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1) Integers in Call-by-push-value
Remember that 1 = !>. Let ι = Fix ζ · (1⊕ ζ) be the type of strict natural (unary) numbers. We also

de�ne a type of �lazy integer� ιl = Fix ζ · (1⊕ !ζ).

1.1) Explain the intuitive di�erence between ι and ιl.

1.2) Write a successor succ and a predecessor pred function of type ι( ι.

1.3) Write similar functions for succ′. What are the simplest types you can give to these functions?

1.4) Compute the relational semantics of the functions de�ned above.

1.5) Is it true that 〈pred〉〈succ〉M →∗w M for any term M or type ι? Otherwise, what property must
satisfy M for this property to hold?

1.6) Prove that an analogue of the property above holds for succ′ and pred′.

2) Streams
Given a positive type ϕ, let ρ = Fix ζ · (ϕ⊗ !ζ) be the type of streams of elements of type ϕ.

2.1) Taking ϕ = ι, write a term M such that ` M : ρ which represents the stream 0, 1, . . . of all
natural numbers.

2.2) Explain why it wouldn't be a good idea to de�ne ρ by ρ = Fix ζ · (ϕ⊗ ζ).

2.3) Write a closed term M of type !(ϕ( ι) ( ρ( ϕ such that 〈M〉F ! S returns the �rst element
of S which is mapped to 0 by F .

3) Taken from the slides. . . Use the semantic typing system to justify the following statements
and answer the following questions:

• [λxϕ x] = {(a, a) | a ∈ [ϕ]}.

• Ωσ = fixx!σ x satis�es ` Ωσ : σ. Then [Ωσ] = ∅.

• () = (Ω>)!, then ` () : 1 and [()] = {[]}.

• If n ∈ N one de�nes n such that ` n : ι by 0 = in1() and n+ 1 = in2n. Then [n] = {n}.

• succ = λxι in2(x), then ` succ : ι( ι and succ = {(n, n+ 1) | n ∈ N}.

• add = λxι fix f !(ι(ι) λyι case(y, d · 0, z · 〈succ〉〈der(f)〉z) then ` add : ι ( ι( ι and one has
[add] = {(n1, n2, n1 + n2) | n1, n2 ∈ N}.

• maps = λf !(ϕ(ψ) fixh!(ρϕ(ρψ) λyρϕ 〈〈der(f)〉pr1y, (〈der(h)〉pr2y)!〉. Then ` maps : !(ϕ( ψ) (
ρϕ ( ρψ is a map functional for streams.
Then [maps] is the least set of tuples (([(a, b)]+m1 + · · ·+mk), (a, [s1, . . . , sk]), (b, [t1, . . . , tk])) such
that (mi, (si, ti)) ∈ [maps] for each i ∈ {1, . . . , k}.

• Using this we can de�ne for instance M = λf !(ϕ(ϕ) λxϕ fix y!ρϕ 〈x, (〈maps〉f der(y))!〉 such that `
M : !(ϕ( ϕ) ( ϕ( ρϕ. What does this function compute? What is its relational interpretation?
Execute a few step of →w-reduction on S = 〈M〉succ! 0 and give the relational interpretation of S
(observe that ` S : ρι).

4) Coalgebras in coherence spaces (from Shahin Amini's PhD thesis)
We use the following notations for coherence spaces: |X| is the web of X, ¨X is the coherence relation

on |X|, ˝X is the strict coherence relation, Cl(X) is the set of all cliques of X. We remind that |!X| is
the set of all �nite cliques of X, and u ¨!X u′ i� u ∪ u′ ∈ Cl(X).

We also remind that if f ∈ Cl(()X ( Y ) then

!f = {(u, v) ∈ |!X| × |!Y | | ∃(a1, b1), . . . , (a1, b1) ∈ f u = {a1, . . . , an} and v = {b1, . . . , bn}}
∈ Cl(!X ( !Y )



and that the comonad structure of the �!� functor is given by

derX = {({a}, a) | a ∈ |X|} ∈ Cl(!X ( X)

digX = {(u1 ∪ · · · ∪ un, {u1, . . . , un}) | {u1, . . . , un} ∈ Cl(!!X)} ∈ Cl(!X ( !!X) .

We introduce now a notion of �coherent partial order�: it is a pair P = (|P |,≤P ) where |P | is a
countable set and ≤P is a partial order relation on |P | such that

• for all a ∈ |P | the set ↓ a = {a′ ∈ |P | | a′ ≤P a} is �nite

• for any a ∈ |P |, any subset u of ↓ a has exactly one least upper bound in ↓ a, that is, the set
{b ∈ ↓ a | u ⊆ ↓ b} has a unique least element denoted ∨a(u).

We associate with P a coherence space P as follows: |P | = |P | and a ¨P a′ if ∃a′′ ∈ |P | a, a′ ≤P a′′. Let
hP = {(a, u) ∈ |P ( !P | | a = ∨au} (in other words: (a, u) ∈ hP exactly when u is upper-bounded by a
and a is minimal with this property).

4.1) Prove that hP ∈ Cl(P ( !P ).

4.2) Prove that (P , hP ) is a coalgebra.

4.3) Describe as simply as possible the weakening and contraction morphisms associated with P .

Let 1 = ({∗},=) (considered as a coherence space and as a coherent partial order).

4.4) Prove that a coalgebra morphism from 1 to P is exactly the same thing as a subset u of |P | such
that

• u is downwards-closed, that is a′ ≤P a ∈ u⇒ a′ ∈ u

• u is directed, that is, any �nite subset of u is upper-bounded in u (in other words: u 6= ∅ and
∀a1, a2 ∈ u∃a ∈ u a1, a2 ≤ a).

Such a subset of |P | is called an ideal and the set of these ideals is called ideal completion of P , denoted
Idl(P ). This set will always be considered as a partially ordered set, the order relation being ⊆.

4.5) Prove that, if D ⊆ Idl(P ) is directed, then ∪D ∈ Idl(P ).

4.6) Prove that, if u1, u2 ∈ Idl(P ) are upper-bounded in Idl(P ) (that is, there is u ∈ Idl(P ) such that
ui ⊆ u for i = 1, 2), then u1 ∩ u2 ∈ Idl(P ). Explain why the upper-boundedness hypothesis is essential
(the best possible answer is to give a counter-example showing that this property does not hold in general
without this hypothesis).

Given a relation f ⊆ A × B, we use f̃ for the function P(A) → P(B) de�ned by f̃(u) = {b ∈ B |
∃a ∈ A (a, b) ∈ f}.

4.7) Let P and Q be coherent partial orders and let f ∈ Cl(P ( Q). Assume that f is a coalgebra

morphism from (P , hP ) to (Q, hQ). Prove that, if u ∈ Idl(P ) then f̃(u) ∈ Idl(Q) [Hint: to prove that

f̃(u) is downwards closed, observe that if b′ ≤Q b then (b, {b, b′}) ∈ hQ].

4.8) Prove that f̃ commutes with directed unions and bounded intersections (that is, if D ⊆ Idl(P ) is
directed then f̃(∪D) = ∪{f̃(u) | u ∈ D} and, if u1, u2 ∈ Idl(P ) are upper-bounded, then f(u1)∩ f(u2) =
f(u1 ∩ u2)) [Hint: you only need the fact that f is a clique in P ( Q to prove this.]. One says that f̃ is
stable.

4.9) Conversely, let F : Idl(P ) → Idl(Q) be a function which is monotone and stable. De�ne TrF ⊆
|P | × |Q| as the set of all pairs (a, b) such that b ∈ F (↓ a) and a is minimal with this property. Prove
that TrF ∈ Cl(P ( Q).

4.10) Prove that TrF is a coalgebra morphism from (P , hP ) to (Q, hQ).

4.11) Prove that the operations f 7→ f̃ and F 7→ TrF de�ned above are inverse of each other.

4.12) As a consequence, prove that the coalgebras (P , hP ) and (Q, hQ) are isomorphic as coalgebras
i� P and Q are isomorphic as partial orders. So from now on we consider freely coherent partial orders
as coalgebras.

4.13) Describe as coherent partial orders the coalgebras !X (when X is a coherence space), P ⊗Q and
P ⊕Q (when P and Q are coherent partial orders).



We say that X is a sub-coherence space of Y (notation X v Y ) if |X| ⊆ |Y | and ∀a, a′ ∈ |X| a ¨X
a′ ⇔ a ¨Y a′. Then i+X,Y ∈ Cl(X ( Y ) is simply given by i+X,Y = {(a, a) | a ∈ |X|}. Given coherent

preorders P and Q, we stipulate accordingly that P v Q if P v Q and i+P,Q is a coalgebra morphism

from P to Q (see Section 3.5.11 of the Lecture Notes).

4.14) Prove that P v Q i� the following conditions are satis�ed:

• |P | ⊆ |Q|

• for any a ∈ |P | and b ∈ |Q|, one has b ≤Q a i� b ∈ |P | and b ≤P a

• if two elements of |P | are upper-bounded in Q then they are upper-bounded in P .

4.15) Describe as simply as possible the coherent partial orders interpreting the types ι, ιl and ρ (the
interpretation of ϕ being given) of Exercise 1 and 2.

Reminders

Syntax of CBPV

ϕ,ψ, . . . := !σ | ϕ⊗ ψ | ϕ⊕ ψ | ζ | Fix ζ · ϕ
σ, τ . . . := ϕ | ϕ( σ | >

M,N . . . := x | M ! | 〈M,N〉 | in1M | in2M

| λxϕM | 〈M〉N | case(M,x1 ·N1, x2 ·N2)

| pr1M | pr2M | der(M) | fixx!σM

Typing rules

P `M : σ

P `M ! : !σ

P `M1 : ϕ1 P `M2 : ϕ2

P ` 〈M1,M2〉 : ϕ1 ⊗ ϕ2

P `M : ϕi
P ` iniM : ϕ1 ⊕ ϕ2

P, x : ϕ ` x : ϕ
P, x : ϕ `M : σ

P ` λxϕM : ϕ( σ

P `M : ϕ( σ P ` N : ϕ

P ` 〈M〉N : σ

P `M : !σ
P ` der(M) : σ

P, x : !σ `M : σ

P ` fixx!σM : σ

P `M : ϕ1 ⊕ ϕ2 P, x1 : ϕ1 `M1 : σ P, x2 : ϕ2 `M2 : σ

P ` case(M,x1 ·M1, x2 ·M2) : σ

P `M : ϕ1 ⊗ ϕ2

P ` priM : ϕi

Reduction rules We �rst de�ne the notion of value as follows:

• any variable x is a value

• for any term M , the term M ! is a value

• if M is a value then iniM is a value for i = 1, 2

• if M1 and M2 are values then 〈M1,M2〉 is a value.

Notation for values: V , W . . .

der(M !)→w M 〈λxϕM〉V →w M [V/x] pri〈V1, V2〉 →w Vi



fixx!σM →w M
[
(fixx!σM)!/x

] M →w M
′

der(M)→w der(M ′)

M →w M
′

〈M〉N →w 〈M ′〉N
N →w N

′

〈M〉N →w 〈M〉N ′

M →w M
′

priM →w priM
′

M1 →w M
′
1

〈M1,M2〉 →w 〈M ′1,M2〉
M2 →w M

′
2

〈M1,M2〉 →w 〈M1,M
′
2〉

case(iniV, x1 ·M1, x2 ·M2)→w Mi [V/xi]
M →w M

′

iniM →w iniM
′

M →w M
′

case(M,x1 ·M1, x2 ·M2)→w case(M ′, x1 ·M1, x2 ·M2)

Semantic typing rules A semantic typing judgment is an expression Φ = (x1 : a1 : ϕ1, . . . , xk : ak :
ϕk) where the variables xi are pairwise distinct, the ϕi's are positive types and ai ∈ [ϕi]. Given such a
semantic judgment Φ, we de�ne its underlying typing judgment Φ = (x1 : ϕ1, . . . , xk : ϕk) and the tuple

of points Φ̂ = (a1, . . . , ak) ∈ [Φ].

(Φ̂, []) ∈ hΦ

Φ, x : a : ϕ ` x : a : ϕ

Φi `M : ai : σ for i = 1, . . . , k (Φ̂, [Φ̂1, . . . , Φ̂k]) ∈ hΦ

Φ `M ! : [a1, . . . , ak] : !σ

Remember that we assume that Φ = Φi for each i.

Φ1 `M1 : a1 : ϕ1 Φ2 `M2 : a2 : ϕ2 (Φ̂, [Φ̂1, Φ̂2]) ∈ hΦ

Φ ` 〈M1,M2〉 : (a1, a2) : ϕ1 ⊗ ϕ2

Φ `M : a : ϕi
Φ ` iniM : (i, a) : ϕ1 ⊕ ϕ2

Φ, x : a : ϕ `M : b : σ

Φ ` λxϕM : (a, b) : ϕ( σ

Φ1 `M : (a, b) : ϕ( σ Φ2 ` N : a : ϕ (Φ̂, [Φ̂1, Φ̂2]) ∈ hΦ

Φ ` 〈M〉N : b : σ

Φ `M : [a] : !σ

Φ ` der(M) : a : σ

Φ `M : (a1, a2) : ϕ1 ⊗ ϕ2 (a2, []) ∈ hϕ2

Φ ` pr1M : a1 : ϕ1

Φ `M : (a1, a2) : ϕ1 ⊗ ϕ2 (a1, []) ∈ hϕ1

Φ ` pr2M : a2 : ϕ2

Φ0 `M : (1, a1) : ϕ1 ⊕ ϕ2 Φ1, x : a1;ϕ1 ` N1 : b : σ Φ, x2 : ϕ2 ` N2 : ϕ2 (Φ̂, [Φ̂0, Φ̂1]) ∈ hΦ

Φ ` case(M,x1 ·N1, x2 ·N2) : b : σ

Φ0 `M : (2, a2) : ϕ1 ⊕ ϕ2 Φ2, x : a2;ϕ2 ` N2 : b : σ Φ, x1 : ϕ1 ` N1 : ϕ1 (Φ̂, [Φ̂0, Φ̂2]) ∈ hΦ

Φ ` case(M,x1 ·N1, x2 ·N2) : b : σ

Φ0, x : [a1, . . . , ak] : !σ `M : a : σ ∀i Φi ` fixx!σM : ai : σ (Φ̂, [Φ̂0, . . . , Φ̂k]) ∈ hΦ

Φ ` fixx!σM : a : σ


