MPRI 2-2 TD 2

Thomas Ehrhard

1) Let E be a coherence space. We use CI(E) for the set of cliques of E.
1.1) Let X = (|E], {x € R'ZEO‘ | Vu' € C(EL) Y e Ta < 1}) Prove that X is a probabilistic coher-
ence space (PCS). We use p(F) to denote this PCS.

1.2) Let E be a coherence space and let z € P(p(E)). Prove that |[z|[, ) = suPycc(pr) X aew a-

1.3) Let ¢t € CI(E — F') (where E and F' are coherence spaces). We defined p(t) € R‘ZEOMF‘ by

o(t)es = {1 if (a,b) € t

0 otherwise.

Prove that p(t) € Pcoh(p(E), p(F)).

1.4) Prove that p(_) defined in the two previous questions is a functor from the category Coh of
coherence spaces and linear morphisms to Pcoh.

Remember that if (F;);c; is a family of coherence spaces, then the coherence space &ie 1 I is defined
as follows:

o |B] = User {1} x | Eil
e and (i,a) cg (j,b)if i=j=acg,b.

And F =@, ,; E; is defined as follows:

i€l
o |[E|= Uie[ {i} x |E;
e and (i,a) ~r (4,b) if i = j and a ~g, b.

1.5) Let (Ej)ier be a family of coherence spaces. Prove that p(&,c; Ei) = &;c; P(£;) (this property
relates the & of ordinary coherence spaces and the & of PCSs).

1.6) Let (E;)ier be a family of coherence spaces. Prove that p(€D
characterization of the @ of PCSs in terms of the norm).

icl Ei) = @ie] p(EZ) (use the
1.7) Let S be the least set of coherence spaces which contains 1 (the coherence space whose web is
{*}) and such that
o if € Sthen B+ c S
e and if (Ej;);cr is a family of elements of S, then &, , E; € S.

Prove that, for any E € S, one has p(E+L) = p(E)".

An embedding from a coherence space E into a coherence space F' is an injective function f : |E| — |F|
such that, for all a,b € |E|, one has a g b < f(a) op f(b). If there is such an embedding we say that
E embeds in F.

1.8) If k € N, let C be the coherence space such that |Cx| = {1,...,k} and where 1 ~ 2,2 ~ 3...,
k ~ 1 are the only coherent pairs (the cycle of length k). Prove that it is not true that P(p(Cs™)) =

P(p(C5))"
1.9) Prove that if C5 embeds in a coherence space E then it is not true that P(p(E+)) = P(p(E))™.

1.10) Generalize the above to all Ci’s with k odd.



2) Let X and Y be PCSs and f : P(X) — P(Y) be a function which is monotone, Scott continuous
and linear in the sense that for all z(1),z(2) € P(X) and A1, A2 € Rxg, if Aiz(1) + A22(2) € P(X) then
fuz(1) + A2(2)) = A f(2(1)) + Ao f(2(2)).

2.1) For each a € | X| let N(a) = sup{\ € R>¢ | e, € P(X)}. Prove that 0 < N(a) < co and that
N(a)eq € P(X).

2.2) We define s € ]RIZ)BMY‘ by

f(N(a)ea)s
N(a)

Given z € P(X) let supp(z) = {a € |X| | ¢, # 0}. Prove that if supp(z) is a finite set then f(z) =s-x.

Sab = c RZO .

2.3) Given z € P(X) and I C |X|let x(I) € R/ be defined by

x(I)a:{xa ifael

0  otherwise.

Prove that z(I) € P(X), that {z(I) | I € Pan(|X])} is directed in P(X) (where Pg,(E) is the set of all
finite subsets of E) and that

x=sup{z(I)|I € Pan(|X])} .

2.4) Prove that s € Pcoh(X,Y) and that Vo € P(X) f(z) =s- .

3) We define Ty, T7 € Pcoh(!(!11 — 1) ®!1, 1), keeping often implicit the monoidality isomorphisms of
Pcoh. Tj is the following composition of morphisms in Pcoh:

w®!l n der

!(!1—01)@!14) 1

and T3 is the following composition of morphisms in Pcoh:

1 -1 @ <5111 -1)e!(11—-1)e1e!l —=51(1-1)ele!(ll -1)o!l

J{der@!l@der@!l

(!1—01)@!1@(!1—01)@!1

ev®ev

1 = 1®1

3.1) Lett € P(!1 — 1) and x € P(1) (that we identify with the unit interval [0, 1]). Prove that

Ty -tV @z) =2
T - (M @2®) = (¢ 2()?

Let p € [0,1]. We assume that p # 0.

3.2) Let S; = cur(T;) € Pcoh(!(!11 —1),!11 — 1) = P(I(11 = 1) — (11 — 1)) for ¢ = 1,2 and let
S = (1 -p)So + pSi1. Explain why S; = cur(T;) € Pcoh(!(!1 — 1),!1 — 1) and show that for any
t € P(!11 —o 1), the morphism s = S - t() € Pcoh(!1,1) satisfies

Ve eP(1) s-2") =1 —p)z+pt zM)?

Remember that the function F : ¢t — S - t() is monotone and Scott continuous, and hence has a least
fixed point.

3.3) Let so be the least fixed point of F, and let f : [0,1] — [0, 1] be the associated function (that is
f(z) = so - z"). Prove that we must have

_1 + a(x)y/1 —4p(1 —p)z

vz e[0,1] flz) >

where Vz € [0,1] a(x) € {—1,1}.



3.4) Prove that f(0) =0 and that Vz €0, 1] a(z) = —1.
3.5) Plot the function f for p = i, p= %, p=3andp=1.

3.6) Since sy € P(!1 —o 1), we can consider sy as an element of Rgo. Using the Taylor expansion of
v'1 — u compute the value of (sg),, for each n € N.

4) 4.1) Let X and Y be PCSs, let ¢ : |X| — |Y| be a bijection and let v : | X| — R>g be such
that Va € | X| v(a) # 0. Let s = mat(p,v) € R‘;}MY' be given by

v(a) if p(a) =0b
0 otherwise.

mat(‘Pa U)a,b = {

We assume that
Yu € R‘;}' u € P(X) © mat(p,v) - ueP(Y).

Prove that mat(y, v) is an iso in the category Pcoh, with inverse mat(¢ !, v') where v/(b) = 1/v(p~1(b)).
An iso of shape mat(p,v) will be called quasi-strong.

We want to prove that any iso of PCS is quasi-strong. So let ¢ € Pcoh(X,Y) be an iso and
t~! € Pcoh(Y, X) be its inverse.
Let a € | X| and let o = sup {\ € R>¢ | Ae, € P(X)}. Remember that o > 0.

4.2) Prove that ae, € P(X) and that ¢ - ae, # 0.
Let b,b’ € |Y| be such that (¢-«ey)p # 0 and (¢ - aey)y # 0. Let 5= (t-ae,)p and 5/ = (L - aey)y -

4.3) Observe that, for the standard order relation on PCSs (z(1) < 2(2) if Va' € | X| (1) < 2(2)4/)
one has e, < t-ae, and deduce that there must exist v < « such that t~' - Be, = ~ve,. Prove that

v #0.

Similarly we have 4/ > 0 such that ¢t=! - ’e;s = 7’e,. Without loss of generality we can assume that
v <7
4.4) Prove that '%713% = (’ep. Deduce that b =b'. As a consequence 3’ = (¢ - ae,)p = 3.

4.5) Prove that ¢ - ae, = Sep.

4.6) Deduce from the above that there is a function ¢ : | X| — |Y| and a function v : | X| — Rx>o\ {0}
such that Va € |X| to, # 0= b= @(a) and t, ,(q) = v(a).

4.7) Prove that ¢ is quasi-strong.



