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1) Let us say that a PCS is a distribution space if P(X) = {u € Rlz)gl | >ae|x| Ua < 1}. Remember
that X is a distribution space iff P(X) = {«/ € R | Va € |X| u, < 1} and that N is the distribution

space such that |[N| = N.

1.1) Prove that if X and Y are distribution spaces then X ® Y is a distribution space.

1.2) If x C I we define x, € RL; by (xo)i = 1ifi € z and (x,); = 0if i ¢ 2. Let X and Y be
distribution spaces and f C |X| x |Y|. Prove that x; € Pcoh(X,Y) iff f is (the graph of) a partial
function |X| — |Y].

1.3) Let f C (N x N) x N be defined by f = {((n,p),n+p) | n,p € N}. Given u,v € P(N), compute
(xs - (u®v))y for each k € N.

1.4) Let r € [0,1]. Compute (x5 - (u®v))r when u = v € P(N) is given by w,, = (1 — r)r" (explain
why u € P(N)).

1.5) Remember that if u € P(N) then |lul =3 .y

1.6) Let f C |X| x |Y] be (the graph of) a partial function, where X and Y a distribution spaces.
Prove that the two following properties are equivalent:

up. Prove that ||xs - (u®@v)|| = [Jull||v].

e f is a total function

o Vu € P(N) [Ixy - ull = [[ull

2) Using the fact that Pcoh is an SMCC, prove that there is a C' € Pcoh(((N — N)® (N — N)),N —o
N) such that, for any s,t € P(N — N), one has C'- (s ®t) = (st +ts). Given ny,p1,n2,p2,n,p € N,
give the value of C((nl,m),(nmpz)),(n’p) € Ryyp.

3) Let X and Y be probabilistic coherence spaces (PCSs) and let f : P(X) — P(Y). Prove that if f
satisfies

e for all u',u? € P(X) such that u! + u? € P(X), one has f(u! +u?) = f(ul) + f(u?),
e for all v € P(X) and A € [0, 1] one has f(Au) = Af(u)
e for any non-decreasing sequence (u(n))nen of elements of P(X), one has f(sup,,cy u(n)) = sup, ey f(u(n))

then there is exactly one s € P(X — Y') such that Yu € P(X) f(u) =s- u.
[ Hint: Observe that the first condition implies that f is monotone |

4) Let S = {0,1}<% (the set of finite words of 0 and 1), equipped with the prefix order: s < ¢ if
s,t € S and s is a prefix of ¢, that is s = (a1,...,a,) and s = {a1,...,a;) with n < k. If o € {0,1}*
(the w-indexed sequences of 0 and 1), we use | « for the set of all s € S which are prefixes of a.

4.1) A tree is a non-empty subset T" of S such that if s € T and if ¢t < s then ¢t € T'. One says that
a € {0,1}¥ is an infinite branche of T' if | @« C T'. Prove Ko6nig’s Lemma: a tree which has no infinite
branches is finite (as a set). [ Hint: By contradiction. |

4.2) A subset A of S is an antichain if any two elements of A are either equal or incomparable for
the prefix order. Prove that an antichain A is finite if it satisfies Vo € {0,1}* ANJa # 0. | Hint: If A
is non-empty, apply Konig’s Lemma to the tree | A={se€ S|t € A s <t} ]

4.3) Let P be the set of u € RS such that, for any antichain A, one has > scals < 1. Prove that
(S,P) is a PCS, that we will denote as C.

4.4) Prove that for any « € {0,1}“, one has >
{0,1}* (the Cantor space) to P(C).

We say that u € P(C) is uniform if, for all s € S, one has us = uso + us1 (where, if s = (ay,...,an),
then sa = (a1, ...,an,a)).

sel o ® € P(C) and that this defines an injection from



4.5) Give examples of u € P(C) which are not uniform and examples of u € P(C) which are uniform.
We assume that v is uniform.
We say that U C {0,1}* is open if, for all « € U, there is s € |« such that s C U, where

ts={8€{0,1}*|selp}

4.6) Let U C {0,1}* be open. Prove that there is an antichain A such that U = [J,c, 1. If A is
such an antichain we set pa(U) = > . 4 us so that pa(U) € [0, 1].

4.7) Let s € S and A C S be an antichain such that Vi € A s < t and for all @ € 1s one has
ANl a#0. Prove that A is finite and that us = Y, 4 us.

4.8) Let U C {0,1}* be open and let A and B be antichains such that U = J,c 415 = U,ep T s
Prove that pa(U) = pup(U). We set u(U) = pa(U). | Hint: Building possibly a third antichain which
has the same property as A and B with respect to U, one can assume that V¢t € B3s € A s <t. |

4.9) Let U,V C {0,1}* be open and such that U NV = (). Prove that u(U U V) = u(U) + (V).

5) Remember that if X is a PCS, the associated norm is the function ||_||x : P(X) — [0,1] defined
by

lulx = sup (u,u') €[0,1].
uw eP(X L)

5.1) Prove that this operation features the usual properties of a norm, namely:

e |lullx =0 = u =0 (we recall that 0 is the element of P(X) which maps each element of | X| to 0).
o If ul u? € P(X) satisfy u! +u? € P(X), then ||u! + v?||x < ||ut||x + ||u?|x.

o If u e P(X) and A € [0,1] then ||Au|x = AMulx-

5.2) Prove that, if v < v € P(X), then |ul|x < |[v||x. Prove also that the norm is Scott-continuous
(that is if (u(n))nen is a non-decreasing sequence in P(X), then |[sup,,cy u(n)||x = sup,ey [|u(n)] x).

5.3) Let t € P(X — Y), prove that [|t]|x oy = sup,ep(x) It - ully and that [[t4]y o oxo = [|t]|x -
5.4) Prove that if u € P(X) and v € P(Y) then ||u @ v||xgy = vl x|v|y-
5.5) Prove that if t € P((X ® V) — Z) then [[t[|(xgy) oz = SUPyep(x),vep(v) It - (@ V)] 2.

6) B =1@1 is the PCS of booleans, which can be described as follows: |B| = {0,1} and P(B) =
{ue REGY [up +us <1}. We identify !B —o 1] with N x N (explain why this is possible). Let s €
R;}gwu be defined by s, p = (1 — 0,0)0,2". Prove that s € Pcoh,(B,1).

7) We admit that there is s € Pcohy((1 = 1) & 1,1) such that, for all ¢ € P(1 = 1) and « € P(1) (so
that we can consider that u € [0,1] and that (t,u) € P((1 = 1) & 1)):

1 1 -
s(tyu) = 3 + §ut(u)2 .

The existence of such an s is essentially a consequence of the cartesian closeness of Pcoh;. So we have
Cur(s) € Pcohi(1 = 1,1 = 1) and hence a Scott-continuous function Cur(s) : P(1 = 1) — P(1 = 1), let

t € Pcoh(1,1) be the least fixed point of Cur(s).
7.1) Prove that necessarily the function % : [0, 1] — [0,1] is given by

~ I o <u <l
(u) =

t
% ifu=0

7.2) Identifying |!1 — 1] with N and using the expression above as well as the Taylor expansion of
V1 = u, give the value of t,, for each n € N.



