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Abstrat. CCS an be onsidered as a most natural extension of �nite

state automata in whih interation is made possible thanks to parallel

omposition. We propose here a similar extension for top-down tree au-

tomata. We introdue a parallel omposition whih is parameterized by a

graph at the verties of whih subproesses are loated. Communiation

is allowed only between subproesses related by an edge in this graph.

We de�ne an observational equivalene based on barbs as well as weak

bisimilarity equivalene and prove an adequay theorem relating these

two notions.

Introdution

There is no need to insist on the importane of tree automata [CDG

+
07℄ in

modern theoretial and applied omputer siene: they are pervasive in logi,

veri�ation, rewriting, strutured douments handling, onstraint solving et.

Tree automata are similar to usual �nite word automata with the di�erene that

they reognize trees instead of words (sequenes of letters). Let Σ be a ranked

signature (Σn is the set of funtion symbols of arity n). A Σ-tree is just a term

written with the signature Σ. A top-down tree automaton has a �nite number of

states and transitions labeled by elements of Σ: a transition labeled by f ∈ Σn

has a soure and a sequene of n targets whih all are states of the automaton.

A word automaton an be seen as a tree automaton over a signature Σ suh

that Σn is empty for all n > 1 and Σ0 has a unique distinguished element ∗.
The de�nition of tree reognition by a top-down tree automaton A is quite

simple: a tree f(t1, . . . , tn) is reognized by A at state X means that A has

an f -labeled transition whose soure is X and target is (X1, . . . , Xn) and ti
is reognized by A at state Xi for eah i = 1, . . . , n. There is also a notion of

bottom-up tree automata, that we do not onsider in this work; these two notions

are equivalent in terms of the reognized languages, as long as one onsiders non-

deterministi automata.

Automata feature a dualist vision of omputation with an essential dihotomy

between programs (automata) and data (words, trees), very muh in the spirit
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of Turing mahines (based on the mahine/tape dihotomy). The proess al-

gebra CCS, introdued in the early 1980's by Milner [Mil80℄, enompasses this

restrition, extending �nite automata with interative apabilities. In this frame-

work, �nite automata (labeled with letters a, b, . . . ) an typially interat with

other automata (labeled with dual letters a, b, . . . ), as soon as they are ombined
through a new binary operation: parallel omposition. But muh more general

interation senarii are of ourse possible in CCS. This fundamental invention led

to very fruitful new lines of researh in the theory of onurrent proesses and to

the introdution of new proess algebra, among whih the π-alulus [MPW92℄

is not the less remarkable, with many spetaular appliations to ryptography,

bioinformatis et.

In this paper, we propose a similar �interative losure� of tree automata, a

new version of CCS whih extends tree automata just as ordinary CCS extends

word automata.

The natural idea is of ourse to add a parallel omposition operation on pro-

esses, but this requires some are. Indeed when a pre�xed proess f ·(P1, . . . , Pn)
� after a pre�x f ∈ Σn, it is natural to have n subproesses, and not only one,

as explained in [CQJ08℄ � interats with a dually pre�xed one f · (Q1, . . . , Qn),
we should remove the pre�xes (just as in CCS) and then authorize interation

between the subproess Pi with all proesses whih ould ommuniate with its

father f · (P1, . . . , Pn) as well as with Qi, but not with the Qj 's for j 6= i; nei-
ther should the Pi's be allowed to ommuniate with eah other in the resulting

proess. The same should hold of ourse for the Qi's.

One major motivation for this hoie of design is that top-down tree reog-

nition of tree automata should be implementable in our new CCS for trees, just

as usual word reognition of automata is implementable in ordinary CCS. But

for this purpose we have to preserve arefully the distintion between the vari-

ous sons of tree nodes, thus preventing sons whih are not at similar positions

to interat. Indeed, with this de�nition, we are able to prove the interative

reognition Theorem 1.

This led us to the idea that general parallel omposition should be a graph, at

the verties of whih subproesses (whih are guarded sums) should be loated;

the edges of this graph speify whih interations are allowed. In Setion 1, we

introdue the syntax of this new proess alulus CCTS, restriting ourselves to

a fragment where all sums are guarded; indeed, the orresponding fragment of

CCS is known to be sensible and well behaved.

In Setion 2, we introdue an operational semantis for CCTS by de�ning a

single rewriting rule. This rule generalizes the a/a redution of CCS to the ase

where a an be an n-ary funtion symbol and implements the idea of restrited

ommuniation apabilities explained above.

In order to de�ne an operational equivalene on proesses, we adapt the

onept of weak barbed ongruene [MS92,SW01℄ whih is a natural way of saying

that two proesses behave in the same way, in all possible ontexts. As usual,

this notion is quite di�ult to handle and we introdue therefore a notion of

weak bisimilarity in Setion 3 and prove that two weakly bisimilar proesses are
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weakly barbed ongruent in Setion 4. For this, we de�ne a labeled transition

system on proesses, and the de�nition of its transitions involves ruially the

loations (graph verties). The notion of bisimulation itself has to take these

loations arefully into aount.

In Setion 2, we also argue that our version of CCS is a onservative exten-

sion of both tree automata and ordinary CCS: by this we mean that it admits

restritions whih oinide with these two formalisms. Moreover, we show that

tree reognition an be expressed simply in terms of interation, using only the

rewriting semantis. Though quite simple, this result uses in an essential way

the restrited ommuniation apabilities of CCTS.

These results suggest that CCTS is a sound and interesting extension of CCS.

The most novel feature is that subproesses are loated at the verties of a graph

whose edges indiate whih ommuniations are possible, and the topology of this

graph evolves during redution. When no edge relates two proesses, they an

evolve independently, in a truly onurrent way, whereas the presene of an edge

means that the orresponding proesses will possibly synhronize in the future.

Another interesting property of this approah is the importane of loations

whih suggests onnetions with the work of Castellani [Cas01℄, though loations

are used in a di�erent way: in this latter work, ommuniation is possible when

the involved proesses are loated at the same plae.

This paper extends non trivially [CQJ08℄, where parallel omposition however

was not dealt with. Finding the right way of formalizing this operation and of

de�ning the relevant notions of bisimulation have been a di�ult task. Beyond

the interative losure of tree automata obtained by this new formalism, we also

believe that CCTS provides a new ompositional framework for the study of true

onurreny. Indeed, the n proesses forked by an n-ary labeled pre�x behave in

a truly onurrent way, and suh a truly onurrent situation annot be obtained

in ordinary CCS (onurreny is modelized by interleaving).

One of our further works will deal with possible onnetions between CCTS

and other proess algebras, and in partiular with the possibility of enoding

CCTS within the π-alulus.

1 Syntax of proesses

We use letters P ,Q, . . . to denote vetors (P1, . . . , Pn), (Q1, . . . , Qn) et. Let

Loc be a ountable set whose elements are alled loations denoted with letters

p, q . . . with or without subsripts or supersripts.

1.1 Graphs

Let E and F be disjoint sets and let p ∈ E. We set E [F/p] = (E \ {p}) ∪ F . In
other words, E [F/p] is the set obtained from E by substituting the element p
with the set F .

By a graph we mean a pair G = (|G|,⌢G), where |G| is a �nite subset of

Loc and ⌢G is a symmetri and antire�exive relation on |G|. Let G and H be

graphs with |G| ∩ |H | = ∅ and let p ∈ |G|. We de�ne a graph G [H/p] as follows:
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� |G [H/p]| = |G| [|H |/p]

� and, given q, r ∈ |G [H/p]|, we say that q ⌢G[H/p] r if q ⌢G r or q ⌢H r or

q ⌢G p and r ∈ |H | or r ⌢G p and q ∈ |H |.

1.2 Proesses

We assume to be given a ountable set of proesses variables V , denoted with

letters X,Y, . . . with or without subsripts or supersripts.

LetΣ = (Σn)n∈N be a signature. With any symbol f ∈ Σn, we assoiate a o-

symbol f̄ distint from all the elements of Σn and we set Σ̄n = Σn∪{f̄ | f ∈ Σn}.
In that way, we de�ne an extended signature Σ̄ = (Σ̄n)n∈N. For f ∈ Σn, we set

¯̄f = f .

We de�ne the set of CCTS proesses by indution.

� If X ∈ V then X is a proess.

� If X ∈ V and P is a proess, then µX · P is a proess in whih X is bound.

� If f ∈ Σ̄n and P1, . . . , Pn are proesses, then f · (P1, . . . , Pn) is a proess.

� If G is a �nite Loc-graph (that is |G| ⊆ Loc is �nite) and Φ is a funtion

from |G| to proesses, then G〈Φ〉 is a proess, to be understood as the par-

allel omposition of the proesses Φ(p) for p ∈ |G|, with ommuniation

apabilities spei�ed by G. The proesses Φ(p) are alled the omponents of

G〈Φ〉.

� 0 is a proess and if P and Q are proesses, then P +Q is a proess.

� If P is a proess and I is a �nite subset of Σ, then P \ I is a proess.

The notion of free and bound variable does not deserve further omments, µ
being of ourse a binder.

1.3 α-onversions of loations.

Two proesses P and P ′
suh that there exists a bijetion ϕ : |P | → |P ′| whih

is a graph isomorphism (that is p ⌢P q ⇔ ϕ(p) ⌢P ′ ϕ(q)) and P ′(ϕ(p)) = P (p)
for all p ∈ |P | are said to be externally α-equivalent. General α-equivalene is

de�ned by extending this relation to sub-proessses in the obvious way.

When we onsider several proesses P1, . . . , Pn at the same time, we always

assume that the webs |P1|, . . . , |Pn| are pairwise disjoint.

1.4 Substitution.

If R and P are proesses and X ∈ V , then the proess R [P/X ] is de�ned in the

obvious way, substituting eah ourrene of X in R with P . Of ourse, one has
as usual to perform α-onversion when needed during this proess.



5

1.5 Canonial proesses

We de�ne now the notion of anonial proess : it is a proess where all sums are

guarded. More preisely, we de�ne by mutual indution three lasses of objets:

� anonial proesses,

� anonial guarded sum

� and reursive anonial guarded sum.

These are partiular proesses on whih we'll fouss our attention in the sequel.

� If X ∈ V then X is a anonial proess.

� If G is a �nite Loc-graph and Φ is a funtion from |G| to reursive anonial

guarded sums, then G〈Φ〉 is a anonial proess.

� If P is a anonial proess and I is a �nite subset of Σ, then P \ I is a

anonial proess.

� A anonial guarded sum is either 0 or a proess of the shape f ·(P1, . . . , Pn)+
S where f ∈ Σ̄n, S is a anonial guarded sum and P1, . . . , Pn are anonial

proesses.

� A reursive anonial guarded sum is either a anonial guarded sum or a

proess of shape µX · S where S is a reursive anonial guarded sum.

For instane, the proesses G〈Φ〉+H〈Ψ〉 and µX ·X are not anonial.

Lemma 1. Let R and P be anonial proesses. Then R [P/X ] is a anonial

proess. If R is a reursive anonial guarded sum, then so is R [P/X ]. If R is a

anonial guarded sum, then so is R [P/X ].

Proof. Easy indution on R. 2

With any reursive anonial guarded sum S, we assoiate a anonial guarded
sum cs(S) as follows:

cs(S) =

{
S if S is a anonial guarded sum

cs(T [S/X ]) if S = µX · T .

Using Lemma 1, one sees easily that this funtion is well de�ned and total.

All the proesses we onsider in this paper are anonial. By Lemma 1, pro-

esses are losed by substitution.

We denote with Proc the set of all anonial proesses. If P = G〈Φ〉 is a

anonial proess, we use |P | = |G|. Also, for p ∈ |P |, we often write P (p)
instead of Φ(p), and we denote as ⌢P the graph relation of G.

The empty proess (the only P suh that |P | = ∅) is denoted as ε.
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1.6 More notations

Given two graphs G and H with disjoint webs, and a subset D of |G| × |H |
we de�ne a graph K = G ⊕D H by |K| = |G| ∪ |H | and, given p, q ∈ |K|, we
stipulate that p ⌢K q if p ⌢G q or p ⌢H q or (p, q) ∈ D or (q, p) ∈ D. If D = ∅
then we set G⊕H = G⊕D H .

Given proesses P = G〈Φ〉 and Q = H〈Ψ〉 and a relation D ⊆ |P | × |Q|,
one de�nes the proess P ⊕D Q as (G ⊕D H)〈Φ ∪ Ψ〉. When D is empty we

simply denote this sum as P ⊕Q, and more generally, we denote as ⊕P the sum

P1 ⊕ · · · ⊕ Pn of the proesses P = (P1, . . . , Pn) (remember that we impliitly

assume that the sets |Pi| are pairwise disjoint). When D = |P |× |Q|, the proess
P ⊕D Q will be denoted as P | Q and alled the full parallel omposition of P
and Q. It orresponds to the standard parallel omposition of proess algebras,

where all proesses an freely interat with eah other.

With the same notations as above, if p ∈ |G|, we denote as P [Q/p] the proess
G [H/p] 〈Φ′〉 where Φ′(p′) = Φ(p′) if p′ /∈ |H | and Φ′(p′) = Ψ(p′) if p′ ∈ |H |.

2 Operational semantis

2.1 Internal redution

Let P and P ′
be proesses. We say that P redues to P ′

if there are p, q ∈ |P |
suh that p ⌢P q, cs(P (p)) = f ·(P1, . . . , Pn)+S, cs(P (q)) = f ·(Q1, . . . , Qn)+T
and P ′

is de�ned as follows

3

: |P ′| = (|P | \ {p, q}) ∪
⋃n

i=1 |Pi| ∪
⋃n

i=1 |Qi| and
⌢P ′

is the least symmetri relation on |P ′| suh that, for any, p′, q′ ∈ |P ′|, one
has p′ ⌢P ′ q′ in one of the following ases:

1. p′ ⌢Pi
q′ or p′ ⌢Qi

q′ for some i = 1, . . . , n
2. p′ ∈ |Pi| and q′ ∈ |Qi| for some i = 1, . . . , n (the same i for both)

3. {p′, q′} 6⊆
⋃n

i=1 |Pi| ∪
⋃n

i=1 |Qi| and λ1(p
′) ⌢P λ1(q

′)

where λ1 : |P ′| → |P | is the residual funtion de�ned by

λ1(p
′) =





p if p′ ∈
⋃n

i=1 |Pi|

q if p′ ∈
⋃n

i=1 |Qi|

p′ otherwise.

Observe that λ1 is not a surjetion when n = 0.
We �nish the de�nition of P ′

by saying that P ′(p′) = Pi(p
′) if p′ ∈ |Pi|,

P ′(p′) = Qi(p
′) if p′ ∈ |Qi| (for i = 1, . . . , n) and P ′(p′) = P (p′) if p′ /∈

⋃n
i=1 |Pi|∪⋃n

i=1 |Qi|.
This ruial de�nition learly deserves some explainations. The proess P to

be redued has two subproesses loated at p and q, with dual pre�xes: f · P
and f ·Q. The fat that p and q are onneted in P (p ⌢P q) means that these

3

We heavily use the impliit hypothesis that, when several proesses P1, . . . , Pn are

onsidered at the same time, the sets |Pi| are pairwise disjoint.
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proesses an interat. This interation onsists in suppressing both pre�xes and

in replaing the vertie p of the graph G of P by the graph G1⊕· · ·⊕Gn (where

Gi is the graph of Pi) and the vertie q by the graph H1 ⊕ · · · ⊕Hn (where Hi

is the graph of Qi) within the graph G of P . The onnetion between p and q
in P is inherited by the verties of Gi and Hi in P ′

, but a proess loated on

Gi (one of the omponents of Pi) annot ommuniate with a proess loated

on Hj with j 6= i. The onnetions between p and other verties of P , distint
from q, are also inherited by the verties of all Gi's and similarly for the Hi's.

We denote with → the internal redution relation and with →∗
its re�exive

and transitive losure.

Example 1. Let a ∈ Σ0 and f ∈ Σ2. Consider the proess P = a | a | f · (a, a) |
f · (a, a) (we write simply �a� instead of a · ()). In other words, the graph of P is

a omplete graph with 4 verties, say 1, 2, 3, 4, and we have P (1) = a, P (2) = a,
P (3) = f · (a, a) and P (4) = f · (a, a). Sine 3 and 4 are onneted in that graph

and the orresponding pre�xes f and f are dual, we an redue P to a proess

P ′
suh that |P ′| = {1, 2, 5, 6, 7, 8} (remember that we work up to α-equivalene,

so the names of loations are irrelevant) with P ′(1) = a, P ′(2) = a, P ′(5) = a,
P ′(6) = a, P ′(7) = a, and P ′(8) = a, and the edges of P ′

are all {i, j} with

i ∈ {1, 2} and j 6= i, {5, 7} and {6, 8}. So, in P ′
, the interation of a loated at 5

with a loated at 8 is not possible, but of ourse a loated at 5 an interat with

a loated at 2. Performing that redution, we get P ′′
with |P ′′| = {1, 6, 7, 8} and

the edges of P ′′
are all {1, j} with j 6= 1 and {6, 8}, with P ′′(1) = a, P ′′(6) = a,

P ′′(7) = a and P ′′(8) = a. In P ′′
, the only possible redutions are between a

loated at 1 and a loated at 6 or 8. Both lead to the proess a ⊕ a where no

redution is possible.

2.2 Top-down tree automata as a partiular ase

A top-down tree automaton is a pair A = (Q, T ) where Q is a �nite subset of V ,
whose elements are alled states, and T is a �nite set of triples (X, f, (X1, . . . , Xn))
where f ∈ Σn and X1, . . . , Xn ∈ Q and whose elements are alled transitions.

The language reognized by A at state X ∈ Q, denoted as L(A,X), is the least set
of Σ-trees suh that f(t1, . . . , tn) ∈ L(A,X) as soon as there are X1, . . . , Xn ∈ Q
suh that (X, f, (X1, . . . , Xn)) ∈ T and ti ∈ L(A,Xi) for i = 1, . . . , n.

We assoiate a proess 〈A〉X with any pair (A,X) where A = (Q, T ) is a

tree automaton and X ∈ Q. More generally we de�ne 〈A〉XX where X is a �nite

subset of V (intuitively, X is the set of already de�ned proesses), and then we

set 〈A〉X = 〈A〉∅X .

� If X /∈ X , then 〈A〉XX = µX · S where S is the sum of all pre�xed proesses

f · (〈A〉
X∪{X}
X1

, . . . , 〈A〉
X∪{X}
Xn

) where (X, f, (X1, . . . , Xn)) ∈ T ,
� and if X ∈ X , then 〈A〉XX = X .

This indutive de�nition is well founded beause the parameter X inreases

stritly at eah indutive step, and remains inluded in Q. Moreover, the invari-

ant that all the free variables of 〈A〉XX belong to X is preserved by the indutive

step, and hene 〈A〉X is losed.
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Lemma 2. With the notations above, cs(〈A〉Y ) is the sum of all pre�xed pro-

esses f · (〈A〉Y1
, . . . , 〈A〉Yn

) where (Y, f, (Y1, . . . , Yn)) ∈ T .

Proof. More generally, cs(〈A〉
{X1,...,Xp}
X

[
〈A〉X1

/X1, . . . , 〈A〉Xp
/Xp

]
) is equal to

the sum above, for any subset {X1, . . . , Xp} of Q (with the Xi's pairwise dis-

tint). The proof is a simple indution on q− p, where q is the ardinality of Q.

2

We represent dually any Σ-tree t = f(t1, . . . , tn) as a proess t by setting

t = f · (t1, . . . , tn). The following results expresses that our proess algebra, to-

gether with its internal redution, is a onservative extension of tree automata by

showing that tree reognition boils down to a (very) partiular ase of interation

between proesses.

Theorem 1. Let A = (Q, T ) be a tree automaton, let X ∈ Q and let t be a

Σ-tree. Then t ∈ L(A,X) i� (〈A〉X | t) →∗ ε.

Proof. This is straightforward, one observed that, if t = f(t1, . . . , tn) and if

(X, f, (X1, . . . , Xn)) ∈ T , one has 〈A〉X | t → (〈A〉X1
| t1) ⊕ · · · ⊕ (〈A〉Xn

| tn),
thanks to Lemma 2. Observe then that (〈A〉X1

| t1)⊕ · · · ⊕ (〈A〉Xn
| tn) redues

to ε i� eah proess 〈A〉Xi
| ti redues to ε sine these proesses annot interat

with eah other. If T has no element of the shape (X, f, (X1, . . . , Xn)), then the

proess 〈A〉X | t does not redue. 2

2.3 CCS for words as a partiular ase

We assume here that Σn = ∅ for all n > 1 and that Σ0 = {∗}. Then a Σ-tree

is the same thing as a Σ1-word, written a1 . . . ap∗. We restrit our attention

to proesses in whih all the graphs parameterizing parallel ompositions are

omplete, so that any proess is of the shape S1 | · · · | Sp where eah Si is a

reursive anonial guarded sum µX · (a1 · P1 + · · · + am · Pm): this restrition
of our proess algebra oinides with guarded CCS. Observe also that, if P is a

proess in this restrited setting (arities ≤ 1 and all parallel ompositions are

omplete graphs), and if P → P ′
, then P ′

belongs to the same restrition and

the redution P → P ′
is a standard τ -redution of CCS. In that way we see that

our proess algebra is also a onservative extension of ordinary guarded CCS.

There is a slight, innouous, variation in this way of representing ordinary

CCS within CCTS. It onsists in taking Σn = ∅ for n 6= 1 and Σ1 as word

alphabet. Then one an use ε (the empty proess) instead of the ∗ symbol of

arity 0. For simpliity, it is this oding that we'll use in Setion 5. The drawbak

of this representation is that it does not sale down to automata onsidered as

partiular proesses as explained in Setion 2.2.

2.4 Weak barbed bisimilarity

Let f ∈ Σ̄ and let P be a proess. We say that f is a barb of P , and write P ↓f ,
if there exists p ∈ |P | suh that cs(P (p)) is of shape f · (P1, . . . , Pn) + S.
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A relation B ⊆ Proc
2
is a weak barbed bisimulation if it is symmetri and

satis�es the following onditions. For any P,Q ∈ Proc suh that P B Q,

� for any P ′ ∈ Proc, if P →∗ P ′
, then there existsQ′ ∈ Proc suh thatQ →∗ Q′

and P ′ B Q′
(one says that B is a weak redution bisimulation);

� for any P ′ ∈ Proc and any f ∈ Σ̄, if P →∗ P ′
and P ′ ↓f , then there exists

Q′ ∈ Proc suh that Q →∗ Q′
and Q′ ↓f (one says that B is weak barb

preserving ; observe that one does not require that P ′ B Q′
).

The diagonal relation {(P, P ) | P ∈ Proc} is a weak barbed bisimulation, and

if B and B′
are weak barbed bisimulations, then so are B′ ◦ B and B ∪ B′

. We

say that P,Q ∈ Proc are weakly barbed bisimilar if there exists a weak barbed

bisimulation B suh that P B Q. Notation: P
•
≈ Q.

Lemma 3. Weak barbed bisimilarity is an equivalene relation.

Proof. Straightforward, using the above losure properties of weak barbed bisim-

ulations. 2

2.5 Weak barbed ongruene

Let Y be a variable; a Y -ontext is a proess R whih ontains exatly one free

ourrene of Y , whih does not our in a subproess of R of the shape µX ·R′

(in other words, Y must really our only one in R). If R and S are Y -ontexts,

so is R [S/Y ].
A relation R ⊆ Proc

2
is a ongruene if it is re�exive and suh that, for any

Y -ontext R, one has P R Q ⇒ R [P/Y ] R R [Q/Y ].

Proposition 1. For any re�exive relation R ⊆ Proc
2
, there exists a largest

ongruene R ontained in R. This relation is haraterized by: P R Q i� for

any Y -ontext R one has R [P/Y ] R R [Q/Y ]. If R is an equivalene relation,

so is R.

Proof. The �rst statement results from the fat that ongruenes are losed

under arbitrary unions and that R ontains the identity relation whih is a

ongruene. As to the seond statement, let E be the relation de�ned by P E Q
i� for any Y -ontext R one has R [P/Y ] R R [Q/Y ]. Then E is a ongruene

whih is ontained in R (sine we an take R = Y ) and hene E ⊆ R. Conversely,

assume that P R Q and let R be a Y -ontext. Sine R is a ongruene, we have

R [P/Y ] R R [Q/Y ] and hene R [P/Y ] R R [Q/Y ] sine R ⊆ R by de�nition

of R and hene P E Q. The last statement results from the seond one sine E
is an equivalene relation when R is an equivalene relation. 2

The largest ongruene ontained in

•
≈ is denoted as

∼= and is alled weak

barbed ongruene: it is our main notion of operational equivalene on proesses.

It is an equivalene relation by the proposition above and by Lemma 3. Moreover,

we have

P ∼= Q i� for any Y -ontext R, we have R [P/Y ]
•
≈ R [Q/Y ] .
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3 Loalized transition systems of proesses

Just as in ordinary CCS, it is very di�ult to prove that two proesses are weak

barbed ongruent, beause of the universal quanti�ation on ontexts used in the

de�nition of this equivalene relation. In order to prove weak barbed ongruene

of proesses, one needs therefore more onvenient tools.

The most anonial of these tools is weak bisimilarity, an equivalene relation

whih expresses that two proesses manifest the same ommuniation apabilities

along their internal redutions. This equivalene relation is de�ned as the union

of all weak bisimulations.

The main feature of weak bisimilarity is that it is a ongruene: this fat is

the main ingredient in the proof that two weakly bisimilar proesses are weakly

barbed ongruent. To prove this result, one needs to assoiate with eah weak

bisimulation R a new weak bisimulation R′
alled its parallel extension. In or-

dinary CCS, the de�nition is as follows: one says that U R′ V if U = P | S and

V = Q | S with P R Q and S is a proess. The main step is of ourse to show

that R′
is a weak bisimulation.

In CCTS however, we annot simply speak of �the parallel omposition� U
of P and S, we have to speify a relation C ⊆ |P | × |S|, and then we an

set U = P ⊕C S. Similarly we have to say that V = Q ⊕D S for some relation

D ⊆ |Q|×|S|, and that P R Q. Not surprisingly, we shall see that these relations
C and D must ful�ll some requirement.

Moreover our bisimulations annot be simple relations between proesses, be-

ause, when two proesses P = G〈Φ〉 and Q = H〈Ψ〉 are bisimilar, we have to say

whih subproesse Φ(p) of P should be in bisimulation with whih subproesses

Ψ(q) of Q.

For instane, if P = f · (P1, P2) and Q = f · (Q1, Q2) (with |P | = |Q| = {1})
are related by a bisimulation R, then (after performing the ation f on both

sides), the proesses P1⊕ P2 and Q1⊕Q2 (with |P1 ⊕ P2| = |Q1 ⊕ Q2| = {1, 2},
and Pi and Qi loated at i for i = 1, 2) should be related by R. But this

annot be ahieved by saying that P1 R Q2 for instane: if P1 manifests some

ommuniation apability a, we should insist that the same apability a be

manifested by Q1.

A onvenient way to enfore this disipline is to say that a bisimulation is

a set of triples (P,E,Q) where P and Q are proesses and E ⊆ |P | × |Q|. In
the example above, we start with (P, {(1, 1)}, Q) ∈ R (where 1 is the loation

of f · (P1, P2) in P and similarly for Q), and then, after having performed the

ation f on both sides, we arrive to (P1 ⊕ Q1, {(1, 1), (2, 2)}, P2 ⊕ Q2) ∈ R.

Let us ome bak to the onept of parallel extension of a bisimulation R.

The bisimulation R is a set of triples (P,E,Q) as explained above. We shall say

that (U, F, V ) ∈ R′
when we an �nd a proess S and two relations C ⊆ |P |×|S|

and D ⊆ |Q| × |S| with U = P ⊕C S and V = Q⊕D S. We require moreover the

existene of a relation E suh that (P,E,Q) ∈ R and F = E ∪ Id|S| (in other

words, (u, v) ∈ F if (u, v) ∈ E, or u = v ∈ |S|), and we also require C and D to

be �equivalent up to E�, meaning that, when (p, q) ∈ E, we have (p, s) ∈ C i�
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(q, s) ∈ D, whih seems to be the orret assumption in the proof that R′
is a

bisimulation.

Bisimulations are usually de�ned in terms of a transition system, a very gen-

eral and �exible onept whih is essential in the study of onurreny. Due to

our more omplex de�nition of bisimulations involving triples (P,E,Q) instead
of pairs (P,Q), it is not lear anymore how to use transition systems in our

framework; at least should we generalize them so as to take loalization of sub-

proesses into aount. An abstrat notion of loalized transition system might

be of general interest, but we prefer to fous here on CCTS and to de�ne one

partiular loalized transition system of proesses. Its states are proesses. As

usual in CCS-like formalisms, there are τ -transitions between proesses P
τ

−→
ρ

P ′

orresponding to one internal redution.

The additional information ρ is a funtion |P ′| → |P | whih allows to trae

the �loative history� of the redution. Labeled transition have shape P
p:f ·(L)
−→
λ1

P ′

where p ∈ |P |, L = (L1, . . . , Ln) with Li ⊆ |P ′| and λ1 : |P ′| → |P | are again
informations whih allow to keep trak of the loative history of the redution.

These additional informations about loations are su�ient to de�ne an adequate

notion of bisimulation.

3.1 Loalized transitions

We de�ne now this loalized transition system

4

.

Let P and P ′
be proesses. We write P

p:f ·(L)
−→
λ1

P ′
if p ∈ |P |, cs(P (p)) =

f · (P1, . . . , Pn) + S with P ′ = P [⊕P /p], L1 = |P1|,. . . , Ln = |Pn| and λ1 :
|P ′| → |P | is the residual funtion de�ned by λ1(p

′) = p if p′ ∈
⋃n

i=1 Li and

λ1(p
′) = p′ otherwise5.

We write P
τ

−→
λ1

P ′
if P → P ′

in the sense of 2.1 and, with the notations

of that setion, λ1 : |P ′| → |P | is the residual funtion de�ned by λ1(p
′) = p if

p′ ∈
⋃

i |Pi|, λ1(p
′) = q if p′ ∈

⋃
i |Qi|, and λ1(p

′) = p′ otherwise.

We de�ne the re�exive-transitive losure

τ∗
−→
λ

as follows. We say that P
τ∗
−→
λ

P ′

if there are n ≥ 1, proesses P1, . . . , Pn and funtions λ1, . . . , λn−1 suh that

P = P1, Pn = P ′
and Pi

τ
−→
λi

Pi+1 for i = 1, . . . , n− 1, and λ = λ1 ◦ · · · ◦ λn−1.

We write P
p:f ·(L)
=⇒

λ,λ1,λ′

P ′
if there are proesses P1 and P ′

1 suh that P
τ∗
−→
λ

P1
p:f ·(L)
−→
λ1

P ′
1

τ∗
−→
λ′

P ′
.

4

Again, we don't try to provide a general de�nition of this onept; this ould be the

objet of further work

5

There are redundanies in these notations, for instane λ1 is ompletely determined

by the data p, L. This redundany will be useful in the sequel.
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3.2 Loalized weak bisimilarity

We introdue now our notion of weak bisimilarity whih will be shown to imply

weak barbed ongruene of proesses. The de�nition is oalgebrai and is based

on a onept of bisimulation whih, due to the importane of the graph struture

in the operational semantis of CCTS, strongly uses loations.

A loalized relation (on proesses) is a set R ⊆ Proc× P(Loc2) × Proc suh

that, if (P,E,Q) ∈ R then E ⊆ |P | × |Q|. Suh a relation R is symmetri if

(P,E,Q) ∈ R ⇒ (Q, tE,P ) ∈ R where

tE = {(q, p) | (p, q) ∈ E}.
A (loalized) weak bisimulation is a symmetri loalized relation suh that

� if (P,E,Q) ∈ R and P
τ

−→
λ1

P ′
then Q

τ∗
−→
ρ

Q′
with (P ′, E′, Q′) ∈ R for some

E′ ⊆ |P ′|× |Q′| suh that, if (p′, q′) ∈ E′
then (λ1(p

′), ρ(q′)) ∈ E (this latter

ondition will be alled ondition on residuals)

� if (P,E,Q) ∈ R and P
p:f ·(L)
−→
λ1

P ′
then Q

q:f ·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (p, ρ(q)) ∈ E and

(P ′, E′, Q′) ∈ R for some E′ ⊆ |P ′| × |Q′| suh that if (p′, q′) ∈ E′
then

(λ1(p
′), ρρ1ρ

′(q′)) ∈ E, and, moreover, if n ≥ 2, then either (p′, ρ′(q′)) ∈⋃n
i=1(Li×Mi) or p

′ /∈
⋃n

i=1 Li and ρ′(q′) /∈
⋃n

i=1 Mi (this ondition is alled

ondition on residuals).

This latter dihotomy, aording to whether n = 1 or n ≥ 2 (where n is the

arity of f) is essential in order to obtain three e�ets whih seem impossible to

oniliate otherwise:

� weak bisimilarity must be transitive

� it must imply weak barbed ongruene

� and it should be an extension of the standard weak bisimilarity of CCS

(onsidering CCS as a subsystem of CCTS as explained in Setion 2.3).

Lemma 4. Let R be a weak bisimulation. If (P,E,Q) ∈ R and P
τ∗
−→
λ

P ′
, then

Q
τ∗
−→
ρ

Q′
with (P ′, E′, Q′) ∈ R for some E′ ⊆ |P ′|×|Q′| suh that if (p′, q′) ∈ E′

then (λ′(p′), ρ′(q′)) ∈ E.

Proof. Simple indution on the length of the sequene of redutions P
τ∗
−→
λ

P ′
.

2

Lemma 5. If P
τ∗
−→
λ

P1, P1
p:f ·(L)
=⇒

λ1,λ2,λ′

1

P ′
1 and P ′

1
τ∗
−→
λ′

P ′
then P

p:f ·(L)
=⇒

λλ1,λ2,λ′

1
λ′

P ′
.

Proof. Results immediately from the de�nitions. 2

Now we provide a haraterization of weak bisimulation whih is more sym-

metri than the de�nition above of these relations.

Lemma 6. A symmetri loalized relation R ⊆ Proc×P(Loc2)×Proc is a weak

bisimulation i� the following properties hold.
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� If (P,E,Q) ∈ R and P
p:f ·(L)
=⇒

λ,λ1,λ′

P ′
, then Q

q:f ·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (λ(p), ρ(q)) ∈ E

and (P ′, E′, Q′) ∈ R for some E′ ⊆ |P ′| × |Q′| suh that if (p′, q′) ∈ E′
then

(λλ1λ
′(p′), ρρ1ρ

′(q′)) ∈ E) and, moreover, if n ≥ 2, either (λ′(p′), ρ′(q′)) ∈⋃n
i=1(Li ×Mi) or λ′(p′) /∈

⋃n
i=1 Li and ρ′(q′) /∈

⋃n
i=1 Mi.

� If (P,E,Q) ∈ R and P
τ∗
−→
λ

P ′
, then Q

τ∗
−→
ρ

Q′
with (P ′, E′, Q′) ∈ R for

some E′ ⊆ |P ′| × |Q′| suh that if (p′, q′) ∈ E′
then (λ(p′), ρ(q′)) ∈ E.

Proof. The stated property are obviously su�ient, we prove that the �rst one is

neessary (neessity of the seond one is Lemma 4). Assume that (P,E,Q) ∈ R

and P
p:f ·(L)
=⇒

λ,λ1,λ′

P ′
, that is P

τ∗
−→
λ

P1
p:f ·(L)
−→
λ1

P ′
1

τ∗
−→
λ′

P ′
. By Lemma 4 one has Q

τ∗
−→
ρ

Q1 with (P1, E1, Q1) ∈ R where E1 is suh that (p1, q1) ∈ E1 ⇒ (λ(p1), ρ(q1)) ∈
E.

Sine P1
p:f ·(L)
−→
λ1

P ′
1 and (P1, E1, Q1) ∈ R, one has Q1

q:f ·(M)
=⇒

ρ1,ρ2,ρ′

1

Q′
1 with

(p, ρ1(q)) ∈ E1 and (P ′
1, E

′
1, Q

′
1) ∈ R where E′

1 is suh that if (p′1, q
′
1) ∈ E′

1 then

(λ1(p
′
1), ρ1ρ2ρ

′
1(q

′
1)) ∈ E1 and, if n ≥ 2, then either (p′1, ρ

′
1(q

′
1)) ∈

⋃n
i=1(Li×Mi),

or p′1 /∈
⋃n

i=1 Li and ρ′1(q
′
1) /∈

⋃n
i=1 Mi. Sine P ′

1
τ∗
−→
λ′

P ′
and (P ′

1, E
′
1, Q

′
1) ∈ R,

we an apply Lemma 4 again whih shows that Q′
1

τ∗
−→
ρ′

Q′
with (P ′, E′, Q′) ∈ R

where E′
is suh that (p′, q′) ∈ E′ ⇒ (λ′(p′), ρ′(q′)) ∈ E′

1. By Lemma 5, we have

Q
q:f ·(M)
=⇒

ρρ1,ρ2,ρ′

1
ρ′

Q′
and remember that (P ′, E′, Q′) ∈ R. We have (p, ρ1(q)) ∈ E1

and hene (λ(p), ρρ1(q)) ∈ E by de�nition of E1. Last, the ondition on residuals

obviously holds. 2

Lemma 7. Let I be the loalized relation de�ned by: (P,E,Q) ∈ I if P = Q
and E = Id|P |. Then I is a weak bisimulation.

Proof. Straightforward. 2

If R and R′
are weak bisimulations, so is R ∪ R′

: this results immediately

from the de�nition. We say that P and Q are weakly bisimilar (notation P ≈
Q) if there exists a weak bisimulation R and a set E ⊆ |P | × |Q| suh that

(P,E,Q) ∈ R.

Let R and S be loalized relations. We de�ne a loalized relation S ◦ R as

follows: (P,H,R) ∈ S ◦ R if H ⊆ |P | × |R| and there exist Q, E and F suh

that (P,E,Q) ∈ R, (Q,F,R) ∈ S and F ◦ E ⊆ H .

Lemma 8. If R and S are weak bisimulations, then so is S ◦ R.

Proof. First, observe that S ◦ R is symmetri.

We use the haraterization of weak bisimulations given by Lemma 6. Let

(P,H,R) ∈ S ◦ R. Let Q, E and F be suh that (P,E,Q) ∈ R, (Q,F,R) ∈ S
and F ◦ E ⊆ H .
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� Assume �rst that P
p:f ·(L)
=⇒

λ,λ1,λ′

P ′
. Then we have Q

q:f ·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (λ(p), ρ(q)) ∈

E and (P ′, E′, Q′) ∈ R with E′
suh that if (p′, q′) ∈ E′

then (λλ1λ
′(p′), ρρ1ρ

′(q′)) ∈
E and, if n ≥ 2 then (λ′(p′), ρ′(q′)) ∈

⋃
i(Li×Mi) or λ

′(p′) /∈
⋃

i Li and ρ′(q′) /∈
⋃

i Mi. Therefore we have R
r:f ·(N)
=⇒

σ,σ1,σ′

R′
with (ρ(q), σ(r)) ∈ F and (Q′, F ′, R′) ∈ S

with F ′
suh that if (q′, r′) ∈ F ′

then (ρρ1ρ
′(q′), σσ1σ

′(r′)) ∈ F ) and, if n ≥ 2
then (ρ′(q′), σ′(r′)) ∈

⋃
i(Mi ×Ni) or ρ

′(q′) /∈
⋃

iMi and σ′(r′) /∈
⋃

iNi. So we

have (λ(p), σ(r)) ∈ F ◦ E ⊆ H . Let

H ′ = {(p′, r′) ∈ |P ′| × |R′| | (λλ1λ
′(p′), σσ1σ

′(r′)) ∈ H and if n ≥ 2 then

(λ′(p′), σ′(r′)) ∈
n⋃

i=1

(Li ×Ni) or λ
′(p′) /∈

n⋃

i=1

Li and σ′(r′) /∈
n⋃

i=1

Ni}

By de�nition of H ′
, the triple (P ′, H ′, R′) satis�es the onditions on resid-

uals, and we are left with proving that F ′ ◦ E′ ⊆ H ′
whih will show that

(P ′, H ′, R′) ∈ S ◦ R. Let (p′, r′) ∈ F ′ ◦ E′
, there exists q′ suh that (p′, q′) ∈ E′

and (q′, r′) ∈ F ′
.

We know that (λλ1λ
′(p′), ρρ1ρ

′(q′)) ∈ E and (ρρ1ρ
′(q′), σσ1σ

′(r)) ∈ F and

therefore (λλ1λ
′(p′), σσ1σ

′(r)) ∈ F ◦ E ⊆ H . So assume now that n ≥ 2. We

must prove that if λ′(p′) ∈
⋃

i=1n Li or σ
′(r′) ∈

⋃n
i=1 Ni then (λ′(p′), σ′(r′)) ∈

Li × Ni for some i. Without loss of generality, we an assume that λ′(p′) ∈⋃
i=1n Li (beause the situation is symmetri). Then by the ondition on residu-

als for E′
we know that (λ′(p′), ρ′(q′)) ∈ Lj×Mj for some j ∈ {1, . . . , n}, beause

n ≥ 2. Therefore (ρ′(q′), σ′(r′)) ∈ Mi×Ni by the onditions on residuals satis�ed

by F ′
. It follows that (λ′(p′), σ′(r′)) ∈ Li ×Ni as required.

� Assume now that P
τ∗
−→
λ

P ′
. Sine (P,E,Q) ∈ R we have Q

τ∗
−→
ρ

Q′
and there

exists E′
suh that (P ′, E′, Q′) ∈ R and, if (p′, q′) ∈ E′

, then (λ(p′), ρ(q′)) ∈

E. Sine (Q,F,R) ∈ S, we have R
τ∗
−→
σ

R′
and there exists F ′

suh that

(Q′, F ′, R′) ∈ S and for any (q′, r′) ∈ F ′
, one has (ρ(q′), σ(r′)) ∈ F . We have

(P ′, F ′ ◦ E′, Q′) ∈ S ◦ R and it is obvious that F ′ ◦ E′
satis�es the ondition

on residuals. 2

We say that two proesses P and Q are weakly bisimilar, and write P ≈ Q,
if there exists a weak bisimulation R and a relation E ⊆ |P | × |Q| suh that

(P,E,Q) ∈ R.

Proposition 2. The relation ≈ is an equivalene relation on proesses.

Proof. Re�exivity results from Lemma 7, and symmetry from the symmetry

hypothesis on weak bisimulations. Transitivity is a straightforward onsequene

of Lemma 8. 2

Proposition 3. If P ≈ Q then P
•
≈ Q.
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Proof. Let R be a weak bisimulation. Let B be the binary relation on proesses

de�ned by: (P,Q) ∈ B if there exists E ⊆ |P | × |Q| suh that (P,E,Q) ∈ R. We

ontend that B is a weak barbed bisimulation, and this will prove the proposition.

First observe that B is symmetri beause R is a symmetri loalized relation.

� Let (P,Q) ∈ B and assume �rst that P →∗ P ′
, that is P

τ∗
−→
λ

P ′
for some

residual funtion λ. Let E ⊆ |P |× |Q| be suh that (P,E,Q) ∈ R. By Lemma 6,

one has Q
τ∗
−→
ρ

Q′
for some residual funtion ρ, and there exists E′ ⊆ |P ′| × |Q′|

suh that (P ′, E′, Q′) ∈ R and therefore (P ′, Q′) ∈ B as required; this shows

that B is a weak redution bisimulation.

� Assume now that (P,Q) ∈ B and that P →∗ P ′
with P ′ ↓f (with f ∈ Σ̄ of

arity n), meaning that P ′ p′:f ·(L)
−→
λ′

1

P ′′
for some p′ ∈ |P ′|, some sequene of sets of

loations L and some residual funtion λ′
1.

Let E ⊆ |P | × |Q| be suh that (P,E,Q) ∈ R. By Lemma 6, one has Q
τ∗
−→
ρ

Q′
for some residual funtion ρ, and there exists E′ ⊆ |P ′| × |Q′| suh that

(P ′, E′, Q′) ∈ R. Sine R is a weak bisimulation we have therefore Q′ q′:f ·(M)
=⇒

ρ′,ρ1,ρ′′

Q′′

and hene Q′ →∗ Q′
1 with Q′

1 ↓f . This shows that B is weak barb preserving

sine Q →∗ Q′
1. 2

We want now to prove a muh stronger result, namely that weak bisimilarity

implies weak barbed ongruene (and not just weak barbed bisimilarity). This

boils down to proving that weak bisimilarity is a ongruene. Let us �rst give

an example whih illustrates this impliation.

Example 2. Let �rst Σ be suh that Σ1 = {a, b} and Σi = ∅ if i 6= 1. Then it is

easy to see that a · ε | b · ε and a · b · ε + b · a · ε are weakly bisimilar just as in

usual CCS.

Let now Σ be suh that Σ1 = {a}, Σ2 = {f, g} and Σi = ∅ for i > 2. Let
P = f · (g · (ε, ε), ε) + g · (f · (ε, ε), ε) and Q = f · (ε, ε) | g · (ε, ε). Then we

annot prove that P and Q are weakly bisimilar (beause, in the de�nition of

a loalized bisimulation, we are in the ase n > 1). And indeed, surprisingly, P
and Q are not weak barbed bisimilar. Atually, let R = f · (ε, g · (a · ε, ε))). Then
Q | R →∗ a · ε and a · ε ↓a whereas there is no proess M suh that P | R →∗ M
with M ↓a. The best we an do is redue P | R to g · (ε, ε)⊕ g · (a · ε, ε).

4 Weak bisimilarity is a ongruene

As in the standard method used in ordinary CCS, the main step for proving that

weak bisimilarity is a ongruene onsists in extending a loalized relation R on

proesses into another loalized relation R′
whih is, intuitively, a ongruene

wrt. �parallel omposition�. Sine parallel omposition here is parametrized by

a relation, the de�nition is more involved than in ordinary CCS and strongly

involves loations.
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Adapted triples of relations. We say that a triple of relations (D,D′, E) with

D ⊆ A × B, D′ ⊆ A × B′
and E ⊆ B × B′

is adapted, if, for any (a, b, b′) ∈
A×B ×B′

, with (b, b′) ∈ E, one has (a, b) ∈ D i� (a, b′) ∈ D′
.

Parallel extension of a loalized relation. Let R be a loalized relation on pro-

esses. One de�nes a new loalized relation R′
by stipulating that (U, F, V ) ∈ R′

if there is a proess S, and a triple (P,E,Q) ∈ R as well are two relations

C ⊆ |S| × |P | and D ⊆ |S| × |Q| suh that U = S ⊕C P , V = S⊕D Q (these no-

tations are introdued in Setion 1.6), the triple of relations (C,D,E) is adapted
and F is the relation Id|S| ∪E ⊆ |U | × |V |. This loalized relation will be alled

the parallel extension of R.

Intuitively, we express here that U is the parallel omposition of S and P ,
with onnetions between the proesses of S and those of P spei�ed by C.
And similarly for V , de�ned as the parallel omposition of S and Q through the

relation D. The hypothesis that (C,D,E) should be adapted means that C and

D speify the same onnetions between proesses up to E.

Lemma 9. If R is symmetri, then so is its parallel extension R′
.

Proof. Observe that (C,D,E) is adapted i� (D,C, tE) is adapted. 2

The next proposition is an essential tool for proving that weak bisimulation

is a ongruene.

Proposition 4. If R is a weak bisimulation, so is its parallel extension R′
.

Proof. Symmetry of R′
results from the symmetry of R and from Lemma 9.

Let (U, F, V ) ∈ R′
with U = S ⊕C P , V = S ⊕D Q, (P,E,Q) ∈ R, (C,D,E)

adapted and F = Id|S| ∪E.

Case of a τ-transition. Assume that U
τ

−→
λ

U ′
. We must show that V

τ∗
−→
ρ

V ′

with (U ′, F ′, V ′) ∈ R′
and (λ(u′), ρ(v′)) ∈ F for eah (u′, v′) ∈ F ′

(ondition

on residuals). There are three ases as to the loations of the two guarded sums

involved in that redution.

� Assume �rst that they are loated in S, in other words there are s, t ∈ |S|
with s ⌢S t, cs(S(s)) = f ·S + S̃ (S̃ is a guarded sum) and cs(S(t)) = f ·T + T̃

(T̃ is a guarded sum), and we have S
τ

−→
µ

S′
with

� |S′| = (|S| \ {s, t}) ∪
⋃

i |Si| ∪
⋃

i |Ti|
� and ⌢S′

is the least symmetri relation on |S′| suh that s′ ⌢S′ t′ if s′ ⌢Si

t′, or s′ ⌢Ti
t′, or (s′, t′) ∈ |Si| × |Ti| for some i = {1, . . . , n}, or {s′, t′} 6⊆⋃n

i=1 |Si| ∪
⋃n

i=1 |Ti| and µ(s′) ⌢S µ(t′).

Remember that the residual funtion µ is given by µ(s′) = s if s′ ∈
⋃

i |Si|,
µ(s′) = t if s′ ∈

⋃
i |Ti| and µ(s′) = s′ otherwise. We have U ′ = S′ ⊕C′ P where

C′ = {(s′, p) ∈ |S′| × |P | | (µ(s′), p) ∈ C} and λ = µ ∪ Id|P |.
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Then we have similarly V = S ⊕D Q
τ

−→
ρ

V ′ = S′ ⊕D′ Q with ρ = µ ∪ Id|Q|,

and D′ = {(s′, q) ∈ |S′| × |Q| | (µ(s′), q) ∈ D}.
The triple (C′, D′, E) is adapted: let s′ ∈ |S′|, p ∈ |P | and q ∈ |Q| be suh

that (p, q) ∈ E. If (s′, p) ∈ C′
then (µ(s′), p) ∈ C and hene (µ(s′), q) ∈ D

sine (C,D,E) is adapted, that is (s′, q) ∈ D′
, and similarly for the onverse

impliation.

Coming bak to the de�nition of R′
, we see that (U ′, F ′, V ′) ∈ R′

where

F ′ = Id|S′| ∪E. Moreover, the ondition on residuals is satis�ed, sine, given

(u′, v′) ∈ F ′
, we have either u′ = v′ ∈ |S′| and then λ(u′) = ρ(v′) ∈ |S| or

(u′, v′) ∈ E and (λ(u′), ρ(v′)) = (u′, v′) ∈ E. In both ases (λ(u′), ρ(v′)) ∈ F .

� Assume next that they are loated in P , in other words there are p, r ∈ |P |
with cs(P (p)) = f ·P + P̃ (where P̃ is a guarded sum) and cs(P (r)) = f ·R+ R̃

(where R̃ is a guarded sum), and we have P
τ

−→
µ

P ′
with

� |P ′| = (|P | \ {p, r}) ∪
⋃

i |Pi| ∪
⋃

i |Ri|
� and⌢P ′

is the least symmetri relation on |P ′| suh that p′ ⌢Pi
r′ or p′ ⌢Ri

r′ or (p′, r′) ∈ |Pi|×|Ri| for some i ∈ {1, . . . , n}, or {p′, r′} 6⊆
⋃

i |Pi|∪
⋃

i |Ri|
and µ(p′) ⌢P µ(r′).

We reall that the residual funtion µ is given by µ(p′) = p if p′ ∈
⋃

i |Pi|,
µ(p′) = r if p′ ∈

⋃
i |Ri| and µ(p′) = p′ otherwise. With these notations, the

proess U ′
is U ′ = S ⊕C′ P ′

where C′ = {(s, p′) ∈ |S| × |P ′| | (s, µ(p′)) ∈ C}
and the residual funtion λ is de�ned as λ = Id|S| ∪µ. Sine (P,E,Q) ∈ R and

P
τ∗
−→
µ

P ′
, one has Q

τ∗
−→
ν

Q′
with (P ′, E′, Q′) ∈ R where E′ ⊆ |P ′|×|Q′| satis�es

the ondition on residuals (p′, q′) ∈ E′ ⇒ (µ(p′), ν(q′)) ∈ E. Let D′ = {(s, q′) ∈

|S| × |Q′| | (s, ν(q′)) ∈ D}. Setting V ′ = S ⊕D′ Q′
, we have V

τ∗
−→
ρ

V ′
where

ρ = Id|S| ∪ν.
The triple (C′, D′, E′) is adapted: let (p′, q′) ∈ E′

and let s ∈ |S|. If (s, p′) ∈
C′
, we have (s, µ(p′)) ∈ C. Sine (µ(p′), ν(q′)) ∈ E (by de�nition of E′

), we have

(s, ν(q′)) ∈ D beause (C,D,E) is adapted. That is (s, q′) ∈ D′
. The onverse

impliation is proved similarly.

Let F ′ = Id|S| ∪E
′ ⊆ |U ′| × |V ′|, we have therefore (U ′, F ′, V ′) ∈ R′

(by

de�nition of R′
). Last we hek the ondition on residuals. Let (u′, v′) ∈ F ′

,

then either u′ = v′ ∈ |S| and then λ(u′) = u′ = v′ = ρ(v′) or u′ ∈ |P ′|, v′ ∈ |Q′|
and (u′, v′) ∈ E′

and then (λ(u′), ρ(v′)) = (µ(u′), ν(v′)) ∈ E by the ondition on

residuals satis�ed by E.

� Assume last that one of the involved guarded sums is loated in S and that

the other one is loated in P , this is of ourse the most interesting ase in this

�rst part of the proof.

By de�nition of internal redution (see Setion 2.1) we have s ∈ |S| and
p ∈ |P | with (s, p) ∈ C and with cs(S(s)) = f · S + S̃ and cs(P (p)) = f · P + P̃
with the usual notational onventions, and U ′ = S′⊕C′ P ′

where S′ = S [⊕S/s],
P ′ = P [⊕P/p], and C′ ⊆ |S′| × |P ′| is de�ned as follows: (s′, p′) ∈ C′

if

� (s′, p′) ∈ |Si| × |Pi| for some i,
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� or (s′, p′) /∈ (
⋃

i |Si|)× (
⋃

i |Pi|) and (λ(s′), λ(p′)) ∈ C,

where the residual map λ : |U ′| = |S′| ∪ |P ′| → |U | = |S| ∪ |P | is de�ned by

λ(u′) = u′
if u′ ∈ (|S′| \

⋃
i |Si|) ∪ (|P ′| \

⋃
i |Pi|), λ(s′) = s if s′ ∈

⋃
i |Si| and

λ(p′) = p if p′ ∈
⋃

i |Pi|.

We have P
p:f ·(L)
−→
λ

P ′
(where Li = |Pi| for eah i = 1, . . . , n) and hene, sine

we have assumed that (P,E,Q) ∈ R, we haveQ
q:f ·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (p, ρ(q)) ∈ E and

(P ′, E′, Q′) ∈ R where E′
is suh that if (p′, q′) ∈ E′

then (λ(p′), ρρ1ρ
′(q′)) ∈ E

and, if n ≥ 2, then (p′, ρ′(q′)) ∈ Li ×Mi for some i, or p′ /∈
⋃

i Li and ρ′(q′) /∈⋃
Mi.

We an deompose this transition as follows

Q
τ∗
−→
ρ

Q1
q:f ·(M)
−→
ρ1

Q′
1

τ∗
−→
ρ′

Q′ .

With these notations we have V
τ∗
−→
µ

V1 with V1 = S ⊕D1
Q1 where D1 =

{(s, q1) ∈ |S| × |Q1| | (s, ρ(q1)) ∈ D}, and µ = Id|S| ∪ρ.

We have q ∈ |Q1| with cs(Q1(q)) = f ·R+ R̃ and |Ri| = Mi for i = 1, . . . , n.
Moreover, sine (p, ρ(q)) ∈ E and (s, p) ∈ C, and sine (C,D,E) is adapted, we
have (s, ρ(q)) ∈ D, that is (s, q) ∈ D1. Therefore, sine cs(S(s)) = f · S + S̃, we

have V1
τ

−→
θ

V ′
1 = S′ ⊕D′

1
Q′

1 where D′
1 ⊆ |S′| × |Q′

1| is de�ned as follows: given

(s′, q′1) ∈ |S′| × |Q′
1|, we have (s

′, q′1) ∈ D′
1

� if s′ ∈ |Si| and q′1 ∈ |Ri| for some i = 1, . . . , n
� or s′ /∈

⋃
i |Si| or q′1 /∈

⋃
i |Ri| and (θ(s′), θ(q′1)) ∈ D1 (that is (θ(s

′), ρθ(q′1)) ∈
D),

and the residual funtion θ is de�ned by θ(v′1) = v′1 if v
′
1 ∈ (|S| \

⋃
i |Si|)∪ (|Q1| \⋃

i |Ri|), θ(s′) = s if s′ ∈
⋃

i |Si| and θ(q′1) = q if q′1 ∈
⋃

i |Ri|.
Observe that θ(q′1) = ρ1(q

′
1) for all q

′
1 ∈ |Q′

1|.

Sine Q′
1

τ∗
−→
ρ′

Q′
, we have V ′

1 = S′ ⊕D′

1
Q′

1
τ∗
−→
µ′

V ′ = S′ ⊕D′ Q′
where

µ′ = Id|S′| ∪ρ
′
and D′ = {(s′, q′) ∈ |S′| × |Q′| | (s′, ρ′(q′)) ∈ D′

1}. So we have

V
τ∗
−→
µθµ′

V ′
. Let F ′ ⊆ |U ′|×|V ′| be de�ned by F ′ = Id|S′| ∪E

′
. It is lear then that

(u′, v′) ∈ F ′ ⇒ (λ(u′), µθµ′(v′)) ∈ F beause (p′, q′) ∈ E′ ⇒ (λ(p′), ρρ1ρ
′(q′)) ∈

E and θ and ρ1 oinide on |Q′
1|.

To �nish, we must prove that (U ′, F ′, V ′) ∈ R′
and to this end it su�es to

show that the triple of relations (C′, D′, E′) is adapted. So let s′ ∈ |S′|, p′ ∈ |P ′|
and q′ ∈ |Q′| with (p′, q′) ∈ E′

(so that in partiular (λ(p′), ρθρ′(q′)) ∈ E).
Assume �rst that (s′, p′) ∈ C′

and let us show that (s′, q′) ∈ D′
, that is

(s′, ρ′(q′)) ∈ D′
1. Coming bak to the de�nition of C′

, we an redue our analysis

to three ases.

� First ase: (s′, p′) ∈ |Si| × |Pi| for some i. We distinguish two ases as to the

value of n (the arity of f). Assume �rst that n ≥ 2. Sine p′ ∈ |Pi| = Li, we
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must have ρ′(q′) ∈ Mi = |Qi| beause (p′, q′) ∈ E′
and then (s′, ρ′(q′)) ∈ D′

1

as required. Assume now n = 1. If ρ′(q′) ∈ M1 we reason as above, so

assume that ρ′(q′) /∈ M1 =
⋃n

i=1 |Ri|. Coming bak to the de�nition of D′
1,

it su�es to prove that (θ(s′), ρθρ′(q′)) = (s, ρρ′(q′)) ∈ D. Sine (p′, q′) ∈ E′

we have (λ(p′), ρθρ′(q′)) = (p, ρρ′(q′)) ∈ E. We also have (s, p) ∈ C, and
hene (s, ρρ′(q′)) ∈ D as required, sine (C,D,E) is adapted.

� Seond ase: s′ /∈
⋃

i |Si|. In order to prove (s′, q′) ∈ D′
, it su�es to prove

that (θ(s′), ρθρ′(q′)) = (s′, ρθρ′(q′)) ∈ D. But we have (s′, p′) ∈ C′
and

s′ /∈
⋃

i |Si|, hene (λ(s′), λ(p′)) = (s′, λ(p′)) ∈ C. Sine (p′, q′) ∈ E′
, we

have (λ(p′), ρθρ′(q′)) ∈ E and hene (s′, ρθρ′(q′)) ∈ D sine (C,D,E) is

adapted.

� Third ase: s′ ∈
⋃

i |Si| and p′ /∈
⋃

i |Pi| so that we have (s, p′) ∈ C (by

de�nition of C′
and beause (s′, p′) ∈ C′

). Assume �rst that n ≥ 2. Sine
(p′, q′) ∈ E′

, we must have ρ′(q′) /∈
⋃n

i=1 Mi. To prove that (s
′, ρ′(q′)) ∈ D′

1,

it su�es therefore to hek that (θ(s′), ρθρ′(q′)) = (s, ρρ′(q′)) ∈ D. This

property holds beause (C,D,E) is adapted, (s, p′) ∈ C and (p′, ρρ′(q′)) ∈ E
beause (p′, q′) ∈ E′

. Assume now that n = 1. If ρ′(q′) /∈
⋃n

i=1 Mi = M1, we

an reason as above, so assume that ρ′(q′) ∈ M1. Then we have (s′, ρ′(q′)) ∈
|S1| ×M1 and hene (s′, ρ′(q′)) ∈ D′

1.

Let us prove now the onverse impliation, assuming that (s′, ρ′(q′)) ∈ D′
1;

we ontend that (s′, p′) ∈ C′
. Again, we onsider three ases.

� First ase: s′ ∈ |Si| and ρ′(q′) ∈ Mi = |Ri| for some i ∈ {1, . . . , n}. If
n ≥ 2 the fat that (p′, q′) ∈ E′

implies that p′ ∈ Li = |Pi| and hene

(s′, p′) ∈ C′
as required. Assume that n = 1 and p′ /∈ L1 =

⋃n
i=1 |Pi|, we

have (λ(s′), λ(p′)) = (s, p′) ∈ C beause (s, ρρ′(q′)) ∈ D � sine (s′, ρ′(q′)) ∈
D′

1, ρ
′(q′) /∈ M1 and (θ(s′), ρθρ′(q′)) = (s, ρρ′(q′)) �, (p, ρρ′(q′)) ∈ E and

(C,D,E) is adapted. Hene (s′, p′) ∈ C′
.

� Seond ase: s′ /∈
⋃

i |Si|. In view of the de�nition of C′
, it su�es to prove

that (λ(s′), λ(p′)) = (s′, λ(p′)) ∈ C. Sine (s′, ρ′(q′)) ∈ D′
1 and s′ /∈

⋃
i |Si|,

we have (θ(s′), ρθρ′(q′)) = (s′, ρθρ′(q′)) ∈ D. And sine (p′, q′) ∈ E′
we have

(λ(p′), ρθρ′(q′)) ∈ E, and hene (s′, λ(p′)) ∈ C beause (C,D,E) is adapted.

� Third ase: s′ ∈ |Si| for some i ∈ {1, . . . , n} and ρ′(q′) /∈
⋃

iMi. If n ≥ 2,
we must have p′ /∈

⋃
i Li beause (p′, q′) ∈ E′

. Therefore, to hek that

(s′, p′) ∈ C′
, it su�es to prove that (λ(s′), λ(p′)) = (s, p′) ∈ C. We have

(s′, ρ′(q′)) ∈ D′
1 and hene (θ(s′), ρθρ′(q′)) = (s, ρρ′(q′)) ∈ D. Sine (p′, q′) ∈

E′
we have (λ(p′), ρθρ′(q′)) = (p′, ρρ′(q′)) ∈ E and hene (s, p′) ∈ C beause

(C,D,E) is adapted. Assume now that n = 1. If p′ ∈ L1 we have (s
′, p′) ∈ C′

sine (s′, p′) ∈ |S1| × |P1|. So assume that p′ /∈ L1. Sine then p′ /∈
⋃n

i=1 |Pi|,
it su�es to prove that (λ(s′), λ(p′)) = (s, p′) ∈ C (by de�nition of C′

). We

have (p′, ρθρ′(q′)) = (p′, ρρ′(q′)) ∈ E beause (p′, q′) ∈ E′
and (s, ρθρ′(q′)) =

(s, ρρ′(q′)) ∈ D beause (s′, ρ′(q′)) ∈ D′
1 and ρ′(q′) /∈

⋃
i Mi. It follows that

(s, p′) ∈ C as required.

This ends the �rst part of the proof.
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Case of a labeled transition. We assume now that U
r:f ·(L)
−→
µ1

U ′
. Sine U = S⊕CP ,

we onsider two ases as to the loation of r.

� If r ∈ |S| then we have cs(S(r)) = f ·S+S̃ and S
r:f ·(L)
−→
σ1

S′
where S′ = S [⊕S/r]

(so that Li = |Si| for eah i), and U ′ = S′⊕C′ P where C′ = {(s′, p) ∈ |S′|×|P | |
(σ1(s

′), p) ∈ C}. Let D′ = {(s′, q) ∈ |S′| × |Q| | (σ1(s
′), q) ∈ D}. We have

µ1 = σ1∪Id|P |. It is lear that (C
′, D′, E) is adapted, sine (C,D,E) is adapted.

Let V ′ = S′ ⊕D′ Q, we have just seen that (U ′, F ′, V ′) ∈ R′
where F ′ =

Id|S′| ∪E. We have (r, r) ∈ F , V
r:f ·(L)
−→
ν1

V ′
(with ν1 = σ1 ∪ Id|Q|) and, given

(u′, v′) ∈ F ′
, we have either (u′, v′) ∈

⋃
i(Li × Li) (and atually u′ = v′) or

u′ /∈
⋃

i Li, v
′ /∈

⋃
i Li and (u′, v′) ∈ F as easily heked. Therefore the ondition

on residuals is satis�ed.

� The last ase to onsider is when r = p ∈ |P | and then we have P (p) = f ·P+P̃

and P
p:f ·(L)
−→
λ1

P ′
. Then we have U ′ = S ⊕C′ P ′

where C′ = {(s, p′) ∈ |S| × |P ′| |

(s, λ1(p
′)) ∈ C}.

Sine (P,E,Q) ∈ R we have Q
q:f ·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (p, ρ(q)) ∈ E and there

exists E′ ⊆ |P ′| × |Q′| suh that (P ′, E′, Q′) ∈ R and, for any (p′, q′) ∈ E′
,

(λ1(p
′), ρρ1ρ

′(q′)) ∈ E and, if n ≥ 2, either (p′, ρ′(q′)) ∈
⋃n

i=1(Li × Mi), or
p′ /∈

⋃n
i=1 Li and ρ′(q′) /∈

⋃n
i=1 Mi.

Therefore we have V
q:f ·(M)
=⇒

ν,ν1,ν′

V ′
where V ′ = S ⊕D′ Q′

with D′ = {(s, q′) ∈

|S| × |Q′| | (s, ρρ1ρ
′(q′)) ∈ D}. Moreover ν = Id|S| ∪ρ, ν1 = Id|S| ∪ρ1 and

ν′ = Id|S| ∪ρ
′
.

Let F ′ ⊆ |U ′| × |V ′| be de�ned by F ′ = Id|S| ∪E
′
. Let (u′, v′) ∈ F ′

. If

u′ ∈ |S| or v′ ∈ |S|, we must have u′ = v′. If u′ /∈ |S| and v′ /∈ |S| then we

have (u′, v′) ∈ E′
and hene (µ1(u

′), νν1ν
′(v′)) = (λ1(u

′), ρρ1ρ
′(q′)) ∈ E and,

if n ≥ 2, either there exists i suh that u′ ∈ Li and ν′(v′) = ρ′(v′) ∈ Mi, or

u′ /∈
⋃

i Li and ν′(v′) = ρ′(v′) /∈
⋃

iMi.

Moreover, the triple (C′, D′, E′) is adapted: let (p′, q′) ∈ E′
and s ∈ |S|.

We have (λ1(p
′), ρρ1ρ

′(q′)) ∈ E. We have (s, p′) ∈ C′
i� (s, λ1(p

′)) ∈ C i�

(s, ρρ1ρ
′(q′)) ∈ D i� (s, q′) ∈ D′

. 2

Now we are in position of proving that weak bisimilarity is a ongruene, a

result whih is interesting per se and will be essential for proving Theorem 3.

Theorem 2. The weak bisimilarity relation ≈ is a ongruene.

Proof. Let R be a weak bisimulation. Let R be a Y -ontext. We de�ne a new

loalized relation denoted as R [R/Y ]:

� if R = Y then R [R/Y ] = R;

� if R 6= Y then we stipulate that (P ′, E′, Q′) ∈ R [R/Y ] if there exists

(P,E,Q) ∈ R and if E′ = Id|R|, P
′ = R [P/Y ] and Q′ = R [Q/Y ] (ob-

serve that |P ′| = |Q′| = |R| beause R 6= Y ).
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We de�ne a loalized relationR+
as the union of I (the set of all triples (U,E,U)

where U is any proess and E = Id|U|), of the parallel extension R′
of R (see

Proposition 4) and of all the relations of the shape R [R/Y ] for all Y -ontexts

R.
We prove that R+

is a weak bisimulation and the theorem will follow easily.

Let (U, F, V ) ∈ R+
and assume that we are in one of the two following

situations

� U
τ

−→
µ

U ′
(alled ase (1) in the sequel)

� or U
p:f ·(L)
−→
µ1

U ′
(alled ase (2) in the sequel).

We desribe expliitely our objetives.

� In ase (1) we must show that V
τ∗
−→
ν

V ′
with (U ′, F ′, V ′) ∈ R+

for some

F ′ ⊆ |U ′| × |V ′| suh that for any (u′, v′) ∈ F ′
, one has (µ(u′), ν(v′)) ∈ F .

� In ase (2) we must show that V
q:f ·(M)
=⇒

ν,ν1,ν′

V ′
with (p, ν(q))) ∈ F and (U ′, F ′, V ′) ∈

R+
, for some F ′ ⊆ |U ′| × |V ′| suh that, for any (u′, v′) ∈ F ′

, one has

(µ1(u
′), νν1ν

′(v′)) ∈ F and, if n ≥ 2, then one has either (u′, ν′(v′)) ∈⋃n
i=1(Li ×Mi) or u

′ /∈
⋃

i Li and ν′(v′) /∈
⋃

i Mi.

The ase where (U, F, V ) ∈ I is trivial.

If (U, F, V ) ∈ R′
we apply diretly Proposition 4 in both ases.

Assume now that (U, F, V ) ∈ R [R/Y ] for some Y -ontext R, so that U =
R [P/Y ], V = R [Q/Y ] with (P,E,Q) ∈ R and F = E if R = Y and F = Id|R|

otherwise. If R = Y we use diretly the fat that R is a weak bisimulation to

exhibit V ′
and F ′

satisfying the required onditions.

So we assume from now on that R 6= Y and therefore F = Id|R|.

By de�nition of a Y -ontext, there is exatly one r ∈ |R| suh that Y ours

free in R(r). Then R(r) an be written uniquely as R(r) = g · R + R̃ where

Y does not our in R̃ and ours in exatly one of the proesses R1, . . . , Rn;

without loss of generality we an assume that R1 is a Y -ontext and that Y does

not our free in R2, . . . , Rn.

Assume �rst that R1 6= Y . In both ases (1) and (2), we have U ′ = R′ [P/Y ]

with R
τ

−→
µ

R′
(ase (1)) or R

p:f ·(L)
−→
µ1

R′
(ase (2)). Let V ′ = R′ [Q/Y ]. In ase

(1), we have V
τ

−→
µ

V ′
and in ase (2) we have V

q:f ·(L)
−→
µ1

V ′
, and sine R′ 6= Y

(by our hypothesis on R1), we have (U
′, Id|R′|, V

′) ∈ R+
beause (P,E,Q) ∈ R.

The ondition on residuals is obviously satis�ed in both ases.

Assume now that R1 = Y .

� Suppose �rst that we are in ase (1). There are two ases to onsider as to

the loations s, t ∈ |U | of the sub-proesses involved in the transition U
τ

−→
µ

U ′
.

The ase where s 6= r and t 6= r is similar to the ase above where R1 6= Y . By
symmetry we are left with the ase where s = r (and hene t 6= r).
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So U(t) = R(t) = f · T + T̃ and the guarded sum R(r) has an unique

summand whih is involved in the transition U
τ

−→
µ

U ′
(alled ative summand

in the sequel), and this summand is of the shape f · S.
If the ative summand is g·R6

(so that g = f) then U(r) = f ·(P,R2, . . . , Rn)+
S̃ and U ′

an be written U ′ = R′⊕C P for some proess R′
whih an be de�ned

using only R, and C ⊆ |R′| × |P |. Expliitly, R′
is de�ned as follows:

� |R′| = (|R| \ {r, t}) ∪
⋃n

i=2 |Ri| ∪
⋃n

i=1 |Ti|
� and ⌢R′

is the least symmetri relation on |R′| suh that r′ ⌢R′ t′ if r′ ⌢Ri

t′ for some i = 2, . . . , n or r′ ⌢Ti
t′ for some i = 1, . . . , n, or (r′, t′) ∈

|Ri| × |Ti| for some i ∈ {2, . . . , n}, or r′ /∈
⋃n

i=2 |Ri| or t′ /∈
⋃n

i=1 |Ti| and
r′ ⌢R t and µ(r′) ⌢R µ(t′)

where the residual funtion µ : |U ′| → |U | is given by µ(r′) = r if r′ ∈ |P | ∪⋃n
i=2 |Ri|, µ(r

′) = t if r′ ∈
⋃n

i=1 |Ti| and µ(r′) = r′ when r′ belongs to none of

these two sets.

The relation C is de�ned as follows: given (r′, p) ∈ |R′|×|P |, one has (r′, p) ∈
C if r′ ∈ |T1|, or r′ /∈

⋃n
i=2 |Ri| ∪

⋃n
i=1 |Ti| and r′ ⌢R r.

Let V ′ = R′⊕DQ, where D ⊆ |R′|×|Q| is de�ned exatly like C (just replae

P by Q in the de�nition). Then (C,D,E) is adapted (beause the property for

(r′, p) ∈ |R′| × |P | of belonging or not to C depends only on r′, and does not

depend on p, and similarly for D). We an mimi that redution on V , so that

V
τ

−→
ν

V ′
for the residual funtion ν whih is de�ned like µ (replaing P by Q).

We have (U ′, F ′, V ′) ∈ R′ ⊆ R+
where F ′ = Id|R′| ∪E. Given (u′, v′) ∈ F ′

, we

have µ(u′) = ν(v′), that is (µ(u′), ν(v′)) ∈ F so that the ondition on residuals

holds

7

.

Assume now that the ative summand is not g ·R. In that ase we also have

V
τ

−→
µ

U ′
(both P and Q vanish in the orresponding redutions), and we are

done beause (U ′, Id|U ′|, U
′) ∈ I ⊆ R+

.

� We suppose now that we are in ase (2). Assume �rst that p 6= r. In that ase

we have R
p:f ·(L)
−→
θ1

R′
and U ′ = R′ [P/Y ] and we also have V

p:f ·(L)
−→
θ1

V ′ = R′ [Q/Y ]

so (U ′, Id|R′|, V
′) ∈ R′ [R/Y ] ⊆ R+

, and the ondition on residuals is obvious.

Assume now that p = r. Then exatly one of the summands of the guarded

sum R(r) is the pre�xed proess performing the ation f in the onsidered

transition on U (again, this summand is alled the ative summand in the sequel).

The ase where the ative summand is not g · (P,R2, . . . , Rn) is ompletely

similar to the previous one (P vanishes in the transition).

Assume that the ative summand is g · (P,R2, . . . , Rn) (so that g = f), then
U ′ = R′ ⊕C P where R′

is de�ned by

� |R′| = (|R| \ {r})∪
⋃n

i=2 |Ri| and ⌢R′
is the least symmetri relation on |R′|

suh that r′ ⌢R′ t′ if r′ ⌢Ri
t′ for some i = 2, . . . , n or θ1(r

′) ⌢R θ1(t
′).

6

Remember that g ·R is the unique summand of R(r) whih ontains Y .

7

It is in this part of the proof that one understand the importane of adapted triples

of relations in the de�nition of the parallel extension of a weak bisimulation.
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� The relation C ⊆ |R′| × |P | is de�ned by (r′, q) ∈ C if r′ /∈
⋃n

i=2 |Ri| and
r′ ⌢R r (this does not depend on q).

Then we have V
p:f ·(M)
−→
ϕ1

V ′
(with M1 = |Q| and Mi = Li = |Ri| for i = 2, . . . , n)

with V ′ = R′⊕DQ whereD is de�ned like C (replaing P by Q in the de�nition).

Then we have (U ′, F ′, V ′) ∈ R′ ⊆ R+
where F ′ = Id|R′| ∪E sine (C,D,E) is

obviously adapted (as above). Moreover the ondition on residuals is obviously

satis�ed. This ends the proof of the fat that R+
is a weak bisimulation.

We an now prove that ≈ is a ongruene. Assume that P ≈ Q and let R
be a Y -ontext. Let E ⊆ |P | × |Q| and let R be a weak bisimulation suh that

(P,E,Q) ∈ R. Then we have (R [P/Y ] , Id|R|, R [Q/Y ]) ∈ R [R/Y ] ⊆ R+
and

hene R [P/Y ] ≈ R [Q/Y ] sine R+
is a weak bisimulation. 2

We an prove now the main theorem of the paper.

Theorem 3. Let P and Q be proesses. If P ≈ Q (P and Q are weakly bisimilar)

then P ∼= Q (P and Q are weakly barb ongruent).

Proof. Assume that P ≈ Q and let R be a Y -ontext. We have R [P/Y ] ≈

R [Q/Y ] by Theorem 2 and hene R [P/Y ]
•
≈ R [Q/Y ] by Proposition 3. 2

5 Weak bisimilarity on CCS

We assume in this setion that Σn = ∅ if n 6= 1 (see the end of Setion 2.2). All

proesses P onsidered in this setion are CCS proesses built on Σ, meaning

that, in any subproess of P whih is of shape G〈Φ〉, the graph G is a omplete

graph (for all p, q ∈ |G|, p ⌢G q).
We answer here a very natural question: when restrited to ordinary CCS,

does our weak loalized bisimilarity oinide with standard weak bisimilarity?

Let R be a loalised weak bisimulation. Let R0
be the following relation on

CCS proesses: P R0 Q if (P,E,Q) ∈ R for some E ⊆ |P | × |Q|. We prove that

R0
is a weak bisimulation on CCS proesses.

Lemma 10. Let R be a loalized weak bisimulation. Then R0
is weak bisimula-

tion on CCS proesses.

Proof. Let P and Q be CCS proesses suh that P R0 Q. Let E ⊆ |P | × |Q| be
suh that (P,E,Q) ∈ R.

Assume �rst that P
τ

−→ P ′
. Let p1, p2 ∈ |P | with cs(P (p1)) = a · P1 + S1

and cs(P (p2)) = a · P2 + S2 (the two sub-proesses involved in this redution).

Then, by de�nition of the internal redution in CCTS, P ′ = G〈Φ〉 where G is the

omplete graph on |G| = |P | \ {p1, p2} ∪ |P1| ∪ |P2| and Φ(r) = P (r) if r ∈ |P |,
Φ(r) = Pi(r) if r ∈ |Pi| for i = 1, 2. In other words P ′ = P [P1/p1, P2/p2]

Let λ1 : |P ′| → |P | be the orresponding residual map (λ1(r) = r if r ∈ |P |

and λ1(r) = pi if r ∈ |Pi|), we have P
τ

−→
λ1

P ′
and therefore there is a CCTS
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proess Q′
suh that (P ′, E′, Q′) ∈ R for some relation E′ ⊆ |P ′| × |Q′|, and a

funtion ρ : |Q′| → |Q| with Q
τ∗
−→
ρ

Q′
and (p′, q′) ∈ E′ ⇒ (λ1(p

′), ρ(q′)) ∈ E.

Therefore we have P ′ R0 Q′
as required.

Assume now that P
a

−→ P ′
. Let p ∈ |P | with cs(P (p)) = a · P1 + S1 and

P ′ = P [P1/p]. Then we have P
p:a·(L)
−→
λ1

P ′
where L = |P1| and λ1 : |P ′| → |P | is

given by λ1(r) = p if r ∈ |P1| and λ1(r) = r otherwise. Sine (P,E,Q) ∈ R, we

have Q
q:a·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (p, ρ(q)) ∈ E, and there exists E′ ⊆ |P ′| × |Q′| suh that

(P ′, E′, Q′) ∈ R, and (λ1(p
′), ρρ1ρ

′(q′)) ∈ E for eah (p′, q′) ∈ E′
. In partiular

P ′ R0 Q′
.

Sine R is a loalized bisimulation, the relationR0
is symmetri and is there-

fore a bisimulation on CCS proesses. 2

We need now to prove the onverse. Let U be a binary relation on CCS

proesses. Let Û be the set of all triples (P,E,Q) where P and Q are CCS

proesses suh that P U Q and E = |P | × |Q|.

Lemma 11. If U is a bisimulation, then Û is a loalized bisimulation.

Proof. Let P and Q be CCS proesses and let E be suh that (P,E,Q) ∈ Û , so
that E = |P | × |Q| and P U Q.

Assume �rst that P
τ

−→
λ1

P ′
so that P

τ
−→ P ′

(in CCS) and hene there exists

Q′
suh that Q

τ∗
−→ Q′

and P ′ U Q′
. Then there is a funtion ρ : |Q′| → |Q| suh

that Q
τ∗
−→
ρ

Q′
and we have (P ′, E′, Q′) ∈ Û . The ondition on residuals holds

obviously, by de�nition of E.
The ase of a labeled transition is ompletely similar and the ondition on

residuals holds again by de�nition of Û and beause we are in the ase where

n = 1 (all funtion symbols are of arity 1). 2

So we an onlude that, when restrited to CCS proesses, our notion of

weak bisimilarity oinides with the usual one.

Proposition 5. Two CCS proesses are weakly bisimilar (in the usual CCS

sense) i� they are weakly bisimilar in the loalized sense.

Conlusion

We have presented an extension of CCS whih deals with trees instead of words,

and various onepts and tools assoiated with this new proess algebra. The

notion of barbed bisimilarity, as it is de�ned here, is a straightforward general-

ization of the orresponding notion for CCS and therefore is hardly questionable,

but we annot say the same of weak bisimilarity. It will be ruial to understand

if weak bisimilarity is equivalent to weak barbed ongruene here and, if not,

to look for a more liberal notion of weak bisimilarity in order to get suh a full
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abstration property. Another more oneptual task will be to extend this ap-

proah to more expressive settings suh as for instane the π-alulus, and of

ourse to understand if CCTS an be enoded in suh settings.

This work also originated from the enodings of the π-alulus and of the solos
alulus in di�erential interation nets by the �rst author and Laurent [EL10℄. In

these nets, whih are graphial objets, parallel ompositions appear as omplete

graphs, and it is lear that more general graphs (atually, arbitrary graphs) ould

be enoded as well in the very same formalism. A graphial approah to CCTS,

in the spirit of interation nets, will be presented in a forthoming paper.
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