pr; der

der[[r]]

1[r] [ — [A]

® If M =nfor n €N then [M]r =nwjn

Iy 2, g 1N



If M = succ(P) with T' = P : ¢, then we have [P]r € Rel([I'], N)
and we set

[M]r =suc[P]r € Rel([I], N)

[PIr suc

N N

"l



If M=if(P,Q,z-R)withT=P:¢, THQ:Aand
Nz:tF R:Athen we have

s = [P]r € Rely([I].N) [Q]r € Rel ([T, [A])
[RIr.z. € Rel([F] &N, [A]) = Rel(![I] ® IN, [A])

hence to = [Q]+ € Rel(![], '[A]) and
t, = cur([R]r.2..)" € Rel(1[T], /(IN — [A]))

[M]r =T (IPIr @ [Q]F ® Cur([R]r 2.)') ¢ € Rel(![T]. [A])

S@ty®ty
—

] == rye ! rj e 1rj N & [[A] @ I(IN — [A])

|

N



If M=XxBPwithlT,x:BFP:Cand A= (B = C) then
[Plr x:g € Rel/([I'] & [B], [C]) and we set

[M]r = Cur([P]rxs) € Rel([T]. [B] = [C]).



If M=(P)QwithTFP:B= AandlF Q: B then
[P]r € Rel ([r], [B] = [A]) and [Q]r € Rel([T]. [B]) and we
set

M]r = Ev o ([P]r, [Q]r)
=ev([P]r ® [QlF) ¢pr

crr [P ﬂr®[[Qﬂr

T — rie qr] —— (8] — [A]) @ ![B] = [A]



If M = fix(P)with T+ P: A= A, then we have
[P]r € ReL([T], [A] = [A]) and we set

[Mlr =Yoo [P]r
= Yo [PIr

LGN

IIr] — 1(A] — [A]) —2 [4]



Substitution lemma

Lemma
Assume that ', x: A= M : B and that T = P : A. Then

[M[P/X]Tr = [M]r x-a o {Idqry, [PIr)
= [M]rxa (IF] © [PIF) cpry

1[r] [MIP/x1]r ., 18]
le THMHF,X:A
| "rielPIr
Ml ) ——— '[I'] ® A]



Soundness theorem

Theorem
Assume that T = M : A and that M 3 M'. Then [M']r = [M]r.
The proof consists in applying equations which hold in Rel

(actually in any model of LL with fixpoint operators and
countable coproducts), and the Substitution Lemma.



Semantics of PCF in Rel as a typing system



We present this semantics of PCF in Rel as an

Intersection typing system

General idea

Consider the elements of [A] as types which can be seen as
“quantitative refinements” of A.

When = M : A, write “a € [M]" as a typing judgment

FM:a: A

The typing rules are just reformulations of the above definition of
the semantics of PCF in Rel.



Semantic typing contexts

General sequents: ® - M : a: A where
d):(xl:ml:Al ..... Xk:mk:Ak).
Underlying typing context: ® = (x1 : Ay, ..., Xk © Ak).

IfIr = (X1 DAL Xk - Ak) then
Or=(x1:[]: A1 ..., Xk k] Ax).



Sum of contexts: if & = W so that
¢:(x1:m1:A1...,Xk:mk:Ak) and

W =(xy:p1:A1..., Xk Pk : Ax) then we define
S+W=_(xg:m+p1:AL... Xc: Mg+ Ppx:Ax).
P+V=0=V.

Convention

When we write ®g + ¢4 or Zf'(:l ®; we always assume implicitely
that all the ®;’s are identical.



Integers

neN d-M:n:e
Orkn:n:t ®Fsucc(M):n+1:¢

PHP:0:t PgFM:a:A P,z:tEN:A
S+ Hif(P,Mz-N):a:A

¢-P:n+1:t PFM:A &,z k[n]:tEN:a:A
O+, if(P,M,z-N):a: A

if & =®g =&, and k € N (possibly k = 0).



M-calculus

mi=lal  mi=[]ifj#i
X12m12A1 ..... inmeAkFX,'ZaZA,'

O x:m:A-M:b: B
SFAAM:(m b): A= B

¢|—/\/I:([a1 ..... ak] b) A= B (<D,-|—N:a,—:A)f-‘:1

S+ O F(M)N:b:B
if Vi & = o,



Fixpoint

dFM:([a1,..., al,a): A=A (O fix(M):a;: A,

S+ 3K b Ffix(M):a: A
ifVid=a;.
Notice that in particular

dFEM:([l.a):A=A
OHfix(M):a: A

these are the leaves of the “fixpoint derivation trees”.



Theorem

Assume T =M : B withT = (xy : A1, ..., Xk + Ak).
Let m; € '[A] fori=1,..., k and b € [B].
Then (mq, ..., my, b) € [M]r if and only if

XlimliAl ..... xk:mk:Akl—/\/I:b:Bisder/vable.

The proof is a simple analysis of the definition of [M]r by
induction on M.



Let M, M with = M : . We know that if M 8* n then
[M] = {n}, thatis = M : n:¢. The converse is true. Actually we
can prove better!

Theorem
If =M :n:.then M By, n.

It is a normalization theorem (for Bun), we prove it by the
reducibility method.



|dea of the proof

2 phases in the proof:
® By induction on A we define a relation

FAC {M | - M: A} x [A]

in such a way that M I-, n = M B, n.
® We prove that, for all type A

Vae[A] FM:a:A= Mlkaa.



Definition of k-4

By induction on A.

We say that M Ik, nif =M : v and M B3, n.

We say that M IFa=pg ([a1,- - ., ag], b) if =M : A= B and for all
N such that = N : A we have

(V/G{l ..... k} N Ia a,'):>(/\//)/\/||—3b



Expansion lemma

Lemma (Expansion lemma)
If =M, M :Aand M Byn M" and if M" Ik4 a then M |4 a.

The proof is by induction on A. If A=, it is an obvious
consequence of the definition of I-,.



Inductive step: A= (B = ()

Assume that = M, M’ : B = C and M By, M and let a € [A] be
such that M’ -4 a.

We have a = ([b1, ..., bk]. c¢) for some ¢ € [C] and
bi,..., bk € [B]. We must prove that M IFg=c ([b1, ..., bg], ¢).

So let N be such that FN:Band Nlkg bj fori=1,..., k, we
must prove that (M) N k¢ c. We know that (M’) N IF¢ ¢ since
M’ H—A d.

Since the property we want to prove holds for C (inductive
hypothesis), it suffices to observe that (M) N Byn (M) N.

Indeed: since M By M’, M is not of shape AxZ P and hence
(M) N is not a Byn-redex.



We can prove now the main statement which generalizes
FM:a:A= Ml a

to open terms, that is, terms with free variables.

Notation: M H—!A [a1, ..., ap] means that
FM:AandVie{l,..., n} M4 a;

Remark:
® M IFY [] simply means that = M : A.
® If MIFy m+ ' then M IFy m.



Theorem (Interpretation Lemma)

Assume x1 1 mq : A1, ..., X my A M:a: A
Then for all closed terms Ny, . . ., Ny such that N; II—!A[ m; for
i=1,..., k, one has M [Ny/x1, ..., Ni/xk] IFa a.

The proof is by induction on the derivation m of
XlimliAl ..... inmeAkl—MZaiA.

Important remark

The universal quantification on the N;'s is part of the statement
that we prove by induction.



Proof of the Interpretation Lemma

neN
OrFn:n:t
so that M = n. Obviously M [Ny /x1, ..., Ni/xi] = n By, n, that
is M [Nl/Xl ..... Nk/Xk] H—,, n.



T
d-P:n:t

®Fsucc(P):n+1:¢
where ® = (xg :my 1 Aq, ..., Xi : My Ag). So M = succ(P).
Let Ny, ..., Ny be such that N; ||—A,- mjfori=1,..., k.

Notation
For any term Q, let Q = Q[N1/x1, ..., N/ xk]-

|

By inductive hypothesis (applied to 1) we know that P I~ n,
that is P B, n.

—_—~—

Then succ(P) = succ(P) P) B succ(n) by definition of Byn, and
succ(n) Bwh N+ 1 hence /\/Iﬁ*h n+1 thatis M IF, n+1.



o o
PHP:0:t PgFR:a:A D, z:LFR:A

d+doHif(P,Q z-R):a:A

So we have M = if(P, Q,z- R).

Using the notations ® = (xy : my : A, ..., Xk : my 1 Ag) and
(DO = (X1 : m? . A1 ..... Xk © My Ak) we have
¢>—|—d>0:(x1:m1+m?:A1 ..... inmk+m22Ak).

Let Ny, ..., N, be such that N, II—!A,_ mi+m?fori=1,..., k.



So we have N, \HA/_ mjfori=1,..., k.

He~nce by inductive hypothesis applied to p we have P Ik, O, that
is PGB, 0

We have M = if(P, Q, z - R) and hence M G =L (0, Q.z-R) by
definition of B,,. Hence I\/lﬁ



We also have Nj Iy, m? fori=1,..., k.

By inductive hypothesis applied to mo we have Q IFa a and hence
M k4 a by the Expansion Lemma.



P Tt
OFP:n4+1:t SFQR:A o4, z:/[n:tFR:a:A

O+, Hif(P,Q,z-R):a:A

So we have M = if(P, Q,z - R).

Using the notations ® = (x3 : my : A1, ..., Xk My Ag) and
S =(xq:m AL Xk : m : Ac) we have
¢+¢+:(X1:m1+mf:A1 ..... Xk:mk+mk+:Ak).

Let N1, ..., Ny be such that N; |HA,, mj + m for i =1



So we have N, \HA/_ mj for i =1

-----

Hence by inductive hypothesis applied to p we have P F, n+1,
thatis P8y, n+ 1.

We have M = if(P, Q, z- R) and hence /\7/6;*Vh if(n+1,Q,z-R)
by definition of Bun. Hence M B, R[n/z].



We also have N; IHAI_ mt fori=1,..., k.
And n I, n.

Hence by inductive hypothesis applied to 7 we have

R[n/z] IF4 a (whatever be the value of /) and hence M IF4 a by
the Expansion Lemma.

Remark

The V is required in the statement proven by induction: the
inductive hypothesis is applied with “parameters” Ny, ..., Ny,

B



mi=1[al m=[]ifj#Ii

X12/’)712A1 ..... xk:mk:Akl—x,-:a:A,-

so M = x;.

Then M = N; and since we have assumed that N I, [a], we have
N; k4 a, that is M k4 a.



T
b x:p:BEP:c:C

dFXMAP:(pc):B=C
sothat A= (B = C)and M =B P.

We hj]ve M = AxB P and so we must prove that
MB PlFg—c (p, c).

So let Q be such that Q IF!B p, we must prove that
(MXBP)Q k¢ c.
By inductive hypothesis applied to 1, we have ﬁ[Q/X] IFc c.

Since (AxB P) Q Bun P [Q/x] we have (AxB P) Q I-¢ ¢ by the
Expansion Lemma.




o T
O+ P:([by,..., bgl.c): B=C (bf'_Q:bf:Bng

¢+, 0 F(P)QR:c: C

so that M = (P)Q and A= (B = ().

We can write ® = (x; m? Ai, xp :mY: Ag) and

Q= (xg:m A, xl:njf(:Ak)forjzl ..... q‘.Sothat
¢+Zj’zl¢j:(xl :Zj—’zomjl CALL L Xk :Zj—’zomf( 2 Ag).
Let Ny, ..., Ni be such that N Iy Yo7 oml fori=1,... k.



So we have N; H_!A,- md fori=1,..., k.

§o by inductive hypothesis applied to g we have

P ”_B:>C ([bl ..... bq], C).

And for each j € {1,..., q} we have N; II—!A m’ fori=1,...,
So by inductive hypotheS|s applied to m; we have Q IFg bj for
Jj=1..., g, that is Q g (b1, bg].

Therefore we have M = (P) Q k¢ c.



d+3 1 0 Ffix(P):a: A

so that M = fix(P).

We can write ® = (x; m? Ai, xp :mY: Ag) and

Q= (xg:m A, xl:njf(:Ak)forjzl ..... qA.Sothat
d + Zj’zl ¢ = (x1: Zﬁ:o m AL X Zﬁ:o m : Ak).
Let Ny, ..., Ni be such that N Iy Yo7 oml fori=1,... k.



So we have N; H_!A, mdfori=1,..., k.

§o by inductive hypothesis applied to g we have
P H_AéA ([al ..... aq], a).

And for each j € {1,..., q} we have N; ”_!A,- m{ fori=1,..., k.

—_——

So by inductive hypothesis applied to m; we have fix(P) IFg a; for
Jj=1..., g, that is fix(P) IFg [a1, . . ., agl.

Hence (P)fix(P) IF4 a.

Since M = fix(P) Bun (P) fix(P) we have M |4 a by the
Expansion Lemma.



Completeness theorem for By

We have proven

Theorem
If =M :¢and n e [M] then M B, n.
As a consequence

Theorem (Completeness of Byp)

Assume that = M :v. If M ~g n then M G, n.

We have [M] = [n] = {n} and hence M B}, n.

The strategy Bwn produces the value of any term M which has a
value (for = M : ).



About observational equivalence

Remember that we have defined the observational equivalence for
PCF terms:

Definition

Let M; and M5 be such that = M, : A for i = 1,2. We say that
My and Mo are observationally equivalent (written My ~ Ms) if
for any term C such that - C : A=t one has

(C) M1 By O & (C) M2 By O



With My and M> such that = M; : A for i = 1,2, let us write
My ~Rel Mo

if [Mi1] = [M2]. This is an equivalence relation (the equivalence
induced by the model on terms).

Theorem (Adequacy of Rel)

Ml ~Rel M2 = M]_ (Y M2

So we can use the model to prove observational equivalence.



Proof of the adequacy of Rel

Let My and M> be such that H M; : A for i = 1, 2 with
[Mi] = [M2].

Let C be a term such that - C : A=+ and assume that
(C) My Boy O.

Hence [(C) M;] = {0}.

But [(C) Mi] = Ev o ([C],[Mi]) (in Rely). Hence
[(C) M2] = {0}

By the theorem we have proven this implies (C) M> B, 0.

The converse implication is proven in the same way.



EI]IE

Take A= (v = (v =t)) and

My = Axg Axs if(xq, if(x2,0,z-1),z- 1)
My = Axg Ax5 if(xo, if(x1,0,z- 1), z

Then using the semantic typing system one can prove that

[Mi] = {([0]. ([0]. 0))}
U{([n].([p].1)) | n,p € N and not n = p = 0}
for i = 1,2, hence My ~rel M> and hence M; ~ M;.

But My and M> are B-normal: they cannot be identified by
reduction.



Remark: If we have side effects in the language such as
® a global or local memory where one can read and write
® or input-outputs (read or write in a file etc)

then the terms M7 and M> are no more equivalent.



Rel is not fully abstract

This proof method for ~ is not complete: it is not true that, for
any My, M5 such that = My, M5 - A,

Ml ~ M2 = [[Ml]] = [[Mz]]

If a model satisfies this condition, it is said fully abstract. Let
QA = fix(Ax? x). Notice that Q* Byn Q* and hence [Q‘] = 0.



For i = 1,2, consider the closed term
M; = AL if ((F)0Q°, |f((f)Q 0,
f)1l1l,
of type (L =Lt =1) = ¢.

Then defining a; € [(L=>t=t) =] fori=1,2as

= (([([]. {1, 0). (11, [01. 0). (1], [1]. )]). 1)

one has a; € [M;] and a; & [M5_;] so [Mi] # [M-].

But in coherence spaces (for instance) M; and M- are interpreted
as (), hence My ~ M. Because ([0],[],0) « ([].]0], 0).



Probabilistic coherence spaces



General goal

Interpret program acting on uncertain data.
For instance, given
® 3 PCF term M such that FM: 1 =1

® and a “term” P of type ¢ which reduces to 0 with probability
1/3, to 4 with probability 1/2 and to 7 with probability 1/6,

what is the probability that (M) P reduces to 427

Moreover, the term M can also “flip coins” during its execution to
make some choices.



Coefficients

We cannot restrict our attention to probabilities € [0, 1], we have
to consider more general coefficients.

These coefficients will be in R>g = {A € R| A > 0}. No negative
coefficients.

Very rarely we will consider coefficients in R>¢p = R>q U {o0}.
Notice R>q, with the usual order on numbers, is a cpo (any
subset of R>q has a least upper bound (lub) in R>g).

For multiplication to be Scott-continuous, we set 0 x co = 0.



General idea of PCS

Let / be a set of “elementary data”, we want to consider subsets
of (R>g)" whose elements will be considered as generalized
“distributions of probabilities” over /.

Example (integers)

I = N, we will represent the type of natural numbers as the set of
all x € (R>o)N such that 352 5 x, < 1.

Why not Y72 ) x, = 1?7 Because we want also to consider partial
programs of type ¢, with probability 1 — Y77 ; x, to diverge.



Duality of PCS

Let x, x" € (R>p)’, consider x as a “probabilistic” data and x’ as
an observer. Then we represent the probability that the
observation x’ succeeds on x as

(x,x"y = E XiX]
i€l
Intuition:

® x; is the “probability” that x produces i

® x! is the weight, the significance, that the observer x’ gives
to value /.

So we expect that (x, x") < 1.



Given D C (R>p)’, we define
Dt ={x € (Rxo) | ¥x €D (x,x) <1}

So D+ is the set of all “observations” which make sense against
all the “data” of D.
Lemma
Let D, & C (Rxo)’, then
eDCE=ELCDt
® and D C D+,

As a consequence D+++ = DL In other words, D+ = D iff
D = &L for some £ C (Rx)'.



Avoiding oo coefficients

Notation: if i € | we use ¢; for the element x of (R>g)’ such that
X =0if j#iand x = 1.

Let D C (Rxo)' and assume that for some i € | we have
VxeD x=0.

Then \ej € D+ for all X € R>o. So if we want D+ to be
complete (in the sense of complete partial orders), this will
require to introduce oo coefficients.

We prefer to avoid this to have a well behaved Kleisli category of
the ! that we will define, where morphisms will be analytic
functions.



Dually if for some j € | we have
VA€ RZO e €D

then all the elements of x’ € D will satisfy x/ = 0.

So we consider only sets D C (Rxg)’ such that

Viel 0<supx<oo.
xeD



Definition
A probabilistic coherence space (PCS) is a pair X = (| X|, PX)

where
* |X|is aset and PX C (Rxo)X! called the web of X

® PX1L CPX (thatis PXtt = PX)
® and, for all a € |X]|,

0 < sup x; < 00.
xePX

Then we define X+ = (]X|, PX1), which is also a PCS.



A PCS is down-closed and convex

Given a set / and x, y € (Rxp), we write x < y if Vi € | x; < y;.
This is an order relation on (Rx)’.

Lemma

Let X be a PCS and let x € PX. Let y € (R>0)X! be such that
y<x. Theny € PX.

Let x,y € PX and let A € [0,1]. Then Ax+ (1 — X))y € PX.

For the first statement, let x’ € PX*, we have
(y,x"y < {x,x"y <1andhence y € PXt- =PX.

For the second statement, let x’ € PX*. Continuity of addition
and multiplication show that

MXHA =Ny, Xy =2 XY+ 1 =Ny, X)<A+1-x=1
hence Ax + (1 — Ay € PXt+ =PX.



A PCS is a cpo

Theorem
The poset (PX, <) is a cpo.
Let D C PX be directed. We define x € (Rxg)X! by

Va € [X]| xa = sup,¢cp Ya. We prove that x € PX+L =PX. This
amounts to proving that Vx’ € PX+ (x, x’) < 1. So let X' € PX*.



= E XaX)

ac|X|

= sup E XaX}

/E’Pﬁn(lxl) acl

= sup sup
/Epﬁn(lxl)yeD acl

= sup sup
yeD 1ePan(IX1) 5g)

=sup(y,x') <1.
yeD

> vaX,

> vax,

/

by cont. of x and +



The converse Is also true

It is good to know that conversely (although we will not use this
property here):

Theorem
Let P C (Rxo) be such that:
e Vx,y € (Rso) (x<yandy e P)=x€P
® YD C P D directed = sup D € P (remember that
x=supD € WZOI Is given by xj = sup,cp Yy for each i € /)
*Vx,ye P, VAE[0,1]] Xx+(1—-A)yeP
® and Vi €/ 0 <supyep X < 00.
Then P+ C P (that is P+ = P) and (I, P) is a PCS.

The proof is essentially an application of the Hahn-Banach
theorem.



The norm of a PCS

Given x € PX we define

[xllx = sup (x,x') <1
x'ePXLt
We have

® |Ix|lx =0 = x =0, indeed for each a € |X| thereis e >0
such that e, € PX* hence || X||x > (x,€e,) = exa. So
IIx|lx =0=Vae |X]| x;=0.
® Let A €0, 1], we have ||Ax|x = Al|x]|x-
® et x,y € PX such that x +y € PX. Then
x4+ yllx < lIxllx + llyllx.
Indeed [[x + yllx = supwepx- ({(x. x) + (v, X)) < [Ixlx + [lyllx-



Matrices

. =
Let / and J be sets, an / x J-matrix is an element s of Rx>g
: = :
Given x € R>g we define

=
S-X= <Z S,'JX,‘) S RZO

i€l jed
application of matrix s to vector x.

If K is another set and t € RZOJXK we define

——IxXK
ts = E Sijtik € Rx>o
Jed iel, ke

the product of the matrices s and t.

xJ



Morphisms of PCS

Let X and Y be PCSs. A morphism from X to Y is a
|X| x |Y|-matrix s such that

VxePX s-xePY.

This implies that s € (R>o)XXIY! (no infinite coefficients): let
a € |X| and € > 0 be such that ee, € PX.

Then s - g6, = €(Sa.0)pev] € PY C (Rx0)' Y.



The category of PCSs

Pcoh(X, Y) the set of these morphisms.
Identity morphism Idx € (R20)|X|X|X| given by

1 fa=4a
(ldX)a,a’ = {

0 otherwise.

Let s € Pcoh(X, Y) and t € Pcoh(Y, Z), then ts € Pcoh(X, 2).

Indeed let x € PX, we have s-x € PY/, hence
(ts)-x=t-(s-x)ePZ



Morphisms as functions

The morphisms of Pcoh are fully determined by their functional
behaviour:

Lets, s’ € Pcoh(X, Y).
(VxePXs-x=5 x)=s=¢
Assume that Yx e PX s-x=5"-x. Let a€ |X] and b € |Y]. Let
€ > 0 be such that ee, € PX. We have
(s-eey)p=(s"-€e)p

thatis s, = s, , for all a € | X[, b € |Y] since (s - €ea)p = €54p-



Characterizing linear maps on PCS

Let s € Pcoh(X, Y), then the function's : PX — PY defined by
S(x) = s - x satisfies
® fx(1),x(2) € PX are such that x(1) + x(2) € PX then
S(x(1) + x(2)) =5(x(1)) +s(x(2)) and as a consequence s
is monotone (because
x(1) < x(2) & Ix e PX x(1) + x = x(2))
® ifx € PX and X € [0, 1] then s(Ax) = Xs(x)
® and’s is Scott continuous: for any D C PX directed,
S(sup D) < sup,ep S(X).
Conversely for any function f : PX — PY with these properties,
there is an s € Pcoh(X, Y') such that f ='s (and this s is unique).



From relations to matrices

Given u C | x J, that is u € Rel(/, J), we define
mat(u) € (Rxo)*” (the incidence matrix of u) by

1 if(i,j)eu
0 otherwise.

mat(u);j = {

Then mat(ld;) = Id where Id, is the diagonal relation. And also,
if uC/x Jand uC Jx K are graphs of bijections, then

mat(v u) = mat(v) mat(uv)

where v u is composition in Rel and mat(v) mat(u) is composition
of matrices.



Isomorphisms of PCSs

A priori an iso in Pcoh could be a complicated matrix.

A strong iso from X to Y is a bijection ¢ : | X| — | Y| such that
Vx € (R>0)X! x € PX & mat(p)-x € PY

considering ¢ as a relation from |X]| to |Y/|.

And then ¢~ is a strong iso from Y to X with

mat(p~1) = mat(p) L.

Theorem

Any iso of PCS is a strong iso.

Exercise!



Terminology

We use the wods “strong iso” to speak about ¢ (the bijection) or
about mat(¢) (the matrix), depending on the context.



An important equation

— — . ——IxJ
Let x € RZOI and y € ]RZOJ, we define x ® y € R>q x by
(X ®y)ij = xiyj.
Lemma

I, J ——IxJ
Let x € RZO , Y€ RZO and s € RZO . Then

(s-x,y)=(s.x2y)= > sy
i€l jeJ



X — YisaPCS

Let X and Y be PCSs and s € (Rx)X*IYl. We have

s€Pcoh(X,Y) e Vx cPX, VW cPYL (s-x,y) <1
S Vx ePX,Vy ePY! (s,x®y) <1

Let X — Y be (|X| x |Y], Pcoh(X, Y)), we have just seen that
P(X — Y)={x®y |xePXandy ePYL}"

Therefore P(X — Y) = P(X — Y)**.



Let a € |X| and b € |Y|. We can find € > 0 such that ee; € PX
and e, € PY L. Let also M € Rsq be such that
VXEPXXaSMandVy’EPYLy[’,SI\/I.

We have €2e, ), = €€, ® gep and hence
Vs € P(X — Y) (s,e%e,,) < 1, that is
Vs €P(X — Y) s,p <72

We have M~2e, ), € P(X — Y). Indeed, let x € PX and
y' € PYL, we have (M~2e,p, x ®y') = M 2xay; < M72M? = 1.

This shows that X — Y is a PCS.



Transpose of a matrix

Lemma

The swap bijection vy : |X| x |Y| = |Y]| x |X| such that
v(a, b) = (b, a) is a strong iso from X —o Y to Y+ —o X1,

It maps t € Pcoh(X, Y) to t+ € Pcoh(Y+, X1) given by
tbL’a = t,p, the transpose of the matrix t.
L is a functor Pcoh — Pcoh®: Idy, = Idx and (ts)t = st t+,

This functor is involutive: X++ = X and t++ = t.

Lemma
Vx € PX, Wy € PYL (t-x,y/) = (x, t1-y").

Indeed (t - x,y') = (x, tt ) = Za€|X|,be|Y| ta,bXayt,;-



Tensor product of PCS

Definition
L= ({+}, {(x.2) | X €[0,1]}), we shall simply write P1 = [0, 1].
X®Y = (X —o Y1)t

So [ X® Y|=|X|x|Y]|and
PX®Y)={x®@y|xePXandyecPY}t



A linear morphism on a tensor product is fully characterized by its
values on “pure tensors”. Precisely:

Lemma

Let X1, Xo and Y be PCSs. Let
t € (Ryg)(PalxPeDxIY] = (Ryq)X1@Xe—Y],

We have t € Pcoh(X; ® X, Y) iff
Vx(1) € PX1, x(2) e PXa t- (x(1) ® x(2)) € PY

Assume first that t € Pcoh(X; ® Xo, Y). Let x(1) € PX; and
x(2) € PXy. Then we have x(1) ® x(2) € P(X1 ® X2) and hence
t-(x(1)®x(2)) e PY.



Conversely assume that
Vx(1) € PX1, x(2) e PXo t- (x(1) ® x(2)) € PY.

We prove that t+ € Pcoh(Y", (X1 ® Xo)*). So let y' € PY L,
we prove that t+ -y € P(X; ® Xz)*.

We have (X; ® Xa)= = X; —o X5". It suffices to prove that
Vx(1) € PX; (t+-y') - x(1) € PX5 . So it suffices to prove that

Vx(1) € PXy, x(2) € PXo  ((tT-y')-x(1),x(2)) < 1.



We have
<(tJ_ 'y/) -x(1),x(2)) = Z t(al,ag),bx(l)alx(2)22ylg

a1€| X1, a2 €| Xal, be|Y|

= (t- (x(1) ® x(2)).¥")
<1

By our assumption about t.

So t*+ € Pecoh(Y+, (X1 ® X2)1) and hence
t =t € Pcoh(X; @ Xo, Y).



Functoriality of ® in PCSs

Let t(i) € Rao" ™ for i = 1,2.

We define £(1) ® £(2) € Rog!" <2

(£(1) @ t(2))(1, 1)) = ED)i 2 1(2) s

Lemma

Given x(i) € ]RZO/’ fori=1,2, we have

(t(1) @ t(2)) - (x(1) @ x(2)) = (¢(1) - x(1)) ® (£(2) - x(2))

Easy computation



Let s(i) € Pcoh(X;, Y;) for i =1,2. Then
5(1) & 5(2) € PCOh(Xl ®R X, Y1 ® Y2).

Indeed, by the previous lemma, it suffices to prove that
Vx(1) € PXy, x(2) € PXo  (s(1) @ 5(2))-(x(1) ® x(2)) € P(Y1 ® Y2)
This results from

(s(1) ®5(2) - (x(1) © x(2)) = (s(1) - x(1)) ® (s(2) - x(2)

and s(i) € Pcoh(X;, Y)).



We have proven:

Lemma

® is a functor Pcoh® — Pcoh.

Indeed Idx, ® ldx, = ldx,@x,-

And if s(/) € Pcoh(X;, Y;) and t(i) € Pcoh(Y}, Z;) for i =1,2,
then

(t(1)s(1)) @ ((2) 5(2)) = (t(1) @ £(2)) (s(1) @ 5(2))



Lemma
Let X1, Xo and Y be PCSs. Then the bijection

a ‘(Xl ®X2) —o Y| — |X1 —o (X2 —o Y)‘
((a1, a2), b) = (a1, (a2, b))

is a strong iso from (X1 ® Xz) —o Y to X1 — (X2 — Y).
We need to prove that

mat(a) € Pcoh(X; ® Xo — Y, X; —o (Xo — Y)).



So let t € P(X1 ® X — Y'), we have to prove that
mat(a) -t € P(X; — (X2 — Y)).

Given x(i) € PX; for i = 1,2, we have to prove that
((mat(a) - t) - x(1)) - x(2) € PY.

This results from
((mat(a) - £) - x(1)) - x(2) =t - (x(1) ® x(2))
and t € P(X;1 ® Xo — Y).



Conversely we must prove that

mat(a™!) € Pcoh(X; — (Xo — Y), X1 ® Xo — Y)
so let t € P(X1 — (X2 — Y')) and let us prove that
mat(a‘l) RS P(X1 ® X —o Y).

By the last lemma, it suffices to prove that for all x(1) € PX; and
x(2) € PX> we have (mat(a™1) - t) - (x(1) ® x(2)) € PY.

This results from the assumption that t € P(X; — (X2 — Y))
and from

(mat(a™1) - t) - (x(1) @ x(2)) = (t - x(1)) - x(2) .



So mat(a)t = mat(a~1) is a strong iso from
(X1 — (Xo = V) =X (Xo@ Y to
(X1 ®@Xo— V)t =(X1®Xo)® Y+,

Taking Y = X?f, this shows that « is a strong iso from
(X1 & XQ) ® X3 to X1 ® (X2 X X3).

We have obvious strong isos A from 1 ® X to X given by
A(x,a) =a, pfrom X®1 to X and v from X3 ® X5 to Xo ® X1
(given by y(a1, a2) = (a2, a1)).

In that way we turn Pcoh into a symmetric monoidal category.

Notice that a, X, p and =y are defined exactly as in Rel. So the
commutation of the coherence diagrams holds.



Monoidal closeness

Given PCSs X and Y we define ev € (Rxq){(X—Y)@X)=Y py

1 fa=ad and b=V

0 otherwise.

eV((a'b)'a/)'b/ = {

By this definitions, it follows that if t € P(X — Y) and x € PX,
then

ev-(t®@x)=t-xePY.

It follows that ev € Pcoh((X — Y) ® X, Y) by the usual lemma.



Then (X —o Y, ev) is the linear hom object of X and Y.
Indeed, given s € Pcoh(Z ® X, Y), define
t = cur(s) € (Rsg)l#X=Y)l by
Cur(s)c,(a,b) = 5(c,a).b -
Then
VzePZ xePX (cur(s)-z)-x=s-(z®x) €PY

and hence
@®VzePZcur(s)-zeP(X —Y)
® and t = cur(s) € Pcoh(Z, X — Y).



Pcoh is x-autonomous

We take L =1, thatis L = ({*},]0, 1]).

Then the standard morphism
nx = cur(ev 7y) € Pcoh(X, (X — L) — 1)

is a strong iso (the underlying bijection maps a to ((a, %), *)).



Simply because we have a strong iso 8 : X+ — (X — L): as a
bijection on the webs, 8(a) = (a, *). Indeed we have

(mat(9) - x') - x = (x,x') = Z XaXh
ae|X|
for all x, x' € (Rxg)X!.
And hence x’ € PX* iff mat(6) - x' € P(X — 1).

Then the fact that 7 is a strong iso comes from X+ = X which
holds by definition of a PCS.



Cartesian product

Let (Xj)ics be a collection of PCSs. We define X = &;e; Xi as
follows:

* X[ = Ui {i} x [Xi| = &ier |Xi] (in Rel)

* and, given x € (R>o)Xl, x € PX iff Vi € | mat(pr;)-x € PX;.
Remember that pr; € Rel(&c/ | X;|,|Xi|) is the i-th projection of
the cartesian product in Rel.

pri ={((/,a),a) [ a € |Xi[}.



By this definition we have that PX ~ [];., PX; (isomorphic as
partially ordered sets), by the mapping x — (mat(pr;) - x)je;-

If follows that for all d = (i, a) € |X|

0 < sup x4 = sup y, <o00.
xePX yePX;



" 3 1 L
P(&/ Xi) = {mat(m,-) -x"|ielandx €PX; }
IS

This is simply because (x, mat(in;) - x’) = (mat(pr;) - x, x').
It follows that X1+ = X and hence X = &iex; Xiis a PCS.
Observe also that by definition of this PCS, we have

Viel mat(pr;) € Pcoh(&lXJ',X,-)
je

From now on we write pr; instead of mat(pr;).



(&ies Xi, (pri)ier) is the cartesian product of the X;'s in Pcoh.

Take X = & Xi as above.

Let t(i) € Pcoh(Y, X;) for each i € I, let t € (Rxo)!Y1*IXI be
defined by

Vb e |Y| Vi€l Vae|X tb,(i,a) =(t()pa-
Then
Yy e PY,Viel mat(pr;)-(t-y)=t() -y ePX.

ThatisVy € PY t-y € PX and hence t € Pcoh(Y, &jc/ Xj).



Then t is the unique element of Pcoh(Y, &je; Xj) such that
Viel mat(pr;)t=t(i)

which shows that (&;e; Xi, (pri)ics) is the cartesian product of the
X;i's in Pcoh.

As usual we write t = (t(i))ie/.



Coproducts

Since Pcoh is x-autonomous it has coproducts (Bje; X, (inj)ier)
with

O Xi=(& X/l)L
i€l i€l
and already defined injections.

in; is the matrix associated with the /-th injection in Rel:
{(a. (7, @) [ a € |Xil}

so that in; = pr,-L (as relations and as matrices).



P(@ X;) = {x € P(%X/) 1> lpri - xllx, < 1}

= iel

Proof in the lecture notes.



® P(1&1)~{(x1,x) | x1,x €[0,1]}

* P(1®1)~{(x1.x)|x1,x2 €[0,1] and x; + xo < 1}
(probabilistic booleans)

* P((1lel)&(1e1)) ~
{(x1.x2,x3,x2) | Vi x; € [0,1], x1 +x2 <1 and x3+xz <1}

P(1&1)®(1&1)) ~{(x1,x.x3,x4) | Vi x; € [0, 1],
x1+x3<1x1+x <1 x+x3<1land x+xs}



Exponential

Given x € (R>o) and m € Mgy (/) (finite multisets of elements
of ), we define

xM = Hxl-m(') € R>p.
i€l

In other words, if m= i, ..., i]:



Definition of 1X

Then we define x() € (Rxq)Man() by
XU — xm
for each m € Mgy(/).
Finally, given a PCS X we define I.X by [IX]| = Mg, (|X]) and
L1
P(1X) = {x" | xePx} .

Hence by definition P(1X)™* = P(1X).



We must prove that Vm € My, (|X[) 0 < sup,epix) Um < 00.

Let m=Ja1,..., ak] € Man(|X]|). Foreachie{1,..., k} we can
find €; > 0 such that gje;, € PX for i =1, ..., k. Thenlete >0
be such that e <¢g; fori=1,..., k.

Then ee,, € PX for each / and hence x = (%5 S es € PX (we
use k + 1 instead of k to avoid division by 0).

Then x&) = x™ (k+1)k > 0 and since x{) € P(1X) we have

SUpyep(ix) Um > 0.



Similarly let M € R>q be such that
VxePX, Vie{l, ..., k} xa < M.

Let x € PX, we have

1 Lom LT, -
geem) = " = e e <1
i=1

(x()

Hence ﬁem e P(IX)™.

Therefore Vu € P(1X) (u, grem) < 1, that is
Yu e P(IX) um < MK,

IX is a PCS.



Analytic functions in Pcoh

Let t € Pcoh(1X, Y). If x € PX then x(") € P(1X) and hence
t-xepy

We define t : PX — PY by t(x) = t - x().

Let t € (Rxo)!"X=Yl. One hast € P(1X — Y) iff
vx e PX t-x() e PY.



If t € (R>0)"™ Y| we have t-x() € PY because x{") € P(1X).
Conversely assume that Vx € PX t - xD e PY. We prove that
tL € Pcoh(YL, P(1X)1).

Notice first that

P(X)" = {x | xe Px}LLL ={x"|xe PX}L .

Let y' € PYL, we prove that t+ -y’ € P(1X)*. So let x € PX, it
suffices to prove that (t=+ -y’,x(!)) <1.

This comes from (t+ -y’ x() = (y/, t - x()) and from our
assumption about t.



Fact (unary functional characterization)

Lets t € Pcoh(IX,Y). IfS=T thens =t.

Idea of the proof: we can express the values of s, and t,, using
the derivatives of the function s =t at 0. Since the derivatives
depend only on the function, this shows that s, = t;;. See the
lecture notes.

Remark: This means that the morphisms of Pcoh, can be
considered as functions. As we shall see, composition in Pcoh;,
coincides with composition of the corresponding functions.



A function f : PX — PY such that there is an s € Pcoh(!X, Y)
is called an analytic function. Then s is the power series of f.

Example (analytic function on 1)
What is an s € Pcoh(!1,1) = P(I11 — 1)7
First we can identify |11 — 1| with N, so s € (R>)N.

The condition s € Pcoh(!1, 1) means that ¥x € P1 s-x() € P1,
that is Vx € [0,1] > 72 gspx” € [0,1]. Thatis > ey sn < 1.

f(x) = x¥ (for k € N) is analytic, f(x) = 3 + 1x2+ £x" is
analytic. The function f : [0, 1] — [0, 1] defined by f(x) = 2x — x?
is not analytic (although it is monotone and Scott continuous).

The function f(x) = e~ ! and g(x) = 1 — v/1 — x2 are analytic.



Example (analytic function on the booleans)
What is an s € Pcoh(!(1®1),1) =P(I(1® 1) — 1)7?
We can identify [I(1 @ 1) — 1] with N x N, so s € (Rxg)V*N.

Then the condition s € Pcoh(!(1 @ 1), 1) can be written:
YA€ [0,1] 3, ken SnkA™(1 — Ak < 1.

For each A € [0,1] and n € N we have \"(1 —X)" < 1/4" and
hence if we set for instance

20 ifn=k>1
Snk = .
0 otherwise

then s € Pcoh(!(1 1), 1). So the function
f(x,y) =3 72,2"x"y" is analytic.
Notice that the coefficients of f are unbounded. This example

shows why the coefficients have to be in R>g and not only in
[0, 1].



Analytic functions of several arguments

Lets e (RZO)“Xl@”'@!Xk—OY\.

One has s € Pcoh(1X; ® --- ® I Xy, Y) iff for all
x(1) e PXy, ..., x(k) € PXx one has

s-(x()V - @x(k) M) ePy.



Lets, t € Pcoh(1X; ® ---® I Xy, Y). If for all
x(1) e PXy, ..., x(k) € PXx one has

S. (x(l)(!) R ® x(k)(!)) —t. (x(l)(!) R ® x(k)(!))

then s = t.

Use unary functional characterization and monoidal closeness of
Pcoh in an easy induction on k.

Notation: S(x(1),...,x(k)) =s-(x(1)D ®-- @ x(k)D). It is
k-ary analytic function.



Linear maps are analytic

If s € Pcoh(X, Y) then the associated linear function
f=5:PX — PY given by f(x) =s- x is analytic.

The associated power series t € Pcoh(!X, Y) is given by

o )sab if m=[a]
mb = 0 otherwise.



Monotonicity and Scott continuity

Let f : PX — PY be analytique, and let s € Pcoh(!X, Y) be
such that f =S (the power series of ).

Then f is monotone and Scott continuous.



Observe that f(x) = 35(x()) = s - x(") and we know that 5 is
monotone and Scott continuous. So it suffices to prove that the
function

§: PX = P(IX)

x 5 xU)

is monotone and Scott continuous.

Easy: it suffices to check that for each m € |!1X| the map x — x™
from PX to R>g is monotone and Scott continuous. This comes
from the monotonicity and Scott continuity of multiplication in
Rzo.



The exponential of a morphism

Given m € Mgn(/) and p € Mg, (J), we define L(m, p) as the set
of all pairings of m and p: multisets r € Mg, (/ x J) such that

viel Y r(ig)=m()
JEMﬁn(J)

vjed Z r(i,j) = p().
ieMﬁn(’)

Notice that if r € L(m, p) then #r = #m = #p (where
#m =73 ,c, m(i)). Soif L(m, p) # 0 we must have #m = #p.



If me Man(/), we set mt =TJ,c, m(i).

Given r € L(m, p), we set
pl _ P! _ PU)!
[f} St HH/e/f(":J')!

Jjed
Notice that ﬁ € N because p(j) = >, r(i,Jj). For
instance (10 =2+2+3+3)

10! 10!
212312~ pagz — 29200

Multinomial coefficient.



Remark: Let n,ny,...,nx € Nbesuchthat n=n; +---+ ng,
then the multinomial coefficient

nl

nple-ng!

is the number of sets {/, ..., Ix} of k pairwise disjoint subsets of
{1,..., n} such that hU--- Ul ={1,..., n}.

See the lecture notes for a similar combinatorial interpretation of

[lr)] for r € L(m, p).



Example

I={1,2,3}, J={1,2}, m=5[1] + 3[2] + 5[3] and
p = 8[1] + 5[2]. Notice that #m = #p = 13.

Let

r=3[(1, 1)] + 2[(2, 1)] + 3[(3, 1)] + 2[(1, 2)] + [(2, 2)] + 2((3, 2)],
we have r € L(m, p) and

p| p' 8! x 5! _
H_ﬁ_3!><2!><3!><2!><1!><2!_16800'




Definition of Is

Let s € (Rxp)*”. Then we define s € (Rxq)Man(/)*Man(J),

We set
'Sm,p = Z msr
reL(m,p)

Notice that L(m, p) is a finite set, so this sum is finite.

Remember that s" = [[,¢; ;e sirj(-"'j).



Fact (crucial property)

Vx € (Rxp)! 1s-x") = (s x)().

This is proven by a simple computation (see the lecture notes).
As a consequence:

Fact
For all s € Pcoh(X, Y) we have !s € Pcoh(!X,!Y).

Indeed, by the crucial property above it suffices to prove that
Vx € PX Is-x() € P(1Y). This comes from s-x € PY and from
ls 'X(!) = (5 X)(|)



Dereliction

Let deryx € (Rxg)"™XI*!XI be given by

J 1 ifm=]q
er =
Xm.a 0 otherwise

that is derx = mat(der x).

Then we have Vx € PX derx - x(')/ = x € PX and hence
derx € Pcoh(!X, X) by the crucial property again.



Digging

Let digx € (Rxo)!"XI*I"XI be given by

di 1 fm=xXM
| =
9Xm.m 0 otherwise

that is digx = mat(dig|x|). Remember that if
M=[m,..., my] € ["X| then TM = my + - - + my € |1X].

Then we have Vx € PX digx - x() = x() ¢ P(11X) and hence
digx € Pcoh(!X, 11X) by the crucial property again.



Naturality of der

We have to prove that if s € Pcoh(X, Y) then

IX — 1Y

Is
lderx idery

X —=2 Y

Let s(1) = dery !s and s(2) = s derx. By one of the lemmas
above, it suffices to prove that Vx € PX,

s(1) - x() = s(2) - x(,



This is easy:
s(1) - x) =dery - (1s - xM) = dery - (s - x)) =5 x

and
s(2)-x") =5 (derx - xN) =5 x.

All commutations of naturality and comonadicity are proven in
the same way.



Another example

Ix 29, nx

digxl Jdig!x
X 29 ix
We take x € PX, we have
(digix digx) - x) = digx - (digx - x1V)

= dig!X . X(!)(!) = X(!)(!)(!)
(Mdigx digx) - x) = Idigy - x(N = xOOO



Strong monoidality of the comonad

The bijections

mO: 1] — [IT|
M|l © 1X1 @ 1Xa| = 1(1X1 & Xal)
(m(1),m(2)) — 1-m(1)+2-m(2)

where /- [a1, ..., ak] =10/, a1), ..., (7, ax)] induce strong isos

mat(m®) € Pcoh(1,!T)
mat(my, | 1x,)) € Peoh(1X1 @ 1X, 1(X1 & X2))

simply denoted as m® and m3 .



All required diagrams are satisfied, let us check for instance

2
mx vy

IX®!Y !(X & Y)
ldmx&v
digx®digy NX&Y)
lN!prl,!prz)
m|2)<|y
Xy —————— !(!X& !Y)

o —

Observe first that m% y/(x, y), that is m% - (x() @ y(), is equal
o (x,y)().



Let s = m?y |y (digx @ digy) and t = I({Ipry, Ipra) digxey Mm% v,
it suffices to prove

VxePX,yePY s- (X(!) ®y(l)) =t- (X(!) ®y(!)> _
We have

s. (X(!) ®y(!)> —m3 - (Xa)(!) ®y(!)(!))
— (x1), xMy)



and

t (X(’) ®y“)) = (1{!pry, 1pro) digxey) - (x, )
= IIpry, Ipra) - (x, )OO

Ipry, Ipro) - (x, y) ()

Ipry - (x, ¥)O, Ipry - (x, y) ()

= ((pry - (X'Y>)(')- (pro - <X,)/>)(!)>(!)

NORYONO

Conclusion: Pcoh is a model of classical LL!



The associated cartesian closed category

It is the category Pcoh;:
® Objects: the PCSs.
® Pcoh((X, Y) = Pcoh(!X,Y)
® Identity is Id§' = derx € Pcohy(X, X) so that
IdK'(x) =derx - x() = x. That is 1440 is the identity function.



® And if s € Pcohi(X, Y) and t € Pcoh(Y, Z) then
tos=ts =tls digy so that

that is tos = t o5, Notice indeed that
shox = 15 xO = (5. xD)O),

This is very important: composition (and identities) in Pcoh,
coincides with composition (and identities) of functions, when
considering the morphisms of Pcoh, as functions.



Pcoh, as a category of functions.

This means that we have a faithful (but not full!) functor
U : Pcoh, — Set which maps X to PX
and s € Pcoh(X,Y) tos.

If (Xi)ies is a family of objects of Pcoh then

Ul X)) = [Tucx)
i€l

More precisely U preserves cartesian products.



Pcoh, is a CCC with (X = Y) = (X — Y) and
Eve Pcoh (X = Y)&X,Y)is

(X = V) &X)

2 -1
(M%=y x)

11X — Y) @ 1X
der@! X
(IX — Y)®1X
e

Y




It follows that, if s € P(X = Y) and x € PX

-1

Ev({s.x)) = (ev (der @ IX)) - (M3sy x) - (5.)))
= (ev (der ® 1X)) - (s(' ®x('))
=ev- (s ® x(!)>

=3(x)



And if s € Pcoh|(Z & X, Y') then Cur(s) € Pcoh/(Z, X = Y) is
charaitﬂzed by the fact that for each z € PZ, the element
t = Cur(s)(z) of P(X = Y) is characterized by

Vx € PX  t(x) =35((z,x))

In other words evaluation and curryfication are defined exactly as
in the CCC Set.



Contraction, weakening

As in any model of LL, we have a weakening and a contraction
morphism

wx € Pcoh(!X, 1) cx € Pcoh(1X,1X ® 1X)
We have, for all x € PX:

wx - xt =1



If y € Pcoh(1, Y) (thatis y € PY) then

(ywx)(x) =y

and if s € Pcoh(IX ® X, Y)

(s cx)(x) =5(x, x)



Integers

Remember we have defined N = (N, PN) with

PN = {x € Rxo)V ) xn < 1} _

neN

That is N = @pen 1.



So we have a strong iso 1 @& N ~ N induced by the following
bijection
6:]11®N| — |N|
(1,x)—0
(2,n)—n+1

In particular suc = mat() in2 € Pcoh(N, N) characterized by
suc(u)o = 0 and suc(u)p+1 = Xp. In other words

SuC(u) = > oo Un€ni-

Remember that if s € Pcoh(X, Y) and x € PX, S(x) = s - x that
is S is the linear function induced by s).



As in Rel we can define
if € Pcoh(IN® IX @ I(IN — X)), X)
characterized by
if(u, x,s) = upx + Z Unt15(€n).
n=0

Remember that e, € PN is characterized by (ep)x = 0nx (= 1is
n=k and =0 if n # k).



Its matrix is given by

1 ifm=][0], p=[a] and g =]
- J1 ifm=[n+1], p=[ and g = [(k[n], a)]
mp.g.a for some n, k € N

0 otherwise

for m € Man(N), p € Man(|X]),
g € Man(|!IN — X|) = Mgp(Man(N) x | X]) and a € |X].



Least fixed points of analytic functions

Given s € Pcoh(Y, Y), we know that the function 5: PY — PY
is Scott continuous so S has a least fixed point
sup,eyn S7(0) € PY.

Remember that

S:PY = PY

X'_>5'y(l): Z Sm,aym
mEMgn(lY]) a€|Y]



Least fixed point operator

As in Rel we can apply this to Y = ((X = X) = X) and to the
morphism Z € Pcohi((X = X) = X, (X = X) = X) such that,
for S e P((X = X) = X)

T = Z(S) € P((X = X) = X) = Pcohy(X = X, X)

satisfies that, for all s € P(X = X)),

The fact that Z is a morphism in Pcoh, comes from the cartesian
closeness of that category.



Then Y, the least fixed point of Z, satisfies
Y € PY = Pcoh|(X = X, X)
and

Vs € Pcohy(X, X) Y(s) = sups"(0)
neN

It is not obvious at all, at first sight, that the map
S — sup,en 57(0) is analytic!



This fact uses positivity of coefficients!

Define a sequence f, : [0, 1] — [0, 1] by

fo(x) =0
frr1(x) = x + fo(x) — xfa(x) = x 4+ (1 — x)fa(x)
so that f1(x) = x, fa(x) = 2x — x2, f3(x) =3x —3x> +x3. ..,

fa(x) =1—(1—x)". Then for all x € [0, 1] the sequence
fa(x) € [0, 1] is monotone with sup f(x) such that

0 ifx=0
foy=4. .~
1 ifx>0

so that f is not even continuous!



What comes next?

We can now use this model to interpret an extension of PCF with
a random primitive for instance a constant which reduces to 0
with probability 1/2 and to 1 with probability 1/2.

For this language, reduction will be probabilistic: if FM:v, M
has a probability p, € [0, 1] to reduce to n, for each n € N.

We will also have a denotational semantics: [M] € PN.

Adequacy: Yn e N p, =[M],.



Next week: part Ill of MPRI 2-02, by Michele Pagani.
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