Introduction	Proofs	Programs	Curry-Howard	Classical realizability

Curry-Howard: unveiling the computational content of proofs

Étienne MIQUEY

Équipe Gallinette, INRIA LS2N, Université de Nantes

23/11/2018

Introduction
• 00000Proofs
00000Programs
000000Curry-Howard
0000000Classical realizability
000000What I am not going to tell you

This talk is secretly a personal challenge.

 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 0<0000</td>
 000000
 0000000
 0000000
 000000
 000000

 A tricky question
 0
 0
 0
 0
 0
 0

Every Ph.D. student has been asked a thousand times:

"What is the title of your thesis?"

Here is mine:

Classical realizability and side-effects

The next questions:

- classical?
- realizability?
- side-effects?
- What does it have to do with logic/mathematics/computer science?

 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 0<0000</td>
 000000
 0000000
 0000000
 000000
 000000

 A tricky question
 0
 0
 0
 0
 0
 0

Every Ph.D. student has been asked a thousand times:

"What is the title of your thesis?"

Here is mine:

Classical realizability and side-effects

The next questions:

- classical?
- realizability?
- side-effects?
- What does it have to do with logic/mathematics/computer science?

 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 0<0000</td>
 000000
 0000000
 0000000
 000000
 000000

 A tricky question
 0
 0
 0
 0
 0
 0

Every Ph.D. student has been asked a thousand times:

"What is the title of your thesis?"

Here is mine:

Classical realizability and side-effects

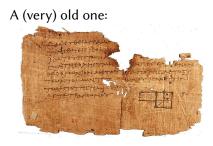
The next questions:

- classical?
- realizability?
- side-effects?
- What does it have to do with logic/mathematics/computer science?

Introduction 00●000	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability
Proofs				

A (very) old one:

Introduction 00●000	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability
Proofs				



An easy one:

Plato is a cat. All cats like fish. Therefore, Plato likes fish .

Introduction 00000	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability
Proofs				

An easy one:

Plato is a cat. All cats like fish. Therefore, Plato likes fish .

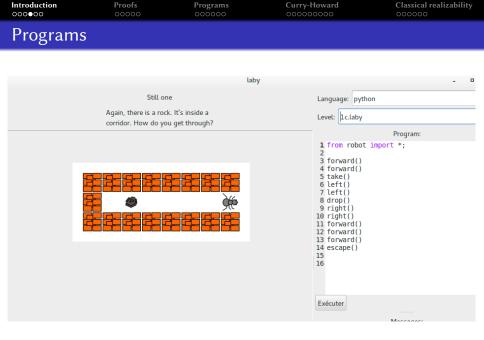
Intuitively:

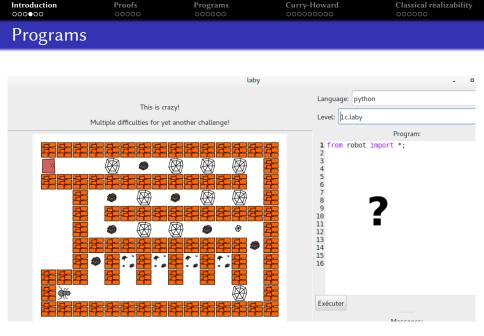
from a set of hypotheses

apply deduction rules

to obtain a theorem

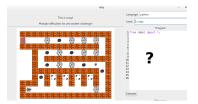
Introduction 000●00	Proofs 00000	Programs	Curry-Howard	Classical realizability
Programs				
		lab	iy	- •
	Still on Again, there is a rocl corridor. How do yo	:k. It's inside a	Language: pythor Level: 1c.laby	
			1 from robot i 2 3 forward() 4 forward() 5 take() 6 left() 7 left() 8 drop() 9 right() 10 right() 11 forward() 12 forward() 13 forward() 14 escape() 15 16 Exécuter	Program: import *;





Étienne MIQUEY

Introduction 000●00	Proofs 00000	Programs	Curry-Howard	Classical realizability
Programs				



Think of it as a **recipe** (algorithm) to draw a computation forward.

Introduction 0000●0	Proofs 00000	Programs	Curry-Howard	Classical realizability
So ?				

Proof:

from a set of hypotheses apply deduction rules

to obtain a **theorem**

Program:

from a set of inputs

apply instructions

to obtain the output

Curry-Howard

(On well-chosen subsets of mathematics and programs)

That's the same thing!

Étienne MIQUEY

Curry-Howard: unveiling the computational content of proofs

Introduction	Proofs	Programs	Curry-Howard	Classical realizability
000000				

- The Curry-Howard correspondence
- 6 Classical realizability

Introduction P	Proofs	Programs	Curry-Howard	Classical realizability

Proofs

(A bit of history)

Étienne MIQUEY

Curry-Howard: unveiling the computational content of proofs

Introduction	Proofs ●0000	Programs 000000	Curry-Howard	Classical realizability
Leibniz				

A *combinatorial view* of human ideas, thinking that they

"can be resolved into a few as their primitives"

Introduction	Proofs ●0000	Programs 000000	Curry-Howard	Classical realizability
Leibniz				

A *combinatorial view* of human ideas, thinking that they

"can be resolved into a few as their primitives"

A crazy dream:

"when there are disputes among persons, we can simply say: Let us calculate, without further ado, to see who is right."

Introduction	Proofs ○●○○○	Programs 000000	Curry-Howard	Classical realizability
Geometry				

Euclid's Elements: the first axiomatic presentation of geometry

- a collection of definitions (line, etc.)
- common notions ("things equal to the same thing are also equal to one another")
- five postulates ("to draw a straight-line from any point to any point")

If a straight line crossing two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if extended indefinitely, meet on that side on which are the angles less than the two right angles.

19th century: non-Euclidean geometries

- Bolyai: only four postulates
- Lobachevsky: four + negation of the fifth
- Riemann: four

How can it be determined that a theory is not contradictory?

Introduction	Proofs ○●○○○	Programs 000000	Curry-Howard	Classical realizability
Geometry				

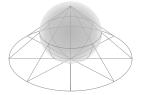
Euclid's Elements: the first axiomatic presentation of geometry

- a collection of definitions (line, etc.)
- common notions ("things equal to the same thing are also equal to one another")
- five postulates ("to draw a straight-line from any point to any point")

If a straight line crossing two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if extended indefinitely, meet on that side on which are the angles less than the two right angles.

19th century: non-Euclidean geometries

- Bolyai: only four postulates
- Lobachevsky: four + negation of the fifth
- Riemann: four



How can it be determined that a theory is not contradictory?

Introduction	Proofs ○●○○○	Programs 000000	Curry-Howard	Classical realizability
Geometry				

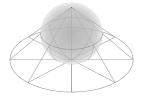
Euclid's Elements: the first axiomatic presentation of geometry

- a collection of definitions (line, etc.)
- common notions ("things equal to the same thing are also equal to one another")
- five postulates ("to draw a straight-line from any point to any point")

If a straight line crossing two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if extended indefinitely, meet on that side on which are the angles less than the two right angles.

19th century: non-Euclidean geometries

- Bolyai: only four postulates
- Lobachevsky: four + negation of the fifth
- Riemann: four



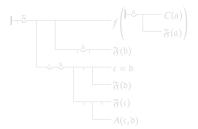
How can it be determined that a theory is not contradictory?

Introduction	Proofs ○○●○○	Programs 000000	Curry-Howard	Classical realizability
Frege				

"One cannot serve the truth and the untruth. If Euclidean geometry is true, then non-Euclidean geometry is false."

Begriffsschrift:

- o formal notations
- quantifications ∀/∃
- distinction:
 - VS
 - signified signifi



Introduction	Proofs ○○●○○	Programs 000000	Curry-Howard	Classical realizability
Frege				

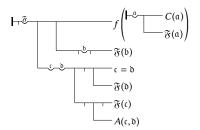
"One cannot serve the truth and the untruth. If Euclidean geometry is true, then non-Euclidean geometry is false."

Begriffsschrift:

- formal notations
- quantifications \forall/\exists
- distinction:
 x
 y

vs 'x'

signified signifier



Introduction	Proofs 000●0	Programs 000000	Curry-Howard	Classical realizability
Proof tree	es (Gentzer	n)		
Sequen	t:			
	Нур	othesis Γ ⊢ A	Conclusion	

Deduction rules:

$$\frac{A \in \Gamma}{\Gamma \vdash A}(Ax) \qquad \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}(\Rightarrow_{l}) \qquad \qquad \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}(\Rightarrow_{E})$$

Example:

 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 Occode
 Occode
 Occode
 Occode
 Occode

 Proof trees (Gentzen)
 Sequent:
 Sequent:
 Sequent:

Hypothesis
$$\Gamma \vdash A$$
 Conclusion

Deduction rules:

$$\frac{A \in \Gamma}{\Gamma \vdash A}(Ax) \qquad \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}(\Rightarrow_{l}) \qquad \qquad \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}(\Rightarrow_{E})$$

Example:

Plato is a cat. If Plato is cat, Plato likes fish. Therefore, Plato likes fish .

Conclusion

$$\frac{(A \Rightarrow B) \in \Gamma}{\Gamma \vdash A \Rightarrow B} (Ax) \quad \frac{A \in \Gamma}{\Gamma \vdash A} (Ax) (\Rightarrow_{\mathcal{E}})$$

Curry-Howard Classical realizability Introduction Proofs Programs 00000 Proof trees (Gentzen) Sequent:

Hypothesis
$$\Gamma \vdash A$$
 Conclusion

Deduction rules:

$$\frac{A \in \Gamma}{\Gamma \vdash A}(Ax) \qquad \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}(\Rightarrow_{l}) \qquad \qquad \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}(\Rightarrow_{E})$$

Example:

Hyp. { Plato is a cat. If Plato is cat, Plato likes fish. Therefore, Plato likes fish .

Conclusion

$$\frac{(A \Rightarrow B) \in \Gamma}{\frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B}}_{(Ax)} \quad \frac{A \in \Gamma}{\Gamma \vdash A}_{(\Rightarrow_{\mathcal{E}})}^{(Ax)}$$

Introduction 000000	Proofs 0000●	Programs	Curry-Howard	Classical realizability
Theory				

A theory is the given of:

• a language:

Terms	$e_1, e_2 ::= x \mid 0 \mid s(e) \mid e_1 + e_2 \mid e_1 \times e_2$	
Formulas		

• a deduction system:

• a set of axioms:

 $\begin{array}{ll} (\text{PA1}) & \forall x.(0+x=x) \\ (\text{PA2}) & \forall x.\forall y.(s(x)+y=s(x+y)) \\ (\text{PA3}) & \forall x.(0\times x=0) \\ (\text{E1}) & \forall x.(x=x) \end{array} \end{array} \begin{array}{l} (\text{PA4}) & \forall x.\forall y.(s(x)\times y=(x\times y)+y) \\ (\text{PA5}) & \forall x.\forall y.(s(x)=s(y)\Rightarrow x=y) \\ (\text{PA6}) & \forall x.(s(x)\neq 0) \\ \dots \end{array}$

Introduction	Proofs 0000●	Programs	Curry-Howard	Classical realizability
Theory				

A *theory* is the given of:

• a language:

Terms	$e_1, e_2 ::= x \mid 0 \mid s(e) \mid e_1 + e_2 \mid e_1 \times e_2$
Formulas	$A,B ::= e_1 = e_2 \mid \top \mid \bot \mid \forall x.A \mid \exists x.A \mid A \Rightarrow B \mid A \land B \mid A \lor B$

• a deduction system:

$$\begin{array}{ll} \displaystyle \frac{A \in \Gamma}{\Gamma \vdash A} (Ax) & \displaystyle \frac{\Gamma \vdash \Gamma}{\Gamma \vdash A} (T) & \displaystyle \frac{\Gamma \vdash A}{\Gamma \vdash A} (L) & \displaystyle \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} (\Rightarrow_{l}) & \displaystyle \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} (\Rightarrow_{E}) \\ \\ \displaystyle \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} (\wedge_{l}) & \displaystyle \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} (\wedge_{E}^{1}) & \displaystyle \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} (\wedge_{E}^{2}) & \displaystyle \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} (\vee_{l}^{1}) & \displaystyle \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} (\vee_{l}^{2}) \\ \\ \displaystyle \frac{\Gamma \vdash A \lor B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma \vdash C} (\vee_{E}) & \displaystyle \frac{\Gamma \vdash A \quad x \notin FV(\Gamma)}{\Gamma \vdash \forall x.A} (\forall_{l}) & \displaystyle \frac{\Gamma \vdash \forall x.A}{\Gamma \vdash A[t/x]} (\forall_{E}) \end{array}$$

• a set of **axioms**:

(PA1)	$\forall x.(0+x=x)$	(PA4)	$\forall x. \forall y. (s(x) \times y = (x \times y) + y)$
(PA2)	$\forall x. \forall y. (s(x) + y = s(x + y))$	(PA5)	$\forall x. \forall y. (s(x) = s(y) \Rightarrow x = y)$
(PA3)	$\forall x.(0 \times x = 0)$	(PA6)	$\forall x.(s(x) \neq 0)$
(E1)	$\forall x.(x=x)$		

Introduction	Proofs	Programs	Curry-Howard	Classical realizability

Programs

Introduction 000000	Proofs 00000	Programs ●00000	Curry-Howard	Classical realizability
Hilbert's pro	oblems			

Radio cast (1930):

For us mathematicians, there is no 'ignorabimus' [...] We must know — we shall know!

Identified important mathematical problems to solve:

2nd Hilbert's problem:

Prove the compatibility of the arithmetical axioms.

 \hookrightarrow Well, you all heard of Gödel, right?

Entscheidungsproblem (with Ackermann):

To decide if a formula of first-order logic is a tautology.

"to decide" is meant via an algorithm, by means of a procedure

Introduction	Proofs 00000	Programs ●00000	Curry-Howard	Classical realizability 000000
Hilbert's pr	oblems			

Radio cast (1930):

For us mathematicians, there is no 'ignorabimus' [...] We must know — we shall know!

Identified important mathematical problems to solve:

• 2nd Hilbert's problem:

Prove the compatibility of the arithmetical axioms.

 \hookrightarrow Well, you all heard of Gödel, right?

• Entscheidungsproblem (with Ackermann):

To decide if a formula of first-order logic is a tautology.

 \hookrightarrow "to decide" is meant via an algorithm, by means of a procedure

Introduction	Proofs 00000	Programs ●00000	Curry-Howard	Classical realizability
Hilbert's p	roblems			

Radio cast (1930):

For us mathematicians, there is no 'ignorabimus' [...] We must know — we shall know!

Identified important mathematical problems to solve:

• 2nd Hilbert's problem:

Prove the compatibility of the arithmetical axioms.

 \hookrightarrow Well, you all heard of Gödel, right?

• Entscheidungsproblem (with Ackermann):

To decide if a formula of first-order logic is a tautology.

 \hookrightarrow "to decide" is meant via an algorithm, by means of a procedure

Introduction	Proofs 00000	Programs ○●○○○○	Curry-Howard	Classical realizability

Turing machines

Introduction	Proofs 00000	Programs 00000	Curry-Howard	Classical realizability
- ·	1.1			

Turing machines

Halting problem: negative answer to the Entscheidungsproblem!

.248

A. M. TURING

[Nov. 12,

We can show further that there can be no machine & which, when supplied with the S.D of an arbitrary machine \mathcal{M} , will determine whether \mathcal{M} ever prints a given symbol (0 say).

We will first show that, if there is a machine &, then there is a general

 $\begin{array}{c|c} Introduction & Proofs \\ 000000 & 00000 & 00000 & Curry-Howard \\ \hline \\ The \lambda-calculus (1/2) & Classical realizability \\ 000000 & 00000 & 00000 \\ \hline \end{array}$

A **model** of computation (a.k.a. a *toy language*) due to **Alonzo Church** (1932)

 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 00000
 00000
 000000000
 000000
 000000

 The λ-calculus (1/2)

A **model** of computation (a.k.a. a *toy language*) due to **Alonzo Church** (1932)

1936: first (negative) answer to the Entscheidungsproblem !

tormula **c**, such that A conv i if and only if **c** has a normal form. From this the lemma follows

THEOREM XVIII. There is no recursive function of a formula C, whose value is 2 or 1 according as C has a normal form or not.

That is the property of a wall formed formula that it has a normal form

 $\begin{array}{c|cccc} Introduction & Proofs & Programs & Curry-Howard & Classical realizability \\ 00000 & 00000 & 00000000 \\ \hline The λ-calculus (1/2) \\ \end{array}$

A **model** of computation (a.k.a. a *toy language*) due to **Alonzo Church** (1932)

1936: first (negative) answer to the Entscheidungsproblem !

tormula **c**, such that A convirt and only it **c** has a normal form. From this the lemma follows

THEOREM XVIII. There is no recursive function of a formula C, whose value is 2 or 1 according as C has a normal form or not.

That is the property of a wall formed formula that it has a normal form

Turing completeness

The λ -calculus and Turing machines are equivalent, *i.e.* they can compute the same partial functions from \mathbb{N} to \mathbb{N} .

Étienne MIQUEY

Curry-Howard: unveiling the computational content of proofs

Introc	luction	Proofs 00000	Programs 000●00	Curry-Howard	Classical realizability
Th	e λ -calcul	us (2/2)			
	Syntax:				
		<i>t</i> , <i>u</i> ::=	X (variables)	$\begin{array}{ccc} \lambda x.t & & t u \\ x \mapsto f(x) & f 2 \end{array}$	
	Reduction				
			$(\lambda x.t) u \longrightarrow_{\beta}$	t[u/x]	
	+ contextual clo		$C[t] \longrightarrow_{\beta} C$		$(if t \longrightarrow_{\beta} t')$
	Examples:				
			$(\lambda x.x) t -$	$\rightarrow_{\beta} t$	
		(λx.λy.y	$x) \overline{2} t \longrightarrow_{\beta} (\lambda$	$(y,y\overline{2}) t \longrightarrow_{\beta} t\overline{2}$	

 $\omega = (\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} (\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} \dots$

 $(\lambda x.\lambda y.y) \omega 2 \longrightarrow_{\beta} ?$

Introduction	Proofs 00000	Programs 000●00	Curry-Howard	Classical realizability	
The λ -calculus (2/2)					
Syntax					
	t, u ::	= x	$\lambda x.t$ $t u$		

(variables)

Reduction

$$(\lambda x.t) \ u \longrightarrow_{\beta} t[u/x]$$
+ contextual closure: $C[t] \longrightarrow_{\beta} C[t']$ (if $t \longrightarrow_{\beta} t'$)

 $x \mapsto f(x)$

f 2

$$(\lambda x.x) \ t \longrightarrow_{\beta} t$$
$$(\lambda x.\lambda y.y \ x) \ \bar{2} \ t \longrightarrow_{\beta} (\lambda y.y \ \bar{2}) \ t \longrightarrow_{\beta} t \ \bar{2}$$
$$\omega = (\lambda x.x \ x) \ (\lambda x.x \ x) \longrightarrow_{\beta} (\lambda x.x \ x) \ (\lambda x.x \ x) \longrightarrow_{\beta} \dots$$
$$(\lambda x.\lambda y.y) \ \omega \ \bar{2} \longrightarrow_{\beta} ?$$

Introduction 000000	Proofs	Programs 000●00	Curry-Howard	Classical realizability
The λ -cal	culus (2/2)			

t, u	::=	X	$ \lambda x.t$	<i>t</i> u
		(variables)	$x \mapsto f(x)$	<i>f</i> 2

Reduction

$$(\lambda x.t) \ u \longrightarrow_{\beta} t[u/x]$$
+ contextual closure: $C[t] \longrightarrow_{\beta} C[t']$ (if $t \longrightarrow_{\beta} t'$)

Examples:

$$(\lambda x.x) t \longrightarrow_{\beta} t$$

$$(\lambda x.\lambda y.y\,x)\,\overline{2}\,t \longrightarrow_{\beta} (\lambda y.y\,\overline{2})\,t \longrightarrow_{\beta} t\,\overline{2}$$

 $\omega = (\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} (\lambda x. x x) (\lambda x. x x) \longrightarrow_{\beta} \dots$

 $(\lambda x.\lambda y.y) \omega \overline{2} \longrightarrow_{\beta} ?$

Introduction	Proofs 00000	Programs 000●00	Curry-Howard	Classical realizability
The λ -cal	culus (2/2)			

t, u	::=	X	$ \lambda x.t$	l tu
		(variables)	$x \mapsto f(x)$	<i>f</i> 2

Reduction

$$(\lambda x.t) \ u \longrightarrow_{\beta} t[u/x]$$
+ contextual closure: $C[t] \longrightarrow_{\beta} C[t']$ (if $t \longrightarrow_{\beta} t'$)

$$(\lambda x.x) t \longrightarrow_{\beta} t$$
$$(\lambda x.\lambda y.y x) \overline{2} t \longrightarrow_{\beta} (\lambda y.y \overline{2}) t \longrightarrow_{\beta} t \overline{2}$$
$$\omega = (\lambda x.x x) (\lambda x.x x) \longrightarrow_{\beta} (\lambda x.x x) (\lambda x.x x) \longrightarrow_{\beta} (\lambda x.x x) (\lambda x.x x) \longrightarrow_{\beta} (\lambda x.\lambda y.y) \omega \overline{2} \longrightarrow_{\beta} ?$$

Introduction 000000	Proofs	Programs 000●00	Curry-Howard	Classical realizability
The λ -cal	culus (2/2)			

t, u	::=	X	$ \lambda x.t$	l tu
		(variables)	$x \mapsto f(x)$	<i>f</i> 2

Reduction

$$(\lambda x.t) \ u \longrightarrow_{\beta} t[u/x]$$
+ contextual closure: $C[t] \longrightarrow_{\beta} C[t']$ (if $t \longrightarrow_{\beta} t'$)

$$(\lambda x.x) t \longrightarrow_{\beta} t$$
$$(\lambda x.\lambda y.y x) \overline{2} t \longrightarrow_{\beta} (\lambda y.y \overline{2}) t \longrightarrow_{\beta} t \overline{2}$$
$$\omega = (\lambda x.x x) (\lambda x.x x) \longrightarrow_{\beta} (\lambda x.x x) (\lambda x.x x) \longrightarrow_{\beta} \dots$$
$$(\lambda x.\lambda y.y) \omega \overline{2} \longrightarrow_{\beta} ?$$

Introduction	Proofs 00000	Programs 000●00	Curry-Howard	Classical realizability
The λ -cal	culus (2/2)			

t, u	::=	X	$ \lambda x.t$	<i>t</i> u
		(variables)	$x \mapsto f(x)$	<i>f</i> 2

Reduction

$$(\lambda x.t) \ u \longrightarrow_{\beta} t[u/x]$$
+ contextual closure: $C[t] \longrightarrow_{\beta} C[t']$ (if $t \longrightarrow_{\beta} t'$)

$$(\lambda x.x) t \longrightarrow_{\beta} t$$
$$(\lambda x.\lambda y.y x) \overline{2} t \longrightarrow_{\beta} (\lambda y.y \overline{2}) t \longrightarrow_{\beta} t \overline{2}$$
$$\omega = (\lambda x.x x) (\lambda x.x x) \longrightarrow_{\beta} (\lambda x.x x) (\lambda x.x x) \longrightarrow_{\beta} \dots$$
$$(\lambda x.\lambda y.y) \omega \overline{2} \longrightarrow_{\beta} ?$$

Introduction	Proofs 00000	Programs 000●00	Curry-Howard	Classical realizability
The λ -cal	culus (2/2)			

t, u	::=	X	$ \lambda x.t$	<i>t</i> u
		(variables)	$x \mapsto f(x)$	<i>f</i> 2

Reduction

$$(\lambda x.t) \ u \longrightarrow_{\beta} t[u/x]$$
+ contextual closure: $C[t] \longrightarrow_{\beta} C[t']$ (if $t \longrightarrow_{\beta} t'$)

Examples:

$$(\lambda x.x) t \longrightarrow_{\beta} t$$
$$(\lambda x.\lambda y.y x) \overline{2} t \longrightarrow_{\beta} (\lambda y.y \overline{2}) t \longrightarrow_{\beta} t \overline{2}$$
$$\omega = (\lambda x.x x) (\lambda x.x x) \longrightarrow_{\beta} (\lambda x.x x) (\lambda x.x x) \longrightarrow_{\beta} \dots$$
$$(\lambda x.\lambda y.y) \omega \overline{2} \longrightarrow_{\beta} ?$$

Curry-Howard: unveiling the computational content of proofs

Introduction	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability
Theoretica	d question	S		

Determinism:

Confluence:

Normalization:

$$t \longrightarrow t' \longrightarrow t'' \xrightarrow{?} V \not\rightarrow$$

Introduction	Proofs 00000	Programs 00000●	Curry-Howard	Classical realizability
Types				
Goa	l:			
	elir	ninate unwante	ed behaviour	

Simple types:
$$A, B ::= X | A \rightarrow B$$

 $\mathbb{N} \qquad \mathbb{R} \rightarrow \mathbb{N}$

Sequent:

Hypothesis
$$\Gamma \vdash t : A$$
 Conclusion

Typing rules:

$$\frac{(x:A) \in \Gamma}{\Gamma \vdash x:A} (Ax) \quad \frac{\Gamma, x:A \vdash t:B}{\Gamma \vdash \lambda x.t:A \to B} (\to_{l}) \quad \frac{\Gamma \vdash t:A \to B \quad \Gamma \vdash u:A}{\Gamma \vdash t u:B} (\to_{E})$$

Introduction	Proofs 00000	Programs 00000●	Curry-Howard 000000000	Classical realizability
Types				
Simple typ	es: A, I	$3 ::= X \mid \mathbb{N}$	$A \longrightarrow B$ $\mathbb{R} \to \mathbb{N}$	
Sequent				
	Hypothe	sis $\Gamma \vdash t : A$	Conclusion	
Typing rule	es:			
$\frac{(\mathbf{x}:A)\in\Gamma}{\Gamma\vdash\mathbf{x}:A}$	(Ax) $\frac{\Gamma, \mathbf{x} : \lambda}{\Gamma \vdash \lambda \mathbf{x} . \mathbf{x}}$	$\frac{A \vdash t : B}{t : A \to B} (\to_l)$	$\frac{\Gamma \vdash t : A \to B \Pi}{\Gamma \vdash t \; u : E}$	$\frac{Y}{B} \vdash \underline{u} : A (\rightarrow_E)$

$$\vdash ?: (A \to B) \to (B \to C) \to (A \to C)$$

Introduction	Proofs 00000	Programs 00000●	Curry-Howard	Classical realizability
Types				
Simple typ	bes: A,	$B ::= X \mid$	$A \longrightarrow B$ $\mathbb{R} \to \mathbb{N}$	
Sequent				
	Hypoth	esis $\Gamma \vdash t : A$	Conclusion	
Typing rul	es:			
$\frac{(\mathbf{x}:A)\in\Gamma}{\Gamma\vdash\mathbf{x}:A}$	(Ax) $\frac{\Gamma, x:}{\Gamma \vdash \lambda x}$	$\frac{A \vdash t : B}{.t : A \to B} (\to)$	$) \frac{\Gamma \vdash t : A \to B \mathrm{I}}{\Gamma \vdash t u : E}$	$\frac{F + u : A}{3} (\to_E)$
Example:		$\overline{f} \cdot A \rightarrow R$	-	

$$\frac{\frac{f:A \to B, \dots + f:A \to B}{f:A \to B, \dots, x:A + x:A}}{f:A \to B, \dots, x:A + f:A \to B} (Ax)} \xrightarrow{(Ax)} \frac{\frac{f:A \to B, \dots + f:A \to B}{f:A \to B, \dots, x:A + f:A \to A}}{f:A \to B, g:(B \to C), x:A + g(f:X):C}} (Ax)} (Ax)$$

$$\frac{\frac{f:A \to B, g:(B \to C), x:A + g(f:X):C}{f:A \to B, g:(B \to C) + \lambda x.g(f:X):(A \to C)}} (Ax)} (Ax)$$

$$\frac{f:A \to B + \lambda g. \lambda x.g(f:X):(B \to C) \to (A \to C)}{(A \to C)} (Ax)$$

Introduction	Proofs 00000	Programs 00000●	Curry-Howard	Classical realizability
Types				
Simple t	ypes:	A,B ::= XN	$ A B \\ \mathbb{R} \mathbb{N}$	
Sequent	:			
	Нурс	othesis $\Gamma \vdash t$:	A Conclusion	
Typing r	ules:			
$(x : A) \in$	Γ (Ax) Γ ,	$\mathbf{x}: A \vdash t : B$	$ \downarrow \downarrow \qquad \Gamma \vdash t : A \to B$	$\Gamma \vdash \boldsymbol{u} : \boldsymbol{A}$

$$\frac{(x \cdot A) \in I}{\Gamma \vdash x : A} (Ax) \quad \frac{1, x \cdot A \vdash t \cdot B}{\Gamma \vdash \lambda x \cdot t : A \to B} (\to_l) \quad \frac{\Gamma \vdash t : A \to B \quad \Gamma \vdash u : A}{\Gamma \vdash t u : B} (\to_E)$$

Properties:

Subject reduction

If
$$\Gamma \vdash t : A$$
 and $t \longrightarrow_{\beta} t'$, then $\Gamma \vdash t' : A$.

Normalization

If $\Gamma \vdash t : A$, then *t* normalizes.

Étienne MIQUEY

Curry-Howard: unveiling the computational content of proofs

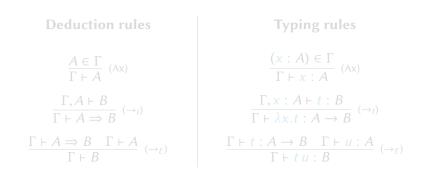
Introduction	Proofs	Programs	Curry-Howard	Classical realizability

The Curry-Howard correspondence

 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 00000
 00000
 000000
 000000
 000000
 000000

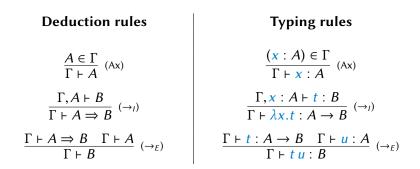
 A somewhat obvious observation
 00000
 00000000
 00000000
 00000000
 0000000000



 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 00000
 00000
 0000000
 000000
 000000
 000000

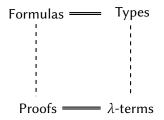
 A somewhat obvious observation



 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 000000
 000000
 0000000
 0000000
 000000
 000000

 Proofs-as-programs



Introduction	Proofs 00000	Programs 000000	Curry-Howard 00000000	Classical realizability
D C				

D	~	
Proot	$c - \alpha c - \alpha v$	ograme
	5-45-01	UP AILS
		ograms

The Curry-Howard correspondence			
Mathematics	Computer Science		
Proofs	Programs		
Propositions	Types		
Deduction rules	Typing rules		
$\frac{\Gamma \vdash A \Longrightarrow B \Gamma \vdash A}{\Gamma \vdash B} \ (\Rightarrow_{\mathcal{E}})$	$\frac{\Gamma \vdash t : A \to B \Gamma \vdash u : A}{\Gamma \vdash t \; u : B} \; (\to_E)$		
A implies B	function $A \rightarrow B$		
A and B	pair of A and B		
$\forall x \in A.B(x)$	dependent product $\Pi x : A.B$		

Benefits:

Program your proofs!

Prove your programs!

Introduction 000000	Proofs 00000	Programs	Curry-Howard	Classical realizability	
Commerci	al break 🏅	9			
File Edit Options Buffers Tool Require Import Utf8. Set Implicit Argument.	s Coq Proof-General Holes		subgoal (ID 3)	sfat v – LikosFich v	
Hypothesis Animals:Type. Hypothesis plato: Animal Hypothesis IsCat : Anima	ls → Prop.		HCat : V x : Animals, IsCat x → LikesFish x Hplato : IsCat plato		
Hypothesis LikesFish : A			LikesFish plato		
Theorem PlatoLikesFish (V (x:Animals), IsCat ; - IsCat plato - LikesFish plato. Proof. intros HCat Hplato. apply (HCat plato). apply Hplato. Oed.					
Print PlatoLikesFish.					
Definition myproof:= λ (HCat: (¥ (X:Animals λ (Hplato:IsCat plato (HCat plato Hplato).),	x)),			
Check myproof.					
Definition myproof2 A (a λ (t:∀x,P1 x→P2 x), λ (u:P1 a),		Prop):=		ls +3 Abbrev)	
U: Plato.v Top (15,21) Overwrite mode enabled	(Coq Script(1-) +2 Holes Abb	brev Ovwrt)	0 7 1		

For programmers:

Say "good bye" to verification, and "hello" to intrinsically correct programs!

For mathematicians:

Write true proofs of real maths!

(e.g. Feit-Thompson theorem)

For everybody:

Discover new ways of thinking of proofs!

For programmers:

Say "good bye" to verification, and "hello" to intrinsically correct programs!

For mathematicians:

Write true proofs of real maths!

(e.g. Feit-Thompson theorem)

For everybody:

Discover new ways of thinking of proofs!

For programmers:

Say "good bye" to verification, and "hello" to intrinsically correct programs!

For mathematicians:

Write true proofs of real maths!

(e.g. Feit-Thompson theorem)

For everybody:

Discover new ways of thinking of proofs!

Introduction	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability
Bad news				

Yet a lot of things are missing

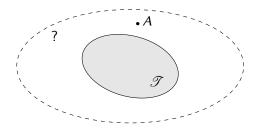
Limitations	
Mathematics	Computer Science
$A \lor \neg A$	try catch
$\neg \neg A \Rightarrow A$	x := 42
All sets can be well-ordered	random()
Sets that have the	stop
same elements are equal	goto

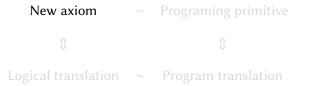
\hookrightarrow We want more !

Non-constructive principles

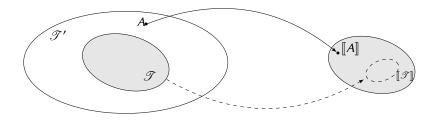
Side-effects

Introduction	Proofs	Programs	Curry-Howard	Classical realizability
			00000000	
Extending		award		



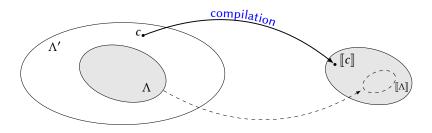


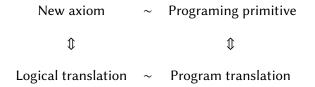
Introduction	Proofs	Programs	Curry-Howard	Classical realizability
			00000000	
Extanding		award		



Extending		aa.rd		
			000000000	
Introduction	Proofs	Programs	Curry-Howard	Classical realizability

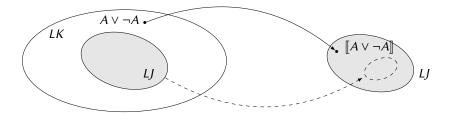
Extending Curry-Howard





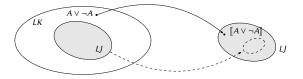
Introduction	Proofs	Programs	Curry-Howard	Classical realizability
000000	00000	000000	00000●000	000000
Classical l	ogic			

Classical logic = Intuitionistic logic + $A \lor \neg A$



Introduction	Proofs	Programs	Curry-Howard	Classical realizability
000000	00000	000000	00000●000	
Classical	ogic			

Classical logic = Intuitionistic logic + $A \lor \neg A$



New axiom

$$A \vee \neg A$$

Who doesn't use it?

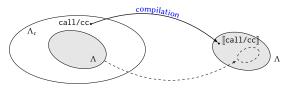
$$A \mapsto \neg \neg A$$

Gödel's negative translation

Programing primitive

Backtracking operator

Continuation-passing style translation



New axiom

$$A \vee \neg A$$

Who doesn't use it?

€ Logical translation

$$A \mapsto \neg \neg A$$

Gödel's negative translation

Programing primitive

call/cc

Backtracking operator

\$ Program translation

 $2 \mapsto \lambda k.k2$

Continuation-passing style translation

 \sim

 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 00000
 000000
 000000
 000000
 000000
 000000

 Computational content of classical logic
 00000
 000000
 000000
 000000
 000000

What is a program for $A \lor (A \to \bot)$?

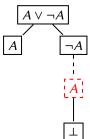
In the pure λ -calculus:

- $A \lor B \rightsquigarrow choose$ one side and give a proof
- $A \rightarrow B \rightsquigarrow$ given a proof of A, computes a proof of BWhich side to choose?

Extension: call/cc allows us to backtrack!

- Create a backtrack point
- each are a each are
- Given a proof t of A, go back to 1
- Play left: A
- Give t

$em \triangleq call/cc(\lambda k.inr(\lambda t.kinl(t)))$



 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 000000
 000000
 000000
 000000
 000000
 000000

 Computational content of classical logic
 000000
 000000
 000000
 000000

What is a program for $A \lor (A \to \bot)$?

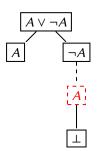
In the pure λ -calculus:

- $A \lor B \rightsquigarrow choose$ one side and give a proof
- $A \rightarrow B \rightsquigarrow$ given a proof of A, computes a proof of B

Extension: call/cc allows us to *backtrack*!

- Create a backtrack point
- 2 Play right: $A \rightarrow \bot$
- Given a proof t of A, go back to 1
- Play left: A
- Give t

$em \triangleq call/cc(\lambda k.inr(\lambda t.kinl(t)))$



 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 00000
 00000
 000000
 000000
 000000
 000000

 Computational content of classical logic
 00000
 000000
 000000
 000000

What is a program for $A \lor (A \to \bot)$?

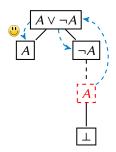
In the pure λ -calculus:

- $A \lor B \rightsquigarrow choose$ one side and give a proof
- $A \rightarrow B \rightsquigarrow$ given a proof of A, computes a proof of B

Extension: call/cc allows us to backtrack!

- Create a backtrack point
- **2** Play right: $A \rightarrow \bot$
- Given a proof *t* of *A*, go back to 1
- Play left: A
- 5 Give t

$em \triangleq call/cc(\lambda k.inr(\lambda t.kinl(t)))$



 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 00000
 000000
 000000
 000000
 000000
 000000

 Computational content of classical logic
 00000
 000000
 000000
 000000
 000000

What is a program for $A \lor (A \to \bot)$?

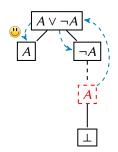
In the pure λ -calculus:

- $A \lor B \rightsquigarrow choose$ one side and give a proof
- $A \rightarrow B \rightsquigarrow$ given a proof of A, computes a proof of B

Extension: call/cc allows us to backtrack!

- Create a backtrack point
- **2** Play right: $A \rightarrow \bot$
- Given a proof *t* of *A*, go back to 1
- Play left: A
- Give t



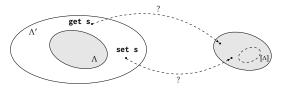


What does a memory cell bring to the logic?

Any idea?

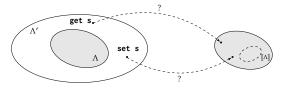
What does a memory cell bring to the logic?

Examine the compilation process !



What does a memory cell bring to the logic?

Examine the compilation process !



First approximation, *state monad*:

$$\llbracket A \to B \rrbracket \triangleq \mathcal{S} \times \llbracket A \rrbracket \to \mathcal{S} \times \llbracket B \rrbracket$$

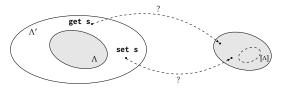
If besides the reference evolves **monotonically**:

$$\llbracket A \to B \rrbracket_{S} \triangleq \forall S' \succeq S. \llbracket A \rrbracket_{S'} \to \llbracket B \rrbracket_{S'}$$
$$\omega \Vdash A \Rightarrow B \triangleq \forall \omega' \succeq \omega. \omega' \Vdash A \Rightarrow \omega' \Vdash B$$

 \hookrightarrow forcing translation!

What does a memory cell bring to the logic?

Examine the compilation process !



First approximation, *state monad*:

$$\llbracket A \to B \rrbracket \triangleq \mathcal{S} \times \llbracket A \rrbracket \to \mathcal{S} \times \llbracket B \rrbracket$$

If besides the reference evolves monotonically:

$$\llbracket A \to B \rrbracket_{S} \triangleq \forall S' \succeq S. \llbracket A \rrbracket_{S'} \to \llbracket B \rrbracket_{S'}$$
$$\omega \Vdash A \Rightarrow B \triangleq \forall \omega' \succeq \omega. \omega' \Vdash A \Rightarrow \omega' \Vdash B$$

 \hookrightarrow *forcing translation!*

Introduction	Proofs 00000	Programs 000000	Curry-Howard 00000000●	Classical realizability
A new way	y of life			

The motto

With side-effects come new reasoning principles.

In my thesis, I used several computational features:

dependent types

lazy evaluation

streams

shared memory

to get a **proof** for the axioms of **dependent and countable choice** that is compatible with **classical logic**.

Key idea

Memoization of choice functions through the stream of their values.

Introduction	Proofs	Programs	Curry-Howard	Classical realizability

Classical realizability

Introduction	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability ●00000
Theory vs	Model			

- What is the status of axioms (*e.g.* $A \lor \neg A$)?
 - ↔ neither true nor false in the ambient theory (here, *true* means *provable*)

- **Theory**: *provability* in an axiomatic representation (syn
- Model: *validity* in a particular structure

(syntax) (semantic)

Introduction	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability •00000
Theory vs	Model			

- What is the status of axioms (*e.g.* $A \lor \neg A$)?
 - ↔ neither true nor false in the ambient theory (here, *true* means *provable*)

- Theory: provability in an axiomatic representation (syntax
- Model: *validity* in a particular structure

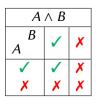
(syntax) (semantic)

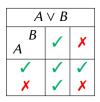
Introduction	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability ●00000
Theory vs	Model			

- What is the status of axioms (*e.g.* $A \lor \neg A$)?
 - ↔ neither true nor false in the ambient theory (here, *true* means *provable*)

- Theory: provability in an axiomatic representation (syntax
- **Model**: *validity* in a particular structure

(syntax) (semantic)



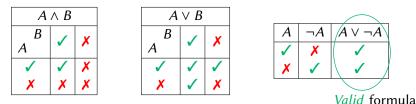


Introduction	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability ●00000
Theory vs	Model			

- What is the status of axioms (*e.g.* $A \lor \neg A$)?
 - ↔ neither true nor false in the ambient theory (here, *true* means *provable*)

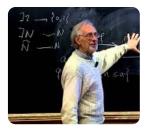
- **Theory**: *provability* in an axiomatic representation (syntax)
- **Model**: *validity* in a particular structure

(syntax) (semantic)



 Introduction
 Proofs
 Programs
 Curry-Howard
 Classical realizability

 Krivine classical realizability
 00000
 000000
 00000
 00000



Classical realizability:

 $A \mapsto \{t : t \Vdash A\}$

(intuition: programs that share a common computational behavior given by A)

Great news

Classical realizability semantics gives surprisingly new models!

Introduction 000000	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability
Realizabi	lity à la Kr	ivine		

- falsity value ||A||: contexts, opponent to A
- truth value |*A*| : proofs, player of *A*
- pole ⊥L: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot$$

 $\rightsquigarrow \bot\!\!\!\bot \subset \Lambda \star \Pi$ closed by anti-reduction

Introduction	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability
Realizabil	ity à la Kr	ivine		

- falsity value ||A||: contexts, opponent to A
- truth value |A| : proofs, player of A
- pole ⊥L: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot$$

 $\rightsquigarrow \bot\!\!\!\bot \subset \Lambda \star \Pi$ closed by anti-reduction

Introduction	Proofs	Programs	Curry-Howard	Classical realizability		
000000	00000	000000	00000000	00●000		
Realizability à la Krivine						

- falsity value ||A||: contexts, opponent to A
- truth value |A| : proofs, player of A
- pole ⊥L: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot ?$$

 $\rightsquigarrow \bot\!\!\!\bot \subset \Lambda \star \Pi$ closed by anti-reduction

Introduction	Proofs	Programs	Curry-Howard	Classical realizability		
000000	00000	000000	00000000	00●000		
Realizability à la Krivine						

- falsity value ||A||: contexts, opponent to A
- truth value |A| : proofs, player of A
- pole ⊥L: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot ?$$

 $\rightsquigarrow \bot\!\!\!\bot \subset \Lambda \star \Pi$ closed by anti-reduction

Introduction 000000	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability
Realizabi	lity à la Kr	ivine		

- falsity value ||A||: contexts, opponent to A
- truth value |A| : proofs, player of A
- pole ⊥L: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot$$
?

$\rightsquigarrow \bot\!\!\!\bot \subset \Lambda \star \Pi$ closed by anti-reduction

Introduction	Proofs	Programs	Curry-Howard	Classical realizability
000000	00000	000000		00●000
Realizabil	ity <i>à la</i> Kr	ivine		

- falsity value ||A||: contexts, opponent to A
- truth value |A| : proofs, player of A
- pole ⊥L: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot$$
?

$\rightsquigarrow \bot\!\!\!\bot \subset \Lambda \star \Pi$ closed by anti-reduction

Introduction 000000	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability
Results				

One key lemma:

Adequacy

If $\Gamma \vdash t : A$ then $t \in |A|$

Typing

Realizability

Introduction	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability
Results				

One key lemma:

Adequacy

If $\Gamma \vdash t : A$ then $t \in |A|$

Plenty of consequences:

Normalization

Typed terms normalize.

Proof. $\bot\!\!\!\!\bot_{\Downarrow} \triangleq \{c : c \text{ normalizes}\}$ defines a valid pole.

Soundness

There is no proof p such that $\vdash p : \bot$.

Proof. Otherwise, $p \in |\bot| = \Pi^{\perp}$ *for any pole, absurd* $(\perp \triangleq \emptyset)$ *.*

Introduction 000000	OOOOO	OOOOOO	Curry-Howard	Classical realizability 0000€0
Model th	eory			
	\mathcal{M}_{\perp}	$\models A \Leftrightarrow$	$\exists t, t \in A $	

First feature:

Classical realizability can simulate any forcing construction!

A puzzling fact:

 $\forall x. Nat(x)$ is not realized in general

There exists a model where $\nabla_n \triangleq \{x : x < n\}$ verifies:

- **1** ∇_2 is not well-ordered
- 2 there is an injection from ∇_n to ∇_{n+1}

In particular: $\models \neg AC$ and $\models \neg CH$

So there is no surjection from ∇_n to ∇_{n+1}

Introduction	Proofs	Programs	Curry-Howard	Classical realizability
000000	00000	000000		00000●
Implicativ	e algebras			

Great news, again

The algebraic analysis of the models that classical realizability induces can be done within simple structures.

Implicative structures

Complete meet-semilattice $(\mathcal{A}, \preccurlyeq, \rightarrow)$ s.t.:

• if
$$a_0 \preccurlyeq a$$
 and $b \preccurlyeq b_0$ then $(a \rightarrow b) \preccurlyeq (a_0 \rightarrow b_0)$ (Variance)

•
$$\int_{b\in B} (a \to b) = a \to \int_{b\in B} b$$

(Distributivity)

- Generalize Heyting/Boolean algebras
- Generalize combinatory algebras
- Sound encoding of λ -terms
- Give rise to realizability triposes

Introduction	Proofs 00000	Programs 000000	Curry-Howard	Classical realizability 00000●
Implicativ	e algebras			

Great news, again

ъ

The algebraic analysis of the models that classical realizability induces can be done within simple structures.

