
Master 1 d’Informatique Fondamentale

Realizing arithmetical formulæ

Étienne Miquey
<etienne.miquey@ens-lyon.fr>

Internship effectuated in Montevideo,

from Mars to May 2011,

under the supervision of

Mauricio Guillermo

Realizing arithmetical formulæ Étienne Miquey

Acknowledgments

I shall first warmly thank Maurico. Not only did he give me a great welcome, but he has always been
available to help me, what ever it was for a scientific question or to show me how to prepare the maté according
to the rule book. So that it has been a real pleasure to work by his side.

I also have to thank Alexandre Miquel for putting me in touch with Mauricio, making the realization of
the internship easier.

2/ 20 Stage M1

Étienne Miquey Realizing arithmetical formulæ

Contents

1 Introduction 4

1.1 Environment . 4
1.2 Context . 4

2 Formulæ & realizability game 5

2.1 Formulæ . 5
2.2 The λc-calculus . 5
2.3 Semantic of classical realizability . 6
2.4 Game rules . 6
2.5 Programming the game . 7

3 A winning strategy is a realizer 9

3.1 Branching the match . 9
3.2 Let’s climb the tree . 11

4 Formulæ zoology 12

4.1 Bestiary . 12
4.2 Secret passage in the zoo . 13
4.3 Algorithmic (in)expressiveness . 14
4.4 Realizer for the hardest game . 15

5 Gender equality 16

5.1 Delphi’s Phytia . 16
5.2 Restoring the equality . 17

6 Conclusion 19

Stage M1 3/ 20

Realizing arithmetical formulæ Étienne Miquey

1 Introduction

1.1 Environment

I have done this internship at the laboratory of mathematics in the Facultad de Ciencias of Montevideo,
supervised by Mauricio Guillermo. He is actually the only one working there on logic and mathematical
foundations, there is no team on the topic, so that my work has been totally independent. The whole subject
of the internship consisted in extending some results mentioned in his thesis [Gui08] or by Krivine in [Kri04].
I shall explain the scientific aspects in the next section more accurately.

My work has also been firstly to read the thesis and the few other papers on the subject, so as to see the
state of the art, that I will expose in section 2. Then, I wrote a proof for the theorem 4.7, that was stated
in [Kri04] but was not proved in the general case. The proposition 3.5 was the center of the subject strictly
speaking, and is a generalization of examples and the reverse of a result given in [Gui08]. Except when this is
explicitly indicated, all the other results are mine, often stemming from discussions with Mauricio.

1.2 Context

The correspondence between proofs and programs, also known as the Curry-Howard correspondence, has
brought strong connections between concepts of functional programming and proof theory, especially using
typing in λ-calculus. For a long time, the computational contents induced by this correspondence were also
limited to intuitionistic logic and constructive mathematics, that is without the axiom of middle-excluded.
But in 1990, Griffin discovered that the control operator call/cc, already present in many programming
languages, could be typed by Pierce’s Law, which is constructively equivalent to double-negation and middle-
excluded. This opened to a computational interpretation of classical proofs, using backtrack (implemented
with call/cc) to interpret strictly classical reasonings. Many λ-calculi using control operators were born of
this idea, of which the Krivine’s λc-calculus [Kri04]. The λc-calculus is the usual λ-calculus viewed in the
Krivine Abstract Machine, to which have been added - at least - a call/cc instruction.

However, the interpretation within the frame of typing appeared to be unadapted for the analysis of
program extracted from classical proof, rightly due to the backtrack. In intuitionistic logic, there existed a
theory, initially developed by Kleene, paying attention not to types but rather to computational behavior, the
theory of realizability. But the way it was designed was deeply incompatible with classical logic (the negation
of the middle-excluded is for instance realizable). The classical realizability developed by Krivine [Kri04] is a
reformulation of the principles of intuitionistic realizability to make it compatible with classical logic.

As in Kleene’s realizability, a formula B is interpreted as a set of programs |B| (the realizers) sharing the
same computational behavior coming from B. A property of adequacy has been proved [Kri03], emphasizing
that any program extracted from a proof of B (then of type B) does have the computational content expected,
and that this approach is relevant in the usual point of view of deduction. The difference is that the set |B| is
defined indirectly, from a set ‖B‖ of opponents to the formula, and is parametrized by a pole ⊥⊥. Intuitively,
a realizer is a term ¡hich can challenge every opponent.

In the continuity of this defender/opponent intuition, Krivine explained how arithmetical formulæ can be
interpreted as a game. These are the realizability games developed by Mauricio Guillermo all along [Gui08]
in which a game is played over an arithmetical formula. A program is viewed as a strategy, and realizing
a formula is winning a game. The aim of this interpretation is to build a suitable model for formulæ, and
to try to specify them, that is to characterize realizers by the computational behavior. In [Gui08] a way of
programming strategy in λc-calculus is exposed, and it is proved that every universal realizer of a formula is
a winning strategy for the associated game.

The goal of this internship was to show that conversly, any term implementing a winning strategy is also
a universal realizer, which is the object of section 3. Section 4 deals with relativization to data types, to
highlight that the deep computational behavior does not really change within relativizations and the need of
relativization algorithmically speaking. Then in section 4.4, I generalized an idea of Krivine’s to show that, in
the hardest game, every true formula is universally realized. Finally, section 5 enhances the strong difference
between the equality and the inequality in terms of classical realizability. The whole work aims at pointing
out that classical realizability characterizes every true formula as the set of all its λc-programmable winning
strategies .

4/ 20 Stage M1

Étienne Miquey Realizing arithmetical formulæ

2 Formulæ & realizability game

2.1 Formulæ

In this report, we will denote A → (B → C) by A,B → C. Lower case letters x, y will almost always refer to
variables, m,n, p to integers, whereas we will use W,X, Y for second-order variables and W,X for predicates.
We will always interpret the equality as the Leibniz equality, that is :

a = b ≡ ∀W,Wa ⇒ Wb

Besides, until section 5, we will only consider formulæ as described thereafter. But a more general framework
could be found in [Gui08], namely a subset LG of second-order arithmetical formulæ.

Definition 2.1 (Formulæ). Let xi, yi be first-order variables, and A be an opened atomic formula, of the
shape f(~x, ~y) = 0 or f(~x, ~y) 6= 0. Then, we build the following by induction :

F1 = ∃x1∀y1A Fn+1 = ∃xn+1∀yn+1Fn

We will denote by Φn a closed formula Fn and we will write Φn(mn+1, pn+1) for the closed formula get
from Φn+1 by instantiating the quantified variables xn+1, yn+1 with mn+1, pn+1. Unfolding the definition of
the existential quantifiers, we obtain:

Φn = ∀Xn[∀xn(∀ynFn−1 → Xn) → Xn]

We will denote by Ψn(Xn) the sub-formula ∀xn(∀ynFn−1 → Xn), and by Γn(Xn, xn) the formula ∀ynFn−1,
so that we have :

Φn = ∀Xn[Ψn(Xn) → Xn] = ∀Xn[∀xnΓn(Xn, xn) → Xn]

When there is no ambiguity, we will use the notation Ψn (resp. Γn(xn)) for Ψn(⊥) (resp. Γn(⊥, xn)).
Furthermore, we will sometimes add = (resp. 6=) as an exponent to any of this formula (Ψ=

n ,Φ
6=
n , . . .) to specify

that the atomic formula is of the form f(~x, ~y) = 0 (resp. f(~x, ~y) 6= 0).
We will sometimes relativize some quantifiers to data-types. This means1 that the quantified variable

should verify some predicate or belong to a set. We will mainly use two type of relativization, for a generic
and formal definition, see [Gui08]. On the one hand, the relativization to standard integers means that the
variable has to be a standard integer n̄ = sn(0) for some n:

∃
{x}
x F ≡ ∃x({x} → F)

On the other hand, the relativization to integers implies that a variable x will have to fulfill the predicate
int(x) := ∀X [∀y, (Xy → Xs(y)), X0 → Xx] :

∀
int
y F ≡ ∀y(int(y) → F)

We will mainly work with standard integers, and we will study how to go from one relativization to an other
in section 4.

2.2 The λc-calculus

Definition 2.2. Given a set B of stack constants and a set C of instructions containing at least cc, the sets of
terms and stacks are defined by mutual induction from the following rules :

Terms t, u ::= x | λx.t | tu | c | kπ c ∈ C
Stacks π ::= α | t · π (a ∈ B,t closed)
Processes p, q ::= t ⋆ π (t closed)

We denote by Λc the set of closed terms, by Π the set of stacks. At last, a λc-term which does not contain
any continuation kπ would be said to be proof-like term, and we will write Λpl

c the set of these terms.

Definition 2.3. Here are the reduction rules for processes, which are the computation rules for the interactions
between a term and a stack within the Krivine’s Abstract Machine :

1Originally, relativization was introduced as a trick to deal with integers to compensate for the lack of induction principle,
that couldn’t been realized. See [Kri04] for instance.

Stage M1 5/ 20

Realizing arithmetical formulæ Étienne Miquey

Push : tu ⋆ π ≻1 t ⋆ u · π
Grab : λx.t ⋆ u · π ≻1 t{x := u} ⋆ π
Save : cc ⋆ t · π ≻1 t ⋆ kπ · π

Restore : kπ ⋆ t · ρ ≻1 t ⋆ π

The reflexive-transitive closure of ≻1 will be written ≻.

One of the interest of this definition is that it allows us to add other instructions in C with their execution
rule, which is useful to proceed to witness extraction for example [Miq09], or to realize the axiom of choice
[Kri03]. Nevertheless, adding new instructions could break some substitution properties that we will need
thereafter.

Definition 2.4. Given a process t ⋆ π, we define its thread, denoted by tht⋆π, as the set of all possible reduced
processes:

thp = {p′ ∈ Λc ⋆Π : p ≻ p′}

2.3 Semantic of classical realizability

Definition 2.5 (Poles and models). A pole is any set ⊥⊥ ⊂ Λc ⋆Π closed under anti-reduction, that is to say
that for all p, p′ ∈ Λc ⋆Π, both conditions p ≻ p′ and p′ ∈ ⊥⊥ imply p ∈ ⊥⊥. We will call realizability model the
given of a (M ,⊥⊥) where M is an ω-model and ⊥⊥ a pole.

We will essentially build poles as complement sets of a union of threads. For instance, given an arbitrary
set P of process, it is easy to check that the following set ⊥⊥ is a suitable pole:

⊥⊥ ≡ (
⋃

p∈P

thp)
C ≡

⋂

p∈P

thC
p

Definition 2.6 (Truth value). Given a realizability model, we will call falsity value any set S ⊆ Π, and its
corresponding truth value S⊥⊥ would be defined as the orthogonal complement to the pole :

S⊥⊥ = {t ∈ Λc : ∀π ∈ S, t ⋆ π ∈ ⊥⊥}

We suppose we have for any closed first-order expression an interpretation JeK ∈ M . We need to add a
second-order symbol Ḟ for each F : Nk → P(Π) k-ary falsity value function, so that if e1, . . . , ek are first-order
expressions, then Ḟ (e1, . . . , ek) is a formula with parameters.

For a given formula A, we will denote as ‖A‖ its falsity value (resp. |A| its truth value), defined by :

� ‖∀XA‖ =
⋃

Ḟ :Nk→P(Π)

‖A{X := Ḟ}‖ � ‖∀xA‖ =
⋃

n∈N

‖A{x := n}‖

� ‖A ⇒ B‖ = |A| · ‖B‖ = {t · π : t ∈ |A|, π ∈ ‖B‖} � ‖Ḟ (e1, ..., ek)‖ = F (Je1K, . . . , JekK)

These sets are all parametrized by the given of ⊥⊥, therefore we shall write them ‖A‖⊥⊥ and |A|⊥⊥ when needed.

Intuitively, for a given formula A, a stack of ‖A‖ is an attacker of the formula, some kind of test, and a
term of |A| is a program who passed all these tests successfully. We will say that:

� t realizes A in ⊥⊥ and write t ⊥⊥ A when t ∈ |A|⊥⊥
� t universally realizes A and write t � A when t ⊥⊥ A for every ⊥⊥

The reader should be aware that the truth value of an application |A ⇒ B| differs from the one in Kleene’s
realizability. Indeed, using the following notation

|A| → |B| = {t ∈ Λc : ∀u ∈ |A|, tu ∈ |B|}

we do not have the inclusion |A| → |B| ⊆ |A ⇒ B| unless the pole is insensitive to the Push-rule (that is
t ⋆ u · π ∈ ⊥⊥ iff tu ⋆ π ∈ ⊥⊥), which is not true in general.

2.4 Game rules

For a given formula Φ, the associated game in the model M is played by two players that we will call ∃ and
∀ . Taking turns, each player will have to instantiate his variables, with the particularity that ∃ could
backtrack whenever he wants to a previous position, until a final position is reached, when there are no more

6/ 20 Stage M1

Étienne Miquey Realizing arithmetical formulæ

quantifiers. At this point, we evaluate the formula, if it is true, then the game stops and ∃ wins, otherwise
the game continues. ∀ wins if the game never ends.

Formally, assume we play with a formula2 Φ=
n (resp. Φ 6=

n) corresponding to a given function f . We will
write Jk for the move played after the kth turn, and a move 〈mn, pn, . . . ,mi, pi〉 means that ∀j ∈ Ji, nK, xj has
been instantiated with mj and yj by pj .

◮ We start the game with J0 := 〈·〉.
◮ At his k + 1th turn, ∃ chooses a move in Jk, let say 〈mn, pn, . . . ,mi+1, pi+1〉. It means
that ∃ and ∀ will know play with the formula Φi(mn, pn, . . . ,mi+1, pi+1), that is Φn with the
2(n− i) first quantifiers instantiated. Then ∃ plays mi, and ∀ has to answer with some pi.

.
◮ If i = 1 and M � f(mn, pn, . . . ,m1, p1) = 0 (resp. 6= 0), the game is over, and
∃ wins.
◮ Otherwise, we set Jk+1 = Jk ∪ {〈mn, pn, . . . ,mi, pi〉} and the game goes on.

Intuitively, ∀ is an attacker trying to exhibit a counter-example to win, whereas ∃ is a defender who could
backtrack anytime. So that a victory of ∃ does not mean he gave an instantiation such that the formula is
true in the model, it only indicates that ∀ did not encounter a counter-example. For instance, for a given
function F : N → N, taking f such that f(x, y) = 0 ⇔ F (x) ≤ F (y), the formula Φ1 = ∃x∀yf(x, y) = 0 means
that F has a minimum. If ∃ wins on a position (m, p), it does not mean that m is the minimum of F , only
that F (m) ≤ F (p). In a way, ∃ has to prove the double-negation, that is to say that he is not wrong, and not
that he is right. This highlights the fact that we are working quite far from any intuitionistic frame.

Definition 2.7. We will say that ∃ has a winning strategy if it has a way of playing that ensures him a
victory, independently of ∀ -moves.

Obviously, there could exist a winning strategy for ∃ if and only if the formula we are playing with is true
in the model.

2.5 Programming the game

Following the intuitive meaning of falsity values as tests and realizers as defenders against attacking stacks,
we will implement the previous game in λc-calculus. As we will focus on realizers, we will take the ∃ point
of view, that is to implement a winning strategy. Furthermore, we will only pay interest to formula of which
existential quantifiers are all relativized, so that ∃ plays effectively the integers, and that his strategy is fully
encoded. The section 4.3 dwells on the interest of this relativization.

A winning strategy should be able to win against any opponent player, so that we will add for each formula
Φ (resp. Ψ,Γ) an interaction constant κΦ to represent ∀ answer, with a non-deterministic reduction rule,
denoted by ≻≻.

Definition 2.8. For each k, ~n ∈ N
k and π ∈ Π, we define ∆π,~n

k : Nk → P(Π) such that

∆π,~n
k (~m) :=

{
{π} if ~n = ~m
∅ if ~n 6= ~m

Moreover, we set ∆k := {∆π,~n
k : π ∈ Π, ~n ∈ N

k}

Definition 2.9. We define3, for a formula ϕ the set JϕK of what will be the authorized ∀ answers. If ϕ is a
first-kind formula of the form ϕ = ∀y({y},Φ(y) → A), then

JϕK := {p · κΦ(p) · π : p ∈ N, π ∈ ‖A(p)‖}

If ϕ is a second-kind formula of the form ϕ = ∀W, ∀y({y},Φ(W, y) → W~τ), where W has arity k, then

JϕK := {p · κΦ(W,p) · π : p ∈ N,W ∈ ∆k, π ∈ W(~τ)}

The rules are now the following : for a formula Φn = ∀Xn[Ψn(Xn) → Xn], ∃ begins with a proof-like term
ξn, then ∀ chooses a predicate Xn and answers by a stack of JΨn(X) → XK, so that the position is ξn ⋆κΨn

·π.
As we have not yet any reduction rules for the interaction constant κϕ in general, κΨn

would arrive in head
position. We have now to define the rules for ≻≻.

If κΦ comes in head position, which means that both players are currently playing over Φ, this is with the
answer of ∃ on the top of the stack - otherwise ∃ lost. We have to consider the reduction of all processes of
the form :

κΦ ⋆ m · ξ · π

2We can generalize this definition to play with more complicated formulæ, see [Gui08], or the example in section 5.
3Once again, for a more general definition, see [Gui08], we will not need it here.

Stage M1 7/ 20

Realizing arithmetical formulæ Étienne Miquey

� If Φ is a first-order formula of the shape ∀x({x},Γ(x) → X), it means that ∃ has chosen m ∈ N, and
the terms ξ is his current strategy. ∀ has then to choose a stack ρ in JΓ(m)K to oppose to ξ.

� If Φ is a second-order formula of the shape ∀W∀x({x},Γ(W,x) → W~τ), it means that ∃ should have
had to choose a predicate W in the appropriate ∆k, and an integer m, so that π ∈ W~τ . Then ∀ has to
choose a stack ρ ∈ JΓ(W,m)K.

In both cases, we say that the process reduces to ξ ⋆ ρ, and the game goes on :

κΦ ⋆ m · ξ · π ≻≻ ξ ⋆ ρ

The game stops as soon as a player is no longer able to answer to a position.

Remark 2.10. Note that the term m only appears because the quantifier was relativized, otherwise the choice
of ∃ would not be traceable in the execution. But when this is the case, once he has given ξn, ∃ could be
replaced by the machine, which means that ξn implements his strategy.

Remark 2.11. In fact, in a more general case, the rules are almost the same. Considering formulæ of the
shape ∀W∀~x(δ1(x1), . . . , δr(xr), ϕ1, . . . , ϕs → W~τ), ∃ has to give terms for the r data types δi(xi) and a
strategy ξj for each ϕj. Then ∀ chooses one of the ϕj and oppose to ξj a stack ρ of JφjK:

κΦ ⋆ d1 · · · dr · ξ1 · · · ξs · π ≻≻ ξj ⋆ ρ

We will call threads scheme a scheme containing the threads of the game. If, for instance, we have in the
fact the following game :

τ ⋆ κϕ1
· π ≻ κϕ1

⋆ m · ξ · π ≻≻ ξ ⋆ p · κϕ2
· π′ ≻ κϕ2

⋆ m′ · ξ′ · π′ ≻≻ . . .

the threads scheme would rather be written as :

τ ⋆ κϕ1
· π ≻ κϕ1

⋆ m · ξ · π
ξ ⋆ p · κϕ2

· π′ ≻ κϕ2
⋆ m′ · ξ′ · π′

...

which is more appropriate in a general case due to the non-deterministic reduction of interaction constants.

Definition 2.12. A final moving position is a process κ ⋆ π such that ∃ can move in such a way that ∀ can
not answer. We will denote by G the set of all this positions.
Given a process p, we say that p has a winning strategy if and only if ∃ can play in such a way that p
reduces to a process of G independently of ∀ ’s answers. This property will be denoted by p ≻≻ G, and we set
⊥⊥G := {p : p ≻≻ G}.

Remark 2.13. If we give a glance of the possible winning position, we observe that it corresponds to the case
when ∀ has to choose a stack in a empty set, that happens in different position depending on the formula uses
equality or inequality.
For a formula built with inequality, the process is some κϕ ⋆ m · ξ · π and the formula is of the shape ϕ ≡

∀X(∀
{x}
x (∀

{y}
y f(x, y) 6= 0 → X) → X). If ∃ plays x ∈ N and X so that ∀y,M � f(x, y) 6= 0, ∀ has to play a

stack of J∀
{y}
y f 6= 0 → XK, which is empty because for all y ∈ N, Jf(x, y) 6= 0K = ∅.

In the case of an equality - the process is κf=0 ⋆ π and the formula is some Wf → W0 after ∃ ’s move - it
means that Wf ≡ ⊤ so that JWf K = ∅ and therefore ∀ can not answer.

The set ⊥⊥G is clearly closed under anti-reduction, since if p′ ≻ p and p has a winning strategy, then p′ has
also a winning strategy. The point is that the stack played by ∀ belong to the falsity values parametrized by
⊥⊥G.

Lemma 2.14. [Gui08] For all formula Φ, JΦK ⊆ ‖Φ‖G.

Proposition 2.15. If Φ is a formula and τ ∈ Λc such that τ � Φ then τ has a winning strategy for Φ.
Moreover, if the formula Φ is completely relativized to data type, τ implements a winning strategy for the game
associated with Φ.

Proof. If τ � Φ, a fortiori τ G Φ. Given any stack ρ ∈ JΦK, by 2.14, ρ ∈ ‖Φ‖G, so that τ ⋆ ρ ∈ ⊥⊥G. The
second part of the result is exactly the previous remark about relativization.

8/ 20 Stage M1

Étienne Miquey Realizing arithmetical formulæ

3 A winning strategy is a realizer

3.1 Branching the match

Here we intend to describe the progress of a game for Φ̂=
n , the formula Φ=

n with all quantifiers relativized to
standard integers. In order to do it, we will take θ � Φ̂=

n , which is, by 2.15, a particular winning strategy. By
this, we aim to understand both the progress of the game played by a winning stratgey of ∃ , which is the
same whatever the strategy is (and especially if we don’t know this is a universal realizer) and why proposition
2.15 is true, that is to say the reasons why a realizer do follow the rules of the game.

Looking at the rules, we observe that the game could be seen as a tree, that we will examine thereafter.
Using this tree, we shall see further that any winning strategy is actually a universal realizer.

Definition 3.1 (Tree). T ⊂ N
<N is a tree if ∀σ ∈ T , ∀τ ⊂ σ, τ ∈ T .

A tree could be seen as a set of strings of integers. We will denote by 〈·〉 the empty string, and by · the
concatenation. Thus, for instance, we will have 〈123〉 · 〈456〉 = 〈123456〉. In our case, nodes and leaves are
going to be labeled with λc-terms, that is to say some Λc-trees (T , V), where T is a tree, and V : T → Λc ⋆Π
maps every nodes of T to a process.

As the first node will represent a move of ∃ , the first floor will correspond to ∀ moves, and so on. Then,
in the point of view of ∃ , only the subset of even nodes is interesting. Furthermore, ∀ could only give one
answer to a move from ∃ . Which leads us to the following definition, to lighten the labels :

Definition 3.2. Let T be a tree. Then we define,

{
∀σ ∈ T , σ̊ := σ(0) · σ(2) · · ·σ(2p), p = ⌊ |σ|

2 ⌋
ex(T) := {σ̊ | σ ∈ T }

Following the progress of the match, we will build at each step a labeled tree (Tj , Vj) extending the previous
one4 and a pole ⊥⊥j ⊂ ⊥⊥j−1, such that for all j, ⊥⊥j =

⋂
x∈ex(Tj)

thC
V (x). We will need the following technical

lemma.

Lemma 3.3. [Gui08] Consider an extended formula ∃
{x}
x .φ(x) and u a Λc-term. Consider a term t ∈ Λc, a

stack π and a model ⊥⊥0 satisfying ⊥⊥0 ⊂ (tht⋆u·π)
C and t 0 ∃

{x}
x .φ(x). Then, there is an integer n and a

term ξ such that:

1. ξ 0 φ(n) 2. u ⋆ n · ξ · π /∈ ⊥⊥0

Step 0: The game start on the process P0 = θ⋆k〈·〉·π〈·〉, with the tree made of the empty string T0 = {〈·〉} and
the mapping V0 : 〈·〉 7→ P0. We also put ⊥⊥0 = thC

V (·) = thC
θ⋆k〈·〉·π〈·〉

. Then applying the lemma 3.3, we get that

there existm〈1〉 and ξ〈1〉 0 Γn(m〈1〉) such that k〈·〉⋆m〈1〉 ·ξ〈1〉 ·π〈·〉 /∈ ⊥⊥. Thus, k〈·〉⋆m〈1〉·ξ〈1〉 ·π〈·〉 ∈ thθ⋆k〈·〉·π〈·〉
,

that is θ ⋆ k〈·〉 · π〈·〉 ≻ k〈·〉 ⋆ m1 · ξ〈1〉 · π〈·〉, which would be the first line of the threads scheme. Then ∀ has to
answer with a stack of JΓn(m〈1〉)K, so with some terms p1, k〈1〉 ≡ κΦn−1(m〈1〉,p〈1〉) and a stack π〈1〉. Then we

set T1 = T0∪〈1〉∪〈11〉5, V1 = V0⊗[〈1〉 7→ k〈·〉⋆m1 ·ξ〈1〉 ·π〈·〉]⊗[〈11〉 7→ ξ〈1〉⋆p1 ·k〈1〉 ·π〈1〉] and ⊥⊥1 = ⊥⊥0∩thC
V (1).

Step j: Suppose that we are looking for the reduction thread of a process Pj , and that we have built a
labeled tree (Tj , Vj) and the associated pole ⊥⊥j, such that:

∀p > 0, if σ ∈ Tj and 2p ≤ |σ|, τ = σ ↾ [1..2p− 1], α = σ(2p),

{
V (τ) = ξτ̊ ⋆ pτ̊ · kτ̊ · πτ̊

V (τ · α) = kτ̊ ⋆ mτ̊ ·α · ξτ̊ ·α · πτ̊

This allows us to use the notation var(τ) to point out the integer contained in the branch6. Assume that the
following statement holds :

Forall τ ∈ Tj, if kτ̊ ⋆ m · ξ · πτ̊ /∈ ⊥⊥j and ∀σ ≡ τ · i ∈ Tj , ξ 6= ξσ̊ then kτ̊ ⋆ m · ξ · πτ̊ ∈ thj (Sj)

By 3.3, we know that there is an integer m, a term ξ j Γn(m) such that k〈·〉 ⋆m · ξ ·π〈·〉 /∈ ⊥⊥. We set τ = 〈·〉,
and begin the following algorithmic-like analysis:

While ∃σ ∈ Tj , σ ⊃ τ such that ξ = ξσ̊ and |̊σ| < n :

As σ ∈ Tj , it means ∀ has already answered to ξ with a stack pσ̊ ·kσ̊ ·πσ̊. By construction, ξ⋆pσ̊ ·kσ̊ ·πσ̊ does
not belong to ⊥⊥j , and as ξ j Φ|̊σ|(var(σ)), by 3.3, there is an integer m′, a term ξ′ j Γ|̊σ|(var(σ),m

′)
such that kσ̊ ⋆ m′ · ξ · πσ̊ /∈ ⊥⊥j .

4Which means that Tj−1 ⊂ Tj , dom(Vj−1) ⊂ dom(Vj) and Vj |dom(Vj−1)
= Vj−1.

5The 1 stands for ∃ move, 11 for ∀ move.
6That is to say, on the previous example var(τ · α) = var(τ), mτ̊ ·α and var(< i >) = mi.

Stage M1 9/ 20

Realizing arithmetical formulæ Étienne Miquey

Player

∃

∀

∃

∀

∃

∀

∃

∀

Depth

(1)

(2)

(3)

(4)

...

(2n-1)

(2n)

Game

θ ⋆ k〈·〉 · π〈·〉

k〈·〉 ⋆ m〈1〉 · ξ〈1〉 · π〈·〉 k〈·〉 ⋆ m〈2〉 · ξ〈2〉 · π〈·〉 k〈·〉 ⋆ mk〈·〉
· ξj〈·〉 · π〈·〉

1 1 2 · · · j〈·〉

ξ〈1〉 ⋆ p〈1〉 · k〈1〉 · π〈1〉

2
2

ξ〈2〉 ⋆ p〈2〉 · k〈2〉 · π〈2〉 ξk〈·〉
⋆ pk〈·〉

· kj〈·〉 · πj〈·〉

· · ·

k〈2〉 ⋆ m〈21〉 · ξ〈21〉 · π〈2〉
k〈2〉 ⋆ m〈22〉 · ξ〈22〉 · π〈2〉

k〈2〉 ⋆ mj〈2〉
· ξj〈2〉

· π〈2〉

1
3 2

j〈21〉

...

...
...

...
...

ξσ̊ ⋆ pσ̊ · kσ̊ · πσ̊

· · · · · ·

kσ̊ ⋆ mσ̊·1 · ξσ̊·1 · πσ̊
kσ̊ ⋆ mσ̊·i · ξσ̊·i · πσ̊

kσ̊ ⋆ mσ̊·jσ̊
· ξσ̊·jσ̊

· πσ̊

1
i

jσ̊

ξσ̊·1 ⋆ pσ̊·1 · kσ̊·1 · πσ̊·1
ξσ̊·i ⋆ pσ̊·i · kσ̊·i · πσ̊·i

ξσ̊·jσ̊
⋆ pσ̊·jσ̊

· kσ̊·jσ̊
· πσ̊·jσ̊

kσ̊·i ⋆ πσ̊·i

X

k

k

Legend

i

i

∃ chooses a reached position...

... and makes its ith move

kσ̊ ⋆ mσ̊·1 · ξσ̊·1 · πσ̊

ξσ̊·1 ⋆ pσ̊·1 · kσ̊·1 · πσ̊·1

Then ∀ has to propose a stack

and it is again ∃ -turn

kσ̊·i ⋆ πσ̊·i

X

until ∃ reaches a winning position

to which ∀ can’t answer

Figure 1: Match tree

◮ (τ, ξ,m) := (σ, ξ′,m′)
end

if |̊τ | < n then

◮ i := 1 +max{0} ∪ {j | τ · j ∈ Tj}, (mτ̊ ·i, ξτ̊ ·i) := (m, ξ)
By construction, we have kτ̊ ⋆ mτ̊ ·i · ξτ̊ ·i · πτ̊ /∈ ⊥⊥j , and by (Sk), kτ̊ ⋆mτ̊ ·i · ξτ̊ ·i · πτ̊ ∈ thj. So that we adq
the line Pj ≻ kτ̊ ⋆ mτ̊ ·i · ξτ̊ ·i · πτ̊ to the threads scheme
Then ∀ has to answer with a stack of JΓ|̊τ |(var(τ))K, so with some terms pτ̊ ·i, kτ̊ ·i ≡ κΦ|τ̊ |(var(τ)) and a
stack πτ̊ ·i.

◮ Tj+1 := Tj ∪ {τ̊ · i} ∪ {τ̊ · i · 1}
◮ Vj+1 := Vj ⊗ [τ · i 7→ kτ̊ ⋆ mτ̊ ·i · ξτ̊ ·i · πτ̊]⊗ [τ · i · 1 7→ ξτ̊ ·i ⋆ pτ̊ ·i · kτ̊ ·i · πτ̊ ·i]
◮ Pj+1 := ξτ̊ ·i ⋆ pτ̊ ·i · kτ̊ ·i · πτ̊ ·i

10/ 20 Stage M1

Étienne Miquey Realizing arithmetical formulæ

◮ thj+1 := thξτ̊·i⋆pτ̊·i·kτ̊·i·πτ̊·i

◮ ⊥⊥j+1 := ⊥⊥j ∩ thC
j+1

We can check that (Sj+1) holds
7, and go to step j + 1

else 8

Knowing that ξτ̊ ⋆ pτ̊ · kτ̊ · πτ̊ /∈ ⊥⊥j and ξ j ∀y1f(xn, . . . , y1) = 0, that is ξ j ∀y1∀W (Wf(xn,...,y1) →
W0), we get in particular kτ̊ 1j+1 ∆πτ̊ ,0(f(xn, . . . , y1)), which implies M � f(xn, . . . , y1) = 0. As a
consequence, kτ̊ ⋆ πτ̊ /∈ ⊥⊥j. As it stops the execution, it should belong to the current thread thj . We also
had the lines Pj ≻ kτ̊ ⋆ πτ̊ which ends the threads scheme.

end if

This construction must stop, as θ is a winning strategy9, which means that the game stops, in the else-case
of the test.

The figure 1 represents such a tree, and the associated threads scheme looks like:

θ ⋆ k〈·〉 · π〈·〉 ≻ k〈·〉 ⋆ m〈1〉 · ξ〈1〉 · π〈·〉

ξ〈1〉 ⋆ p〈1〉 · k〈1〉 · π〈1〉 ≻ k〈·〉 ⋆ m〈2〉 · ξ〈2〉 · π〈·〉

ξ〈2〉 ⋆ p〈2〉 · k〈2〉 · π〈2〉 ≻ k〈2〉 ⋆ m〈21〉 · ξ〈21〉 · π〈2〉

...
ξτ̊ ⋆ pτ̊ · kτ̊ · πτ̊ ≻ kσ̊·i ⋆ πσ̊·i

Remark 3.4. If we take a term which is a winning strategy, following directly the rules of the game, we
will do the very same construction, without needing a while-loop. Indeed we know that ∃ chooses an already
reached position to complete it, playing his next move, and as he finally wins, that the threads scheme is finite.
Nevertheless, its length depends on ∀ answers.

3.2 Let’s climb the tree

Using this threads scheme, we can now prove the following result:

Proposition 3.5. Given an ω-model M , θ ∈ Λc, if θ implements a winning strategy of Φ̂n, then θ � Φ̂n

Proof. Let θ implements a winning strategy of Φ̂n and ⊥⊥ be a realizability model, X a predicate, ρ0 ⊂ X and
u0 realizing Ψ̂n(X) in ⊥⊥. We have to show that θ ⋆ u0 · ρ0 ∈ ⊥⊥. Let us start a game on θ ⋆ u0 · ρ0 ∈ ⊥⊥,
according to the strategy given by θ. By hypothesis, this play must finish with ∃ winning.

By substitution over the first thread, this process reduces to u0 ⋆ m1 · ξ̃1 · ρ0, where ξ̃1 = ξ1[
u0,ρ0/k〈·〉,π〈·〉

].
Thanks to the anti-reduction of ⊥⊥, it is sufficient to show that:

ξ̃1 ∀
{yn}
yn Φn−1(m1, yn)

Let p1 be an integer, that will stand for ∀ answer, u1 · ρ1 be a stack of ‖Φn−1(m1, p1)‖, and let the game

go on. We have to show that ξ̃1 ⋆ q1 ·u1 · ρ1 ∈ ⊥⊥. Iterating the method, by substitution, this process reduces10

to u1 ⋆m2 · ξ̃2 ·ρ2, where ξ̃2 = ξ2[
u0,ρ0,u1,ρ1/k〈·〉,π〈·〉,k1,π1

]. By anti-reduction reduction again, it suffices to prove

thatξ̃2 ∀
{yn}
yn Φn−1(m1, yn). We do this all along the threads of the game, until the play stops and ∃ wins.

At this point, the threads scheme we have built is :

θ ⋆ u0 · ρ0 ≻ u0 ⋆ m1 · ξ̃1 · ρ0
ξ̃1 ⋆ q1 · u1 · ρ1 ≻ u0 ⋆ m2 · ξ̃2 · ρ0

...

ξ̃τ̊ ⋆ qk · uk · ρk ≻ ui ⋆ ρi

Moreover, as ∃ won, we know that ui⋆ρi corresponds to a full move, with an instance ~v = min , pin , . . . ,mi1 , pi1
of the variables, so that M � f(~v) = 0 and ui · ρi belongs to ‖f(~v)) = 0‖ =

⋃
W

‖Wf(~v) → W0‖. Hence ui ⋆ ρi

belongs to ⊥⊥, and so does θ ⋆ u0 · ρ0.

As a consequence of propositions 2.15 and 3.5, in this framework of formula relativized to canonical integers,
we finally get an equivalence between universally realizing a formula and implementing a winning strategy :

Theorem 3.6. Given an ω-model M , θ ∈ Λc, θ implements a winning strategy of Φ̂n if and only if θ � Φ̂n.

7Indeed, otherwise if ∃i < j + 1, kτ̊ ⋆m · ξ · πτ̊ ∈ thi, it has to be at the end of the thread, so that we would have σ ∈ Tj such
that m = mσ , ξ = ξτ̊ .

8 |̊τ | = n, very ∃-variables have been instantiated.
9We can avoid using it, saying that θ is a realizer in ⊥⊥G, so that the process has to reduce on a final position.

10For the previous example, otherwise it would have been 11 instead of 2, which would not have changed anything.

Stage M1 11/ 20

Realizing arithmetical formulæ Étienne Miquey

4 Formulæ zoology

Previously, we explained what a relativization was and why it enables us to implement the game. We also
mentioned in section 2.1 that there existed many types of relativization. In the frame of realizability game,
the main data-types are integers and standard integers. We will see here the different existing formulæ and
how to go from one relativization to another.

In this section only, for convenience, we will denote by ∃x∀
{y}
y ϕ(x, y) one of the usual formula of which

every ∀-quantifier is relativized to standard integers, whereas none of the existential quantifier are relativized,
and so on for other formulæ.

4.1 Bestiary

As we saw, the int predicate is defined by int(x) := ∀X [∀y, (Xy → Xs(y)), X0 → Xx]. The point is that
whereas µ {m} ⇔ µ = sm(0) = m by definition, the set of ν int(p) should contains several elements, of
which p, the canonical representation. Therefore, playing a standard integer {x} is more constraining.

Before going any further, we shall present the storage operators. We call storage operator for the integer11

any term such that:

Tint � ∀X∀x[{x} → X, int(x) → X]

This term is used, given µ int(m), to compute the m. Indeed, if χ is such that for all n, χ ⋆ n · π ∈ ⊥⊥,
that is to say χ ∀n({n} → X), for all π ∈ X, then Tintτ ∀n.(int(n) → X). Intuitively, Tint emulates a
call-by-value computation. Indeed, if µ � int(m), π ∈ Π and χ ∈ Λc, setting ⊥⊥0 = thC

Tint⋆χ·µ·π
, we have

Tint ⋆ χ · µ · π /∈ ⊥⊥0. Thus, χ 10 {m} → {π}, which means that χ ⋆ m · π ∈ thTint⋆χ·µ·π, and so :

Tint ⋆ χ · µ · π ≻ χ ⋆ m · π

To play with formulæ relativized to integers, both players would have to give terms that could be used
with a given storage operator to compute a standard integer. For any integer m, we will call Int(m) this set,
that is :

Int(m) = {µ ∈ Λc : T
int ⋆ t · µ · π ≻ t ⋆ m · π, ∀t ∈ Λc, ∀π ∈ Π}

∃ has to give µ ∈ Int(m) instead of {m}, and for ∀ we add the interpretation of ∀y(int(y),Φ(y) → X)

JϕK := {ν · TintκΦ(p) · π : p ∈ N, ν ∈ Int(p), π ∈ ‖X(p)‖}

Remark 4.1. Obviously, we have for all m ∈ N, that m ∈ Int(m) and {µ � int(m)} ⊂ Int(m). Besides,
Tint � ∀X∀x[{x} → X, {x} → X] and consequently, any answer of ∀ for the game with integers Φint is

suitable for the one with standard integers Φ̂, just as a strategy of ∃ implemented for Φint is suitable for play

with Φ̂.

To play with non-relativized formulæ, the rules are quite the same except that the players choose some
value without playing physically. For instance, for the previous formula ϕ, ∀ should choose a p ∈ N, and
play a stack κΦ(p) · π. On his side, if his quantifiers are not relativized, ∃ chooses integer, but did not play it
physically with a term, so that terms do no longer implement strategy. We will show in section 4.3 that such
a game does not have any interesting algorithmic content.

We have seen in section 3 that the threads schemes of a game with the relativization ∃
{x}
x and ∀

{x}
x looks

like a sequence of :
ξτ̊ ⋆ pτ̊ · kτ̊ · πτ̊ ≻ kτ̊ ⋆ mτ̊ ·i · ξτ̊ ·i · πτ̊

If we change the relativization, we have to slightly adapt it12 according to the previous rules. For instance,

for a game with ∃
int
x and ∀

{y}
y the threads scheme would be a sequence of:

ξτ̊ ⋆ pτ̊ · Tintkτ̊ · πτ̊ ≻ Tintkτ̊ ⋆ µτ̊ ·i · ξτ̊ ·i · πτ̊ where µτ̊ ·i ∈ Int(mτ̊ ·i)

The reader should also keep in mind that as mentioned in the remark 4.1, if a quantifier is not relativized, it

means he will not play physically his integers. By example, a game with ∃
{x}
x and ∀y will be made of threads

of the shape:
ξτ̊ ⋆ kτ̊ · πτ̊ ≻ kτ̊ ⋆ mτ̊ ·i · ξτ̊ ·i · πτ̊

11In fact, the definition is the same with any data-types ǫ(x) instead of int(x).
12The tree describing the game would be the same, only the played terms change.

12/ 20 Stage M1

Étienne Miquey Realizing arithmetical formulæ

From the point of view of ∃ , the easiest game is the one with has the minimum number of constrains for
himself, that is when the existential quantifier are not relativized, and with the maximum for ∀ , when he has
to answer with standard integers. Conversly, the most difficult one is when ∃ has to give standard integers,
and when ∀ does not have any obligations. Based on remark 4.1 that could be extended13, we can build a
kind of hierarchy (Figure 2) on formulæ according to their relativization. We denote by Φ1 ⊲ Φ2 the fact that
the game for Φ1 is more difficult, in so far as a term for this game is suitable for the other one.

∃
{x}
x ∀y.ϕ(x, y)

∃
{x}
x ∀

int
y .ϕ(x, y)

∃
{x}
x ∀

{y}
y .ϕ(x, y)

∃
int
x ∀y.ϕ(x, y)

∃
int
x ∀

int
y .ϕ(x, y)

∃x∀y.ϕ(x, y)

∃x∀
int
y .ϕ(x, y)

∃
int
x ∀

{y}
y .ϕ(x, y)

∃x∀
{y}
y .ϕ(x, y)

⊲

⊲ ⊲

⊲

⊲

⊲ ⊲

⊲ ⊲

⊲

⊲

⊲

12

No algorithmic content

Legend

➀, ➁ : Discussed in 4.2

— framework of section 3 — cf section 4.3 — framework of 4.4

Figure 2: Formulæ zoo

4.2 Secret passage in the zoo

In [Gui08] is presented a way of going from Φint to Φ̂ and conversly. We will show in this section how, adding

storage operator, a way of going from ∃
int
x ∀

{y}
y to ∃

int
x ∀

int
y (➀ on the figure 2), and then to ∃

{x}
x ∀

int
y (➁). The

aim is to emphasize that the strategy for the different games are almost the same, except the way of managing
data in accordance to the type.

We define thereafter the translations ➀ and ➁ of the figure 2. For both, we define by mutual induction

some translations (t,Φ) 7→ t
1
Φ and (t,Φ) 7→ t

2
Φ. If Φ = ∀X∀x({x},Γ(X, x) → W (X)), we set :

ξ
1

Φ := λνχ.ξν(Tintχ2
Γ)

χ2
Φ := λµξ.χµξ

1

Γ

ξ
1

Φ := λνχ.Tintξνχ2
Γ

χ2
Φ := λµξ.χµ(ξ)1Γ

Translation ➀ Translation ➁

Proposition 4.2. Given a realizability model (M ,⊥⊥) and a term τ ∈ Λc,

1. if τ ∃
int
x ∀

{y}
y .ϕ(x, y), then, using ➀, τ1 ∃

int
x ∀

int
y .ϕ(x, y)

2. if τ ∃
int
x ∀

int
y .ϕ(x, y), then, using ➁, τ1 ∃

{x}
x ∀

int
y .ϕ(x, y)

Proof. To prove any of these statements, we have to consider a more general claim, dwelling on · 2 too, and
do a mutual induction. This is almost the same proof as we could find in [Gui08] on 6.13.

Remark 4.3. If we decide to play with integers and a new the storage operator Tint2 := λχµξ.(Tintχ)µ(Tintξ),

which is obviously suitable for integers, a realizer of ∃
int
x ∀

{y}
y ϕ would be able to play in the game with ∃

int
x ∀

int
y ϕ.

This highlights once more that winning strategy for the diffrent games are deeply very closed.

13Algorithmically, a strategy for Φ only have to take an argument of more and drop it to be suitable for Φ̂ or Φint.

Stage M1 13/ 20

Realizing arithmetical formulæ Étienne Miquey

Remark 4.4. In fact, with these translations, and using remark 4.1 we can go from any total relativization
(both of quantifiers relativized) to another one. The only thing to understand is where the storage operators are
needed. For instance, to go to Φint to Φ̂, the translation ➁ is suitable, as it allows ∃ to play general integers
instead of standard integers, because a term managing general integer from ∀ also manages standard integer.

In the following section, we will only work with formulæ Φ 6=
n . For simplicity, we will use the notation

Φn, but it should only be taken as referring to formulæ built on inequality. First, we will show that, for
each non-relativized formula that is true in the ω-model associated, there is an universal realizer without any
algorithmic content. Next, we will see that when the formula is relativized, there is universal realizer which is
independent of the formula f .

4.3 Algorithmic (in)expressiveness

For convenience, we will build the following formulæ:

∆0(Y) = Y ∆n+1(Y) = ∀Xn+1(∆n(Y) → Xn+1) → Xn+1

Lemma 4.5. ∀n, ‖∆n(⊤)‖ ⊂ ∀Y, ‖∆n(Y)‖

Proof. By induction. The case n = 0 is trivial. Let assume the result for a given n. We have to show that

‖∀Xn+1(∆n(⊤) → Xn+1) → Xn+1‖ ⊂ ‖∀Xn+1(∆n(Y) → Xn+1) → Xn+1‖

But, ∀Y, ‖∀Xn+1(∆n(Y) → Xn+1) → Xn+1‖ =
⋃

X∈P(Π)

‖(∆n(Y) → X) → X‖ Then, using the induction

hypothesis, we have, for all Y and X, |∆n(Y)| ⊂ |∆n(⊤)|, then ‖∆n(Y) → X‖ ⊂ ‖∆n(⊤) → X‖ and so
|∆n(Y) → X| ⊃ |∆n(⊤) → X|. Finally, ‖(∆n(Y) → X) → X‖ ⊃ ‖(∆n(⊤) → X) → X‖, which allows us to
conclude.

Lemma 4.6. If M � Φn, then ‖Φn‖ = ‖∆n(⊤)‖, otherwise, if M 2 Φn, then ‖Φn‖ = ‖∆n(⊥)‖

Proof. By induction.
For n = 1, we have ‖Φ1‖ = ‖∃x1∀y1f(x1, y1) 6= 0‖ = ‖∀X1[Ψ1(X1) → X1]‖ =

⋃
X∈P(Π)

‖Ψ1(X) → X‖. But we

also have ‖Ψ1(X)‖ =
⋃

x1∈N

‖∀y1f(x1, y1) 6= 0 → X‖. If M � Φ1, there exists x1 s.t. M � ∀y1f(x1, y1) 6= 0.

Therefore, |∀y1f(x1, y1) 6= 0| =
⋂

y1∈N

|f(x1, y1) 6= 0| = |⊤|. Observing that ‖⊥ → X‖ ⊂ ‖⊤ → X‖, we finally

get for all X that ‖Ψ1(X)‖ = ‖⊤ → X‖ and ‖Φ1‖ = ‖∀X.(⊤ → X) → X‖.
Conversly, if M � ¬Φ1, for all x1 there exists y1 s.t. M � f(x1, y1) 6= 0 and thus |f(x1, y1) 6= 0| = |⊥|.
Therefore, for all x1, |∀y1f(x1, y1) 6= 0| =

⋂
y1∈N

|f(x1, y1) 6= 0| = |⊥|, and we finally get that for all X

‖Ψ1(X)‖ = ‖⊥ → X‖ and ‖Φ1‖ = ‖∀X.(⊥ → X) → X‖.

Let us assume we have the result for some n. We know that ‖Φn+1‖ =
⋃

X∈P(Π)

‖Ψn+1(X) → X‖ and

‖Ψn+1(X)‖=
⋃

xn+1

‖∀yn+1Φn(xn+1, yn+1) → X‖. There are two cases.

If M � Φn+1, there exists xn+1 s.t. ∀yn+1,M � Φn(xn+1, yn+1), in which case, by induction hypothesis,

‖∀yn+1Φn(xn+1, yn+1)‖ =
⋃

yn+1

‖Φn(xn+1, yn+1)‖ = ‖∆n(⊤)‖

For all xn+1 s.t. ∃yn+1,M � ¬Φn(xn+1, yn+1), we will have by hypothesis and using the lemma 4.5,

‖∀yn+1Φn(xn+1, yn+1)‖ =
⋃

yn+1

‖Φn(xn+1, yn+1)‖ = ‖∆n(⊥)‖ ∪ ‖∆n(⊤)‖ = ‖∆n(⊥)‖

From the lemma 4.5, we have that |∆n(⊥)| ⊂ |∆n(⊤)|, so that ‖∆n(⊥) → X‖ ⊂ ‖∆n(⊤) → X‖ and finally
that

⋃
xn+1

‖∀yn+1(Φn(xn+1, yn+1) → X)‖ = ‖∆n(⊤) → X|. Thus ‖Φn+1‖ = ‖∆n+1(⊤)‖.

If M � ¬Φn+1, it means that for all xn+1, there exists yn+1 s.t. M � ¬Φn(xn+1, yn+1), in which case for all
xn+1 we will have ‖∀yn+1Φn(xn+1, yn+1)‖ = ‖∆n(⊥)‖, and thus ‖Φn+1‖ = ‖∆n+1(⊥)‖.

14/ 20 Stage M1

Étienne Miquey Realizing arithmetical formulæ

Furthermore, if we take any k ∈ Λc, and if we define τ1 = λξ1.ξ1k and ∀n, τn+1 = λξn.ξnτn, we have
∀n, τn � Φn. Nevertheless, these terms clearly do not have any algorithmic content. It means, more or less,
that ∃ immediately choose suitable integers - they are hidden in the execution - and wins on his first try.
That is why, from now on, we will only pay attention to formulæ where ∃ really gives integers, that is to say
the relativized formulæ.

4.4 Realizer for the hardest game

In this section, we will show how to build, for the formula Φ 6=
n when it is true in the model, a realizer,

independently of function f . The theorem was given in [Kri04], but there were only a proof for Φ2. The idea
of the proof is based on the game associated with the formula Φ 6=

n . Indeed, as M � Φ 6=
n , there is a n-tuple

(xn, . . . , x1) for which the formula is true, so that if the player ∃ enumerates Nn, he is absolutely sure to reach
such a n-tuple and thus to win. ∃ is able to do such an enumeration, because he can backtrack on already
reached position, and because we work with a formula founded on inequality (we will see why later in the
section 5).

Theorem 4.7. [Kri04] Suppose that N � ∃xn∀yn−1∃xn−1 . . . ∃x1(∀y1f(xn, yn−1, . . . , x1, y1) 6= 0), where f :
N

k → N is an arbitrary function. Then the formula Φn is realized by a proof-like term which is independent
of f .

Proof. Here are the tools we will need after to do the proof. By tji , we will always denote a term of size14

i occurring in the j-th move. Xn will represent a ∃ -move, that is to say an instance of (xn, . . . , x1). σi

will represent the already reached heads of the game of size n− i, composed of the instantiated variables and
received opponents χi. Then, Σ will record all the positions reached.

� Xn := (xn, . . . , x1)
� ∀i, σi represents a finite sequence (t0, χ0

i) · . . . · (t
k, χk

i), with tk the i-uplet (xk
n, . . . , x

k
i+1)

� Σ := (σn, . . . , σ1)
We assume that we dispose of the following λ-terms

� nextn : Nn → N
n which15 allow us, starting with 0, . . . , 0, of enumerating N

n. Xn
++ will denote nextn(X).

� to manage the already reached positions :

� Hi σi Xn χi ≻

{
χi if ∀j, (xn, . . . , xi+1) 6= tj

χj
i for the least j s.t. (xn, . . . , xi+1) = tj

� Gi σi Xn χi ≻

{
σi · [(xn, . . . , x1, χi)] if ∀j, (xn, . . . , xi+1) 6= tj

σi otherwise

These functions actually look in the past if the current position of size i has already been reached, and in
this case, take the corresponding answer of the opponent (for Hi), and update σi if necessary (for Gi).

We can now build the defenders ξi:
- ξn := λχn.(θ χn []n 0n)
- θ χn Σ Xn ≻ χn xn ξn−1

- ∀i ∈ J2, n− 1K, ξi := λχi.(χ
′
i xi ξi−1) with χ′

i := (Hi σi Xn χi)

- ξ1 := λχ1.(χ
′
1 x1 (θ χn Σ′ Xn

++)) with

{
χ′
1 := (H1 σ1 Xn χ1)

Σ′ = (Gn χn σn Xn, . . . , Gi σi Xn χi, . . . ,Σ1 χ1 σ1 Xn)

The functions Hi and Gi ensure that the player ∀ is always responding to a choice of ∃ for xi with the
same yi−1. Intuitively, this is indeed the next attacker χi which contains the integer yi−1. Moreover, θ is the
terms managing the defender strategy, by building the ξi with their back-track points (encoded by σi).

The key-point is that each defender is waiting for an attacker to which he will give an integer and a
defender of a sub-formula, but the last one will pass as second argument the next step. The point is that
either the last attacker can not find a counter-example, and the game is over (in which case the next step
would not be computed), either he finds one, but he has to continue with the following step of the enumeration.

We will now do the proof, which consists in assuming that the game never ends, and finding a contradiction
with the correctness of the model. Let (N,⊥⊥) be a realizability model, χn Ψn, and π a stack. We have to
show that ξn ⋆ χn · π ∈ ⊥⊥. By anti-reduction, it would be sufficient to prove that θ χn []n 0n ⋆ π ∈ ⊥⊥, that
is to say θ χn []n 0n ⊥.

14That is to say that there remain i non-instantiated existential variables, and thus that it defends/attacks Φi
15To build such a term, it is sufficient to have a bijection in from Nn to N, then we can take x1, . . . , xn 7→ i−1

n (in(x1, . . . , xn)+1)

Stage M1 15/ 20

Realizing arithmetical formulæ Étienne Miquey

Definition 4.8. We will call k-past the given of V = (x0
n, y

0
n−1 . . . , y

0
1), . . . , (x

k
n, y

k
n−1 . . . , y

k
1) ∈ N

2(n−1) and
Σ = (σn−1, . . . , σ1) verifying

� ∀i, ∀j ≤ k, ∃!χi such that

{
(xj

n, . . . , x
j
i+1, χi) ∈ σi

χi Ψi(x
j
n, y

j
n−1, . . . y

j
i)

� ∀i, Y ∈ σi ∧ Y ′ ∈ σi ⇒ Y 6= Y ′

Lemma 4.9. With the previous notations, suppose we have a k-past, and we are at position Xn.
Then, if θ χn Σ Xn 1 ⊥, we also have a (k+1)-past (Σ′, V ′) where Xn = (xk+1

n , xk+1
n−1, . . . , x

k+1
1) and such

that

{
θ χn Σ′ Xn

++
1 ⊥

f(xk+1
n , yk+1

n , . . . , xk+1
1 , yk+1

1) = 0

Proof. By definition of θ, we have χn xn ξn−1 1 ⊥. As χn Ψn ≡ ∀xn.{xn}, ∀ynΦn−1(xn, yn) → ⊥
and xn {xn}, we have ξn−1 1 ∀ynΦn−1(xn, yn). Then ∃yn, χn−1, π s.t. χn−1 Ψn−1(xn, yn) and
ξn ⋆ χn−1 · π /∈ ⊥⊥. Thus, as it reduces to χ′

n−1 xn ξn−1 ⋆ π, we get that this process is not in the pole

either, so that χn−1 xn−1 ξn−1 1 ⊥. We set yk+1
n =

{
yn if ∀j, xn 6= xj

n

yjn for the only j s.t. xn = xj
n

Then it is easy to check that χ′
n−1 Ψn−1(xn, y

k+1
n).

Observing that the previous reasoning does not depend on n, for each i, we can do the same to get
χi−1 xi−1 ξi−1 1 ⊥ from χi xi ξi−1 1 ⊥. Finally, we get that χ′

1 x1 (θ χn Σ′ Xn
++) 1 ⊥. But χ′

1 x1

∀y1.f(xn, y
k+1
n−1, . . . , x1, y1) 6= 0 → ⊥. If ∃y1f(xn, y

k+1
n−1, . . . , x1, y1) 6= 0, it means that χ′

1 x1 ⊤ → ⊥, which is
a contradiction with the hypothesis χ′

1 x1 (θ χn Σ′ Xn
++) 1 ⊥. Thus we have ∀y1f(xn, yn−1, . . . , y1, x1, y1) = 0,

and χ′
1 x1 ∀W,W → W . If (θ χn Σ′ Xn

++) ⊥, we have χ′
1 x1 (θ χn Σ′ Xn

++) ⊥, which is once more a
contradiction. Thus, we get (θ χn Σ′ Xn

++) 1 ⊥.

Therefore, if we suppose that θ χn []n 0n 1 ⊥, applying iteratively the previous lemma, we obtain a
sequence (xj

n, y
j
n−1, . . . , x

j
1, χ

j
n−1, . . . , χ

j
1)j∈N such that:

- (xj
n, . . . , x

j
1)j∈N is an enumeration of Nn which begins with (0, . . . , 0),

- f(xj
n, y

∗j
n−1, . . . , x

j
1) = 0 for every j ∈ N, where y∗ji only depends of xj

n, . . . , x
j
i+1.

So that N � ∀xn∃yn−1∀xn−1 . . . ∀x1(f(xn, yn−1, . . . , x1, y1) = 0), and N 2 Φn.

Remark 4.10. With the intuitionist interpretation of the existential quantifier, nothing really changes, only
the type of stacks we carry along the proof. Indeed ∃ has to challenge stacks belonging to a given predicate
(instead of ⊥), and then to clean the stack (and eventually to restore the old one) before letting ∀ play : in
some sense, there is a garbage collecting on stack. The only things to prove is that the lemma 4.9 still holds.

5 Gender equality

5.1 Delphi’s Phytia

In the arithmetical point of view, the formulæ f(x) = 0 and f(x) 6= 0 have the same expressiveness. But
looking at a formula as a game, it does change. Indeed, we have the following:

Cases ‖f(x) = 0‖ ‖f(x) 6= 0‖

M � f(x) = 0 ‖∀X.X → X‖ ‖⊥‖

M � f(x) 6= 0 ‖⊤ → ⊥‖ ‖⊤‖

Figure 3: (in)equality truth values

The first observation is that, whatever the model forces, if a player has to answer by a stack against an equality,
it still leaves a move to the following player. Whereas answering to an inequality is possible if and only if the
model forces the contrary.

The idea is that a defender of a formula with Leibniz equality will have to decide if the current position
is a root of f or not. Such a term would then have to collect the variables played by ∀ , then we will look a
formula completely relativized to canonical. The needed ability of deciding prevents from the existence of an
universal realizer as in the theorem 4.7, which is the following result.

16/ 20 Stage M1

Étienne Miquey Realizing arithmetical formulæ

Proposition 5.1. There is no proof-like term τ such that, for all recursive function f ,

N � ∃xn . . . ∀y1f(xn, . . . , y1) = 0 ⇒ τ � Φ=
n

Proof. Suppose indeed we have τ such that, for all f , τ � ∃
{x}
x ∀

{y}
y f(x, y) = 0. Then, as θ implements a

winning strategy in the associated game, we know that the threads scheme would be as follows:

τ ⋆ k0 · π0 ≻ k0 ⋆ m1 · ξ1 · π0

ξ1 ⋆ p1 · k1 · π1 ≻ k0 ⋆ m2 · ξ2 · π0

ξ2 ⋆ p2 · k2 · π2 ≻ k0 ⋆ m3 · ξ3 · π0

...
ξk ⋆ pk · kk · πk ≻ ki ⋆ πi

As τ has a winning strategy, it means that ki ⋆ πi ∈ ⊥⊥ and M � f(mi, pi) = 0. Taking f(x, y) = 0 ⇔
ϕx(y) ↓, for any enumeration (ϕn) of all recursive functions, then we have a term which can decide the halting
problem. That is impossible, as we only have the power of λ-calculus.

On the other hand, if we are able to know if f is really equal to 0 or not, which is the following definition,
we can easily build a term which realizes Φn

Definition 5.2. We will call oracle for the roots of f a term Ξf such that:

Ξf ~x ~y s1 s2 ≻

{
s1 if f(~x, ~y) = 0
s2 if f(~x, ~y) 6= 0

Using the notation sg(x) = 1 if x 6= 0 and sg(x) = 0 if x = 0, we can easily specify this term:

Ξf � ∀
{x1}
x1 . . . ∀

{yn}
yn Bool(sg(f(~x, ~y)))

Furthermore, such a term still preserves a substitutive system.

Proposition 5.3. ∃τ independent of f s.t. τΞf � Φ=
n

Proof. If we suppose we have a term realizing Ωf , then the previous construction, with ξ1 = λχi.χ
′
1 x1 ξ0 and

ξ0 = λyα.Ξf ~x ~y α (θ χn Σ′ Xn
++) does realize Φ=

n .
The proof is exactly the same, the only things to do is to show that lemma 4.9 (where = replaces 6=) still

holds. We suppose we have a k-past, and follow the previous proof. The only change is that we have at the

end λyα.Ξf ~x ~y α (θ χn Σ′ Xn
++) 1 ∀

{y1}
y1 f(xn, . . . , y1) = 0. Let us consider y1 ∈ N, there are two cases.

Either f(xn, . . . , y1) = 0, in which case ‖f(xn, . . . , y1) = 0‖ = ‖∀X.X → X‖, but as if α ∈ |X | and π ∈ ‖X‖
for some predicate X, λyα.Ξf ~x ~y α (θ χn Σ′ Xn

++) ⋆ y1 · α · π ≻ α ⋆ π ∈ ⊥⊥, this is absurd. Then we have
f(xn, . . . , y1) = 0, and as λyα.Ξf ~x ~y α (θ χn Σ′ Xn

++) ⋆ y1 · α · π ≻ (θ χn Σ′ Xn
++) ⋆ π ∈ ⊥⊥, we get that

(θ χn Σ′ Xn
++) 1 ⊥, which proves the lemma.

5.2 Restoring the equality

In this section, we will see how to go from a formula based on inequality to the corresponding one based on
equality. Let us introduce the following definition.

Definition 5.4. ∀f : Nn → N, we put f̄ : ~x 7→

{
1 if f(~x) = 0
0 otherwise

From now on, for every function f , we will denote by Φ 6=
n the formula built on f(xn, yn, . . . , y1) 6= 0, and

by Φ=
n the one built on f̄(xn, yn, . . . , y1) = 0. Clearly, for all function f , Φ 6=

n and Φ=
n are equivalent in every

consistent model. But on side of the equivalence can not be realized independently of f .

Proposition 5.5. There is no term τ such that for all f , τ � Φ 6=
n → Φ=

n .

Proof. This is a simple consequence of previous results. Indeed, if such a term τ existed, taking the term
ξn provided by the theorem 4.7, we would have τξn independent of f and τξn � Φ=

n for every function f ,
especially when M � Φ=

n , which is in contradiction with the proposition 5.1.

Stage M1 17/ 20

Realizing arithmetical formulæ Étienne Miquey

This means that once again, we need to know something about f or about its roots in order to be able to
realize such an implication.

We now focus on the game associated to Φ 6=
n → Φ=

n . The implication could rather be written Φ 6=
n ,Ψ

=
n → ⊥.

So that we need here to extend a little our framework to play with a formula with several premises. In fact,
we will only need the case of two premises, so that we will let the reader guess for a more general case. If ϕ
is a formula of the form ϕ = ϕ1, ϕ2 → A, then ∃ gives his strategy τ to which ∀ has to oppose a stack of
JϕK, that is some κϕ1

· κϕ2
· π where π ∈ ‖A‖. Then ∃ can choose any of the formulæ ϕ1, ϕ2 - that we will

call right and left side of the game - to continue. The following of the game is exactly the same that before,
except that ∃ can also backtrack to the other side of the game.

For a given f , so as to realize the implication, we have now two choices : attack the premise, that is
choosing the left side Φ 6=

n , or defend the conclusion, that is choosing the right side Ψ=
n . The opponent gives us

at the beginning a defender of Φ 6=
n and a defender of Ψ=

n , which is then an attacker of Φ=
n . On the left side,

we will have to play the ∀-variables, whereas we will play the ∃-variables on the right. To win on the right,
we have to move on a position in contradiction with the inequality for f , and on the left on one verifying the
equality for f . The figure 4 describes the game’s rules for n = 1, the threads scheme could easily be deduced
from it.

τ ⋆ κL
1 · κR

1 · π

κL
1 ⋆ ξL · π

ξL ⋆ m̄ · κL
0 · πL

0

κL
0 ⋆ p̄ · πL

0

κR
1 ⋆ m̄ · ξR · π

ξR ⋆ p̄ · κR
0 · πR

0

κL
0 ⋆ πL

0

Legend

start

∃ chooses a

reached position...

... and makes his move

to which ∀ answers

And so on, until ∃ moves

to the end

Figure 4: Game associated to φ6=
1 → φ=

1

Proposition 5.5 highlights that as for realizing Φ=
n , we need some information about the function f . We

can for instance build a winning strategy for this game using an oracle once again.

Proposition 5.6. ∃τ such that for all f , τΞf � Φ 6=
n → Φ=

n

Proof. (Sketch) The main idea is to take the first ∃-variable from the left side, to play it on the right-side so as
to obtain the first ∀-variable, that could be used to obtain the second ∃-variable on the left, and so on, until we
get all the variables. At this point, it suffices to check if f is equal to 0 or not, and to choose consequently the
good side of the game to win. We let the reader check that the term built in the figure 5 is appropriate.

Nevertheless, this is not the only way to build an universal realizer with an argument, and the specification
problem for this kind of formula is quite hard. One could want to use such a term, by injecting the integer
instead as would do an opponent, to calculate f (or its roots). For instance, for a weaker formula, with f a

function and τ � ∀
{x}
x f(x) 6= 0 → f̄(x) = 0, we have easily that :

τ ⋆ m̄ ·H ·K · π ≻

{
H ⋆ π′ if f(m) = 0
K ⋆ π′′ if f(m) 6= 0

Thus we could use τ to determine if a value16 is a root or no.

16Actually this works with as many ∀-quantifiers as we want, so with functions of many variables.

18/ 20 Stage M1

Étienne Miquey Realizing arithmetical formulæ

(τΞf) ⋆ κ
L
n · κR

n · π

∃ chooses κL
n and proposes ξLn

∀ proposes mn

...

∃ proposes p2 and ξL1

∀ proposes m1

∃ plays p1 and wins

∃ chooses κR
n and proposes mn

∀ proposes pn

...

∃ proposes m1 and ξR1

∀ proposes p1

∃ plays and wins

...

if f = 0 if f = 0

τ := λΞfχ
L
nχ

R
n .(χ

L
n ξLn)

ξLn := λmnχ
L
n−1.(χ

R
n mn ξRn)

ξRn := λpnχ
R
n−1.(χ

L
n−1 pn ξLn−1)

ξR1 := λp1χ
R
0 .(Ξf ~m ~p (χL

0 p1) χ
R
0)

Figure 5: Strategy for φ6=
n → φ=

n

This would be a sort of reciprocal, but it does not work with our formula. Indeed we can only have a term
playing on the left (that is to say an attacker of the premise) and generating integers when needed, or only on
the right. We only know that there is some information about f contained in the argument, as a consequence
of the proposition 5.5.

6 Conclusion

We gave here a complete specification of arithmetical formulæ relativized to standard integers. We also studied
the difference between equality and inequality, and dealt with the different types of relativization. So that we
tried to be as complete as possible on the topic.

For future work, in [Gui11] an other syntactic definition of winning strategy is presented, which enables
to work by induction over proof trees. This technique could be used here to do the proof of proposition 3.5,
we actually did it with Mauricio Guillermo. This gives a proof which is easier to read, but further from the
progress of the game. However, it encourages to work on other specification problems using it.

Another possible direction to pursue this work could be to specify formulæ relativized to integer, that is to
say studying the sets Int(m). Indeed, although we showed that realizers were, from the point of view of the
strategies, quite the same, the problem of playing with integers remains open.

This internship has been a great experience, in so far as I had to challenge the assimilation of the concepts
of a thesis, so as to go further in the topic and polish the state of the art. This aspect of the research was very
different from what I did the year before, for that it has also been very interesting.

Stage M1 19/ 20

Realizing arithmetical formulæ Étienne Miquey

References

[Gui08] Mauricio Guillermo. Jeux de réalisabilité en arithmétique classique. PhD thesis, 2008.

[Gui11] Alexandre Miquel & Mauricio Guillermo. Specifying peirce’s law in classical realizability. Submitted,
2011.

[Kri03] Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci., 308(1-3):259–276,
2003.

[Kri04] Jean-Louis Krivine. Realizability in classical logic, Lessons in Marseille-Luminy, 2004.

[Miq09] Alexandre Miquel. Relating classical realizability and negative translation for existential witness
extraction. In TLCA, pages 188–202, 2009.

20/ 20 Stage M1

	Introduction
	Environment
	Context

	Formulæ & realizability game
	Formulæ
	The c-calculus
	Semantic of classical realizability
	Game rules
	Programming the game

	A winning strategy is a realizer
	Branching the match
	Let's climb the tree

	Formulæ zoology
	Bestiary
	Secret passage in the zoo
	Algorithmic (in)expressiveness
	Realizer for the hardest game

	Gender equality
	Delphi's Phytia
	Restoring the equality

	Conclusion

