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The signs (*) and (**) try to indicate more difficult and interesting questions. These are of course
completely subjective indications!

1. This exercise develops a somehow degenerate model of Linear Logic which does not satisfy -
autonomy but satisfies all the other requirements. A pointed set is a structure X = (X,0x) where
X isaset and Ox € X. Given pointed sets X, X1, Xs and Y,

e a morphism of pointed sets from X to Y is a function f : X — Y such that f(0x) =0y

e and a bimorphism of pointed sets from X;, X to Y is a function f : X; x Xy — Y such that
f(0x,,z2) = f(z1,0x,) = Oy for each z; € X; and x5 € Xs.

(a) Prove that pointed sets together with morphisms of pointed sets form a category Sety,. What
are the isos in that category?

One sets 1 = ({01, *}) where * and 0; are are distinct chosen elements (for instance 0, is the integer
0 and # is the integer 1). Given pointed sets X; and X5 one defines X; ® X5 as follows:

X1 ® Xy = {(331,562) S &X & | xr1 = OX1 & To = OXQ} and OX1®X2 e (OX1,OX2)~

Given z; € X, for ¢ = 1,2, one defines

® (OXUOXQ) ifl’li()Xl or 1'2:0X2
T Q@ To =
! ? (z1,22) otherwise.

(b) Prove that the function (x1,x2) — &1 ® x9 is a bimorphism from X, X5 to X; ® X5 which is
surjective as a function X; x Xo — X; ® X3 and that for any bimorphism f from X;, X5 to Y
there is exactly one morphism f € Seto(X; ® X5,Y) such that f(x1,z2) = f(2; ® x2) for all
z1 € X; and x2 € Xo.

(c¢) Given f; € Seto(X;,Y;) for i = 1,2, deduce from the above that there is exactly one morphism
fl & f2 S SetO(X1 ® X9, Y1 ® YVQ) such that

Vo € Xy Vo € Xo (f1 ® f2)(21 @ 22) = fi(21) ® fa(22)

(d) Using again the universal property of Question (b) prove that the operation on morphisms
defined in Question (c) is a functor.

(e) Exhibit isomorphisms Ax € Seto(l ® X,X) and ax, x, x, € Seto((X1 ® X2) ® X3, X1 ®
(X2 ® X3)).

So Sety is an SMC (there is a symmetry iso vx, x, € Seto(X1 ® X2, Xo ® X7) such that yx, x,(z1®
Z9) = x9 ® x1 which is quite easy to define, and the McLane coherence diagrams commute).



(f) One defines X — Y by X — Y = Seto(X,Y) and for 0x_.y we take the function such that
Ox—oy(z) =0y forallz € X. Let e: X oY X X — Y be defined by e(f,z) = f(z). Prove
that e is a bimorphism and that the SMC Set is closed.

(g) Prove that there is no object L of Sety which turns this symmetric monoidal closed category
into a x-autonomous category.
Xi and

(h) Given a family (X;);cr of objects of Setq we define an object X as follows: X = [[,.; Xs
0x = (0x,)icr € X so that the the projections 7; : X — X; ar obviously morphisms of Set.
Prove that X, together with these projections, is the cartesian product of the family (X;);cr
that we denote as &, ; X;.

Notice that the terminal object (which is the product of an empty family of objects) is T =
({07},07).
Contrarily to Rel, the category Sety has all (projective) limits. It seems rather difficult to build
x-autonomous categories which are at the same type complete. A noticeable exception is the category
of complete lattices.
Given an object X of Setg, we define !X by !X = {(0,01)} U {1} x X where 0, is a chosen element
(for instance, a given integer) and O;x = (0,0,). Notice that (1,0x) € !X but 0;x # (1,0x).
Given f € Seto(X,Y), we define |f € Seto(!X,!Y) by !f(01x) = 01y and !f(1,z) = (1, f(z)). This
obviously defines a functor Sety — Sety.
(i) We define deryx : Seto(!X, X) by derx(0;x) = Ox and derx(1,z) = x. Prove that this is a
natural transformation.
(j) We define digy € Seto(! X, !'X) by digx(0,01) = (0, 0y), that is digx (01x) = Onx, and digx (1, z) =
(1,(1,x)) which is easily seen to be a natural transformation. Prove that equipped with the
natural transformations der and dig the functor ! is a comonad.

(k) Given two objects X and Y of Setg, exhibit an isomorphism between (X & Y) and !X ® Y.

. In this exercise we study a model of linear logic which is based on complete sup-semilattices and
linear maps. A complete sup-semilattice is a partially ordered set S (the order relation will always
be denoted as < or <g if required) such that any subset A of S has a least upper bound \/ A € S.
Remember that this means

evVzeAx<\A
eVzeS(WweAdy<z)=\VA<Lua.

In particular we have two elements 0 = \/ §) which is the least element of S and 1 =\/ S which is the
greatest element of S.

A subset A of S is down-closed if for all z € A and all y € S, if y < z then y € A. Given z € S we
set le={ye S|y <z}

A linear morphism of sup-semilattices from S to T is a function f : S — T such that for all
ACS f(VA) =V f(A) where we define as usual f(A) = {f(x) | z € A}. Notice that this implies
that f is monotone: given x < y in S we have f(y) = f(\V{z,y}) = f(z) V f(y), that is f(z) < f(y).
Let Slat be the category whose objects are the sup-semilattices and morphisms are the linear maps
of sup-semilattices. We set L. = {0 < 1} for the object of Slat which has exactly two elements.

It is important to remember that any inf-semilattice, partially ordered set S where each A C S has
an inf (greatest lower bound) A A, is also a sup-semilattice: VA= A{z €S |Vyec Ay <z}.

It is easy to check that Slat is cartesian. The product of a family (S}),c s of objects of Slat is the usual
cartesian product [ [ jed S; equipped with the product order and projection defined in the usual way.
We also use S = &..;S; for this product and 7; € Slat(S,S;) for the projections. The terminal
object is T = {0}.

(a) Show that the isomorphisms of Slat are the linear morphisms which are bijections.

(b) Given a set X we denote as P(X) its powerset (that is, the set of all of its subsets) ordered
under inclusion, so that P(X) is a sup-semilattice for \/ A = (J A for any A C P(X). Given
t € Rel(X,Y) we define t : P(X) - P(Y) by t(z) =t-2 ={beYY | Ja € x (a,b) € t}.

jeJ



Prove that ¢ € Slat(P(X), P(Y)) and that, for any f € Slat(P(X), P(Y)) there is exactly one
t=trf € Rel(X,Y) such that f =¢. In other words, the functor L : Rel — Slat which maps
X to P(X) and ¢t to ¢ is full and faithful.

(c) Prove that the category Slat has all equalizers, in other words: given objects S and T of Slat and
f,g € Slat(S, T) there is an object F of Slat and a morphism e € Slat(E, S) such that fe=ge
and, for any object V of Slat and any morphism h € Slat(V,S) such that fh = gh, there is
exactly one morphism hg € Slat(V, E) such that h = e hy.

Remember that the Cantor space is the set {0,1}* of all infinites sequences a of 0 and 1 equipped

with the following topology (which is the product topology of the discrete space {0,1}): a subset U

of {0,1}* is open iff for any o € U there is a finite prefix w of a such that, for any 8 € {0,1}*, if w

is a prefix of 8 then 8 € U. In other words, a subset F' of {0,1}* is closed iff it has the following

property: if a € {0,1}* is such that, for any finite prefix w of a there exists 3 € F such that w is

a prefix of 3, then o € F. As in any topological spaces, if F is a set of closed subsets then [F is

closed (you are advised to check this directly using the characterization above of closed subsets).

So the set of closed subsets of {0,1}“ is an inf-semilattice and hence also a sup-semilattice: the sup

of a set of closed sets is the closure of its union (the intersectin of all closed sets which contain this

union).

(d) (**) Let W = {0,1}" be the set of all finite sequences of 0 and 1. If w = (ay,...,a,) € W
is such a sequence and a € {0,1} let wa = (a1,...,an,a). Let § = {(wa,w) | w € W and a €
{0,1}} € Rel(W,W). Let (C,c) be the equalizer of Id,8 € Slat(P(W), P(X)) (so that C is a
sup-semilattice and ¢ € Slat(C,P(W)). Exhibit an order isomorphism between C' and the set
of all closed subsets of the Cantor space ordered under inclusion.

Given a lattice S, we say that € S is prime if

VACS xg\/A:>E|y€Aac§y

(e) (*) Prove that, for a set X, the prime elements of P(X) € Slat are exactly the singletons. Prove
that C, in sharp contrast with the previous case, has no prime elements.
[ Hint: prove first that if F' is prime, it must be a singleton {a} and then prove that no such
singleton is prime. For this notice that, for a collection JF of closed subsets of {0,1}“, the closed
set \/ F is the closure of | J F (the intersection of all closed sets which contain | JF). So consider
a set F of shape F = {{a(n)} | n € N} where a(n) =, 00 @ and Vn € N a(n) # a.|

This example is a concrete illustration of the fact that the category Rel is not complete, indeed it
has no equalizer for the two maps 6,ld € Rel(W, W) because the equalizer of § and Id in Slat is not
an object of Rel (one would need a further proof to make this argument completely rigorous!).

(f) Prove that the set of linear morphisms S — T, equipped with the pointwise order (that is f < g
if Ve € S f(x) < g(x)), is a sup-semilattice. We denote it as S —o T'.

(g) Given z € S define a function z* : S — L by

x*(y){l ify<Lx

0 ify<z

Prove that z* € S — L.

(h) Given a sup-semilattice S, we use S°P for the same set S equipped with the reverse order:
x <go y if y <g z. Prove that the map = +— z* is an order isomorphism from the poset
S°P to S — 1. Warning: one must prove that it is monotone in both directions because
a monotone bijection is not necessarily an order isomorphism! Call k : (S — L) — S°P the
inverse isomorphism.

(1) (*) Given f € (S — T) define f*: (T — L) = (S — L) by f*(y') = ¢ f. Prove that f* €
Slat(T — 1,8 —o 1). Let f* € Slat(T°", S°) be the associated morphism (through the iso k



defined above, that is f*(y) = k(f*(y*)) ). Prove that
VeeSvyeT fla)<ysar<f(y).

One says that f and f* define a Galois connection between S and T'. Last prove that f++ = f.
(j) Given sup-semilattices S and T' we define S ® T as the set of all I C S x T such that
e ] is down-closed

e and, for all AC S and B C T, if A and B satisfy A x B C I then (\V A,V B) € 1.

Prove that (S ® T, C) is an inf-semilattice (that is, is closed under arbitrary intersections). As
a consequence, it is also a sup-semilattice: if Z C S® T then /I =({I € S®T |UZ C I}.
But notice that in this sup-semilattice, the sups are not defined as unions in general.

(k) Prove that the least element of S ® T is Oggr = S x {0} U {0} x T

(1) We say that amap f: SXT — U (where S, T, U are sup-semilattices) is bilinear if for all A C S
and B C T we have \/ f(A x B) = f(\V A x B). Prove that this condition is equivalent to the
following:

e forallz € S and B C T, one has f(z,\ B) =V, cp f(z,y)
e and for ally € T and A C S, one has f(\/ A,y) =V, ca f(2,9)

that is, f is separately linear in both variables.

(m) (*) Givenze SandyeTlet @y =] (z,y) UOggr €S X T. Prove that z ® y € S® T and
that the function 7 : (z,y) — = ® y is a bilinear map S x T — S ® T.

(n) Let (S,T) —o U be the set of all bilinear maps S x T" — U ordered pointwise (that is f < g if
V(z,y) € S x T f(z,y) < g(z,y)). Prove that (S,T) — U ~ (S — (T'— U)). Deduce from
this fact that (S,T) — U is a sup-semilattice.

(o) Given I € X ®Y let f/: S xT — L be given by

f(y) = {O if (z,y) el

1 otherwise.

Prove that f7 is bilinear. Conversely given f € (S,T) —o L prove that kerof = {(x,y) € S x T |
f(z,y) = 0} belongs to S®T. Prove that these operations define an order isomorphism between
S®T and ((S,T) — L)°".

To be continued. ..



