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1) The goal of this exercise is to understand the structure of the category PoLR' (the category of
coalgebras of the comonad ! on the category PoLR). We refer to the lecture notes for all basic definitions
and notations.

1.1) Given a preorder S, we set hg = {(a,u’) € |S| x |!S] | V&’ € u® @’ <g a}. Prove that hg €
PoLR(S,!S5).

1.2) Is the family of morphisms (hg)s natural in S? That is, is it true that hprt = lthg for all
t € PoLR(S,T)?

1.3) Prove that derg hg = Ids.

1.4) Prove that digg hg = !hg hs. So we have shown that (S, hg) is an object of PoOLR': any preorder
has a canonical structure of coalgebra. We prove now that this structure is unique.

1.5) Let h € PoLR(S,!S) be a coalgebra structure. Using the fact that derg h C Idg prove that
h C hg (take (a,u") € h and then for any a’ € u° observe that (u°,a’) € ders).

1.6) Using the fact that Idg C derg h, prove that (a,{a}) € h for all a € |S| (do not forget that
h € PoLR(S,!9)).

1.7) Prove that h = hg.

Strangely enough we have not used the equation digg h = !hh. We have shown that any object S
of PoLR has exactly one structure of !-coalgebra. Observe that one has accordingly digg = hig, for
instance, since (15,digg) is a typical !-coalgebra, the free one generated by S.

A natural question is whether such a phenomenon occurs in all models of LL.

1.8) (Open question) Look for a counter-example in the model of coherence spaces, that is: a coherence
space which has no coalgebra structures or which has several coalgebra structures), for the usual “!”
comonad on coherence spaces.

1.9) Let S and T be preorders and let s € PoLR(S, T'), remember that s € PoLR'((S, hs), (T, hr)))
iff hps = lshg. Prove that this condition is equivalent to: for all a € |S| and by,...,b, € |T| (with
n € N), there is b € |T| such that (a,b) € s and b; <p b for all 7 iff there are ay,...,a, € |S| such that
a; <g a and (a;,b;) € s for all i. What does this condition mean when n = 0?7

1.10) An ideal of S is a downwards-closed directed subset of |S|, that is, a subset u of |\S| such that
o uF(
e Yaj,as €Euda €uar,as <ga
e VacuVd €|S|d <sa=d €u.

We use Z(S) for the set of all ideals of |S| (sometimes called the ideal completion of S), ordered under
inclusion. Prove that Z(S) is a cpo (which has not necessarily a least element however). Prove that, for
any a € |S|, one has | a € Z(S) and that | a is isolated in Z(S) (see Chapter 5 in the lecture notes).
Last prove that Z(5) is algebraic (actually any algebraic cpo D is of shape Z(S) for S the set of isolated
elements of D equiped with the induced order relation).

1.11) Exhibit a canonical bijection between Z(S) and PoLR'((1,h1), (S, hs)) (remember that 1 =
({*},=) so that simply hy = {(*,%)}). Using it prove that, if s € PoLR'((S, hs), (T, hr)) and u € Z(S)
one has su € Z(T) (you can also prove this directly). We use fun'(s) for this function Z(S) — Z(T).

1.12) Prove that fun'(s) is Scott-continuous. Conversely, given a Scott-continuous function f : 7 (S) —
Z(T), define tr'(f) = {(a,b) € |S| x |T| | b € f({ a)}. Prove that tr'(s) € PoLR'((S, hs), (T, hr)).
1.13) Prove that the operations fun'(_) and tr'(_) are inverse of each other.

1.14) Prove that PoLR' is cartesian (with cartesian product defined using ® and not &) and also co-
cartesian (with co-product defined using @). Describe the corresponding operations on cpos. Compare
with what happens in PoLR for & and .



1.15) Prove that 7 (1S) = Z(S). Using this observation explain how the canonical inclusion functor
PoLR; — PoLR' (from free coalgebras into general ones), which maps S to 1S and s € PoLRy(S,T)
to s' = !s digg can simply be described as an inclusion of categories in that special case (using the
characterization of POLR,(S,T) as the set of Scott-contuous functions Z(S) — Z(T)).

2) Remember that Z € PoLR,((S = S5) = S5,(S=S5) = S) has been defined during a lesson
as a morphism such that, setting F' = Fun Z, one has Fun (F(Y))(s) = Funt(FunY(s)) for all s €
PoLR;(S, S).

2.1) Given ¢t € PoLR(T,T), we set ¢(t) = U,—o(Funt)™(0) € Z(T), the least fixed point of Funt.
Prove that o(¢) is the least element of Z(T') such that for all b € ¢(t), there exists u” such that (u®,b) € ¢
and u® C p(t).

2.2) Weset Yo = ¢(2) € Z((S = S) = 5). Prove that FunYy(s) = ¢(Funs) for all s € Z(S = 5).
To this end, prove that Fun (F™(0))(s) = (Funs)™(0) by induction on n. Use also the fact that Fun
is an order isomorphism (between PoLR,(T,U) ordered by inclusion and PoC(Z(T),Z(U)) ordered by
the pointwise ordering on functions).

2.3) Prove that (V,b) € Yy iff there exists u® such that (ug,b) € | V? and Vb’ € u° (VO,¥) € Yy,
3) Using the semantic typing system of LPCF, compute the Scott semantics of the following terms
(given with their types).
o Q' : 1 where Q4 = fixz? - z.
e | fixa' - succ(x) : ¢ (give a recursive description of the interpretation of this term).
o FAztif(z,Q2-0):¢— .

o Fatfixa' - Myt if(y,x,z-succ((a)z)) it =1 — ¢



