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Étienne Miquey State-Conserving Cellular Automata

Contents

1 Introduction 4
1.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Scientific aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Cellular Automata 5
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Representation of a CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Injectivity, surjectivity, reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 State-Conservation 7
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Decidability 9
4.1 Necessary and sufficient condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Generating state-conserving rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Universality 10
5.1 Turing machine simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Reversible simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Intrinsically universal automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Undecidable problems 16
6.1 1-dimensional SCCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 2-dimensional SCCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Conclusion 18

Stage M1 3/ 18



State-Conserving Cellular Automata Étienne Miquey

1 Introduction

1.1 Environment

I did this internship in the mathematics department of the University of Turku, in Finland, under the
supervision of Jarkko Kari and Timo Jolivet, who was there in June. Jarkko is actually the only local
researcher - plus his PhD students - to really work on cellular automata. But there were some invited
people in August working on related topics, namely Alexis Ballier, Pierre Guillon and Pascal Vanier.
I tried to make the most of this great work environment to improve my knowledge of the topic, but the
work I did was totally independent of what they were doing.

In the beginning of June, I had the opportunity to attend the Unconventional Computation conference,
which gave me a first glance over the topic of cellular automata and discrete dynamical systems. The
first part of my internship has been to get me familiar to the cellular automaton theory in general, and
more especially to the state-conservation property, the center of my internship. I tried after that to study
this particular class of automaton as other ones had already been studied, number-conserving automata
among others. All results from section 3 to 6 are mine, otherwise I explicitly mentioned the source.

1.2 Scientific aspect

Cellular automata (CA for short) are among the oldest models of computation. They were first studied by
Von Neumann and Ulam in the 60ies, while they were looking for mathematical objects describing the
behavior of self-reproducing biological systems. A CA consists of a regular grid (in any finite dimension)
of cells, each in one of a finite number of states. Each cell is updated by a local function applied to a
neighborhood, usually containing the cell itself. CA are then a dynamical system in which both time and
space are discrete.

One of the most famous CA is the well-known Conway’s game of life. In this CA, at time t a cell is
dead or alive, and at time t + 1 it will die, born or stay in its previous state in function of the number
of neighbors alive he had at time t. CA possess a lot a physical properties - e.g. they are massively
parallel, and all interactions are local -, therefore they are used in many topics to modelize some physical
systems. Among many other examples, they are used as models for forest fires, road traffic, the collapse of
a sandpit, the propagation of a rumor into a social net, some chemical reactions and even the generation
of seashell patterns.

Despite it could seem to be a simple model of computation, it turns out that most of the basic
properties - namely surjectivity, nilpotency, etc - are undecidable for dimension 2 and greater, and some
are even undecidable for 1-dimensional CA. Actually, a lot of questions still remain open, which, in
addition to its numerous applications, makes of it a interesting current topic of research.

As CA are often used for physical modeling, the conservation of some quantities, such as entropy or
momentum among others, is a very natural question. Classes of CA conserving one of this quantities
have been studied, like for instance number-conserving automata, which can be interpreted as a model
for particle interactions [6]. Although it is a subclass with more constrains, it still presents interesting
properties, and its universality has been proved [5].

A great importance is also usually attached to the reversibility, on the one hand because it enables
to modelize reversible physical phenomenæ, and on the other hand because it would be really energy
efficient, due to Landauers principle’s. That is why we will especially pay attention to the preservation
of reversibility in the Section 5.

The aim of that internship was to study an other of these classes, the one of state-conserving cellular
automata (SCCA), briefly mentioned in [6]. A state-conserving CA has to suit an even stronger constrain
than a number-conserving one, but the class of SCCA is still a non-trivial class. For 1-dimensional SCCA,
I proved an equivalence between definitions of state-conservation, and developed an algorithm to generate
some state-conserving CA. Then I paid attention to the universality of SCCA, that is to know whether
SCCA have the same computational power than Turing machines or general CA. I focused more especially
to the problem of building a Turing-universal SCCA with the smallest neighborhood possible. Finally I
used some of the techniques I exposed for the universality question so as to reduce some decision problems
to SCCA.
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2 Cellular Automata

2.1 Definitions

All along this report, we will only consider one-dimensional objects. Therefore, we will not precise it any
longer, but all results only hold for one-dimensional cellular automata. We will denote a semi-infinite
sequence of 0 to the left (resp. to the right) by ∞0 (resp. 0∞).

Definition 2.1. Let S be a finite set. Elements of S will be called states. A configuration of a 1-
dimensional CA is a function

c : Z→ S

that assigns a state to each cell. We will often write ci for c(i) to denote the state of cell i.
A configuration c is said to be finite if 0 is quiescent (see definition 2) and if there exists some r ∈ Z s.t.

∀n ∈ Z, |n| > r ⇒ c(n) = 0.

A configuration c is said to be periodic if there exists a period r ∈ Z (we will denote it by p(c)) s.t.

∀n ∈ Z, c(n+ r) = c(n).

Definition 2.2. A neighborhood vector of size m is a tuple ~n = (n1, . . . , nm) of distinct integers, so that
a cell n has neighbors n+ ni for i = 1, . . . ,m. Most of the time, we will use a set of m consecutive cells
as neighborhood, centered on the main cell, and we will define the radius such that the neighborhood of
radius r of a cell n is {n− r, . . . , n, . . . , n+ r}.

The configuration of a cellular automaton with state S and size m neighborhood will be updated by
a the local rule f , which is a function

f : Sm → S

A state s is said to be quiescent if f(s, . . . , s) = s. The new state of a cell that has neighborhood s1, . . . , sm
will be f(s1, . . . , sm).

n− r n n+ rn− r

n

n+ r

f

In a cellular automaton, the same local rule is applied simultaneously to each cell, transforming the
whole configuration c in a new one c′. The transformation c 7→ c′ is called the global function G : SZ → SZ.
Finally, a 1-dimensional cellular automaton is given by A = (S,~n, f). We will denote by CA(q,m) the set
of all CA that have states S = {0, . . . , q − 1} and neighborhood size m, so that #CA(q,m) = qq

m

.

Theorem 2.3 (Curtis-Hedlund-Lyndon). G is a global function of a CA if and only if it is continuous
in the product topology of SZ and commutes with the translation.

2.2 Representation of a CA

A classical way of representing a CA with states 0, . . . , q− 1 and neighborhood size m is to use a number
in base q and then to convert it in a decimal. Indeed, there are qm possible neighborhoods, to which

the CA associates a number in [0, q − 1]. The i-th number in base q will be f(i
(q)

). For instance, if
A ∈ CA(2, 3) has the following function f :

Neighborhood : 000 001 010 011 100 101 110 111
Value of f : 0 0 0 1 1 1 0 1

then we will denote A by 10111000
(2)

= 188.

The space-time diagram of a CA is a diagram obtained from the evolution of a configuration under
consecutive applications of the CA. Figure 1 gives examples for the automaton #188 (time increasing
upwards, 1= , 0= .)

An other classical and useful way of representing a cellular automaton is to use a De Bruijn graph.
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(a) 50 cells, 50 steps (b) 500 cells, 500 steps

time

Figure 1: Space-time diagram of the automaton #188

Definition 2.4. Given an alphabet S, and an integer m, the De Bruijn graph G = (V,E) over S of width
m is the graph of vertices V = Sm−1, whose edges are the set E = {(su, ut) | s, t ∈ S, u ∈ Sm−2}. For
any word in Sm there is an edge in E, and conversely, so that we can see E as Sm.

The De Bruijn representation of a CA A = (S,m, f) is the De Bruijn graph over S of width m in
which each edge e ∈ Sm is labeled by f(e). From this representation we can recover entirely G up to a
translation, which is does not matter for the properties we will study.

Example 2.5. Here is the De Bruijn graph of the automaton #188.

00 01

10 11

0
0

0
1

1
1

1
0

Basically, a configuration is a bi-infinite path in the graph, and its image is given reading the labels
along the path. Furthermore, the De Bruijn graph is the same for any CA in the same class CA(q,m),
only its labeling changes. Thus a lot a properties over CA have an interesting characterization as De
Bruijn property, which are often easier to manipulate or to design algorithm, as we will see later .

2.3 Injectivity, surjectivity, reversibility

Definition 2.6. A CA A is said to be injective (resp. surjective) if its global function G is.

In other terms, A injective means that two different configurations have two different images by A,
and A surjective that every configuration has at least one preimage by A.

Considering the space of configurations as a topological space, we have easily that every sequence of
configuration has a converging subsequence, which is the compactness of this space. From that, we get
many classical results [2], and in particular the following implication.

Proposition 2.7. If G is injective, then G is also surjective.

An other interesting property of a cellular automaton is the reversibility. An automaton is reversible
if, from any configuration, we can reverse its action to go in the past:

Definition 2.8. A CA is called reversible if its function G is bijective and if G−1 is also a CA function.

Still using the compactness of the space of configurations and the theorem 2.3 , we show that the
inverse function of a CA is actually always a CA function:

Proposition 2.9. A CA is reversible if and only if it is bijective.
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3 State-Conservation

Intuitively, an automaton is state-conserving if each state that was in the configuration at time t is still
in the configuration at time t + 1, potentially in another cell. We will give in this section some basic
properties and give a look at the link with reversibility.

3.1 Definition

Definition 3.1. For each α ∈ S, we denote by δα : S → {0, 1} the Dirac function δα(x) = 1 ⇔ x = α.
A = (S,m, f) is a state-conserving cellular automaton (SCCA) if and only if for every spatially periodic
configuration c,

∀α ∈ S,
p(c)−1∑
i=0

δα(G(c)i) =

p(c)−1∑
i=0

δα(ci)

We set SC(q, n) = {A ∈ CA(q, n) | A is state conserving}.

We can notice that the property of state-conservation is robust to relabeling. Furthermore, it is
sufficient that the equality is true for every α ∈ S\{0}.

Lemma 3.2. If (S,m, f) is an SCCA, then ∀(s1, . . . , sm) ∈ Sm, f(s1, . . . , sm) ∈ {s1, . . . , sm}.

Proof. Suppose there exists (s1, . . . , sm) ∈ Sm and α ∈ S\{s1, . . . , sm} such that f(s1, . . . , sm) = α. Let

ω = s1 . . . sm and c = ∞s∞. Then we have
p(c)−1∑
i=0

δα(G(c)i) ≥ 1 and
p(c)−1∑
i=0

δα(ci) = 0, which is absurd.

Corollary 3.3. If A is an SCCA, then all states are quiescent for A.

We defined previously state-conservation on periodic configurations, but it also possible to express it
on finite configurations, or even on any configuration, using a limit. Actually, these three definitions are
equivalent :

Proposition 3.4. Let A = (S,m, f) be CA and α ∈ S\{0}. The following statements are equivalent:

(a) For every periodic configuration c,
p(c)−1∑
i=0

δα(G(c)i) =
p(c)−1∑
i=0

δα(ci).

(b) For every finite configuration c,
∑
i∈Z
δα(G(c)i) =

∑
i∈Z
δα(ci).

(c) For every c ∈ SZ, lim
n→+∞

µαn(G(c))
µαn(c) = 1 where µαn(c) =

n∑
i=−n

δα(ci).

Proof. We will prove (a)⇒ (b)⇒ (c)⇒ (a).

Let us assume that there exists cf a finite configuration s.t.
∑
i∈Z
δα(G(c)i) 6=

∑
i∈Z
δα(ci). As c is finite,

there is a N ∈ N s.t. for all n ∈ Z, if |n| > N , then cn = 0. Let ω be the word c−N · · · cN , and cp the
periodic configuration of periodic pattern 0m · ω · 0m. Then, it is easy to check that

p(cp)−1∑
i=0

δα(G(cp)i) =
∑
i∈Z

δα(G(c)i) 6=
∑
i∈Z

δα(ci) =

p(cp)−1∑
i=0

δα((cp)i)

Thus, ¬(b)⇒ ¬(a), and (a)⇒ (b), by contraposition.

Assume (b). Consider c ∈ SZ, and for all n ∈ N, define βn ∈ SZ such that βni =

{
ci if i ∈ [−n, n]
0 otherwise

,

so that

µαn(c) =

n∑
i=−n

δα(ci)
def
=
∑
i∈Z

δα(βni )
(b)
=
∑
i∈Z

δα(G(βn)i) (1)

Clearly, G(βn)i and G(c)i only can be different for i s.t. |i| > n−m, and so |µαn(G(c))−µαn(c)| < 2m.

� If µαn(c) −→
n→+∞

+∞, as
µαn(c)−m
µαn(c) ≤ µαn(G(c))

µαn(c) ≤ µαn(c)+m
µαn(c) , we get

µαn(G(c))
µαn(c) −→

n→+∞
1.
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� Otherwise, there exists N0 ∈ N such that ∀n ≥ N0, δα(c−n) = δα(cn) = 0. In particular, for all
i s.t. N0 + m ≤ |i| ≤ N0 + 2m = N , ci 6= α. Using the Lemma 3.2, we get that for all i s.t.
N −m ≤ |i| ≤ N, δα(G(c)i) = δα(G(βN )i) = 0, and as ∀i > N, δα(G(c)i) = 0, for all n > N :

µαn(G(c)) =
∑
i∈Z

δα(G(c)i) =

N∑
i=−N

δα(G(c)i) =

N∑
i=−N

δα(G(βN )i)
(a)
= µαN (c) = µαn(c)

Hence
µαn(f(c))
µαn(c) −→

n→+∞
1.

Let us assume (c). Let c be a spatially periodic configuration. From the periodicity, we get that there

exists A,B ∈ N s.t. ∀k ∈ Z,
p(c)−1∑
i=0

δα(f(c)k+i) = A and
p(c)−1∑
i=0

δα(ck+i) = B. Thus, for all n ∈ N, we have

µαnp(c)(f(c)) = 2nA + f(c)0 and µαnp(c)(c) = 2nB + c0. So that
µαnp(c)(f(c))

µα
np(c)

(c) → A
B Applying (c), we get

A
B = 1, which implies (a).

3.2 Reversibility

A usual question in the study of a subclass of cellular automata is to know its relation with the reversibility.
We will show here that reversible SCCA have state-conserving reverse automata, and that the subclasses
of state-conserving CA and reversible CA have a non-empty intersection and are not included one in the
other.

Proposition 3.5. Let A be an SCCA. If A reversible, then A−1 is also state-conserving.

Proof. This is trivial using the characterization (c) of Proposition 3.4. Let c ∈ SZ, c′ = G−1(c), so that
c = G(c′). Easily, we have

lim
n→+∞

µαn(G−1(c))

µαn(c)
= lim
n→+∞

µαn(c′)

µαn(G(c′))
= 1.

In dimension 1, the reversibility of a cellular automaton is decidable. From propositions 2.7 and 2.9,
we have that an automaton is reversible if and only if it is injective, what could be classicaly characterized
in terms of De Bruijn graphs.

Proposition 3.6. A is injective if and only if in its De Bruijn representation, two different bi-infinite
paths always have different labelings.

We build the pair graph (Vp, Ep) of the De Bruijn graph (V,E), made of vertices (a, b) ∈ V × V , in
which there is an edge (a, b)→ (a′, b′) each time (a, a′) and (b, b′) are in E and have the same label. One
can easily verify that there exists two two-way infinite paths in the De Bruijn if and only if the pair graph
has a cycle going through a vertex out of the diagonal {(a, a) | a ∈ V }. This existence can for instance
be checked with an adapted depth-first search algorithm.

It appears that there exists both reversible and non-reversible non-trivial SCCA. Thereafter are ex-
amples of one of each.

Example 3.7. The automaton #188 is an SCCA, but is not reversible. Indeed, both configurations
∞01010∞ and ∞01100∞ will have ∞01010∞ for image. Actually, this automaton is not even surjective,
since the very same configuration ∞0110∞ does not have any preimage by G.

G G
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Example 3.8. The smallest non-trivial reversible SCCA has 3 states and a neighborhood of size 4. One
of the states is a marker (here ). Each time it occurs in a configuration, if the two following cells are

or , they will be swapped (figure 2). Otherwise, we apply the identity. This automaton is trivially
an SCCA, and is also reversible.

Figure 2: Automaton #434392183362879438910056549984175819785

4 Decidability

In this section, we will show that the state-conservation property is decidable, and give effectivily an
efficient algorithm to enumerate a class SC(q, n), using the De Bruijn representation.

4.1 Necessary and sufficient condition

The following gives a necessary and sufficient condition for a CA to be state-conserving, which implies
that the state-conserving property is decidable, since the condition is algorithmically checkable.

Proposition 4.1 ([6]). A = (S,m, f) is state-conserving if and only if, for all α, x1, . . . , xn ∈ S,

δα(f(x1, . . . , xn)) = δα(x1) +

m−1∑
k=1

δα(f(0, . . . , 0︸ ︷︷ ︸
n−k

, x2, . . . , xk+1))− δα(f(0, . . . , 0︸ ︷︷ ︸
n−k

, x1, . . . , xk))

This condition has the advantage of being generalisable for greater dimensions, but it would be

particularily inefficient to generate one of the sets SC(q, n). Indeed it would cost O(qq
qm

) tests (one per
α), each of them requiring to compute a sum and 2m call to f .

Nevertheless, using De Bruijn graphs, we can design a better algorithm, adapting an idea developed in
[1] for number-conserving CA. Let us consider A ∈ CA(q,m). Let v : Q→ Zq be the function associating
to i the ith elementary vector ~ui. For any edge e, let us define the letter(e) as the first letter of e seen
as a vector of Zq and the weight of e as µ(e) = v(letter(e))− v(label(e)). For instance, if q = 3, we have

µ(01
1→ 12) = (1, 0, 0)− (0, 1, 0) = (1,−1, 0). We define the weight of a path in the usual way, as the sum

of the weight of its edges.

Proposition 4.2. Let A be a CA and G = (V,E) be its De Bruijn representation. Then, A is state-
conserving if and only if every cycle in G has weight (0, . . . , 0).

Proof. Let us suppose that A is not state-conserving. From the definition, there exists a periodic con-

figuration c and α ∈ S such that
p(c)−1∑
i=0

δα(G(c)i) 6=
p(c)−1∑
i=0

δα(ci). Like every other periodic configuration,

c corresponds to a cycle in G. Along this cycle, we will read exactly
p(c)−1∑
i=0

δα(ci) time α as letter, and

p(c)−1∑
i=0

δα(G(c)i) as a label. So that the αth composant of the weight of the cycle is nonzero.

Conversly, if we have a cycle that has its kth composant different from zero. Then, if ω is the word read

along the cycle, with c = ω∗, we have
p(c)−1∑
i=0

δk(G(c)i) 6=
p(c)−1∑
i=0

δk(ci), and so A is not state-conserving.
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4.2 Generating state-conserving rules

If G = (V,E, µ) is a weighted graph, we said that it admits ν : V → Zq as a potential function if and only
if

∀(s, t) ∈ E, ν(t) = ν(s) + µ((s, t)). (2)

One can easily check that the following holds :

Proposition 4.3. A strongly connected weighted graph admits a potential function if and only if all its
cycles have weight 0.

To list SC(q,m), we will enumerate CA(q,m) by labelling the edges, and backtrack as soon as a la-
belling is not suitable for the existence of a potential function. The efficiency of the algorithm depends
of the way we go through the graph to label it. Indeed, each time we reach a vertex which already has a
potential value, it constrains us for the label value, and avoid a lot of possibilities. We begin by sorting
edges so as to encounter the maximum of constrains as soon as possible, by doing a depth-first search in
which, at each step, we check first if any of the neighbors has already been reached. It gives us a sorted
list [e0, . . . , en−1] of edges. Then we call the algorithm 1 on SCCA(0).

Algorithm 1 SCCA(i)

Require: A list [e0, . . . , en−1] of the edges
1: if i=n :
2: add the current rule to the list, and return
3: else
4: /* ei ≡ si → ti */
5: if ν(ei) is already defined :
6: if it is possible to define label(ei) such that ν(ti) = ν(si) + µ(ei) :
7: SCCA(i+ 1)
8: end if
9: else

10: for each α ∈ S :
11: label(ei):=α
12: ν(ti) := ~uα + ν(si)
13: SCCA(i+1)
14: end for
15: erase the definition of ν(ti) and return
16: end if
17: end if

Figures 3 and 4 presents some result obtained with this program. Some of them were already known
by A.Moreira1, new results are in blue. Some larger samples of automata and the source code of the
program2 are available at http://perso.ens-lyon.fr/etienne.miquey/utu/

5 Universality

The goal of this section is to show that SCCA have the computational power of Turing machine and
general CA. First, we will expose an almost optimal simulation of a Turing machine, then a simulation
that preserves reversibility, and finally a simulation of general CA.

5.1 Turing machine simulation

Definition 5.1. A Turing machine (TM) is a tuple M = (Q,Σ, q0,F , δ) where :

- Q is the set of states - Σ is the tape alphabet
- q0 ∈ Q is the initial state - F ⊂ is the set of accepting states
- δ : Q× Σ→ Q× Σ× {/, .} is the transition function

1See his webpage http: // www. dim. uchile. cl/ ~ anmoreir/ ncca/ mywork. html
2Its effective complexity can only be observed experimentaly, use the verbose option.
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HH
HHHq

n
2 3 4 5 6 7

2 2 5 22 428 133184 1571814309

3 2 15 6312 ? ? ?

4 2 89 241121850 ? ? ?

5 2 843 ? ? ? ?

6 2 11645 ? ? ? ?

7 2 227895 ? ? ? ?

8 2 6285809 ? ? ? ?

Figure 3: Cardinal of SC(q, n)

(a) A1 ∈ SC(2, 5) (b) A2 ∈ SC(2, 6) (c) A3 ∈ SC(3, 4)

Figure 4: Some SCCA

The TM reads a symbol of Σ on its tape (that we will suppose bi-infinite), and then, according to δ,
writes on the cell and moves to the right or to the left.

In the point of view of cellular automata, the set T of TM tapes could be seen as ΣN× (Q×Σ)×ΣN,
or even as (Q× Σ)Z where Q = Q ∪ {∅}, and δ as a local function from T to itself3.

Example 5.2. The following machine, starting on a cell of the tape, will go to the right changing every
a to b until reading a b.

q0start q1

a|b, .

b|b, /

To prove the Turing-universality of SCCA, we would like to be able to simulate every TM by an
SCCA, with a neighborhood size as small as possible. We will do it in two steps. First, we will show
how to encode any TM into an ordinary cellular automata, and then how to turn this automata into a
state-conserving one.

Before going any further, we need to introduce the notions of simulation and mapping. A simulation
of a system S1 by a system S2 is a construction which enables to do computation of S1 with S2. We will
say that it uses a mapping when a block of the input S1 is encoded by a block of input for S2.

Definition 5.3. For any finite sets A,B, we call mapping a function χ : AZ → BZ if there exists
m = 2r + 1 ∈ N and X : Sm → Q× Σ such that :

• ∀c ∈ SZ ,∀i ∈ Z,∃ji ∈ Z / χ(c)i = X([cji − r, cji + r]) • (ji)i∈Z is an increasing sequence.

3Of course, a function of this shape is not, in general, the transition of a TM.
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We denote by π the function i 7→ ji.

Definition 5.4. We will call simulation any couple (Φ, εφ) such that

1. for every TM M, Φ(M) = AM is a CA

2. εφ is a function from T to SZ, such that there exists χ verifying χ ◦ εφ = id

3. if we denote by
M−→ (resp.

A−→) a step in M (resp. A), for any tape t ∈ T , the following diagram
commutes:

t M(t)

c G(c)

M

A

εφ εφ

We say that a simulation is minimal if, given the lengths |Q|, |Σ| there is no other simulation using a
smaller radius. We say that a simulation uses a mapping if χ is a mapping.

If we have a simulation at our disposal, then it means that we are able to compute with A what M
would do :

t
εφ−→ c

A−→ G(c)
χ−→M(t)

We shall note that εφ is necessarily injective, and χ surjective. Moreover, given the sets Q and Σ, they
are a finite number of Turing machines, and thus for every M, the radius of Φ(M) only depends on the
lengths |Q| and |Σ|.

The idea we will use to simulate a TM is quite common, and lays on a method first developed by
Lindgren and Nordahl [4]. Cells of the TM would be represented each one by a cell in the CA, separated
by markers, plus one cell standing for the head with the state of the machine inside. One step in the
machine will be divided into two in the CA, distinguished by the state of the markers:

• : we change the state of the read cell and place the head (in the suitable state) on the side it
will move;

↔ : we move the head next to the next cell
At the end, when the machine reaches a final state, we just apply the identity. We shall notice that this
construction only requires a radius 1. Rather than detailing the definition of the appropriate (Φ, εφ),
which is not really difficult, we will illustrate it on the figure 5 for the machine of the example 5.2.

time

q0 a

b q0

b

b

b

b

b

a

a

q0 b

b q0

b

b

b

b

b

b

b

bq0

bq1

bq1

a

a

a

a

a

a

a

Figure 5: Simulation of a Turing machine

To turn that kind of CA into an SCCA, we will encode each letter as block of cells containing a
permutation of a set. The markers are going to be encoded over {0, 1} (01 for •, and 10 for ↔ for
instance). We will use permutation of {2, . . . , n + 1}, with n s.t. n! > |Σ| to encode tape letters, and
permutation of {n+ 2, n+ p+ 1}, with p! > |Q| for the states of the machine. In the previous example,
a 7→ 23, b 7→ 32, q0 7→ 45, q1 7→ 54 would work, and the two first lines of the figure 5 would be :
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0 1 4 5 2 3 0 1 2 3 0 1 3 2 0 1 2 3 0 1

1 0 3 2 4 5 1 0 2 3 1 0 3 2 1 0 2 3 1 0
time

To ensure that the automaton is state-conserving, we apply the identity on every block of cells which
does not correspond to a valid encoding, for instance if there are two heads of a TM side by side, or if
the block is not between two markers of the same kind. Therefore, it requires to have a radius r such
that r ≥ n + p + 1, for the last cell of the head to see the whole block on its side until the head of the
marker, and S has to be {0, . . . , n + p + 1}. As it is locally state-conserving on any block between two
markers, one can easily check that the automaton is an SCCA.

We could also have used permutations to encode directly couples of (Q×Σ)
⋃

(Σ×Q), in which case
n would have had to be greater than 2|Q||Σ|, and radius to be r = n+ 1 to see the whole block. This is
in general slightly better as soon as |Q| and |Σ| grow.

Theorem 5.5. IfM = (Q,Σ, q0,F , δ) is a Turing machine, n is such that n! > 2|Q||Σ|, then there exists
A ∈ SC(n+ 2, 2n+ 1) that simulates M.

Then we have a construction with a radius sub-logarithmic in the alphabets length. The next propo-
sition show that this is not possible to have a constant radius, and that in fact, the simulation we exposed
has the best order of magnitude.

Proposition 5.6. Assume that we have a simulation (Φ, εφ) using a mapping and such that for every
Turing machine M, φ(M) is an SCCA. Let Q and Σ be some fixed alphabets, and r be the common
radius of all φ(Q,Σ, q0,F , δ). Then we have that (2r + 1)! = O(|Q||Σ|). Furthermore, if Φ is minimal
then the mapping verifies |π(1)− π(0)| ≥ 2r + 1.

Sketch of the proof. Let us denote Σ by {γ, α1, . . . , α|Σ|−1} and Q by {q0, . . . , q|Q|−1}. Consider a TM
that, in any state qj , will :

- move left each time it reads γ
- change αi to αi+1 if i < |Σ| − 1 and move right
- change α|Σ|−1 to α1, and qj to qj+1 (or stop if j = |Q| − 1).
Let this machine start with the cell 0 containing α1, and 1 containing γ. Then, for every qj , the

TM heads will be |Σ| − 1 times on cell 0, each time reading a different letter. So that except the cell 0,
everything on the tape is in the same state . As the diagram of the Definition 5.4 commutes, this is also
the case in the image of the tape i.e. all the changes in the CA have to take place in the windows of 0:
[π(0)− r, π(0) + r]. Which means that |Q|(|Σ| − 1) couples (q, α) can be encoded in that window, using
the same CA states s1, . . . , sm (otherwise, it would not be state-conserving). Easily, we have that the
biggest number of possibilities of encoding with states s1, . . . , sm over m cells is to have ∀i 6= j, si 6= sj ,
and that number is (m!). Hence m! > |Q|(|Σ| − 1).

Define k = min {n ∈ N | π(n)− r > π(0) + r}, the first cell in M such that its window in A does not
over-cross the one of 0. We will assume here that π(k)− r = π(0)+ r+1, otherwise, the proof is basically
the same, except that we have to consider k − 1 and that the calculations are slightly more tricky.

0 kTM

CA

π(0) π(k)

m m

For the reasons we explained previously, both windows have to be state-conserving in themselves. So
that we have at most (m!)2 possibilities of encoding over that space in A. But that space potentially has
to encode every possibilities of the states of cell 0 to k in the TM, with one head moving between this

cell, that is |Q||Σ|k+1. So that we finally get m! > |Q| 12 |Σ| k+1
2 . As we want m to be minimal for any |Q|
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and |Σ|, it has to be better than the one we gave for the Proposition 5.6, so that in general we necessarily
have:

|Q| 12 |Σ|
k+1
2 ≤ 2|Q||Σ| ⇐⇒ |Σ|

k−1
2 ≤ 2|Q| 12

Therefore k = 1, which means that there is not any information over-crossing in the TM, as in the
construction we presented above.

Thus our construction has an optimal order of magnitude, under the hypothesis that the simulation
uses a mapping. Getting a smaller would require another concept of simulation. Nevertheless, this is not
totally satisfying, because it does not preserve the reversibility. Indeed, if M is a reversible TM, and
AM the automaton we obtain, AM is reversible on valid configurations (that is {εφ(t) | t ∈ T }), but in
general is not reversible on any configuration.

5.2 Reversible simulation

We will here describe an other method of simulation preserving the reversibility on any configuration.
This construction is inspired from work of Morita [7], using first a partitioned cellular automaton.

Definition 5.7. A partitioned cellular automaton (PCA) is a CA of local function f such that r = 1 and
there exists L,C,R some finite sets such that :

• S = L× C ×R • f : R× C × L→ L× C ×R

The idea is that the neighborhood is made of the center part of a cell, the right part of the left cell,
and the left part of the right cell, so that at a step, one part (left, center, right) of a cell is only used once
to compute the next configuration. Which leads to following lemma :

Lemma 5.8. [7] If A is a PCA, then A is globally reversible if and only if it is locally reversible.

In other terms, to have A reversible, it is sufficient to define f as a bijection, which is quite easy.
Indeed, f is defined between two sets of same cardinal, so that we only have to define it bijectively on
the subset that interests us, and then to extend it.

Briefly, we recall here the construction given in [7] to simulate a TM. We use an other definition of
TMs, which is equivalent to the one we gave, in which head moves and tape writing are separated in two
steps, and F = {qf}. Formally, we add a new symbol O, and for all (q, a) ∈ Q×Σ, either δ(q, a) = q′, b,O,
either δ(q, a) = q′, a, //..

In our PCA, we have L = R = Q ∪ {•, ?} and C = L × Σ. For a given machine M, f is defined as
follow :

a) f(•, (q, a), •) = (•, (q′, b), •) if δ(q, a) = q′, b,O b) f(•, (q, a), •) = (q′, (•, a), •) if δ(q, a) = q′, a, /
c) ∀q ∈ Q, f(•, (•, a), q) = (•, (q, a), •) d) ∀q ∈ Q, f(q, (•, a), •) = (•, (q, a), •)
e) f(•, (?, a), ?) = (•, (q0, a), •) f) f(•, (qf , a), •) = (•, (?, a), ?)
g) f(?, (•, a), •) = (?, (•, a), ?) h) f(•, (?, a), •) = (•, (?, a), •)

Rules (a-b) describe the computation ofM, (c-d) manage the head moves, and (e-h) handle reversibil-
ity after the machine halts and before it begins.

To turn it into an SCCA, we encode each complete cell of the PCA as a permutation block, and
separate every blocks with markers. We define the radius so each cell of a block has in its neighborhood
the two whole neighbor blocks, and give the exact same rule as in the PCA for any valid configuration.
Then, we only have to define the rules over wrong configurations, with regards to the local bijectivity in
order to preserve the Lemma 5.8. If a configuration c is not valid, that is to say for all t ∈ T , εφ(t) 6= c,
then it contains several heads or ? in its neighborhood (which does not really matter, it handled by the
extension of f to a bijection of L×C ×R), or c contains a bad block. A block is considered bad as soon
as it is not a permutation block between two markers. If a block is bad, then we just apply the identity
to it. If a cell has a bad right (resp. left) neighbor, it uses its own left-cell (resp. right-cell) instead of
the right (resp. left) one of the bad cell :
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Proposition 5.9. IfM is a reversible TM, then the corresponding automaton AM is a reversible SCCA.

Proof. There are two points to check. Firstly that AM is effectively state-conserving, but as a block is
either a permutation, either a wrong one preserved by the identity, this is obvious. Secondly that the
automaton is reversible. If the configuration is valid, this is the exact result given in [7]. If it is not, we
only have to see if there is any ambiguity around bad cells. But as each part of cell is still used once
and only once, the Lemma 5.8 still holds, and as the Turing rule is reversible, there is always exactly one
image and one preimage.

It is easy to check that we have indeed defined a valid simulation, that is with a way of going from a
TM tape to a CA configuration, and the way back. If we take a universal Turing machine as input of our
simulation, we will obviously have a CA Turing-universal. As a consequence, and due to the existence of
universal reversible Turing machines, we get the following theorem :

Theorem 5.10. There exists a reversible Turing-universal SCCA.

5.3 Intrinsically universal automaton

In this section, we will show how to simulate any CA by an SCCA in such a way that the simulation
preserves reversibility. Thanks to this, we will be able to derive many usual results for general CA. We
can easily adapt the definition 5.4 to define the simulation of a CA by another CA.

Let us denote by A the automaton we want to simulate, and by ASC the one we will build. The idea
is still the same, a cell is encoded by a block, and blocks are separated by markers. In that way, we have
the same complexity that we used to have for TM simulation, and actually we can slightly adapt the
proof of the Proposition 5.6 to show that there is no really better way of doing it using a mapping.

As usual, the problem is to conserve reversibility when there are bad cells. For that, we will use a
double-layer automaton, in which each cell is a couple, standing for both layers. The upper layer is ruled
by the same rule than A, and the lower one, by the symmetric one (left neighbors become the right ones,
and conversely). On valid configuration, we only pay attention to the upper one, setting at the beginning
the second one to configuration 0∗ and letting the layer evolve. Obviously, in that case, if A is reversible,
so is ASC . Now, when there is a bad cell, as usual we apply to it the identity, and the its neighbors use
the low layer. The right neighbor of a bad cell will use its usual right neighbors, but its left neighbor is
now its low part, the second left neighbor is the low part of its right neighbor, and so on:

Proposition 5.11. If a CA A is reversible, so is its corresponding SCCA ASC.

Proof. Let c be any configuration for ASC . Let us pick a valid connected component (that is without bad
cell). There are three cases:

1. The component is the whole configuration, obviously it has exactly one preimage by ASC .

2. The component is semi-infinite. Then, we can consider the two layers as one valid configuration
who would have been fold down.

3. The component is folded. Then, we can consider the two layers as a ring, and so the component
behaves exactly as a valid periodic configuration.

Hence c has exactly one preimage by ASC .

Definition 5.12. An automaton is said to be intrinsically universal if it is able to simulate any other
CA.

As our construction clearly is a simulation in the sense of the Definition 5.4, it is obvious that if a CA
is intrinsically universal, so is its simulation by an SCCA. Using the existence of an intrinsically universal
CA [8], we get the same result for SCCA :

Theorem 5.13. There exists an intrinsically universal SCCA.
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6 Undecidable problems

6.1 1-dimensional SCCA

One of the motivation of the previous constructions is to be easily able to reduce a lot of undecidability
problem to SCCA. An immediate corollary of our last simulation, that preserves intrinsically universality,
is the undecidability of this property :

Theorem 6.1. The intrinsic universality problem is undecidable over SCCA.

Proof. This problem is undecidable for CA in general [8]. As our construction preserves intrinsic univer-
sality, this is also true for SCCA.

We will give here two other examples of decision problem for reversible CA that are reducible to
reversible SCCA, namely periodicity and immortality problems.

A CA is said to be periodic if ∀c ∈ SZ,∃n ∈ N s.t. Gn(c) = c. This problem is undecidable for
reversible CA [3], and we can prove the same thing for SCCA. We should note previously that in cellular
automata periodicity and uniform periodicity are equivalent. Indeed, let A be a periodic CA and suppose
that for all n ≥ 1, there exists cn ∈ SZ s.t. Gn(cn) 6= cn. Each cn has a finite segment pn which is mapped
in n steps into a state which is different from the center of pn. If a configuration c contains every pn,
then c is not periodic for A, which is absurd.

Theorem 6.2. It is undecidable whether a reversible SCCA is periodic.

Proof. Let A be a reversible CA, ASC the reversible automaton obtained with the simulation (Φ, εφ) of
section 5.3. We have to show that ASC is periodic if and only if A is. If there exists a configuration c
which is not periodic for A, clearly εφ(c) is not periodic for ASC . Conversely, if A is periodic, ASC is also
periodic on every valid configurations.

For the other ones, the reasoning is very similar to the proof we did for the Proposition5.11. We
consider once more the connected components, each of them being periodic. Since periodicity implies
uniform periodicity, there exists in A a common period n to every connected component, and thus any
configuration is periodic.

Let H be a set of halting states. A configuration c is said halting if there exists i ∈ Z s.t. ci ∈ H. A
CA is said to be mortal if for all c ∈ SZ, there exists n ∈ N s.t. Gn(c) is halting. It is also undecidable
whether a reversible CA is immortal[3]. Clearly, as states are conserved all along the execution, this
problem is trivial for a SCCA. Nonetheless, if we change a little the problem to have H′ a finite set of
finite patterns, and said that an automaton is pattern-mortal if there exists a segment [a, b] ⊂ Z s.t.
c[a,b] ∈ H′, this problem turns to be undecidable:

Theorem 6.3. The pattern-mortality problem is undecidable for reversible SCCA.

Proof. Let A (of global function G) be a reversible CA, H be a set of states of A, and ASC the reversible
automaton (of function GSC) obtained with the simulation (Φ, εφ) of section 5.3. For every pattern h of
H, we denote by h its corresponding pattern for ASC determined by εφ. If a cell is encoded over a block
of size b, we define B as the finite set of bad blocks of size b, which are those that could not be found into
a valid configuration. Finally we set H′ = {h | h ∈ H}∪B and claim that A is mortal if and only if ASC
is pattern-mortal.

Indeed, ifA is immortal, there exists a configuration c such that for all i ∈ Z, for all n ∈ N, Gn(c)i /∈ H.
Then for all i ∈ Z, for all n ∈ N, GnSC(εφ(c))[i,i+b] /∈ H′. Conversely, assume A is mortal. Let c be a
configuration for ASC . Either it is a valid configuration, and then its preimage is mortal for A, and c is
pattern-halting for ASC . Either it is not, and then there exists an i ∈ Z such that c[i,i+b] ∈ B. In both
cases, c is pattern-halting for ASC , which proves that ASC is pattern-mortal.

6.2 2-dimensional SCCA

We will not give here formal definitions, but most of the time, all the definitions we gave before can
be extended to d-dimensional CA, replacing everywhere Z by Zd. If we only focus on 2-dimensional
CA, adapting works that have been done for number-conserving cellular automata (the definition is the
same, without using δα), we can show that the proposition 3.4 still holds. In addition, we still have the
decidability of the state-conserving problem, with a result analogous to the proposition 4.1. Nevertheless,
De Bruijn graph does not exist for 2-CA, we have no efficient algorithm a priori.
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Clearly, we can simulate any 2-CA by a 2-SCCA, with the same kind of ideas we used previously.
We encode each cell by a permutation block of a rectangular shape (to be able to tile the plane), and
separate blocks by a border of marker. For instance, to encode a 2-CA until 24 states, we will use as
marker, and as states. The encoding of a configuration will look like this :

We know that reversibility is undecidable for 2-CA, and we would like to reduced this problem for
2-SCCA :

Conjecture 6.4. Reversibility is undecidable for 2-SCCA.

A simulation preserving the reversibility would be sufficient to prove that reversibility is still unde-
cidable for 2-SCCA. We sketch here a construction similar to the one we exposed for 1-CA, but we do
not know whether it is suitable (see Question 5).

Let A be a 2-CA, f its local function. We will use here a two-layer 2-dimensional cellular automaton,
whose upper layer will contain A, and the lower one will be used to handle bad neighborhood. So, each
cell will contain a couple of states -one for each layer-, and every cell will as usual be encoded into a
rectangular block of cell in the SCCA, whereas we separate blocks by a border of marker. The upper
layer will be ruled by f , and the lower-one by the rule obtained applying a central symmetry to f . As
soon as a block encounters a bad block in its neighborhood, it uses the lower layer instead, and conversely
(see Figure 6).

Figure 6: Simulation of a 2-CA into an SCCA

Obviously, if A is not reversible, neither ASC is. But the converse remains a question :

Question 6.5. Is ASC reversible if A is ?
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7 Conclusion

We made here a first study of state-conserving cellular automata, and deal with some of their basic
properties. Then we gave a characterization of state-conservation over De Bruijn graph, and implemented
an efficient algorithm to list the classes SC(q, n). We also designed simulation preserving the reversibility
to enhanced the universality of state-conserving cellular automata, and illustrate their utility by some
few examples of reduction of decision problem. This might be a good first basis for any further work on
this class of automaton in the future. Moreover, in addition to the question 6.5, one can wonder if the
automaton A1 and A2 on Figure 4 are Turing universal, because they seem to behave like the rule 110
(which was proved universal by Cook), with a propagation of signals.

For a more personal aspect, this internship has enabled me to discover the theory of cellular automata
starting from scratch. In that sense, it was particularly interesting, since it made me get familiar to CA
thanks to some lectures note from a course Jarkko gives inT urku and some few papers. And it has above
all given me basics knowledges in a new topic, with its related points of view and questions.
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