1) Let us say that a PCS is a distribution space if \(P(X) = \{ u \in \mathbb{R}^{[X]} \mid \sum_{a \in |X|} u_a \leq 1 \} \). Remember that \(X \) is a distribution space if \(P(X^+) = \{ u' \in \mathbb{R}^{[X]}_{\geq 0} \mid \forall a \in |X| \ u_a \leq 1 \} \) and that \(N \) is the distribution space such that \(|N| = N\).

1.1) Prove that if \(X \) and \(Y \) are distribution spaces then \(X \times Y \) is a distribution space.

1.2) If \(x \subseteq I \) we define \(\chi_x \in \mathbb{R}^{[x]} \) by \((\chi_x)_i = 1 \) if \(i \in x \) and \((\chi_x)_i = 0 \) if \(i \notin x \). Let \(X \) and \(Y \) be distribution spaces and \(f \subseteq |X| \times |Y| \). Prove that \(\chi_f \in P coh(X, Y) \) iff \(f \) is (the graph of) a partial function \(|X| \to |Y| \).

1.3) Let \(f \subseteq (|N| \times |N|) \times N \) be defined by \(f = \{ ((n, p), n + p) \mid n, p \in N \} \). Given \(u, v \in P(N) \), compute \((\chi_f \cdot (u \otimes v))_k \) for each \(k \in N \).

1.4) Let \(r \in [0, 1] \). Compute \((\chi_f \cdot (u \otimes v))_k \) when \(u = v \in P(N) \) is given by \(u_n = (1 - r)^n \) (explain why \(u \in P(N) \)).

1.5) Remember that if \(u \in P(N) \) then \(\|u\| = \sum_{n \in N} u_n \). Prove that \(\|\chi_f \cdot (u \otimes v)\| = \|u\| \|v\| \).

1.6) Let \(f \subseteq |X| \times |Y| \) be (the graph of) a partial function, where \(X \) and \(Y \) a distribution spaces. Prove that the two following properties are equivalent:

 - \(f \) is a total function
 - \(\forall u \in P(N) \|\chi_f \cdot u\| = \|u\| \).

2) Using the fact that \(P coh \) is an SMCC, prove that there is a \(C \in P coh((|N|
\to N) \otimes (|N| \to N)), |N| \to N) \) such that, for any \(s, t \in P(|N| \to N) \), one has \(C \cdot (s \otimes t) = \frac{1}{2} (s + t) \). Given \(n_1, p_1, n_2, p_2, n, p \in N \), give the value of \(C((n_1, p_1), (n_2, p_2)), (n, p) \in \mathbb{R}_{\geq 0} \).

3) Let \(X \) and \(Y \) be probabilistic coherence spaces (PCSs) and let \(f : P(X) \to P(Y) \). Prove that if \(f \) satisfies

 - for all \(u^1, u^2 \in P(X) \) such that \(u^1 + u^2 \in P(X) \), one has \(f(u^1 + u^2) = f(u^1) + f(u^2) \),
 - for all \(u \in P(X) \) and \(\lambda \in [0, 1] \) one has \(f(\lambda u) = \lambda f(u) \),
 - for any non-decreasing sequence \((u(n))_{n \in N} \) of elements of \(P(X) \), one has \(f(\sup_{n \in N} u(n)) = \sup_{n \in N} f(u(n)) \)

then there is exactly one \(s \in P(X \to Y) \) such that \(\forall u \in P(X) \ f(u) = s \cdot u \).

 [Hint: Observe that the first condition implies that \(f \) is monotone]

4) Let \(S = \{0, 1\}^\omega \) (the set of finite words of 0 and 1), equipped with the prefix order: \(s \leq t \) if \(s \subseteq S \) and \(s \) is a prefix of \(t \), that is \(s = \langle a_1, \ldots, a_n \rangle \) and \(s = \langle a_1, \ldots, a_k \rangle \) with \(n \leq k \). If \(\alpha \in \{0, 1\}^\omega \) (the \(\omega \)-indexed sequences of 0 and 1), we use \(\downarrow \alpha \) for the set of all \(s \in S \) which are prefixes of \(\alpha \).

4.1) A tree is a non-empty subset \(T \) of \(S \) such that if \(s \in T \) and if \(t \leq s \) then \(t \in T \). One says that \(\alpha \in \{0, 1\}^\omega \) is an infinite branch of \(T \) if \(\downarrow \alpha \subseteq T \). Prove König's Lemma: a tree which has no infinite branches is finite (as a set). [Hint: By contradiction.]

4.2) A subset \(A \) of \(S \) is an antichain if any two elements of \(A \) are either equal or incomparable for the prefix order. Prove that an antichain \(A \) is finite if it satisfies \(\forall \alpha \in \{0, 1\}^\omega \ A \cap \downarrow \alpha \neq \emptyset \). [Hint: If \(A \) is non-empty, apply König's Lemma to the tree \(\downarrow A = \{ s \in S \mid \exists t \in A : s \leq t \} \).]

4.3) Let \(P \) be the set of \(u \in \mathbb{R}^S_{\geq 0} \) such that, for any antichain \(A \), one has \(\sum_{s \in A} u_s \leq 1 \). Prove that \((S, P) \) is a PCS, that we will denote as \(C \).

4.4) Prove that for any \(\alpha \in \{0, 1\}^\omega \), one has \(\sum_{s \downarrow \alpha} e_s \in P(C) \) and that this defines an injection from \(\{0, 1\}^\omega \) (the Cantor space) into \(P(C) \).

We say that \(u \in P(C) \) is uniform if, for all \(s \in S \), one has \(u_s = u_{a_0} + u_{a_1} \) (where, if \(s = \langle a_1, \ldots, a_n \rangle \), then \(sa = \langle a_1, \ldots, a_n, a \rangle \).
4.5) Give examples of $u \in P(C)$ which are not uniform and examples of $u \in P(C)$ which are uniform.
We assume that u is uniform.

We say that $U \subseteq \{0, 1\}^\omega$ is open if, for all $\alpha \in U$, there is $s \in \downarrow \alpha$ such that $\uparrow s \subseteq U$, where $\uparrow s = \{ \beta \in \{0, 1\}^\omega \mid s \in \downarrow \beta \}$.

4.6) Let $U \subseteq \{0, 1\}^\omega$ be open. Prove that there is an antichain A such that $U = \bigcup_{\alpha \in A} \uparrow s$. If A is such an antichain we set $\mu_A(U) = \sum_{s \in A} u_s$ so that $\mu_A(U) \in [0, 1]$.

4.7) Let $s \in S$ and $A \subseteq S$ be an antichain such that $\forall t \in A s \leq t$ and for all $\alpha \in \uparrow s$ one has $A \cap \downarrow \alpha \neq \emptyset$. Prove that A is finite and that $u_s = \sum_{\alpha \in A} u_t$.

4.8) Let $U \subseteq \{0, 1\}^\omega$ be open and let A and B be antichains such that $U = \bigcup_{\alpha \in A} \uparrow s = \bigcup_{\beta \in B} \uparrow s$. Prove that $\mu_A(U) = \mu_B(U)$. [Hint: Building possibly a third antichain which has the same property as A and B with respect to U, one can assume that $\forall t \in U \exists s \in A s \leq t$]

4.9) Let $U, V \subseteq \{0, 1\}^\omega$ be open and such that $U \cap V = \emptyset$. Prove that $\mu(U \cup V) = \mu(U) + \mu(V)$.

5) Remember that if X is a PCS, the associated norm is the function $\|\| : P(X) \rightarrow [0, 1]$ defined by

$$\|u\|_X = \sup_{u' \in P(X)} \langle u, u' \rangle \in [0, 1].$$

5.1) Prove that this operation features the usual properties of a norm, namely:

- $\|u\|_X = 0 \Rightarrow u = 0$ (we recall that 0 is the element of $P(X)$ which maps each element of $|X|$ to 0).
- If $u, u^1, u^2 \in P(X)$ satisfy $u^1 + u^2 \in P(X)$, then $\|u^1 + u^2\|_X \leq \|u^1\|_X + \|u^2\|_X$.
- If $u \in P(X)$ and $\lambda \in [0, 1]$ then $\|\lambda u\|_X = \lambda \|u\|_X$.

5.2) Prove that, if $u \leq v \in P(X)$, then $\|u\|_X \leq \|v\|_X$. Prove also that the norm is Scott-continuous (that is if $(u(n))_{n \in \mathbb{N}}$ is a non-decreasing sequence in $P(X)$, then $\sup_{n \in \mathbb{N}} u(n)) = \sup_{n \in \mathbb{N}} \|u(n)\|_X$).

5.3) Let $t \in P(X \rightarrow Y)$, prove that $\|t\|_{X \rightarrow Y} = \sup_{u \in P(X)} \|t \cdot u\|_Y$ and that $\|t^\perp\|_{Y^\perp \rightarrow X^\perp} = \|t\|_{X \rightarrow Y}$.

5.4) Prove that if $u \in P(X)$ and $v \in P(Y) \cap 0$ then $\|u \otimes v\|_{X \otimes Y} = \|u\|_X \|v\|_Y$.

5.5) Prove that if $t \in P((X \otimes Y) \rightarrow Z)$ then $\|t\|_{(X \otimes Y) \rightarrow Z} = \sup_{u \in P(X), v \in P(Y)} \|t \cdot (u \otimes v)\|_Z$.

6) $B = 1 \top 1$ is the PCS of booleans, which can be described as follows: $|B| = \{0, 1\}$ and $P(B) = \{ u \in \mathbb{R}_{\geq 0}^{[0, 1]} \mid u_0 + u_1 \leq 1 \}$. We identify $|B \rightarrow 1|$ with $\mathbb{N} \times \mathbb{N}$ (explain why this is possible). Let $s \in \mathbb{R}_{\geq 0}^{[0, 1]}$ be defined by $s_{n,p} = (1 - \delta_{n,0})\delta_{n,p} 2^n$. Prove that $s \in \text{Pcoh}(B, 1)$.

7) We admit that there is $s \in \text{Pcoh}(1 \rightarrow 1 \top 1, 1, 1)$ such that, for all $t \in P(1 \rightarrow 1)$ and $u \in P(1)$ (so that we can consider that $u \in [0, 1]$ and that $(t, u) \in P((1 \rightarrow 1) \top 1)$):

$$\tilde{s}(t, u) = \frac{1}{2} + \frac{1}{2} u \tilde{t}(u)^2.$$

The existence of such an s is essentially a consequence of the cartesian closeness of Pcoh. So we have $\text{Cur}(s) \in \text{Pcoh}(1 \rightarrow 1 \top 1)$ and hence a Scott-continuous function $\text{Cur}(s) : P(1 \rightarrow 1) \rightarrow P(1 \rightarrow 1)$, let $t \in \text{Pcoh}(1, 1)$ be the least fixed point of $\text{Cur}(s)$.

7.1) Prove that necessarily the function $\tilde{t} : [0, 1] \rightarrow [0, 1]$ is given by

$$\tilde{t}(u) = \begin{cases} \frac{1 - \sqrt{1 - u}}{u} & \text{if } 0 < u \leq 1 \\ \frac{1}{2} & \text{if } u = 0 \end{cases}.$$

7.2) Identifying $|1 \rightarrow 1|$ with \mathbb{N} and using the expression above as well as the Taylor expansion of $\sqrt{1 - u}$, give the value of t_n for each $n \in \mathbb{N}$.