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1) Let us say that a PCS is a distribution space if P(X) = {u ∈ R|X|≥0 |
∑
a∈|X| ua ≤ 1}. Remember

that X is a distribution space i� P(X⊥) = {u′ ∈ R|X|≥0 | ∀a ∈ |X| ua ≤ 1} and that N is the distribution
space such that |N| = N.

1.1) Prove that if X and Y are distribution spaces then X ⊗ Y is a distribution space.

1.2) If x ⊆ I we de�ne χx ∈ RI≥0 by (χx)i = 1 if i ∈ x and (χx)i = 0 if i /∈ x. Let X and Y be
distribution spaces and f ⊆ |X| × |Y |. Prove that χf ∈ Pcoh(X,Y ) i� f is (the graph of) a partial
function |X| → |Y |.

1.3) Let f ⊆ (N× N)× N be de�ned by f = {((n, p), n+ p) | n, p ∈ N}. Given u, v ∈ P(N), compute
(χf · (u⊗ v))k for each k ∈ N.

1.4) Let r ∈ [0, 1]. Compute (χf · (u⊗ v))k when u = v ∈ P(N) is given by un = (1 − r)rn (explain
why u ∈ P(N)).

1.5) Remember that if u ∈ P(N) then ‖u‖ =
∑
n∈N un. Prove that ‖χf · (u⊗ v)‖ = ‖u‖‖v‖.

1.6) Let f ⊆ |X| × |Y | be (the graph of) a partial function, where X and Y a distribution spaces.
Prove that the two following properties are equivalent:

• f is a total function

• ∀u ∈ P(N) ‖χf · u‖ = ‖u‖.

2) Using the fact that Pcoh is an SMCC, prove that there is a C ∈ Pcoh(((N ( N)⊗(N ( N)),N (
N) such that, for any s, t ∈ P(N ( N), one has C · (s⊗ t) = 1

2 (s t + t s). Given n1, p1, n2, p2, n, p ∈ N,
give the value of C((n1,p1),(n2,p2)),(n,p) ∈ R≥0.

3) Let X and Y be probabilistic coherence spaces (PCSs) and let f : P(X) → P(Y ). Prove that if f
satis�es

• for all u1, u2 ∈ P(X) such that u1 + u2 ∈ P(X), one has f(u1 + u2) = f(u1) + f(u2),

• for all u ∈ P(X) and λ ∈ [0, 1] one has f(λu) = λf(u)

• for any non-decreasing sequence (u(n))n∈N of elements of P(X), one has f(supn∈N u(n)) = supn∈N f(u(n))

then there is exactly one s ∈ P(X ( Y ) such that ∀u ∈ P(X) f(u) = s · u.
[ Hint: Observe that the �rst condition implies that f is monotone ]

4) Let S = {0, 1}<ω (the set of �nite words of 0 and 1), equipped with the pre�x order: s ≤ t if
s, t ∈ S and s is a pre�x of t, that is s = 〈a1, . . . , an〉 and s = 〈a1, . . . , ak〉 with n ≤ k. If α ∈ {0, 1}ω
(the ω-indexed sequences of 0 and 1), we use ↓ α for the set of all s ∈ S which are pre�xes of α.

4.1) A tree is a non-empty subset T of S such that if s ∈ T and if t ≤ s then t ∈ T . One says that
α ∈ {0, 1}ω is an in�nite branche of T if ↓ α ⊆ T . Prove König's Lemma: a tree which has no in�nite
branches is �nite (as a set). [ Hint: By contradiction. ]

4.2) A subset A of S is an antichain if any two elements of A are either equal or incomparable for
the pre�x order. Prove that an antichain A is �nite if it satis�es ∀α ∈ {0, 1}ω A ∩ ↓ α 6= ∅. [ Hint: If A
is non-empty, apply König's Lemma to the tree ↓A = {s ∈ S | ∃t ∈ A s ≤ t}. ].

4.3) Let P be the set of u ∈ RS≥0 such that, for any antichain A, one has
∑
s∈A us ≤ 1. Prove that

(S,P) is a PCS, that we will denote as C.
4.4) Prove that for any α ∈ {0, 1}ω, one has

∑
s∈↓ α es ∈ P(C) and that this de�nes an injection from

{0, 1}ω (the Cantor space) to P(C).
We say that u ∈ P(C) is uniform if, for all s ∈ S, one has us = us0 + us1 (where, if s = 〈a1, . . . , an〉,

then sa = 〈a1, . . . , an, a〉).



4.5) Give examples of u ∈ P(C) which are not uniform and examples of u ∈ P(C) which are uniform.
We assume that u is uniform.
We say that U ⊆ {0, 1}ω is open if, for all α ∈ U , there is s ∈ ↓ α such that ↑ s ⊆ U , where

↑ s = {β ∈ {0, 1}ω | s ∈ ↓ β}.
4.6) Let U ⊆ {0, 1}ω be open. Prove that there is an antichain A such that U =

⋃
s∈A ↑ s. If A is

such an antichain we set µA(U) =
∑
s∈A us so that µA(U) ∈ [0, 1].

4.7) Let s ∈ S and A ⊆ S be an antichain such that ∀t ∈ A s ≤ t and for all α ∈ ↑ s one has
A ∩ ↓ α 6= ∅. Prove that A is �nite and that us =

∑
t∈A ut.

4.8) Let U ⊆ {0, 1}ω be open and let A and B be antichains such that U =
⋃
s∈A ↑ s =

⋃
s∈B ↑ s.

Prove that µA(U) = µB(U). We set µ(U) = µA(U). [ Hint: Building possibly a third antichain which
has the same property as A and B with respect to U , one can assume that ∀t ∈ B∃s ∈ A s ≤ t. ]

4.9) Let U, V ⊆ {0, 1}ω be open and such that U ∩ V = ∅. Prove that µ(U ∪ V ) = µ(U) + µ(V ).

5) Remember that if X is a PCS, the associated norm is the function ‖_‖X : P(X) → [0, 1] de�ned
by

‖u‖X = sup
u′∈P(X⊥)

〈u, u′〉 ∈ [0, 1] .

5.1) Prove that this operation features the usual properties of a norm, namely:

• ‖u‖X = 0⇒ u = 0 (we recall that 0 is the element of P(X) which maps each element of |X| to 0).

• If u1, u2 ∈ P(X) satisfy u1 + u2 ∈ P(X), then ‖u1 + u2‖X ≤ ‖u1‖X + ‖u2‖X .

• If u ∈ P(X) and λ ∈ [0, 1] then ‖λu‖X = λ‖u‖X .

5.2) Prove that, if u ≤ v ∈ P(X), then ‖u‖X ≤ ‖v‖X . Prove also that the norm is Scott-continuous
(that is if (u(n))n∈N is a non-decreasing sequence in P(X), then ‖supn∈N u(n)‖X = supn∈N ‖u(n)‖X).

5.3) Let t ∈ P(X ( Y ), prove that ‖t‖X(Y = supu∈P(X) ‖t · u‖Y and that ‖t⊥‖Y ⊥(X⊥ = ‖t‖X(Y .

5.4) Prove that if u ∈ P(X) and v ∈ P(Y ) then ‖u⊗ v‖X⊗Y = ‖u‖X‖v‖Y .
5.5) Prove that if t ∈ P((X ⊗ Y ) ( Z) then ‖t‖(X⊗Y )(Z = supu∈P(X),v∈P(Y ) ‖t · (u⊗ v)‖Z .

6) B = 1 ⊕ 1 is the PCS of booleans, which can be described as follows: |B| = {0, 1} and P(B) =

{u ∈ R{0,1}≥0 | u0 + u1 ≤ 1}. We identify |!B ( 1| with N × N (explain why this is possible). Let s ∈
R|!B(1|
≥0 be de�ned by sn,p = (1− δn,0)δn,p2n. Prove that s ∈ Pcoh!(B, 1).

7) We admit that there is s ∈ Pcoh!((1⇒ 1) & 1, 1) such that, for all t ∈ P(1⇒ 1) and u ∈ P(1) (so
that we can consider that u ∈ [0, 1] and that (t, u) ∈ P((1⇒ 1) & 1)):

ŝ(t, u) =
1

2
+

1

2
u t̂(u)2 .

The existence of such an s is essentially a consequence of the cartesian closeness of Pcoh!. So we have

Cur(s) ∈ Pcoh!(1⇒ 1, 1⇒ 1) and hence a Scott-continuous function Ĉur(s) : P(1⇒ 1)→ P(1⇒ 1), let

t ∈ Pcoh!(1, 1) be the least �xed point of Ĉur(s).

7.1) Prove that necessarily the function t̂ : [0, 1]→ [0, 1] is given by

t̂(u) =

{
1−
√
1−u
u if 0 < u ≤ 1

1
2 if u = 0

7.2) Identifying |!1 ( 1| with N and using the expression above as well as the Taylor expansion of√
1− u, give the value of tn for each n ∈ N.


