
MPRI 2�2 TD 1 (with solutions)

Thomas Ehrhard

1) The goal of this exercise is to study the properties of the objects of the Eilenberg Moore category
Rel! of Rel, the relational model of LL.

Let P be an object of Rel! (the category of coalgebras of !_). Remember that P = (P , hP ) where P
is an object of Rel (a set) and hP ∈ Rel(P , !P ) satis�es the following commutations:

P !P

P

hP

P
derP

P !P

!P !!P

hP

hP digP

!hP

1.1) Check that these commutations mean:

� for all a, a′ ∈ P , one has (a, [a′]) ∈ hP i� a = a′

� and for all a ∈ P and m1, . . . ,mk ∈ !P , one has (a,m1 + · · ·+mk) ∈ hP i� there are a1, . . . , ak ∈ P
such that (a, [a1, . . . , ak]) ∈ hP and (ai,mi) ∈ hP for i = 1, . . . , k.

Intuitively, (a, [a1, . . . , ak]) means that a can be decomposed into �a1 + · · · + ak� where the �+� is the
decomposition operation associated with P .

Solution. The �rst commutation means that, for all (a, a′) ∈ P 2, one has a = a′ i� there is m ∈ !P
such that (a,m) ∈ hP and (m, a′) ∈ derP . This latter condition means m = [a′]. Hence (a, [a]) ∈ hP for
all a ∈ P and conversely if (a, [a′]) ∈ hP then a = a′.

Let now a ∈ P and m1, . . . ,mk ∈ !P .

� (a, [m1, . . . ,mk]) ∈ !hP hP means that there are a1, . . . , ak ∈ P such that (a, [a1, . . . , ak]) ∈ hP and
(ai,mi) ∈ hP for i = 1, . . . , k.

� And (a, [m1, . . . ,mk]) ∈ digP hP means that (a,m1 + · · ·+mk) ∈ hP .

Whence the announced statement expressing this commutation.

1.2) Prove that if P is an object of Rel! such that P 6= ∅ then there is at least one element e of P
such that (e, [ ]) ∈ hP . Explain why such an e could be called a �coneutral element of P �.

Solution. We apply the statements above. Let a ∈ P . We know that (a, [a]) ∈ hP and since [a] = [a]+ [ ]
there are a′, e ∈ P such that (a, [a′, e]) ∈ hP , (a

′, [a]) ∈ hP and (e, []) ∈ hP . Therefore we must have
a = a′. So we have shown that there must be e ∈ P such that (e, [ ]) ∈ hP and (a, [a, e]) ∈ hP . This latter
property means that e is coneutral for a (since a can be decomposer in a and e).

If P and Q are objects of Rel!, remember that an f ∈ Rel!(P,Q) (morphism of coalgebras) is an
f ∈ Rel(P ,Q) such that the following diagram commutes

P Q

!P !Q

f

hP hQ

!f

1.3) Check that this commutation means that for all a ∈ P and b1, . . . , bk ∈ Q, the two following
properties are equivalent

� there is b ∈ Q such that (a, b) ∈ f and (b, [b1, . . . , bk]) ∈ hQ

� there are a1, . . . , ak ∈ P such that (a, [a1, . . . , ak]) ∈ hP and (ai, bi) ∈ f for i = 1, . . . , k.

Solution. Soit a ∈ P and b1, . . . , bk ∈ Q.



� (a, [b1, . . . , bk]) ∈ !f hP means that there are a1, . . . , ak ∈ P such that (a, [a1, . . . , ak]) ∈ hP and
(ai, bi) ∈ f for i = 1, . . . , k.

� And (a, [b1, . . . , bk]) ∈ hQ f means that there is b ∈ Q such that (a, b) ∈ f and (b, [b1, . . . , bk]) ∈ hQ.

Whence the announced statement.

1.4) Remember that 1 (the set {∗}) can be equipped with a structure of coalgebra (still denoted 1)
with h1 = {(∗, k[∗]) | k ∈ N}. Prove that the elements of Rel!(1, P ) can be identi�ed with the subsets
x of P such that: for all a1, . . . , ak ∈ P , one has a1, . . . , ak ∈ x i� there exists a ∈ x such that
(a, [a1, . . . , ak]) ∈ hP . We call values of P these subsets of P and denote as val(P ) the set of these values.

Prove that an element of val(P ) is never empty and that val(P ), equipped with inclusion, is a complete
partially ordered set (cpo), that is: the union of a set of values which is directed (with respect to ⊆) is
still a value.

Solution. Let x ⊆ P , considered as an element of Rel(1, P ) (that is, we identify x with {(∗, a) | a ∈ x} ∈
Rel(1, P )). Then applying the previous question to f = x we get that x is a value i� for all a1, . . . , ak ∈ P ,
one has a1, . . . , ak ∈ x i� there is a ∈ x such that (a, [a1, . . . , ak]) ∈ hP .

Let x ∈ val(P ). Applying the characterization above to the case k = 0 we get that there is e ∈ x such
that (e, [ ]) ∈ hP (that is e is a coneutral element).

Let D ⊆ val(P ) be directed and let x = ∪D. Let a1, . . . , ak ∈ P . Assume �rst that there is a ∈ x such
that (a, [a1, . . . , ak]) ∈ hP . Let y ∈ D be such that a ∈ y. Since y ∈ val(P ) we must have a1, . . . , ak ∈ y
and hence a1, . . . , ak ∈ x. Conversely assume that a1, . . . , ak ∈ x. Since D is directed there is y ∈ D
such that a1, . . . , ak ∈ y (we use crucially the fact that the set {a1, . . . , ak} is �nite). Since y ∈ val(P )
there must be a ∈ y such that (a, [a1, . . . , ak]) ∈ hP . Since a ∈ y we have a ∈ x and this ends the proof
that x is a value.

1.5) Remember that if E is an object of Rel then (!E, digE) is an object of Rel! (the free coalgebra
generated by E, that we can identify with an object of the Kleisli category Rel!). Prove that, as a
partially ordered set, val(!E, digE) is isomorphic to P(E).

Solution. First let u ⊆ E, then we have ϕ(u) =Mfin(u) ∈ val(!E, digE) by the very de�nition of digE.
Conversely given x ∈ val(!E, digE) let ψ(x) = {a | [a] ∈ x} ⊆ E. Both functions ϕ and ψ are obviously
monotone.

Given u ⊆ E we have ψ(ϕ(u)) = {a | [a] ∈Mfin(u)} = u.
Conversely let x ∈ val(!E, digE), we prove that ϕ(ψ(x)) = x. So let m = [a1, . . . , ak] ∈ ϕ(ψ(x)), that

is a1, . . . , ak ∈ ψ(x) which means that [ai] ∈ x for i = 1, . . . , k. Since (m, [[a1], . . . , [ak]]) ∈ digE we must
have m ∈ x. Conversely let m = [a1, . . . , ak] ∈ x. Since (m, [[a1], . . . , [ak]]) ∈ digE we must have [ai] ∈ x
for i = 1, . . . , k, that is a1, . . . , ak ∈ ψ(x) so that m ∈ ϕ(ψ(x)).

1.6) Is it always true that if x1, x2 ∈ val(P ) then x1 ∪ x2 ∈ val(P )?

Solution. Of course not. Take for instance P = 1 ⊕ 1 which is a coalgebra (see question 1.9 below).
Then the values of P are {(1, ∗)} and {(2, ∗)} and {(1, ∗), (2, ∗)} is not a value since there is no a such
that (a, [(1, ∗), (2, ∗)]) ∈ h1⊕1 = {((i, ∗), k[(i, ∗)]) | k ∈ N and i ∈ {1, 2}}.

1.7) We have seen (without proof) that Rel! is cartesian. Remember that the product of P1 and
P2 is P1 ⊗ P2, the coalgebra de�ned by P1 ⊗ P2 = P1 ⊗ P2 and hP1⊗P2 is the following composition of
morphisms in Rel:

P1 ⊗ P2 !P1 ⊗ !P2 !(P1 ⊗ P2)
hP1
⊗hP2

µ2
P1,P2

where µ2
E1,E2

∈ Rel(!E1⊗!E2, !(E1 ⊗ E2)) is the lax monoidality natural transformation of !_, remember
that in Rel we have

µ2
E1,E2

= {(([a1, . . . , ak], [b1, . . . , bk]), [(a1, b1), . . . , (ak, bk)]) | k ∈ N and (a1, b1), . . . , (ak, bk) ∈ E1 × E2} .

Concretely, we have simply that ((a1, a2), [(a
1
1, a

1
2), . . . , (a

k
1 , a

k
2)]) ∈ hP1⊗P2

i� (ai, [a
1
i , . . . , a

k
i ]) ∈ hPi

for
i = 1, 2.



Prove that P1⊗P2, equipped with suitable projections, is the cartesian product of P1 and P2 in Rel!.
Prove also that 1 is the terminal object of Rel!. Warning: L! is always cartesian when L is a model of
LL; I'm not asking for a general proof, just for a veri�cation that this is true in Rel!.

1.8) Check directly that the partially ordered sets val(P1 ⊗P2) and val(P1)× val(P2) are isomorphic.

Solution. First let z ∈ val(P1 ⊗ P2) and let x1 =
{
a1 ∈ P1 | ∃a2 ∈ P2 (a1, a2) ∈ z

}
. We de�ne x2 ⊆ P2

similarly. We prove that x1 ∈ val(P1) and that z = x1 × x2.
Let a1

1, . . . , a
1
k ∈ P1. Assume �rst that a1

1, . . . , a
1
k ∈ x1. Let a

2
1, . . . , a

2
k ∈ x2 be such that

(a1
1, a

2
1), . . . , (a

1
k, a

2
k) ∈ z .

Since z ∈ val(P1 ⊗ P2) there is (a1, a2) ∈ z such that

((a1, a2), [(a1
1, a

2
1), . . . , (a

1
k, a

2
k)]) ∈ hP1⊗P2

that is (ai, [ai1, . . . , a
i
k]) ∈ hPi for i = 1, 2 and we have ai ∈ xi, in particular a1 ∈ x1. Conversely

assume that (a1, [a1
1, . . . , a

1
k]) ∈ hP1

and that a1 ∈ x1. Let a2 ∈ x2 be such that (a1, a2) ∈ z. Then we
can �nd a2

1, . . . , a
2
k such that (a2, [a2

1, . . . , a
2
k]) ∈ hP2

: for instance, we can take a2
1 = a2 and a2

i = e2 for
i = 2, . . . , k where e2 is neutral for a2 in P2. Then we have ((a1, a2), [(a1

1, a
2
1), . . . , (a

1
k, a

2
k)]) ∈ hP1⊗P2

and
hence (a1

1, a
2
1), . . . , (a

1
k, a

2
k) ∈ z since z ∈ val(P1⊗P2). It follows that a

1
1, . . . , a

1
k ∈ x1 and we have proven

that x1 ∈ val(P1). Similarly x2 ∈ val(P2). We prove now that z = x1 × x2. The inclusion z ⊆ x1 × x2

is obvious. Let (a1, a2) ∈ x1 × x2. We can �nd b1 ∈ x1 and b2 ∈ x2 such that (a1, b2), (b1, a2) ∈ z so
since z is a value there is (c1, c2) ∈ z such that ((c1, c2), [(a1, b2), (b1, a2)]) ∈ hP1⊗P2

. It follows that
(ci, [ai, bi]) ∈ hPi

for i = 1, 2 and therefore ((c1, c2), [(a1, a2), (b1, b2)]) ∈ hP1⊗P2
and hence (a1, a2) ∈ z.

This shows that there is an order isomorphism between val(P1)×val(P1) and val(P1⊗P2) which maps
(x1, x2) to x1 × x2.

1.9) Remember also that we have de�ned P1 ⊕ P2 = (P1 ⊕ P2, hP1⊕P2) where hP1⊕P2 is the unique
element of Rel(P1 ⊕ P2, !(P1 ⊕ P2)) such that, for i = 1, 2, the morphism hP1⊕P2

πi coincides with the
following composition of morphisms in Rel:

Pi !Pi !(P1 ⊕ P2)
hPi !πi

Describe hP1⊕P2 as simply as possible and prove that, equipped with suitable injections, P1 ⊕ P2 is the
coproduct of P1 and P2 in Rel!.

2) The goal of this exercise is to illustrate the fact that Rel, the relational model of LL, can be
equipped with additional structures of various kinds without modifying the interpretation of proofs and
programs. As an example we shall study the notion of non-uniform coherence space (NUCS). A NUCS
is a triple X = (|X|,˝X ,ˇX) where

� |X| is a set (the web of X)

� and ˝X and ˇX are two symmetric relations on |X| such that ˝X ∩ˇX = ∅. In other words, for
any a, a′ ∈ |X|, one never has a ˝X a′ and a ˇX a′.

So we can consider an ordinary coherence space (in the sense of the �rst part of thise series of lectures)
as a NUCS X which satis�es moreover:

∀a, a′ ∈ |X| (a ˝X a′ or a ˇX a′)⇔ a 6= a′ .

It is then possible to introduce three other natural symmetric relations on the elements of |X|:

� a ≡X a′ if it is not true that a ˝X a′ or a ˇX a′.

� a ¨X a′ if a ˝X a′ or a ≡X a′.

� a ˚X a′ if a ˇX a′ or a ≡X a′.



A clique of a NUCS X is a subset x of |X| such that ∀a, a′ ∈ |X| a ¨X a′, we use Cl(X) for the set of
cliques of X.

We say that a NUCS X satis�es the Boudes' Condition1 (or simply that X is Boudes) if

∀a, a′ ∈ |X| a ≡X a′ ⇒ a = a′ .

We shall show that the class of NUCS's can be turned into a categorical model of LL in such a way that
all the operations on objects coincide with the corresponding operations on objects in Rel. For instance
we shall de�ne !X in such a way that |!X| = !|X| =Mfin(|X|). Moreover, all the �structure morphisms�
of this model will be de�ned exactly as in Rel. For instance, the digging morphism from !X to !!X
will simply be dig|X|. Important: such de�nitions are impossible with ordinary coherence spaces. When
de�ning |!E| in ordinary coherence spaces one needs to restrict to the �nite multisets (or �nite sets) of
elements of |E| which are cliques of E. It is exactly for that reason that, in NUCS's, the relation ≡X is
not required to coincide with equality. Nevertheless, the weaker Boudes' condition will be preserved by
all of our constructions.

2.1) Check that a NUCS can be speci�ed by |X| together with any of the following seven pairs of
relations.

� Two symmetric relations ¨X and ˝X on |X| such that ˝X ⊆ ¨X . Then setting ˇX = (|X| ×
|X|) \¨X , the relation ¨X is the one canonically associated with the NUCS (|X|,˝X ,ˇX).

� Two symmetric relations ˚X and ˇX on |X| such that ˇX ⊆ ˚X . How should we de�ne ˝X in
that case?

� Two symmetric relations ¨X and ≡X on |X| such that ≡X ⊆ ¨X . How should we de�ne ˝X and
ˇX in that case?

� Two symmetric relations ˚X and ≡X on |X| such that ≡X ⊆ ˚X . How should we de�ne ˝X and
ˇX in that case?

� Two symmetric relations ˝X and ≡X on |X| such that ≡X ∩˝X = ∅. How should we de�ne ˇX
in that case?

� Two symmetric relations ˇX and ≡X on |X| such that ≡X ∩ˇX = ∅. How should we de�ne ˝X
in that case?

� Two symmetric relation ¨X and ˚X such that ¨X ∪˚X = |X| × |X|. How should we de�ne ˝X
and ˇX in that case?

Solution. This is a simple logical veri�cation. For instance, if we are given two symmetric relations
˚X and ≡X on |X| such that ≡X ⊆ ˚X , we say that a ˝X b it is not true that a ˚X b and we say that
a ˇX b if a ˚X b and it is not true that a≡Xb.

2.2) Given NUCS's X and Y , we de�ne a NUCS X ( Y by |X ( Y | = |X| × |Y | and

� (a, b) ≡X(Y (a′, b′) if a ≡X a′ and b ≡Y b′

� and (a, b) ˝X(Y (a′, b′) if a ˇX a′ or b ˝Y b′.

Check that we have de�ned in that way a NUCS. Prove that Id|X| = {(a, a) | a ∈ |X|} ∈ Cl(X ( X).
Prove that if X and Y are Boudes then X ( Y is Boudes.

Solution. To check that we have de�ned a NUCS, it su�ces to check that we cannot have at the same
time (a, b) ≡X(Y (a′, b′) and (a, b) ˝X(Y (a′, b′). This is clear because we cannot have a ≡X a′ and
a ˇX a′, and we cannot have b ≡Y b′ and b ˝Y b′.

To check that the identity is a clique, take a, a′ ∈ |X| and observe that if a ≡X a′ then (a, a) ≡X(X

(a′, a′), and if a ˝X a′ or a ˇX a′ then (a, a) ˝X(X (a′, a′).

2.3) Prove that, if s ∈ Cl(X ( Y ) and t ∈ Cl(Y ( Z) then t s ∈ Cl(X ( Z). So we de�ne a category
Nucs by taking the NUCS's as object and by setting Nucs(X,Y ) = Cl(X ( Y ).

1From Pierre Boudes who discovered this condition and the nice properties of these objects.



Solution. First notice that if (a, b), (a′, b′) ∈ |X ( Y | one has (a, b) ¨X(Y (a′, b′) if a ¨X a′ ⇒ b ¨Y b′

and a ˝X a′ ⇒ b ˝Y b′.
Let (a, c), (a′, c′) ∈ t s. There are b, b′ such that (a, b), (a′, b′) ∈ s and (b, c), (b′, c′) ∈ t. If a ¨X a′

then b ¨Y b′ since s is a clique, and hence c ¨Y c′ since t is a clique. Similarly a ˝X a′ ⇒ c ˝Z c′.
2.4) We de�ne X⊥ by |X⊥| = |X|, ˝X⊥ = ˇX and ˇX⊥ = ˝X . Then we set X⊗Y =

(
X ( Y ⊥

)⊥
.

De�ne as simply as possible the NUCS structure of X⊗Y . We set 1 = ({∗} , ∅, ∅) (in other words ∗ ≡1 ∗).
Prove that if X and Y are Boudes then X⊥ and X ⊗ Y is Boudes.

Solution. Assume that X is Boudes. If a ≡X⊥ a′ then a ≡X a′ and hence a = a′ since X is Boudes.
Observe that (a, b) ≡X⊗Y (a′, b′) i� a ≡X a′ and b ≡Y b′ and that (a, b) ¨X⊗Y (a′, b′) i� a ¨X a′

and b ¨Y b′. So assuming that X and Y are Boudes, if (a, b) ≡X⊗Y (a′, b′) then a = a′ and b = b′ and
hence X ⊗ Y is Boudes.

2.5) Given si ∈ Nucs(Xi, Yi) for i = 1, 2, prove that s1 ⊗ s2 ∈ Rel(|X1| ⊗ |X2|, |Y1| ⊗ |Y2|) (de�ned
as in Rel) does actually belong to Nucs(X1 ⊗X2, Y1 ⊗ Y2).

Solution. Use the characterizations above of ¨ in tensor products and linear function spaces.

2.6) Check quickly that Nucs (equipped with the ⊗ de�ned above and 1 as tensor unit, and ⊥ = 1
as dualizing object) is a ∗-autonomous category.

2.7) Prove that the category Nucs is cartesian and cocartesian, with X =
˘
i∈I Xi given by |X| =⋃

i∈I {i} × |Xi|, and

� (i, a) ≡X (i′, a′) if i = i′ and a ≡Xi
a′

� (i, a) ˇX (i′, a′) if i = i′ and a ˇXi
a′.

and the associated operations (projections, tupling of morphisms) de�ned as in Rel.
Prove that if all Xi's are Boudes then

˘
i∈I Xi is Boudes.

2.8) We de�ne !X as follows. We take |!X| =Mfin(|X|) and, given m,m′ ∈ |!X|

� we have m ¨!X m′ if for all a ∈ supp(m) and a′ ∈ supp(m′) one has a ¨X a′

� and m ≡!X m′ if m ¨!X m′ and m = [a1, . . . , ak], m
′ = [a′1, . . . , a

′
k] with ai ≡X a′i for each

i ∈ {1, . . . , k}.

Notice that m ˇ!X m′ i� there is a ∈ supp(m) and a′ ∈ supp(m′) such that a ˇX a′. Remember that
supp(m) = {a ∈ |X| | m(a) 6= 0}.

Let s ∈ Nucs(X,Y ). Prove that !s ∈ Rel(!|X|, !|Y |) actually belongs to Nucs(!X, !Y ).

Solution. Let (m, p), (m′, p′) ∈ !s so that we can write m = [a1, . . . , al], p = [b1, . . . , bl], m
′ = [a′1, . . . , a

′
r]

and p′ = [b′1, . . . , b
′
r] with (ai, bi), (a

′
j , b
′
j) ∈ s for i = 1, . . . , l and j = 1, . . . , r. Assume that m ¨!X m′,

that is, for all i ∈ {1, . . . , l} and j ∈ {1, . . . , r} one has ai ¨X a′j and therefore bi ¨X b′j since s is a
clique. If follows that p ≡!Y p′. Assume moreover that p ≡!Y p′ so that l = r and we can assume that
for all i ∈ {1, . . . , l} we have bi ≡Y b′i. Since ai ≡X a′i, it follows that ai ≡X a′i since s is a clique.

Notice that we have used the following characterization of ¨X(Y : (a, b) ¨X(Y (a′, b′) i�

a ¨X a′ ⇒ (b ¨Y b′ and b ≡Y b′ ⇒ a ≡X a′) .

2.9) Prove that der|X| = {([a], a) | a ∈ |X|} belongs to Nucs(!X,X).

2.10) Prove that digX = {(m1 + · · ·+mk, [m1, . . . ,mk]) | m1, . . . ,mk ∈Mfin(|X|)} is an element of
Nucs(!X, !!X).



Solution. Let (m,M), (m′,M ′) ∈ dig|X| so that M = [m1, . . . ,ml], M
′ = [m′1, . . . ,m

′
r] with m =∑l

i=1mi and m′ =
∑r
j=1m

′
j. Assume that m ¨!X m′. This implies that for all i ∈ {1, . . . , l} and

j ∈ {1, . . . , r} and for all a ∈ supp(m) and a′ ∈ supp(m′j) one has a ¨X a′ and hence mi ¨!X m′j.
Therefore M ¨!!X M ′. Assume moreover that M ≡!!X M ′. So we have l = r and we can assume
that for all i ∈ {1, . . . , n} one has mi ≡!X m′i. So for each i we can write mi = [ai1, . . . , a

i
k(i)] and

m′i = [bi1, . . . , b
i
k(i)] with a

i
j ≡X bij for j = 1, . . . , k(i). Since m =

∑l
i=1mi and m

′ =
∑r
j=1m

′
j we have

m ≡X m′.

2.11) Prove that if X is Boudes then !X is Boudes.

2.12) Let X = 1 ⊕ 1, and let t, f be the two elements of |X| (X is the �type of booleans�). Let
s ∈ Rel(|X| ⊗ |X|, |X|) by s = {((t, f), t), ((f , t), f)}. Prove that s ∈ Nucs(X ⊗ X,X). Let then
t ∈ Nucs(!X,X) be de�ned by the following composition of morphisms in Nucs:

!X !X ⊗ !X X ⊗X X
cX derX⊗derX s

We recall that contraction cX ∈ Nucs(!X, !X⊗!X) is given by cX = {m1 +m2, (m1,m2) | m1,m2 ∈ !|X|}
and dereliction derX ∈ Nucs(!X,X) is given by derX = {([a], a) | a ∈ |X|}.

Prove that ([t, f ], t), ([t, f ], f) ∈ t. So any notion of coherence on !|X| must satisfy [t, f ] ˇ!X [t, f ]
since we have t ˇX f by the de�nition of the NUCS 1⊕ 1 since we must have ([t, f ], t) ¨!X(X ([t, f ], f)
because t is a clique. In particular it is impossible to endow !|X| with a notion of Girard's coherence
space since in such a coherence space we would have [t, f ] ¨!X [t, f ] and hence ([t, f ], t) ˇ!X(X ([t, f ], f).

Solution. We have ((t, f), t) ¨X⊗X(X ((f , t), f) because (t, f) ˇX⊗X (f , t).
We have ([t, f ], ([t], [f ])) ∈ cX , hence ([t, f ], (t, f)) ∈ (derX ⊗ derX) cX so that ([t, f ], t) ∈ s (derX ⊗

derX) cX . Similarly ([f , t], f) ∈ s (derX ⊗ derX) cX , and notice that [t, f ] = [f , t].


