A sequent calculus with dependent types for classical arithmetic

Étienne MIQUEY

Équipe Gallinette, INRIA
LS2N, Université de Nantes

Workshop Réalisabilité
13 Juin 2018
A constructive proof of dependent choice compatible with classical logic
The Curry-Howard correspondence

<table>
<thead>
<tr>
<th>Mathematics</th>
<th>Computer Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proofs</td>
<td>Programs</td>
</tr>
<tr>
<td>Propositions</td>
<td>Types</td>
</tr>
<tr>
<td>Deduction rules</td>
<td>Typing rules</td>
</tr>
</tbody>
</table>

\[
\frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} \quad (\Rightarrow_E)
\]

\[
\frac{\Gamma \vdash t : A \rightarrow B \quad \Gamma \vdash u : A}{\Gamma \vdash t u : B} \quad (\rightarrow_E)
\]

Benefits:

- *Program your proofs!*
- *Prove your programs!*
Proofs-as-programs

Limitations

<table>
<thead>
<tr>
<th>Mathematics</th>
<th>Computer Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \lor \neg A$</td>
<td>try... catch...</td>
</tr>
<tr>
<td>$\neg\neg A \Rightarrow A$</td>
<td>x := 42</td>
</tr>
<tr>
<td>All sets can be well-ordered</td>
<td>random()</td>
</tr>
<tr>
<td>Sets that have the same elements are equal</td>
<td>stop</td>
</tr>
<tr>
<td></td>
<td>goto</td>
</tr>
</tbody>
</table>

↬ *We want more!*
Extending Curry-Howard

Classical logic = Intuitionistic logic + $A \lor \neg A$

1990: Griffin discovered that call/cc can be typed by Peirce’s law
(well-known fact: Peirce’s law $\Rightarrow A \lor \neg A$)

Classical Curry-Howard:

λ-calculus + call/cc

Other examples:
- quote instruction \sim dependent choice
- monotonic memory \sim Cohen’s forcing
- ...

The motto

With side-effects come new reasoning principles.
Extending Curry-Howard

Classical logic \(=\) Intuitionistic logic + \(A \lor \neg A\)

1990: Griffin discovered that call/cc can be typed by Peirce’s law
(well-known fact: Peirce’s law \(\Rightarrow A \lor \neg A\))

Classical Curry-Howard:

\[\lambda\text{-calculus } + \text{ call/cc}\]

Other examples:
- quote instruction \(\sim\) dependent choice
- monotonic memory \(\sim\) Cohen’s forcing
- ...

The motto

With side-effects come new reasoning principles.
Extending Curry-Howard

Classical logic = **Intuitionistic logic** + $A \lor \neg A$

1990: Griffin discovered that call/cc can be typed by Peirce’s law
(well-known fact: Peirce’s law $\Rightarrow A \lor \neg A$)

Classical Curry-Howard:

λ-calculus + call/cc

Other examples:
- quote instruction \sim dependent choice
- monotonic memory \sim Cohen’s forcing
- ...

The motto

With side-effects come new reasoning principles.
Teaser

The motto

With side-effects come new reasoning principles.

We will use several computational features:

- dependent types
- lazy evaluation
- streams
- shared memory

...to get a proof for the axioms of dependent and countable choice that is compatible with classical logic.
The axiom of choice

Axiom of Choice:

\[AC : \forall x^A. \exists y^B. P(x, y) \rightarrow \exists f^{A \rightarrow B}. \forall x^A. P(x, f(x)) \]
The axiom of choice

Axiom of Choice:

\[
AC : \forall x^A. \exists y^B.P(x, y) \rightarrow \exists f^{A\rightarrow B}. \forall x^A.P(x, f(x)) \\
:= \lambda H. (\lambda x. \text{wit}(H \, x), \lambda x. \text{prf}(H \, x))
\]

Computational content through dependent types:

\[
\frac{\Gamma, x : T \vdash t : A}{\Gamma \vdash \lambda x. t : \forall x^T.A} \quad (\forall_I) \quad \frac{\Gamma \vdash p : A[t/x]}{\Gamma \vdash t : T} \quad (\exists_I) \\
\frac{\Gamma \vdash p : \exists x^T.A(x) \quad \Gamma \vdash t : T}{\Gamma \vdash (t, p) : \exists x^T.A} \quad (\exists_I) \quad \frac{\Gamma \vdash p : \exists x^T.A(x)}{\Gamma \vdash \text{wit} \, p : T} \quad (\text{wit}) \\
\frac{\Gamma \vdash p : \exists x^T.A(x)}{\Gamma \vdash \text{prf} \, p : A(\text{wit} \, p)} \quad (\text{prf})
\]
Incompatibility with classical logic

Bad news

dependent sum + classical logic = ☠

Choice:

\[\vdash t : \forall x \in A. \exists y \in B. P(x, y) \rightarrow \exists f \in B^A. \forall x \in A. P(x, f(x)) \]

Excluded-middle:

\[\vdash s : \forall x \in X. \exists y \in \{0, 1\}. (U(x) \land y = 1) \lor (\neg U(x) \land y = 0) \]

Take \(U \) undecidable:

\[\vdash t \; s : \exists f \in \{0, 1\}^X. \forall x \in X. (U(x) \land f(x) = 1) \lor (\neg U(x) \land f(x) = 0) \]

\[\dashv i.e. \; \text{wit}(t \; s) \; \text{computes the uncomputable...} \]
Incompatibility with classical logic

Bad news

dependent sum + classical logic = ☠

Choice:

\[
\vdash t : \forall x \in A. \exists y \in B. P(x, y) \rightarrow \exists f \in B^A. \forall x \in A. P(x, f(x))
\]

Excluded-middle:

\[
\vdash s : \forall x \in X. \exists y \in \{0, 1\}. (U(x) \land y = 1) \lor (\neg U(x) \land y = 0)
\]

Take U undecidable:

\[
\vdash t \cdot s : \exists f \in \{0, 1\}^X. \forall x \in X. (U(x) \land f(x) = 1) \lor (\neg U(x) \land f(x) = 0)
\]

⇒ i.e. $\text{wit}(t \cdot s)$ computes the uncomputable...
Incompatibility with classical logic

Bad news

dependent sum + classical logic =

One can define:

\[H_0 := \text{call/cc}_\alpha (1, \text{throw}_\alpha (0, p)) : \exists x. x = 0 \]

and reach a contradiction:

\[(\text{wit } H_0, \text{prf } H_0) \rightarrow (1, \underbrace{\begin{array}{c} 0 = 0 \\ p \\ \exists x. x = 0 \end{array}}_{\text{p}}) \]

We need to:

\[\rightarrow \text{ share } \quad \rightarrow \text{ restrict dependent types} \]
Incompatibility with classical logic

Bad news

dependent sum + classical logic = ☠

One can define:

\[H_0 := \text{call/cc}_\alpha(1, \text{throw}_\alpha(0,p)) : \exists x. x = 0 \]

and reach a contradiction:

\[(\text{wit } H_0, \text{prf } H_0) \rightarrow \begin{cases} 0=0 \\ 1, p \\ \exists x. x=0 \end{cases} \]

We need to:

\[\mapsto \text{share} \quad \mapsto \text{restrict} \text{ dependent types} \]
Toward a solution?

- Restriction to countable choice:

\[AC_N : \forall x^\mathbb{N}. \exists y^B. P(x, y) \rightarrow \exists f^{\mathbb{N}\rightarrow B}. \forall x^\mathbb{N}. P(x, f(x)) \]

- Proof:

\[AC := \lambda H.(\lambda n.\text{if } n = 0 \text{ then } \text{wit}(H \ 0) \text{ else } \text{if } n = 1 \text{ then } \text{wit}(H \ 1) \text{ else } \ldots , \\\n\quad \lambda n.\text{if } n = 0 \text{ then } \text{prf}(H \ 0) \text{ else } \text{if } n = 1 \text{ then } \text{prf}(H \ 1) \text{ else } \ldots) \]
Toward a solution?

- Restriction to countable choice:

\[AC_N : \forall x^\mathbb{N}. \exists y^B.P(x,y) \rightarrow \exists f^{\mathbb{N}\rightarrow B}. \forall x^\mathbb{N}. P(x,f(x)) \]

- Proof:

\[AC_N := \lambda H. \text{let } H_0 = H \ 0 \ \text{in} \]
\[\text{let } H_1 = H \ 1 \ \text{in} \]
\[... \]
\[(\lambda n. \text{if } n = 0 \ \text{then} \ \text{wit } H_0 \ \text{else} \]
\[\text{if } n = 1 \ \text{then} \ \text{wit } H_1 \ \text{else} ... , \]
\[\lambda n. \text{if } n = 0 \ \text{then} \ \text{prf } H_0 \ \text{else} \]
\[\text{if } n = 1 \ \text{then} \ \text{prf } H_1 \ \text{else} ...) \]
Toward a solution?

- Restriction to countable choice:

\[AC_N : \forall x^\mathbb{N}.\exists y^B.P(x, y) \rightarrow \exists f^{\mathbb{N}\rightarrow B}.\forall x^\mathbb{N}.P(x, f(x)) \]

- Proof:

\[AC_N := \lambda H. \text{let } H_\infty = (H_0, H_1, \ldots, H_n, \ldots) \text{ in } \]
\[(\lambda n. \text{wit}(\text{nth } n \ H_\infty), \lambda n. \text{prf}(\text{nth } n \ H_\infty)) \]
Toward a solution?

- **Restriction to countable choice:**

\[
AC_N : \forall x^\mathbb{N}. \exists y^B. P(x, y) \rightarrow \exists f^{\mathbb{N} \rightarrow B}. \forall x^\mathbb{N}. P(x, f(x))
\]

- **Proof:**

\[
AC_N := \lambda H. \text{let } H_\infty = \text{cofix}^0_{bn}(H \ n, \ b(S(n))) \text{ in } \\
(\lambda n. \text{wit}(\text{nth} \ n \ H_\infty), \lambda n. \text{prf}(\text{nth} \ n \ H_\infty))
\]
dPA^ω (Herbelin’s recipe)

A proof system:
- **classical:**
 \[p, q ::= ... | \text{catch}_\alpha p | \text{throw}_\alpha p \]

- with stratified **dependent types**:
 - terms: \[t, u ::= ... | \text{wit} p \]
 - formulas: \[A, B ::= ... | \forall x^T A | \exists x^T A | \Pi_{(a:A)} B | t = u \]
 - proofs: \[p, q ::= ... | \lambda x. p | (t, p) | \lambda a. p \]

- **a syntactical restriction** of dependencies to NNF proofs
- **call-by-value and sharing:**
 \[p, q ::= ... | \text{let} a = q \text{ in } p \]

- with inductive and **coinductive** constructions:
 \[p, q ::= ... | \text{fix}^{t}_{bn} [p_0 | p_S] | \text{cofix}^{t}_{bn} p \]

- **lazy evaluation** for the cofix
dPA\(^{\omega}\) (Herbelin’s recipe)

A proof system:

- **classical**:

 \[p, q ::= \ldots \mid \text{catch}_{\alpha} p \mid \text{throw}_{\alpha} p \]

- with stratified **dependent types**:

 - terms: \(t, u ::= \ldots \mid \text{wit} \, p \)

 - formulas: \(A, B ::= \ldots \mid \forall x^T.A \mid \exists x^T.A \mid \Pi_{(a:A)}.B \mid t = u \)

 - proofs: \(p, q ::= \ldots \mid \lambda x. p \mid (t, p) \mid \lambda a. p \)

- a **syntactical restriction** of dependencies to NEF proofs
- **call-by-value** and **sharing**:

 \[p, q ::= \ldots \mid \text{let} \, a = q \, \text{in} \, p \]

- **with inductive and coinductive constructions**:

 \[p, q ::= \ldots \mid \text{fix}^t_{bn}[p_0 | p_S] \mid \text{cofix}^t_{bn} \, p \]

- **lazy evaluation** for the cofix
State of the art

Subject reduction

If $\Gamma \vdash p : A$ and $p \rightarrow q$, then $\Gamma \vdash q : A$.

Normalization

If $\Gamma \vdash p : A$ then p is normalizable.

Consistency

$\not\vdash_{dPA^\omega} \bot$
Roadmap

\[\text{dPA}^\omega [\text{Herbelin'12}]: \]
- control operators
- dependent types
- co-fixpoints
- sharing & laziness

Subject reduction

CPS-translation?

?-calculus

Normalization
Remark: CPS usually factorize through sequent calculi!

Roadmap
Constructive proof of DC
Semantic artifacts
Classical call-by-need
dL
Roadmap

A sequent calculus with dependent types for classical arithmetic
Roadmap

$\lambda_{[l\nu\tau\star]}$

\dPA^ω [Herbelin’12]:
- control operators
- dependent types
- co-fixpoints
- sharing & laziness

Subject reduction

typing/reduction preservation

\dLPA^ω?

- sequent calculus
- dependent types
- co-fixpoints
- sharing & laziness

Subject reduction

CPS-translation?

?-calculus

Normalization
Roadmap

\begin{itemize}
\item dPA^\omega [Herbelin’12]:
 \begin{itemize}
 \item control operators
 \item dependent types
 \item co-fixpoints
 \item sharing & laziness
 \end{itemize}
 \end{itemize}

\begin{itemize}
\item dLPA^\omega?
 \begin{itemize}
 \item sequent calculus
 \item dependent types
 \item co-fixpoints
 \item sharing & laziness
 \end{itemize}
 \end{itemize}

\begin{itemize}
\item \(?\)-calculus
\end{itemize}
Danvy’s semantic artifacts
CPS translation

Continuation-passing style translation: \([\cdot] : \text{source} \rightarrow \lambda^{\text{machin}}\)
- preserving reduction
 \[t \xrightarrow{1} t' \quad \Rightarrow \quad [t] \xrightarrow{\dagger} [t'] \]
- preserving typing
 \[\Gamma \vdash t : A \quad \Rightarrow \quad [\Gamma] \vdash [t] : [A] \]
- the type \([\bot]\) is not inhabited

Benefits

If \(\lambda^{\text{machin}}\) is sound and normalizing:
1. If \([t]\) normalizes, then \(t\) normalizes
2. If \(t\) is typed, then \(t\) normalizes
3. The source language is sound, \(i.e.\) there is no term \(\vdash t : \bot\)
CPS translation

Continuation-passing style translation:

\[
\llbracket \cdot \rrbracket : \text{source} \rightarrow \lambda^{\text{machin}}
\]

- preserving reduction
- preserving typing
- the type \([\bot]\) is not inhabited

Benefits

If \(\lambda^{\text{machin}}\) is sound and normalizing:

1. If \(\llbracket t \rrbracket\) normalizes, then \(t\) normalizes
2. If \(t\) is typed, then \(t\) normalizes
3. The source language is sound, i.e. there is no term \(\vdash t : \bot\)

Danvy’s methodology

1. an operational semantics
2. a small-step calculus or abstract machine
3. a continuation-passing style translation
4. a realizability model

Defunctionalized Interpreters for Call-by-Need Evaluation
Danvy et al. (2010)
The $\lambda\mu\tilde{\mu}$-calculus

Syntax:

(Proofs) \[p ::= a | \lambda a.p | \mu\alpha.c \]

(Contexts) \[e ::= \alpha | p \cdot e | \tilde{\mu}\alpha.c \]

(Commands) \[c ::= \langle p \parallel e \rangle \]

Typing rules:

\[
\begin{array}{c}
\Gamma \vdash t : A | \Delta \quad \Gamma \mid e : A \vdash \Delta \\
\hline
\langle t \parallel e \rangle : (\Gamma \vdash \Delta)
\end{array}
\]

\[
\begin{array}{c}
(a : A) \in \Gamma \\
\hline
\Gamma \vdash a : A \mid \Delta
\end{array}
\]

\[
\begin{array}{c}
\Gamma, a : A \vdash p : B \mid \Delta \\
\hline
\Gamma \vdash \lambda a.p : A \rightarrow B \mid \Delta
\end{array}
\]

\[
\begin{array}{c}
(\alpha : A) \in \Delta \\
\hline
\Gamma \mid \alpha : A \vdash \Delta
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : B \vdash \Delta \\
\hline
\Gamma \mid p \cdot e : A \rightarrow B \vdash \Delta
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash \mu\alpha.c : A \mid \Delta \\
\hline
\Gamma \mid \tilde{\mu}\alpha.c : A \vdash \Delta
\end{array}
\]

The duality of computation
Curien/Herbelin (2000)
The $\lambda\mu\tilde{\mu}$-calculus

Syntax:

(Proofs) \[p ::= a \mid \lambda a.p \mid \mu\alpha.c \]

(Contexts) \[e ::= \alpha \mid p \cdot e \mid \tilde{\mu}a.c \]

(Commands) \[c ::= \langle p \parallel e \rangle \]

Typing rules:

\[
\frac{\Gamma \vdash A \mid \Delta \quad \Gamma \mid A \vdash \Delta}{\Gamma \vdash \Delta} \quad (\Gamma \vdash \Delta)
\]

\[
\frac{A \in \Gamma}{\Gamma \vdash A \mid \Delta}
\]

\[
\frac{\Gamma, A \vdash B \mid \Delta}{\Gamma \vdash A \rightarrow B \mid \Delta}
\]

\[
\frac{\Gamma \vdash \Delta, \ A}{\Gamma \vdash A \mid \Delta}
\]

\[
\frac{A \in \Delta}{\Gamma \mid A \vdash \Delta}
\]

\[
\frac{\Gamma \vdash A \mid \Delta \quad \Gamma \mid B \vdash \Delta}{\Gamma \mid A \rightarrow B \vdash \Delta}
\]

\[
\frac{\Gamma, \ A \vdash \Delta}{\Gamma \mid A \vdash \Delta}
\]

\[
\frac{\Gamma \vdash \Delta, \ A}{\Gamma \vdash A \mid \Delta}
\]

The duality of computation by Curien/Herbelin (2000)
The $\lambda\mu\tilde{\mu}$-calculus

Syntax:

(Proofs) \[p ::= a \mid \lambda a. p \mid \mu \alpha. c \]

(Contexts) \[e ::= \alpha \mid p \cdot e \mid \tilde{\mu} \alpha. c \]

(Commands) \[c ::= \langle p \parallel e \rangle \]

Typing rules:

\[
\frac{\Gamma \vdash t : A \mid \Delta \quad \Gamma \mid e : A \vdash \Delta}{\langle t \parallel e \rangle : (\Gamma \vdash \Delta)}
\]

\[
\frac{(a : A) \in \Gamma}{\Gamma \vdash a : A \mid \Delta}
\]

\[
\frac{\Gamma, a : A \vdash p : B \mid \Delta}{\Gamma \vdash \lambda a. p : A \to B \mid \Delta}
\]

\[
\frac{c : (\Gamma \vdash \Delta, \alpha : A)}{\Gamma \vdash \mu \alpha. c : A \mid \Delta}
\]

\[
\frac{(\alpha : A) \in \Delta}{\Gamma \mid \alpha : A \vdash \Delta}
\]

\[
\frac{\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : B \vdash \Delta}{\Gamma \mid p \cdot e : A \to B \vdash \Delta}
\]

\[
\frac{c : (\Gamma, a : A \vdash \Delta)}{\Gamma \mid \tilde{\mu} a. c : A \vdash \Delta}
\]
The λμ��-calculus

Syntax:

(Proofs) \(p ::= a \mid \lambda a.p \mid \mu \alpha.c \)

(Contexts) \(e ::= \alpha \mid p \cdot e \mid \tilde{\mu}a.c \)

(Commands) \(c ::= \langle p \parallel e \rangle \)

Reduction:

\[\langle \lambda a.p \parallel q \cdot e \rangle \rightarrow \langle q \parallel \tilde{\mu}a.\langle p \parallel e \rangle \rangle \]

\[\langle p \parallel \tilde{\mu}a.c \rangle \rightarrow c[p/a] \quad p \in \mathcal{P} \]

\[\langle \mu \alpha.c \parallel e \rangle \rightarrow c[e/\alpha] \quad e \in \mathcal{E} \]

Critical pair:

\[\langle \mu \alpha.c \parallel \tilde{\mu}a.c' \rangle \]

\[c[\tilde{\mu}a.c'/\alpha] \]

\[c'[\mu \alpha.c/a] \]
The $\lambda\mu\tilde{\mu}$-calculus

Syntax:

<table>
<thead>
<tr>
<th>Proofs</th>
<th>$p ::= V \mid \mu \alpha. c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contexts</td>
<td>$e ::= E \mid \tilde{\mu} a \cdot c$</td>
</tr>
<tr>
<td>Commands</td>
<td>$c ::= \langle p \parallel e \rangle$</td>
</tr>
</tbody>
</table>

Values

$V ::= a \mid \lambda a. p$

Co-values

$E ::= \alpha \mid p \cdot e$

Reduction:

\[
\langle \lambda a. p \parallel q \cdot e \rangle \rightarrow \langle q \parallel \tilde{\mu} a. \langle p \parallel e \rangle \rangle
\]

\[
\langle p \parallel \tilde{\mu} a. c \rangle \rightarrow c[p/a]
\]

\[
\langle \mu \alpha. c \parallel e \rangle \rightarrow c[e/\alpha]
\]

Critical pair:

\[
\langle \mu \alpha. c \parallel \tilde{\mu} a. c' \rangle
\]

- CbV: $c[\tilde{\mu} a. c'/\alpha]$
- CbN: $c'[\mu \alpha. c/a]$
Call-by-name $\lambda\mu\tilde{\mu}$-calculus

Syntax:

(Proofs) $p ::= V \mid \mu\alpha.c$

(Values) $V ::= a \mid \lambda a.p$

(Contexts) $e ::= E \mid \tilde{\mu}a.c$

(Co-values) $E ::= \alpha \mid p \cdot e$

(Command) $c ::= \langle p \parallel e \rangle$

Reduction rules:

$\langle p \parallel \tilde{\mu}a.c \rangle \rightarrow c[p/a]$

$\langle \mu\alpha.c \parallel E \rangle \rightarrow c[E/\alpha]$

$\langle \lambda a.p \parallel q \cdot e \rangle \rightarrow \langle q \parallel \tilde{\mu}a.(p \parallel e) \rangle$
Semantic artifacts

(Proofs) \(p ::= V \mid \mu \alpha . c \)
(Values) \(V ::= a \mid \lambda a . p \)
(Contexts) \(e ::= E \mid \tilde{\mu} a . c \)
(Co-values) \(E ::= \alpha \mid p \cdot e \)

(Command) \(c ::= \langle p \parallel e \rangle \)

Small steps

\[
\begin{align*}
\langle p \parallel \tilde{\mu} a . c \rangle_e & \rightsquigarrow c_e[p/a] \\
\langle p \parallel E \rangle_e & \rightsquigarrow \langle p \parallel E \rangle_p \\
\langle \mu \alpha . c \parallel E \rangle_p & \rightsquigarrow c_e[E/\alpha] \\
\langle V \parallel E \rangle_p & \rightsquigarrow \langle V \parallel E \rangle_E \\
\langle V \parallel q \cdot e \rangle_E & \rightsquigarrow \langle V \parallel q \cdot e \rangle_V \\
\langle \lambda a . p \parallel q \cdot e \rangle_V & \rightsquigarrow \langle q \parallel \tilde{\mu} a . \langle p \parallel e \rangle \rangle_e
\end{align*}
\]
Semantic artifacts

- **(Proofs)** \(p ::= V \mid \mu \alpha.c \)**
- **(Values)** \(V ::= a \mid \lambda a.p \)**
- **(Contexts)** \(e ::= E \mid \tilde{\mu}a.c \)**
- **(Co-values)** \(E ::= \alpha \mid p \cdot e \)**
- **(Commands)** \(c ::= \langle p \parallel e \rangle \)**

Small steps

<table>
<thead>
<tr>
<th>Expression</th>
<th>Reduction to</th>
<th>Value Substitution</th>
<th>CPS Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e) (\langle p \parallel \tilde{\mu}a.c \rangle_e)</td>
<td>(\leadsto)</td>
<td>(c_e[p/a])</td>
<td>([\tilde{\mu}a.c]_e p \triangleq (\lambda a.[c]_c) p)</td>
</tr>
<tr>
<td>(p) (\langle p \parallel E \rangle_p)</td>
<td>(\leadsto)</td>
<td>(\langle p \parallel E \rangle_p)</td>
<td>([E]_e p \triangleq p [E]_E)</td>
</tr>
<tr>
<td>(p) (\langle \mu \alpha.c \parallel E \rangle_p)</td>
<td>(\leadsto)</td>
<td>(c_e[E/\alpha])</td>
<td>([\mu \alpha.c]_p E \triangleq (\lambda \alpha.[c]_c) E)</td>
</tr>
<tr>
<td>(p) (\langle V \parallel E \rangle_p)</td>
<td>(\leadsto)</td>
<td>(\langle V \parallel E \rangle_p)</td>
<td>([V]_p E \triangleq E [V]_V)</td>
</tr>
<tr>
<td>(E) (\langle V \parallel q \cdot e \rangle_E)</td>
<td>(\leadsto)</td>
<td>(\langle V \parallel q \cdot e \rangle_E)</td>
<td>([q \cdot e]_E V \triangleq V [q]_p [e]_e)</td>
</tr>
<tr>
<td>(V) (\langle \lambda a.p \parallel q \cdot e \rangle_V)</td>
<td>(\leadsto)</td>
<td>(\langle q \parallel \tilde{\mu}a.\langle p \parallel e \rangle \rangle_e)</td>
<td>([\lambda a.p]_V q e \triangleq (\lambda a.e [p]_p) q)</td>
</tr>
</tbody>
</table>
Semantic artifacts

(Proofs) \(p ::= V \mid \mu\alpha.c \)

(Values) \(V ::= a \mid \lambda a.p \)

(Contexts) \(e ::= E \mid \tilde{\mu}a.c \)

(Co-values) \(E ::= \alpha \mid p \cdot e \)

(Command) \(c ::= \langle p \parallel e \rangle \)

Small steps

\[\begin{array}{ll}
\langle p \parallel \tilde{\mu}a.c \rangle_e & \rightsquigarrow \quad c_e[p/a] \\
\langle p \parallel E \rangle_e & \rightsquigarrow \quad \langle p \parallel E \rangle_p \\
\langle \mu\alpha.c \parallel E \rangle_p & \rightsquigarrow \quad c_e[E/\alpha] \\
\langle V \parallel E \rangle_p & \rightsquigarrow \quad \langle V \parallel E \rangle_E \\
\langle V \parallel q \cdot e \rangle_E & \rightsquigarrow \quad \langle V \parallel q \cdot e \rangle_V \\
\langle \lambda a.p \parallel q \cdot e \rangle_V & \rightsquigarrow \quad \langle q \parallel \tilde{\mu}a.\langle p \parallel e \rangle \rangle_e \\
\end{array} \]

CPS

\[\begin{array}{ll}
[\tilde{\mu}a.c]_e p \triangleq (\lambda a.[c]_c)_p \\
[E]_e p \triangleq p [E]_E \\
[\mu\alpha.c]_p E \triangleq (\lambda \alpha.[c]_c)_E \\
[V]_p E \triangleq E [V]_V \\
[q \cdot e]_E V \triangleq V [q]_p [e]_e \\
[\lambda a.p]_V q e \triangleq (\lambda a.e [p]_p)_q \\
\end{array} \]

\[c \rightsquigarrow c' \quad \Rightarrow \quad [[c]]_c \xrightarrow{\beta} [[c']]_c \]
Semantic artifacts

(Proofs) \(p ::= V \mid \mu \alpha . c \)

(Values) \(V ::= a \mid \lambda a . p \)

(Contexts) \(e ::= E \mid \tilde{\mu} a . c \)

(Co-values) \(E ::= \alpha \mid p \cdot e \)

(Commands) \(c ::= \langle p \parallel e \rangle \)

CPS

<table>
<thead>
<tr>
<th>Expression</th>
<th>CPS Form</th>
<th>Types translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\tilde{\mu} a . c]_e p \triangleq (\lambda a . [c]_c) p)</td>
<td>([A]_e \triangleq [A]_p \rightarrow \bot)</td>
<td></td>
</tr>
<tr>
<td>([E]_e p \triangleq p [E]_E)</td>
<td>([A]_p \triangleq [A]_E \rightarrow \bot)</td>
<td></td>
</tr>
<tr>
<td>([\mu \alpha . c]_p E \triangleq (\lambda \alpha . [c]_c) E)</td>
<td>([A]_E \triangleq [A]_V \rightarrow \bot)</td>
<td></td>
</tr>
<tr>
<td>([V]_p E \triangleq E [V]_V)</td>
<td>([A \rightarrow B]_V \triangleq [A]_p \rightarrow [A]_e \rightarrow \bot)</td>
<td></td>
</tr>
<tr>
<td>([q \cdot e]_E V \triangleq V [q]_p [e]_e)</td>
<td>([A \rightarrow B]_V \triangleq [A]_p \rightarrow [A]_e \rightarrow \bot)</td>
<td></td>
</tr>
<tr>
<td>([\lambda a . p]_V q e \triangleq (\lambda a . e [p]_p) q)</td>
<td>([A \rightarrow B]_V \triangleq [A]_p \rightarrow [A]_e \rightarrow \bot)</td>
<td></td>
</tr>
</tbody>
</table>

\[\Gamma \vdash p : A \mid \Delta \quad \Rightarrow \quad [[\Gamma]]_p, [[\Delta]]_E \vdash [[p]]_p : [[A]]_p\]
Consequences

Normalization
Typed commands of the call-by-name $\lambda\mu\tilde{\mu}$-calculus normalize.

Inhabitation
There is no simply-typed λ-term t such that $\vdash t : [[\bot]]_p$.

Proof. $[[\bot]]_p = (\bot \rightarrow \bot) \rightarrow \bot$ and $\lambda x . x$ is of type $\bot \rightarrow \bot$.

Soundness
There is no proof p such that $\vdash p : \bot \mid$.
Realizability à la Krivine (1/2)

Intuition
- falsity value $\|A\|$: contexts, opponent to A
- truth value $|A|$: proofs, player of A
- pole \bot: commands, referee

\[
\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot?
\]

$\leadsto \bot \subset \Lambda \boxtimes \Pi$ closed by anti-reduction

Truth value defined by orthogonality:

\[
|A| = \|A\| \downarrow = \{ p \in \Lambda : \forall e \in \|A\|, \langle p \parallel e \rangle \in \bot \}
\]
Realizability à la Krivine (1/2)

Intuition

- falsity value $\|A\|$: contexts, opponent to A
- truth value $|A|$: proofs, player of A
- pole \bot: commands, referee

\[\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot \? \]

$\sim \bot \subset \Lambda \star \Pi$ closed by anti-reduction

Truth value defined by orthogonality:

\[|A| = \|A\| \downarrow = \{ p \in \Lambda : \forall e \in \|A\|, \langle p \parallel e \rangle \in \bot \} \]
Realizability à la Krivine (1/2)

Intuition

- falsity value $\|A\|$: contexts, opponent to A
- truth value $|A|$: proofs, player of A
- pole \bot: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot?$$

$\rightsquigarrow \bot \subset \Lambda \star \Pi$ closed by anti-reduction

Truth value defined by orthogonality:

$|A| = \|A\| \bot = \{p \in \Lambda : \forall e \in \|A\|, \langle p \parallel e \rangle \in \bot\}$
Realizability à la Krivine (1/2)

Intuition

- falsity value $\|A\|$: contexts, opponent to A
- truth value $|A|$: proofs, player of A
- pole \bot: commands, referee

$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot$?

$\leadsto \bot \subseteq \Lambda \star \Pi$ closed by anti-reduction

Truth value defined by orthogonality:

$|A| = \|A\| \bot = \{ p \in \Lambda : \forall e \in \|A\|, \langle p \parallel e \rangle \in \bot \}$
Realizability à la Krivine (1/2)

Intuition

- falsity value $\|A\|$: contexts, opponent to A
- truth value $|A|$: proofs, player of A
- pole \bot: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot ?$$

$\rightsquigarrow \bot \subset \Lambda \star \Pi$ closed by anti-reduction

Truth value defined by orthogonality:

$$|A| = \|A\| \bot = \{ p \in \Lambda : \forall e \in \|A\|, \langle p \parallel e \rangle \in \bot \}$$
Realizability à la Krivine (1/2)

Intuition

- falsity value $\|A\|$: contexts, opponent to A
- truth value $|A|$: proofs, player of A
- pole \bot: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot?$$

$\leadsto \bot \subset \Lambda \star \Pi$ closed by anti-reduction

Truth value defined by orthogonality:

$$|A| = \|A\| \upharpoonright \bot = \{ p \in \Lambda : \forall e \in \|A\|, \langle p \parallel e \rangle \in \bot \}$$
Semantic artifacts++

(Terms) \(p ::= \mu \alpha . c \mid a \mid V \)

(Contexts) \(e ::= \tilde{\mu} a . c \mid E \)

(Values) \(V ::= \lambda a . p \)

(Co-values) \(E ::= \alpha \mid p \cdot e \)

Small steps

\[
\begin{align*}
\langle p \parallel \tilde{\mu} a . c \rangle_e & \rightsquigarrow c_e[p/a] \\
\langle p \parallel E \rangle_e & \rightsquigarrow \langle p \parallel E \rangle_p \\
\langle \mu \alpha . c \parallel E \rangle_p & \rightsquigarrow c_e[E/\alpha] \\
\langle V \parallel E \rangle_p & \rightsquigarrow \langle V \parallel E \rangle_E \\
\langle V \parallel q \cdot e \rangle_E & \rightsquigarrow \langle V \parallel q \cdot e \rangle_V \\
\langle \lambda a . p \parallel q \cdot e \rangle_V & \rightsquigarrow \langle q \parallel \tilde{\mu} a . \langle p \parallel e \rangle \rangle_e
\end{align*}
\]
Semantic artifacts++

Terms
\[p ::= \mu a.c \mid a \mid V \]

Values
\[V ::= \lambda a.p \]

Contexts
\[e ::= \tilde{\mu} a.c \mid E \]

Co-values
\[E ::= \alpha \mid p \cdot e \]

Small steps

\[e \]
\[\langle p \parallel \tilde{\mu} a.c \rangle_e \rightsquigarrow c_e[p/a] \]
\[\langle p \parallel E \rangle_e \rightsquigarrow \langle p \parallel E \rangle_p \]

\[p \]
\[\langle \mu a.c \parallel E \rangle_p \rightsquigarrow c_e[E/\alpha] \]
\[\langle V \parallel E \rangle_p \rightsquigarrow \langle V \parallel E \rangle_E \]

\[E \]
\[\langle V \parallel q \cdot e \rangle_E \rightsquigarrow \langle V \parallel q \cdot e \rangle_V \]

\[\langle \lambda a.p \parallel q \cdot e \rangle_V \rightsquigarrow \langle q \parallel \tilde{\mu} a.\langle p \parallel e \rangle \rangle_e \]

Realizability

\[\| A \|_e \triangleq \| A \|_p \upharpoonright \]
\[| A \|_p \triangleq \| A \|_E \upharpoonright \]
\[\| A \rightarrow B \|_E \triangleq \{ q \cdot e : q \in | A \|_p \wedge e \in \| B \|_e \} \]
Extension to second-order

\[
\frac{\Gamma \mid e : A[n/x] \vdash \Delta}{\Gamma \mid e : \forall x.A \vdash \Delta} \quad (\forall^1_i)
\]

\[
\frac{\Gamma \mid e : A[B/X] \vdash \Delta}{\Gamma \mid e : \forall X.A \vdash \Delta} \quad (\forall^2_i)
\]

\[
\frac{\Gamma \vdash p : A \mid \Delta \quad x \notin \text{FV}(\Gamma, \Delta)}{\Gamma \vdash p : \forall x.A \mid \Delta} \quad (\forall^1_r)
\]

\[
\frac{\Gamma \vdash p : A \mid \Delta \quad X \notin \text{FV}(\Gamma, \Delta)}{\Gamma \vdash p : \forall X.A \mid \Delta} \quad (\forall^2_r)
\]

(Curry-style)
Realizability à la Krivine (2/2)

Standard model \mathbb{N} for 1$^\text{st}$-order expressions

Definition (Pole)

$\bot \subseteq \Lambda \times \Pi$ of commands s.t.:

$$\forall c, c', (c' \in \bot \land c \rightarrow c') \Rightarrow c \in \bot$$

Truth value (player):

$$|A|_p = \Vert A \Vert_E^\bot = \{ p \in \Lambda : \forall e \in \Vert A \Vert, \langle p \parallel e \rangle \in \bot \}$$

Falsity value (opponent):

$$\Vert F(e_1, \ldots, e_k) \Vert_E = F([e_1], \ldots, [e_k])$$

$$\Vert A \rightarrow B \Vert_E = \{ q \cdot e : q \in |A|_p \land e \in \Vert B \Vert_e \}$$

$$\Vert \forall x. A \Vert_E = \bigcup_{n \in \mathbb{N}} \Vert A[n/x] \Vert_E$$

$$\Vert \forall X. A \Vert_E = \bigcup_{F : \mathbb{N}^k \rightarrow \mathcal{P}(\Pi)} \Vert A[\bar{F}/X] \Vert_E$$

$$|A|_p = \Vert A \Vert_E^\bot = \{ p : \forall e \in \Vert A \Vert_E, \langle p \parallel e \rangle \in \bot \}$$

$$\Vert A \Vert_e = |A|_p^\bot = \{ e : \forall p \in |A|_p, \langle p \parallel e \rangle \in \bot \}$$
Realizability à la Krivine (2/2)

Standard model \(\mathbb{N} \) for 1\(^{\text{st}}\)-order expressions

Definition (Pole)

\[\bot \subseteq \Lambda \times \Pi \text{ of commands s.t.:} \]

\[\forall c, c', (c' \in \bot \land c \to c') \implies c \in \bot \]

Truth value (player):

\[|A|_p = \|A\|_E \bot = \{ p \in \Lambda : \forall e \in \|A\|, \langle p \parallel e \rangle \in \bot \} \]

Falsity value (opponent):

\[\| \hat{F}(e_1, \ldots, e_k) \|_E = F([e_1], \ldots, [e_k]) \]
\[\| A \to B \|_E = \{ q \cdot e : q \in |A|_p \land e \in \|B\|_e \} \]
\[\| \forall x.A \|_E = \bigcup_{n \in \mathbb{N}} \| A[n/x] \|_E \]
\[\| \forall X.A \|_E = \bigcup_{F : \mathbb{N}^k \to \mathcal{P}(\Pi)} \| A[\hat{F}/X] \|_E \]
\[|A|_p = \|A\|_E \bot = \{ p : \forall e \in \|A\|_E, \langle p \parallel e \rangle \in \bot \} \]
\[\|A\|_e = |A|_p \bot = \{ e : \forall p \in |A|_p, \langle p \parallel e \rangle \in \bot \} \]
Realizability à la Krivine (2/2)

Standard model \(\mathbb{N} \) for 1st-order expressions

Definition (Pole)

\(\bot \subseteq \Lambda \times \Pi \) of commands s.t.:

\[\forall c, c', (c' \in \bot \land c \rightarrow c') \Rightarrow c \in \bot \]

Truth value (player):

\[|A|_p = \|A\|_E \bot = \{p \in \Lambda : \forall e \in \|A\|, \langle p \parallel e \rangle \in \bot \} \]

Falsity value (opponent):

\[\|F(e_1, \ldots, e_k)\|_E = F([e_1], \ldots, [e_k]) \]
\[\|A \rightarrow B\|_E = \{q \cdot e : q \in |A|_p \land e \in \|B\|_e \} \]
\[\|\forall x.A\|_E = \bigcup_{n \in \mathbb{N}} \|A[n/x]\|_E \]
\[\|\forall X.A\|_E = \bigcup_{F: \mathbb{N}^k \rightarrow \mathcal{P}^{(\Pi)}} \|A[\hat{F}/X]\|_E \]
\[|A|_p = \|A\|_E \bot = \{p : \forall e \in \|A\|_E, \langle p \parallel e \rangle \in \bot \} \]
\[\|A\|_e = |A|_p \bot = \{e : \forall p \in |A|_p, \langle p \parallel e \rangle \in \bot \} \]
Adequacy

Valuation ρ:

$$\rho(x) \in \mathbb{N} \quad \rho(X) : \mathbb{N}^k \rightarrow \mathcal{P}(\Pi)$$

Substitution σ:

$$\sigma ::= \varepsilon \mid \sigma, a := p \mid \sigma, \alpha ::= E$$

$$\sigma \models \Gamma \overset{\Delta}{=} \begin{cases}
\sigma(a) \in |A|_p \\
\forall (a : A) \in \Gamma \\
\sigma(\alpha) \in \|A\|_E \\
\forall (\alpha : A \bot) \in \Gamma
\end{cases}$$

If $\sigma \models (\Gamma \cup \Delta)[\rho]$, then:

1. $\Gamma \vdash p : A \mid \Delta \Rightarrow p[\sigma] \in |A[\rho]|_p$
2. $\Gamma \mid e : A \vdash \Delta \Rightarrow e[\sigma] \in \|A[\rho]\|_e$
3. $c : (\Gamma \vdash \Delta) \Rightarrow c[\sigma] \in \bot$

Proof. By mutual induction over the typing derivation.
Results

Normalizing commands

\[\bot \downarrow \triangleq \{ c : c \text{ normalizes} \} \text{ defines a valid pole.} \]

Proof. If \(c \rightarrow c' \) and \(c' \) normalizes, so does \(c \).

Normalization

For any command \(c \), if \(c : \Gamma \vdash \Delta \), then \(c \) normalizes.

Proof. By adequacy, any typed command \(c \) belongs to the pole \(\bot \downarrow \).

Soundness

There is no proof \(p \) such that \(\vdash p : \bot \).

Proof. Otherwise, \(p \in \bot \vdash = \Pi_{\bot} \) for any pole, absurd (\(\bot \triangleq \emptyset \)).
Classical call-by-need
Reminder

\[\lambda_{[l\nu\tau\star]} \]

dPA^\omega [Herbelin'12]:
- control operators
- dependent types
- co-fixpoints
- sharing & laziness

Subject reduction

typing/reduction preservation

dLPA^\omega?
- sequent calculus
- dependent types
- co-fixpoints
- sharing & laziness

Subject reduction

CPS-translation?

?-calculus

Normalization
A constructive proof of DC
Semantic artifacts
Classical call-by-need
dL
dLPA

Classical call-by-need

The $\lambda[l\nu\tau\star]$-calculus:
- a sequent calculus with explicit “stores”
- Danvy’s method of semantics artifact:
 1. derive a small-step reduction system
 2. derive context-free small-step reduction rules
 3. derive an (untyped) CPS

Questions:
- Does it normalize?
- Can the CPS be typed?
- Can we define a realizability interpretation?
The $\bar{\lambda}[l\nu\tau\star]$-calculus

Syntax:

| Proofs | $p ::= V | \mu\alpha.c$ |
|--------|--------------------------|
| Weak values | $V ::= v | a$ |
| Strong values | $v ::= \lambda a.p | k$ |

Proofs	$e ::= E	\tilde{\mu}a.c$			
Contexts	$E ::= \alpha	F	\tilde{\mu}[a].\langle a		F \rangle \tau$
Catchable contexts	$F ::= p \cdot E	\kappa$			

| Commands | $c ::= \langle p || e \rangle$ |
|----------|--------------------------|

| Closures | $l ::= c\tau$ |

| Store | $\tau ::= e | \tau[a := p]$ |

Reduction rules:

Lazy storage	$\langle p		\tilde{\mu}a.c \rangle \tau \rightarrow c\tau[a := p]$				
Lookup	$\langle \mu\alpha.c		E \rangle \tau \rightarrow (c[E/\alpha])\tau$				
Forced eval.	$\langle a		F \rangle \tau[a := p] \tau' \rightarrow \langle p		\tilde{\mu}[a].\langle a		F \rangle \tau' \rangle \tau$
Forced eval.	$\langle V		\tilde{\mu}[a].\langle a		F \rangle \tau' \rangle \tau \rightarrow \langle V		F \rangle \tau[a := V] \tau'$
Forced eval.	$\langle \lambda a.p		q \cdot E \rangle \tau \rightarrow \langle q		\tilde{\mu}a.\langle p		E \rangle \rangle \tau$
Semantic artifacts

Small steps:

\[
\begin{align*}
e & :
\langle p \parallel \tilde{\mu}a.c \rangle_e \tau \rightarrow c_e \tau [a := p] \\
p & :
\langle \mu\alpha.c \parallel E \rangle_p \tau \rightarrow (c[E/\alpha]) \tau \\
E & :
\langle V \parallel F \rangle_{E\tau} \rightarrow \langle V \parallel F \rangle_{V\tau} \\
V & :
\langle a \parallel F \rangle_{V\tau} [a := p] \tau' \rightarrow \langle p \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau'} \rangle_p \tau \\
F & :
\langle \lambda a.p \parallel q \cdot E \rangle_{F\tau} \rightarrow \langle q \parallel \tilde{\mu}a.\langle p \parallel E \rangle \rangle_e \tau
\end{align*}
\]
Semantic artifacts

CPS :

\[
\begin{align*}
\llbracket \langle p \parallel e \rangle \tau \rrbracket & := [e]_{e} \llbracket \tau \rrbracket \llbracket p \rrbracket_{p} \\
\llbracket \tilde{\mu} a . c \rrbracket_{e} & := \lambda \tau p . \llbracket c \rrbracket \tau [a := p] \\
\llbracket E \rrbracket_{e} & := \lambda \tau p . p \tau \llbracket E \rrbracket_{E} \\
\llbracket \mu \alpha . c \rrbracket_{p} & := \lambda \tau E . (\llbracket c \rrbracket_{c} \tau)[E/\alpha] \\
\llbracket V \rrbracket_{p} & := \lambda \tau E . E \tau \llbracket V \rrbracket_{V} \\
\llbracket \tilde{\mu} [a] . \langle a \parallel F \rangle \tau' \rrbracket_{E} & := \lambda \tau V . V \tau [a := V] \tau' \llbracket F \rrbracket_{F} \\
\llbracket F \rrbracket_{E} & := \lambda \tau V . V \tau \llbracket F \rrbracket_{F} \\
\llbracket a \rrbracket_{v} & := \lambda \tau F . \tau (a) \tau (\lambda \tau V . V \tau [a := V] \tau' \llbracket F \rrbracket_{F}) \\
\llbracket \lambda a . p \rrbracket_{v} & := \lambda \tau F . F \tau (\lambda q \tau E . \llbracket p \rrbracket_{p} \tau [a := q] E) \\
\llbracket q \cdot E \rrbracket_{F} & := \lambda \tau v . v [q]_{p} \tau \llbracket E \rrbracket_{E}
\end{align*}
\]
Semantic artifacts

Small-step:

<table>
<thead>
<tr>
<th>e</th>
<th>(\langle p \parallel \tilde{\mu}a.c \rangle_e \tau \rightarrow \ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\langle p \parallel E \rangle_e \tau \rightarrow \ldots)</td>
</tr>
<tr>
<td>p</td>
<td>(\langle \mu\alpha.c \parallel E \rangle_p \tau \rightarrow \ldots)</td>
</tr>
<tr>
<td></td>
<td>(\langle V \parallel E \rangle_p \tau \rightarrow \ldots)</td>
</tr>
<tr>
<td>E</td>
<td>(\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle \tau' \rangle_E \tau \rightarrow \ldots)</td>
</tr>
<tr>
<td></td>
<td>(\langle V \parallel F \rangle_E \tau \rightarrow \ldots)</td>
</tr>
<tr>
<td>V</td>
<td>(\langle a \parallel F \rangle_V \tau[a := p] \tau' \rightarrow \ldots)</td>
</tr>
<tr>
<td></td>
<td>(\langle \nu \parallel F \rangle_V \tau \rightarrow \ldots)</td>
</tr>
<tr>
<td>F</td>
<td>(\langle \nu \parallel q \cdot E \rangle_F \tau \rightarrow \ldots)</td>
</tr>
<tr>
<td>\nu</td>
<td>(\langle \lambda a.p \parallel q \cdot E \rangle_{\nu} \tau \rightarrow \ldots)</td>
</tr>
</tbody>
</table>
A constructive proof of DC

Semantic artifacts

Classical call-by-need
dL
dLPA

Realizability:

\[(\bot \subseteq ?)\]

\[\|A\|_e := \{ e? \in |A|_p \ \bot \}\]

\[|A|_p := \{ p? \in \|A\|_E \ \bot \}\]

\[\|A\|_E := \{ E? \in |A|_V \ \bot \}\]

\[|A|_V := \{ V? \in \|A\|_F \ \bot \}\]

\[\|A\|_F := \{ F? \in |A|_V \ \bot \}\]

\[|A \rightarrow B|_v := \{ \lambda a.p? : q? \in |A|_t \Rightarrow p[q/a]? \in |B|_t\}\]
Semantic artifacts

Small-step:

- e
 \[\langle \mu \alpha . c \| E \rangle_{p \tau} \rightarrow \ldots \]
 \[\langle p \| E \rangle_{e \tau} \rightarrow \ldots \]

- p
 \[\langle V \| E \rangle_{p \tau} \rightarrow \ldots \]
 \[\langle \mu \alpha . c \| E \rangle_{p \tau} \rightarrow \ldots \]

- E
 \[\langle V \| \tilde{\mu}[a] . \langle a \| F \rangle_{\tau'} \rangle_{E \tau} \rightarrow \ldots \]
 \[\langle V \| F \rangle_{E \tau} \rightarrow \ldots \]

- V
 \[\langle a \| F \rangle_{V \tau} [a := p]_{\tau'} \rightarrow \ldots \]
 \[\langle \nu \| F \rangle_{V \tau} \rightarrow \ldots \]

- F
 \[\langle \nu \| q \cdot E \rangle_{F \tau} \rightarrow \ldots \]

- ν
 \[\langle \lambda a . p \| q \cdot E \rangle_{\nu \tau} \rightarrow \ldots \]

Realizability:

\[(\bot \subseteq \Lambda \times \Pi \times \tau) \]

\[\| A \|_{e} := \{ e? \in |A|_{p} \} \]

\[|A|_{p} := \{ p? \in \| A\|_{E} \} \]

\[|A|_{E} := \{ E? \in \| A\|_{V} \} \]

\[|A|_{V} := \{ V? \in \| A\|_{F} \} \]

\[|A|_{F} := \{ F? \in \| A\|_{\nu} \} \]

\[|A \rightarrow B|_{\nu} := \{ \lambda a . p? : q? \in |A|_{t} \Rightarrow p[q/a]? \in |B|_{t} \} \]
A constructive proof of DC

Semantic artifacts

Classical call-by-need
dL
dLPA

Small-step:

\[\langle p \parallel \mu a.c \rangle_e \tau \rightarrow \ldots \]
\[\langle p \parallel E \rangle_e \tau \rightarrow \ldots \]
\[\langle \mu \alpha.c \parallel E \rangle_p \tau \rightarrow \ldots \]
\[\langle V \parallel E \rangle_p \tau \rightarrow \ldots \]
\[\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle \tau' \rangle_E \tau \rightarrow \ldots \]
\[\langle V \parallel F \rangle_E \tau \rightarrow \ldots \]
\[\langle a \parallel F \rangle_V \tau [a := p] \tau' \rightarrow \ldots \]
\[\langle v \parallel F \rangle_V \tau \rightarrow \ldots \]
\[\langle v \parallel q \cdot E \rangle_F \tau \rightarrow \ldots \]
\[\langle \lambda a.p \parallel q \cdot E \rangle_v \tau \rightarrow \ldots \]

Realizability:

\[(\bot \subseteq \Lambda \times \Pi \times \tau) \]
\[\|A\|_e := \{(e|\tau) \in |A|_p \bot \} \]
\[|A|_p := \{(p|\tau) \in \|A\|_E \bot \} \]
\[\|A\|_E := \{(E|\tau) \in |A|_V \bot \} \]
\[|A|_V := \{(V|\tau) \in \|A\|_F \bot \} \]
\[\|A\|_F := \{(F|\tau) \in |A|_v \bot \} \]
\[|A \rightarrow B|_v := \{(\lambda a.p|\tau) : (q|\tau') \in |A|_t \Rightarrow (p|\tau\tau'[a := q]) \in |B|_t \} \]
Realizability interpretation

A few novelties:

- **Term-in-store** \((t|\tau)\):

\[
FV(t) \subseteq \text{dom}(\tau), \ \tau \text{ closed}
\]

- **Pole**: set of closures \(\bot\) which is:
 - **saturated**:

\[
c'\tau' \in \bot \quad \text{and} \quad c\tau \rightarrow c'\tau' \quad \text{implies} \quad c\tau \in \bot
\]

- **closed by store extension**:

\[
c\tau \in \bot \quad \text{and} \quad \tau \triangleleft \tau' \quad \text{implies} \quad c\tau' \in \bot
\]

- **Orthogonality**:

\[
(t|\tau) \perp (e|\tau') \triangleq \tau, \tau' \text{ compatible} \quad \land \quad \langle t \parallel e \rangle \tau\tau' \in \bot.
\]

- **Realizers**: definitions derived from the small-step rules!
Realizability interpretation

A few novelties:

- **Term-in-store** \((t|\tau) \):
 \[
 \text{FV}(t) \subseteq \text{dom}(\tau), \tau \text{ closed}
 \]

- **Pole** : set of closures \(\bot \) which is:
 - **saturated**:
 \[
 c'\tau' \in \bot \quad \text{and} \quad c\tau \to c'\tau' \quad \text{implies} \quad c\tau \in \bot
 \]
 - **closed by store extension**:
 \[
 c\tau \in \bot \quad \text{and} \quad \tau \sqsubset \tau' \quad \text{implies} \quad c\tau' \in \bot
 \]

- **Orthogonality** :
 \[
 (t|\tau) \bot (e|\tau') \triangleq \tau, \tau' \text{ compatible} \land \langle t \parallel e \rangle_{\tau\tau'} \in \bot.
 \]

- **Realizers**: definitions derived from the small-step rules!
Realizability interpretation

Adequacy

For all \(\Downarrow \), if \(\tau \vdash \Gamma \) and \(\Gamma \vdash_c c \), then \(c\tau \in \Downarrow \).

Normalization

If \(\vdash_c c\tau \) then \(c\tau \) normalizes.

Proof: The set \(\Downarrow \Downarrow = \{ c\tau \in C_0 : c\tau \text{ normalizes} \} \) is a pole.
Realizability interpretation

Adequacy

For all \bot, if $\tau \vdash \Gamma$ and $\Gamma \vdash_c c$, then $c\tau \in \bot$.

Normalization

If $\vdash_I c\tau$ then $c\tau$ normalizes.

Proof: The set $\bot_{\downarrow\downarrow} = \{c\tau \in C_0 : c\tau$ normalizes $\}$ is a pole.

Initial questions:

- Does it normalize? Yes!
- Can the CPS be typed? Yes! (but it is complicated...)
- Can we define a realizability interpretation? Yes!
A sequent calculus with dependent types
Reminder

\[\text{dPA}^{\omega} \ [\text{Herbelin'12}]: \]
- control operators
- dependent types
- co-fixpoints
- sharing & laziness

\[\text{dLPA}^{\omega} \]
- sequent calculus
- dependent types
- co-fixpoints
- sharing & laziness

\(\text{dL} ? \)

\(\text{dLPA}^{\omega} ? \)

Subject reduction

typing/reduction preservation

CPS-translation?

?-calculus

Normalization
Can this work?

\[
\begin{align*}
\Gamma, a : A &\vdash p : B[a] \mid \Delta \quad (\rightarrow_r) \\
\Pi_p & \\
\Gamma &\vdash \lambda a.p : \Pi_{(a:A)}.B \mid \Delta \\
\Pi_q & \\
\Gamma + q : A &\mid \Delta \quad \Gamma \mid e : B[q] \vdash \Delta \quad q \in V \quad (\rightarrow_l) \\
\Pi_e & \\
\Gamma &\vdash q \cdot e : \Pi_{(a:A)}.B \mid \Delta \\
\Pi & \\
\langle \lambda a.p \parallel q \cdot e \rangle & : (\Gamma \vdash \Delta) \quad (\text{Cut})
\end{align*}
\]
A classical sequent calculus with dependent types

Can this work?

\[
\begin{align*}
\Pi_p & \quad \Pi_q & \quad \Pi_e \\
\vdots & \quad \vdots & \quad \vdots \\
\Gamma, a : A \vdash p : B[a] | \Delta & \quad \Gamma \vdash q : A | \Delta & \quad \Gamma \vdash e : B[q] \vdash \Delta \\
\Gamma \vdash \lambda a. p : \Pi_{(a:A)}. B | \Delta & \quad q \in V & \quad q \in V \\
\frac{\langle \lambda a. p \parallel q \cdot e \rangle : (\Gamma \vdash \Delta)}{(\rightarrow_r)} & \quad \frac{\langle \lambda a. p \parallel q \cdot e \rangle : (\Gamma \vdash \Delta)}{(\rightarrow_l)} & \quad \frac{\langle \lambda a. p \parallel q \cdot e \rangle : (\Gamma \vdash \Delta)}{(Cut)}
\end{align*}
\]

\[
\begin{align*}
\Pi_q & \\
\vdots & \\
\Gamma \vdash q : A | \Delta \\
\frac{\langle p \parallel e \rangle : (\Gamma, a : A \vdash \Delta)}{(\rightarrow_l)} & \quad \frac{\langle \lambda a. p \parallel q \cdot e \rangle : (\Gamma \vdash \Delta)}{(\rightarrow_l)} & \quad \frac{\langle \lambda a. p \parallel q \cdot e \rangle : (\Gamma \vdash \Delta)}{(Cut)}
\end{align*}
\]

Mismatch

Mismatch

Mismatch
A classical sequent calculus with dependent types

Can this work? ✓

\[
\begin{align*}
\Gamma, a : A \vdash p : B[a] | \Delta & \quad (\rightarrow_r) \\
\Gamma \vdash \lambda a. p : \Pi_{(a:A)} B | \Delta & \\
\langle \lambda a. p \parallel q \cdot e \rangle : (\Gamma \vdash \Delta)
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash q : A | \Delta & \\
\Gamma \vdash e : B[q] \vdash \Delta & \\
q \in V
\end{align*}
\]

\[
\begin{align*}
\Pi_p & \\
\Pi_q & \\
\Pi_e & \\
\Gamma \vdash q : A | \Delta & \\
\Gamma \vdash e : B[q] \vdash \Delta & \\
q \in V
\end{align*}
\]

\[
\begin{align*}
\langle \lambda a. p \parallel q \cdot e \rangle : (\Gamma \vdash \Delta)
\end{align*}
\]

\[
\begin{align*}
\Pi_q & \\
\Gamma, a : A \vdash p : B[a] | \Delta & \\
\Gamma, a : A \vdash e : B[q] \vdash \Delta; \{\cdot|p\cdot|a\cdotq\} & \quad (\text{Cut})
\end{align*}
\]

\[
\begin{align*}
\langle q \parallel \tilde{\mu} a. \langle p \parallel e \rangle \rangle : (\Gamma \vdash \Delta); \{\cdot|\cdot\cdot\}
\end{align*}
\]
\[\lambda\mu\tilde{\mu}-\text{calculus} + \text{dependent types with:} \]

- a list of dependencies:

\[
\frac{\Gamma \vdash p : A | \Delta; \sigma \quad \Gamma \mid e : A' \vdash \Delta; \sigma \{ \cdot | p \} \quad A' \in A_\sigma}{\langle p \parallel e \rangle : (\Gamma \vdash \Delta; \sigma)} \quad \text{(Cut)}
\]

- a value restriction

Is it enough?

- subject reduction
- normalization
- consistency as a logic
- suitable for CPS translation
A constructive proof of DC

Semantic artifacts

Classical call-by-need
dL

dLPA

λμᵦ-calculus + dependent types with:

- a list of dependencies:

\[
\Gamma \vdash p : A \mid \Delta; \sigma \quad \Gamma \mid e : A' \vdash \Delta; \sigma\{\cdot \mid p\} \quad A' \in A_\sigma
\]

\[
\langle p \parallel e \rangle : (\Gamma \vdash \Delta; \sigma)
\]

- a value restriction

Is it enough?

- subject reduction ✓
- normalization ✓
- consistency as a logic ✓
- suitable for CPS translation ✗
\(\lambda \mu \tilde{\mu} \)-calculus + dependent types with:

- a list of dependencies:

\[
\frac{\Gamma \vdash p : A \mid \Delta; \sigma \quad \Gamma \mid e : A' \vdash \Delta; \sigma \{ \cdot | p \} \quad A' \in A_\sigma}{\langle p \parallel e \rangle : (\Gamma \vdash \Delta; \sigma)} \tag{Cut}
\]

- a value restriction

Is it enough?

- subject reduction \(\checkmark \)
- normalization \(\checkmark \)
- consistency as a logic \(\checkmark \)
- suitable for CPS translation \(\times \)

\[
\left[q \right] \left[\tilde{\mu} a. \langle p \parallel e \rangle \right] = \left[q \right] (\lambda a. \left[p \right] \left[e \right])
\]

\[
\neg \neg A \quad \neg \neg B(a) \quad \neg B(q)
\]
Toward a CPS translation (1/2)

This is quite normal:

- we observed a desynchronization
- we compensated only within the type system

→ we need to do this already in the calculus!

Who’s guilty?

\[
\beta \langle q \parallel \tilde{\mu}a.(p \parallel e) \rangle = [q] (\lambda a.[p][e])
\]

Motto: \([p] \) shouldn’t be applied to \([e] \) before \([q] \) has reduced

\[
([q] (\lambda a.[p]))[e]
\]

So, we’re looking for:
Toward a CPS translation (1/2)

This is quite normal:

- we observed a desynchronization
- we compensated only within the type system

→ we need to do this already in the calculus!

Who’s guilty?

\[\langle q \parallel \mu a.\langle p \parallel e \rangle \rangle = [q] (\lambda a. [p][e]) \]

Motto: \([p]\) shouldn’t be applied to \([e]\) before \([q]\) has reduced

\[([q] (\lambda a. [p]))[e] \]

So, we’re looking for:
Toward a CPS translation (1/2)

This is quite normal:
- we observed a desynchronization
- we compensated only within the type system

⇒ we need to do this already in the calculus!

Who’s guilty?

\[[[q \parallel \tilde{\mu}a.\langle p \parallel e \rangle]] = [[q]] (\lambda a.[[p]][[e]]) \]

Motto: \([p]\) shouldn’t be applied to \([e]\) before \([q]\) has reduced

\[([[q]] (\lambda a.[[p]]))[[e]] \]

So, we’re looking for:
Toward a CPS translation (1/2)

This is quite normal:
- we observed a desynchronization
- we compensated only within the type system

⇒ we need to do this already in the calculus!

Who’s guilty?

\[
\left[\langle q \parallel \tilde{\mu}a.\langle p \parallel e \rangle \rangle \right] = \left[q \right] (\lambda a.\left[p \right][e])
\]

Motto: \([p]\) shouldn’t be applied to \([e]\) before \([q]\) has reduced

\[
\left(\left[q \right] (\lambda a.\left[p \right]) \right)[e]
\]

So, we’re looking for:

\[
\langle \lambda a. p \parallel q \cdot e \rangle \to \langle \mu ? .\langle q \parallel \tilde{\mu}a.\langle p \parallel ? \rangle \rangle \parallel e \rangle
\]
Toward a CPS translation (1/2)

This is quite normal:
- we observed a desynchronization
- we compensated only within the type system

⇒ we need to do this already in the calculus!

Who’s guilty?

\[
\left[\langle q \parallel \hat{\mu}a.\langle p \parallel e \rangle \rangle\right] = \left[q \right] (\lambda a.\left[p\right] [e])
\]

Motto: \([p]\) shouldn’t be applied to \([e]\) before \([q]\) has reduced

\[
\left[\left[q \right] (\lambda a.\left[p\right])\right]\left[e\right]
\]

So, we’re looking for:

\[
\langle \lambda a. p \parallel q \cdot e \rangle \rightarrow \langle \mu \hat{t}p.\langle q \parallel \hat{\mu}a.\langle p \parallel \hat{t}p \rangle \rangle \parallel e \rangle
\]
Toward a CPS translation (2/2)

\[\llbracket \langle \lambda a.p \parallel q \cdot e \rangle \rrbracket \xrightarrow{?} (\llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket))[e] \]

Questions:
1. Is any \(q \) compatible with such a reduction?
2. Is this typable?
Toward a CPS translation (2/2)

\[
\langle \lambda a. p \parallel q \cdot e \rangle \quad \rightarrow \quad ([q] (\lambda a. [p]))[e]
\]

Questions:

1. Is any \(q \) compatible with such a reduction?

 - If \(q \) eventually gives a value \(V \):
 \[
 ([q] (\lambda a. [p]))[e] \rightarrow ((\lambda a. [p])[V])[e] \rightarrow [p][[V]/a][e] = [p[V/a]][e]
 \]
 ✓

 - If \([q] \rightarrow \lambda_. t\) and drops its continuation (meaning \(t : \bot \)):
 \[
 ([q] (\lambda a. [p]))[e] \rightarrow ((\lambda_. t)\lambda a. [p])[e] \rightarrow t[e]
 \]
 ✗
Toward a CPS translation (2/2)

\[\left[\langle\lambda a.p \parallel q \cdot e\rangle\right] \overset{?}{\rightarrow} \left([q] (\lambda a.[p]))[e]\right]\]

Questions:

1. Is any \(q\) compatible with such a reduction?

 - If \(q\) eventually gives a value \(V\):
 \[
 ([q] (\lambda a.[p]))[e] \rightarrow ((\lambda a.[p])[V])[e] \rightarrow [p][[V]/a][e] = [p[V/a]][e] \checkmark
 \]
 - If \([q]\) \(\rightarrow \lambda_.t\) and drops its continuation (meaning \(t : \bot\)):
 \[
 ([q] (\lambda a.[p]))[e] \rightarrow ((\lambda_.t)\lambda a.[p])[e] \rightarrow t[e] \times
 \]
Toward a CPS translation (2/2)

\[\langle \lambda a.p \parallel q \cdot e \rangle \rightarrow ([q][a.p][e]) \]

Questions:

1. Is any \(q \) compatible with such a reduction? \(\Rightarrow q \in \text{NEF} \)

- If \(q \) eventually gives a value \(V \):
 \[([q](\lambda a.[p]))[e] \rightarrow ((\lambda a.[p])[V])[e] \rightarrow [p][V/a][e] = [p[V/a]][e] \]
- If \([q] \rightarrow \lambda_.t \) and drops its continuation (meaning \(t : \bot \)):
 \[([q](\lambda a.[p]))[e] \rightarrow ((\lambda_.t)[p])[e] \rightarrow t[e] \]

Negative-elimination free (Herbelin’12)

Values + one continuation variable + no application
Toward a CPS translation (2/2)

\[
\llbracket \langle \lambda a. p \parallel q \cdot e \rangle \rrbracket \rightarrow (\llbracket q \rrbracket \llbracket \lambda a. [p] \rrbracket) [e]
\]

Questions:
1. Is any \(q \) compatible with such a reduction? \(\leadsto q \in \text{NEF} \)
2. Is this typable?

Naive attempt:

\[
\begin{align*}
(& \llbracket q \rrbracket) \\
(A \rightarrow \bot) & \rightarrow \bot \\
(& \llbracket \lambda a. [p] \rrbracket) \\
\Pi_{(a:A)}^{\neg \neg} B(a) & \rightarrow \neg B[q]
\end{align*}
\]
Toward a CPS translation (2/2)

Questions:
1. Is any \(q \) compatible with such a reduction?
 \(\leadsto q \in \text{NEF} \)
2. Is this typable?

Naive attempt:

\[
\frac{(A \rightarrow ?) \rightarrow ?}{\Pi_{(a:A)} \neg \neg B(a)} \quad \frac{(\lambda a . [p])}{\neg B[q]} \quad \frac{[q]}{\neg \neg B(q)}
\]
Toward a CPS translation (2/2)

\[
\left[\langle \lambda a.p \mid q \cdot e\rangle\right] \rightarrow (\left[q \right] (\lambda a.\left[p \right]))[e]
\]

Questions:
1. Is any \(q \) compatible with such a reduction? \(\sim \sim q \in \text{NEF} \)
2. Is this typable?

Friedman’s trick:

\[
\begin{align*}
\forall R. (A \rightarrow ?) \rightarrow ? & \quad (\lambda a.\left[p \right]) \quad \Pi_{(a:A)} \neg \neg B(a) \\
\neg \neg B & \quad \left[q \right] & \quad [e]
\end{align*}
\]
Toward a CPS translation (2/2)

$[[\lambda a.p \parallel q \cdot e]] \rightarrow ([q] (\lambda a.[p]))[e]$

Questions:

1. Is any q compatible with such a reduction? $\leadsto q \in \text{NEF}$
2. Is this typable? $\leadsto \text{parametric return-type}$

Better:

$$(\forall R. (\Pi_{(a:A)} R(a)) \rightarrow R(q)) \cdot (\Pi_{(a:A)} \neg \neg B(a)) \cdot \neg \neg B[q]$$

(Remark: not possible without $q \in \text{NEF}$)
An extension of \(dL \) with:

- **delimited continuations**
- dependent types restricted to the **NEF fragment**
A constructive proof of DC
Semantic artifacts
Classical call-by-need
dL

\[\mathbf{dL}_{\hat{t}p} \]

An extension of \(\mathbf{dL} \) with:
- **delimited continuations**
- dependent types restricted to the \(\text{NEF} \) fragment

Reduction rules:

\[
\langle \mu \hat{t}p. \langle p \parallel \hat{t}p \rangle \parallel e \rangle \to \langle p \parallel e \rangle
\]
\[
c \to c' \Rightarrow \langle \mu \hat{t}p. c \parallel e \rangle \to \langle \mu \hat{t}p. c' \parallel e \rangle
\]
\[
\langle \lambda a. p \parallel q \cdot e \rangle \to \langle \mu \hat{t}p. \langle q \parallel \tilde{\mu}a. \langle p \parallel \hat{t}p \rangle \rangle \parallel e \rangle
\]
\[
\langle \lambda a. p \parallel q \cdot e \rangle \to \langle q \parallel \tilde{\mu}a. \langle p \parallel e \rangle \rangle
\]
\[
\langle \text{prf} \ p \parallel e \rangle \to \langle \mu \hat{t}p. \langle p \parallel \tilde{\mu}a. \langle \text{prf} \ a \parallel \hat{t}p \rangle \rangle \parallel e \rangle
\]

\(q \in \text{NEF} \)
\(q \notin \text{NEF} \)
An extension of dL with:
- **delimited continuations**
- dependent types restricted to the **NEF** fragment

Typing rules:

Regular mode

$$
\frac{
\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash \Delta
}{\langle p \parallel e \rangle : \Gamma \vdash \Delta}
$$

Dependent mode

$$
\frac{
\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash_{d} \Delta, \hat{tp} : B; \sigma\{\cdot | p\}
}{\langle p \parallel e \rangle : \Gamma \vdash_{d} \Delta, \hat{tp} : B; \sigma}
$$
An extension of dL with:

- **delimited continuations**
- dependent types restricted to the NEF fragment

Typing rules:

Regular mode

\[\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash \Delta \]

\[\langle p \parallel e \rangle : \Gamma \vdash \Delta \]

Dependent mode

\[\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash_d \Delta, \hat{t}p : B ; \sigma \{\cdot \mid p\} \]

\[\langle p \parallel e \rangle : \Gamma \vdash_d \Delta, \hat{t}p : B ; \sigma \]

Use of \(\sigma \) limited to \(\hat{t}p \):

\[c : (\Gamma \vdash_d \Delta, \hat{t}p : A ; \{\cdot \mid \cdot\}) \]

\[\Gamma \vdash \mu \hat{t}p.c : A \mid \Delta \]

\[\hat{t}p_I \]

\[B \in A_{\sigma} \]

\[\Gamma \mid \hat{t}p : A \vdash_d \Delta, \hat{t}p : B ; \sigma \{\cdot \mid p\} \]

\[\hat{t}p_E \]
An extension of dL with:
- delimited continuations
- dependent types restricted to the NEF fragment

Typing rules:

Regular mode

\[
\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash \Delta
\]

\[
\langle p \parallel e \rangle : \Gamma \vdash \Delta
\]

Dependent mode

\[
\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash_d \Delta, \hat{tp} : B; \sigma\{\cdot|p\}
\]

\[
\langle p \parallel e \rangle : \Gamma \vdash_d \Delta, \hat{tp} : B; \sigma
\]

Use of \(\sigma\) limited to \(\hat{tp}\):

\[
c : (\Gamma \vdash_d \Delta, \hat{tp} : A; \{\cdot|\cdot\})
\]

\[
\Gamma \vdash \mu \hat{tp}.c : A \mid \Delta
\]

\[
\hat{tp}_I
\]

\[
B \in A_\sigma
\]

\[
\Gamma \mid \hat{tp} : A \vdash_d \Delta, \hat{tp} : B; \sigma\{\cdot|p\}
\]

\[
\hat{tp}_E
\]

\[
c : (\Gamma \vdash \Delta) \quad \land \quad c \rightarrow c' \quad \Rightarrow \quad c' : (\Gamma \vdash \Delta)
\]
Typed CPS translation

Target language:
\[\top | \bot | t = u | \forall x^{\mathbb{N}}. A | \exists x^{\mathbb{N}}. A | \Pi_{(a:A)} B | \forall X. A \]

Normalization:
If \([c]\) normalizes so does \(c\).

Proof. Thorough analysis of the several reduction rules.

Types-preserving:
The translation is well-typed.

Proof. Using parametric return types for terms and NEF proofs.

Consistency:
\[\not\exists p : \bot. \]

Proof. \([\bot] = (\bot \to \bot) \to \bot\).
Bilan

An extension of dL with:

- **delimited continuations**
- dependent types restricted to the **NEF fragment**

Regular mode

\[
\frac{\Gamma \vdash p : A | \Delta \quad \Gamma \mid e : A \vdash \Delta}{\langle p \parallel e \rangle : \Gamma \vdash \Delta}
\]

Dependent mode

\[
\frac{\Gamma \vdash p : A | \Delta \quad \Gamma \mid e : A \vdash_{d} \Delta, \hat{t}p : B; \sigma\{\cdot | p\}}{\langle p \parallel e \rangle : \Gamma \vdash_{d} \Delta, \hat{t}p : B; \sigma}
\]

delimited scope of dependencies:

\[
\frac{c : (\Gamma \vdash_{d} \Delta, \hat{t}p : A; \{\cdot | \cdot\})}{\Gamma \vdash \mu \hat{t}p.c : A \mid \Delta}
\]

\[
\frac{B \in A_{\sigma}}{\Gamma \mid \hat{t}p : A \vdash_{d} \Delta, \hat{t}p : B; \sigma\{\cdot | p\}}
\]

Mission accomplished?

- subject reduction
- normalization
- consistency as a logic
- CPS translation

Bonus embedding into Rodolphe’s calculus ✓

⇒ realizability interpretation
Bilan

An extension of dL with:

- **delimited continuations**
- dependent types restricted to the **NEF fragment**

\[
\frac{\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash \Delta}{\langle p \parallel e \rangle : \Gamma \vdash \Delta}
\]

\[
\frac{\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash_d \Delta, \hat{t}p : B; \sigma\{\cdot|p\}}{\langle p \parallel e \rangle : \Gamma \vdash_d \Delta, \hat{t}p : B; \sigma}
\]

- delimited scope of dependencies:

\[
\frac{c : (\Gamma \vdash_d \Delta, \hat{t}p : A; \{\cdot|\cdot\})}{\Gamma \vdash \mu \hat{t}p.c : A \mid \Delta}
\]

\[
\frac{B \in A_\sigma}{\Gamma \mid \hat{t}p : A \vdash_d \Delta, \hat{t}p : B; \sigma\{\cdot|p\}}
\]

- Mission accomplished ✓

 - subject reduction ✓
 - normalization ✓
 - consistency as a logic ✓
 - CPS translation ✓

- *(Bonus)* embedding into Rodolphe’s calculus ✓

 - realizability
 - interpretation
Rodolphe’s calculus in a nutshell

Recipe:
- Call-by-value evaluation
- Classical language (μα.t control operator)
- Second-order logic, with encoding of dependent product:

\[\Pi_{(a:A)} B \triangleq \forall a (a \in A \rightarrow B) \]

- Semantical value restriction
- Soundness and type safety proved by a realizability model:

\[\Gamma \vdash t : A \Rightarrow \rho \models \Gamma \Rightarrow t[\rho] \in \|A\|_{\rho}^⊥⊥ \]

Semantical value restriction:
- observational equivalence: \(t \equiv u \)
- \(u \in A \) restricted to values
- typing rules up to this equivalence (hence undecidable!)
Rodolphe’s calculus in a nutshell

Recipe:
- Call-by-value evaluation
- Classical language ($\mu \alpha . t$ control operator)
- Second-order logic, with encoding of dependent product:

$$\Pi_{(a:A)} B \triangleq \forall a (a \in A \rightarrow B)$$

- Semantical value restriction
- Soundness and type safety proved by a realizability model:

$$\Gamma \vdash t : A \Rightarrow \rho \models \Gamma \Rightarrow t[\rho] \in \|A\|_{\rho}^{\perp \perp}$$

Semantical value restriction:
- observational equivalence: $t \equiv u$
- $u \in A$ restricted to values
- typing rules up to this equivalence (hence undecidable!)
Embedding

Easy check:

\[\text{NEF} \subseteq \text{semantical values} \]

We define an embedding of proofs and types that:

- is **correct** with respect to typing

\[\Gamma \vdash p : A \mid \Delta \quad \Rightarrow \quad (\Gamma \cup \Delta)^* \vdash \llbracket p \rrbracket_p : A^* \]

- is **adequate** with his realizability model

\[\Gamma \vdash p : A \mid \Delta \quad \land \quad \sigma \models (\Gamma \cup \Delta)^* \quad \Rightarrow \quad \llbracket p \rrbracket_p \sigma \in \llbracket A \rrbracket \]

- allows to transfer Rodolphe’s safety results

\[\nabla p : \bot \]
dLPA\(\omega\): a sequent calculus with dependent types for classical arithmetic
A classical sequent calculus with:
- stratified dependent types:
 - terms: $t, u ::= ... \mid \text{wit } p$
 - formulas: $A, B ::= ... \mid \forall x^T. A \mid \exists x^T. A \mid \Pi(a:A).B \mid t = u$
 - proofs: $p, q ::= ... \mid \lambda x. p \mid (t, p) \mid \lambda a.p$
- a restriction to the NEF fragment
- arithmetical terms:
 $$t, u ::= ... \mid 0 \mid S(t) \mid \text{rec}^t_{xy}[t_0 \mid t_S] \mid \lambda x. t \mid t u$$
- stores:
 $$\tau ::= \varepsilon \mid \tau[a := p_\tau] \mid \tau[\alpha := e]$$
- inductive and coinductive constructions:
 $$p, q ::= ... \mid \text{fix}^t_{bn}[p \mid p] \mid \text{cofix}^t_{bn} p$$
- a call-by-value reduction and lazy evaluation of cofix
End of the road

dPA^ω
- control operators
- dependent types
- co-fixpoints
- sharing & laziness

Subject reduction

$dLPA^\omega$
- sequent calculus
- dependent types
- co-fixpoints
- sharing & laziness

Subject reduction

?-calculus

Normalization
A constructive proof of DC

Semantic artifacts

Classical call-by-need

dL

dLPA

ω

End of the road

Subject reduction

Subject reduction

Normalization

dPA\(^ω\)
+ control operators
+ dependent types
+ co-fixpoints
+ sharing & laziness

macros

Subject reduction

realizability

dLPA\(^ω\)
+ sequent calculus
+ dependent types
+ co-fixpoints
+ sharing & laziness

Étienne Miquey
A sequent calculus with dependent types for classical arithmetic
43/46
Realizability interpretation

Same methodology:

1. small-step reductions
2. derive the realizability interpretation

Resembles $\bar{\lambda}_{l\nu\tau\star}$-interpretation, plus:

- dependent types from Rodolphe’s calculus
- co-inductive formulas
Realizability interpretation

Same methodology:
1. small-step reductions
2. derive the realizability interpretation

Resembles $\tilde{\lambda}_{[\nu \tau \star]}$-interpretation, plus:
- dependent types from Rodolphe’s calculus:

$$\Pi_{(a:A)}.B \triangleq \forall a.(a \in A \to B)$$

- co-inductive formulas
Realizability interpretation

Same methodology:
1. small-step reductions
2. derive the realizability interpretation

Resembles $\bar{\lambda}_{[\nu \tau \star]}$-interpretation, plus:
- dependent types from Rodolphe’s calculus
- co-inductive formulas: by finite approximations

$$\| v^t_{xx} A \|_f \overset{\Delta}{=} \bigcup_{n \in \mathbb{N}} \| F^n_{A,t} \|_f$$
Realizability interpretation

Same methodology:

1. small-step reductions
2. derive the realizability interpretation

Resembles $\tilde{\lambda}_{\nu\tau^\star}$-interpretation, plus:

- dependent types from Rodolphe’s calculus
- co-inductive formulas: by finite approximations

Consequences of adequacy:

Normalization

If $\Gamma \vdash_\sigma c$, then c is normalizable.

Consistency

$\not\vdash_{dLPA^\omega} p : \bot$
Conclusion

What did we learn?

- classical call-by-need:
 - realizability interpretation
 - typed continuation-and-store-passing style translation

- dependent classical sequent calculus:
 - list of dependencies
 - use of delimited continuations for soundness
 - dependently-typed continuation-passing style translation

- $d\text{LPA}^{\omega}$:
 - soundness and normalization,
 - realizability interpretation of co-fixpoints
Further work

1. **Classical call-by-need:**
 - typing the CPS with Kripke forcing

2. **\(dL_{\hat{tp}}\):**
 - Connection with:
 - Pédrot-Tabareau’s Baclofen Type Theory?
 - Vákár’s categorical presentation?
 - Bowman *et. al.* CPS for CC?
 - Dependent types & effects:

3. **Realizability:**
 - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?
Further work

1. **Classical call-by-need:**
 - Typing the CPS with Kripke forcing

2. **$dL_{\hat{t}p}$:**
 - Connection with:
 - Pédrot-Tabareau’s Baclofen Type Theory?
 - Vákár’s categorical presentation?
 - Bowman *et. al.* CPS for CC?

3. **Dependent types & effects:**

4. **Realizability:**
 - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?
Further work

1. **Classical call-by-need:**
 - typing the CPS with Kripke forcing

2. **$dL_{\hat{tp}}$:**
 - Connection with:
 - Pédrot-Tabareau’s Baclofen Type Theory?
 - Vákár’s categorical presentation?
 - Bowman *et. al.* CPS for CC?

3. **Dependent types & effects:**

 ![Diagram of embeddings and CPS transformations]

 - λ-calculus CbN embed. $\lambda\mu\bar{\mu}$-calculus CbN CPS λ-calculus
 - λ-calculus CbV embed. $\lambda\mu\bar{\mu}$-calculus CbV CPS λ-calculus

3. **Realizability:**
 - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?
Further work

1. **Classical call-by-need:**
 - Typing the CPS with Kripke forcing

2. **dL_{tp}:**
 - Connection with:
 - Pédrot-Tabareau’s Baclofen Type Theory?
 - Vákár’s categorical presentation?
 - Bowman *et. al.* CPS for CC?

3. **Dependent types & effects:**

4. **Realizability:**
 - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?
Further work

1. **Classical call-by-need:**
 - typing the CPS with Kripke forcing

2. **dL\(\hat{p}\):**
 - Connection with:
 - Pédrot-Tabareau’s Baclofen Type Theory?
 - Vákár’s categorical presentation?
 - Bowman *et. al.* CPS for CC?

3. **Dependent types & effects:**

 ![Diagram](attachment://diagram.png)

 - MLTT (CbN) embed. \rightarrow L_{dep}\? \rightarrow CPS \rightarrow MLTT
 - MLTT (CbV) embed. \rightarrow L_{dep}\? \rightarrow CPS \rightarrow MLTT

3. **Realizability:**
 - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?
Further work

1. **Classical call-by-need:**
 - Typing the CPS with Kripke forcing

2. **$dL_{\hat{t}p}$:**
 - Connection with:
 - Pédrot-Tabareau’s Baclofen Type Theory?
 - Vákár’s categorical presentation?
 - Bowman et. al. CPS for CC?

3. **Dependent types & effects:**

 - MLTT (CbN)
 - embed.
 - L_{dep}?
 - CPS
 - MLTT

4. **Realizability:**
 - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?
Thank you for your attention.