
1- Logic

1.1 �eory

A famous character of a well-known book1 once said to a young student of his:

�e truth. […] It is a beautiful and terrible thing, and should therefore be treated with great
caution.

While ina�entive readers of this best-seller might have missed the signi�cance of this declaration, it
makes no doubt that this wise character intended to point out the fact that truth is a concept that is
not as well-de�ned as one believes. �is thesis being somewhat centered on the notions of truth and
proofs, our starting point will be the de�nition of these key notions. In spite of a long faith in a total
and absolute truth that mathematics ought to contain, belief of which Leibniz’s quest for a calculus
ratiocinator and Hilbert’s second problem2 only were the top of the iceberg, one of the major lesson
from the 20th century in logic is that the notion of mathematical truth is deeply relative to its context
and not uniquely de�ned.

In the next sections, we shall present two very di�erent notions of truth. Considering again the
example of geometry2, two concepts are to be opposed. On the one hand, the theory of Euclidean
geometry is an axiomatization intended to give a faithful representation of the world, expressed by
means of Euclide’s postulates. On the other hand, a model of this theory is a particular structure in
which all the axioms of the theory hold. As explained in the introduction, a given axiomatization
might be satis�ed by several models. From these concepts are derived two di�erent notions of truth:

• provability, a syntactic notion, expresses the existence of a proof in a theory,
• validity, a semantic notion, expresses the validation of a formula by a particular model of the

theory.

Let us contemplate the case of Euclid’s parallel postulate to illustrate the distinction between these
notions. �e parallel postulate is independent from other Euclid’s postulates, that is to say that in
the theory where only the �rst two postulates (cf. introduction) are assumed, the parallel postulate is
neither provable nor disprovable. Notwithstanding, there exists at the same time a model in which it is
valid (euclidian geometry) and di�erent models in which it is not (non-euclidian geometries).

We shall start this section by introducing di�erent concepts that are necessary to the de�nition of
the concept of theory in Section 1.1.1, and pursue with the de�nition of a model in Section 1.2.

1.1.1 Language

Roughly, we can say that a theory is given by a language, which de�nes formulas and thus the expres-
siveness of the theory; and by the set of theorems, the formulas that are considered as true. Presented

1We deliberately choose to leave the precise reference apart from our bibliography, such an item would indubitably put
the scienti�c rigor of this manuscript in question.

2See the introduction.
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CHAPTER 1. LOGIC

this way, truth corresponds to true formulas, which seems—and is—terribly tautological. �e interest-
ing point resides in de�ning which are the true formulas, and especially in how we de�ne them. But
before re�ning our notion of theory, let us �rst examine some examples of languages.

Example 1.1 (Propositional logic). �e language of propositional logic consists in propositions that
are formed themselves by other propositions and the use of logical connectives. Speci�cally, we assume
given a denumerable set A of atomic formulas and we de�ne the propositions (or formulas), that are
denoted by capital le�ers A,B, by:

A,B ::= X | ¬A | A⇒ B | A ∧ B | A ∨ B (X ∈ A)

where ¬A reads “not A ”, A⇒ B reads “A implies B ”, A ∧ B reads “A and B ”, and A ∨ B reads “A or B ”.
We o�en consider that we have two particular atomic formulas in A: true, that we write >, and false
that we write ⊥, and if so, ¬A is de�ned as A⇒ ⊥. It may be observed that our choice of connectives
is arbitrary in the sense that we could have de�ned formulas from less or more connectives, or more
generally from a signature of logical connectives. y

While propositional logic can tracked to the 3rd century B.C.3, the development of predicate logic,
that can be considered as the next major advancement in logic, is much more recent and due to Frege
in the 1870s. Intuitively, propositional logic only allows for declarative sentences such as “I am a cat”
or “Plato is a cat” (or logical composition of declarative sentences, as in “I am a cat” implies “I like �sh” ),
but it does not allow to identify the common structure “be a cat”. Neither does it relate the “I” which
is a cat and the “I” which likes �sh. Less does it permit to express something like “If x is a cat then x
likes �sh”. �e statement “x is a cat” or “Cat(x )” is what is called a predicate, depending on a variable
x , and more generally denoted by P (x ). �e main achievement of Frege was to introduce this notion,
together with the concept of quanti�cation, allowing to specify the quantity of individuals for which
a statement holds. �e universal quanti�cation, wri�en ∀, denotes the fact that a statement holds for
all individuals: ∀x .Cat(x ) is “for all x , x is a cat”. �e existential quanti�cation, wri�en ∃, denotes the
existence of (at least) one individual for which the statement holds: ∃x .Cat(x ) is “there exists x such that
x is a cat”. �e resulting language is called the language of predicate logic or language of �rst-order
logic.

Example 1.2 (First-order logic). �e language of �rst-order logic is de�ned from two di�erent syntactic
categories:

• terms or �rst-order expressions, that are built from a �xed setV of variables and a �xed signature
Σ1 of functions symbols with their arities4:

e1,e2 ::= x | f (e1, ...,ek ) (x ∈ V , f ∈ Σ1)

• formulas, that are de�ned from a �xed signature Σ2 of predicate symbols with their arities:

A,B ::= P (e1, . . . ,ek ) | ∀x .A | ∃x .A | A⇒ B | A ∧ B | A ∨ B (P ∈ Σ2)

y

It is worth noting that this language strictly subsumes the language of propositional logic, where
atomic formulas are nothing more than predicates of arity 0.

3More precisely, to the stoic Chrysippus, according to the Stanford Encyclopedia of Philosophy: https://plato.
stanford.edu/archives/spr2016/entries/logic-ancient/.

4Such a signature can formally be de�ned as a pair Σ1 = (F ,ar) where F is a denumerable set of functions symbols and
ar is a function F → � which assigns to each function its arity, i.e. the number of arguments it takes.

24

https://plato.stanford.edu/archives/spr2016/entries/logic-ancient/
https://plato.stanford.edu/archives/spr2016/entries/logic-ancient/


1.1. THEORY

Example 1.3 (First-order arithmetic). �e language of �rst-order arithmetic is a special case of a �rst-
order language, where the signature for �rst-order expressions contains a constant 0 (function of arity
0), a symbol S (of arity 1) to denote the successor, as well as two function symbols + and × denoting
respectively the addition and the multiplication of natural numbers. As for the formulas, they are
de�ned with the two quanti�ers of �rst-order logic and one unique predicate symbol = to denote the
equality of terms. �e resulting syntax, whereV is the set of variables, is given by:

Terms e1,e2 ::= x | 0 | s (e ) | e1 + e2 | e1 × e2
Formulas A,B ::= e1 = e2 | > | ⊥ | ∀x .A | ∃x .A | A⇒ B | A ∧ B | A ∨ B

(x ∈ V )

y

�ese languages are called �rst-order because quanti�cation is only authorized over �rst-order
terms (natural numbers in the case of arithmetic). As we shall use further in this manuscript second-
order or higher-order logic, let us give some more insight on this point.
Remark 1.4 (Order of a language). Let us informally de�ne Prop as the “set” of propositions. In-
tuitively, we could think of Prop as being the set that only contains true and false: Prop = {>,⊥}.
In the case of arithmetic, �rst-order individuals corresponds to natural numbers in � . A predicate
P (x1, . . . ,xk ) is thus a function from �k to Prop. Alternatively, one can think of a predicate P (x ) as
a set P of naturals number, with P (x ) ≡ x ∈ P . �is way, second-order individuals are sets in P (�),
third-order individuals are sets of sets in P (P (�)), fourth-order sets of sets of sets, etc… : nth-order
individuals are elements of P (· · · P (︸    ︷︷    ︸

n−1

�) · · · ). With this intuition in mind, we say that a nth-order lan-

guage is a language that allows for quanti�cations ranging over nth-order individuals. For instance:
• zero-order logic is just propositional logic, since it does not allow any quanti�cation,
• �rst-order logic is indeed predicate logic, which allows for quanti�cations over terms and ex-

presses properties about natural numbers,
• second-order logic corresponds to a language with quanti�cations ranging over predicates and

expresses properties about sets of natural numbers,
• etc… y

Up to now, in each example we only de�ned a language, whose symbols were not given any par-
ticular logical signi�cation. Speci�cally, we said for instance that “=” denoted the equality, that “+”
denoted the addition or that s (0) was the successor of 0, so that any reader should be inclined to think
of s (0) as 1 and to 1 + 1 as 2. But there is no formal reason to do so!

In other words, we do not have any relation yet between s (0) + s (0) and s (s (0)). We can write
s (0) + s (0) = s (s (0)) just like we can write s (0) = 0 or > ⇒ ⊥, because in both cases the language
is expressive enough. But we still need to give some kind of meaning to these symbols, and a least to
de�ne what we consider as true statements. To put it di�erently, we need to de�ne what is the logical
content of a theory.

We can now re�ne our notion of theory. A theory consists in three elements, namely:
• a language, which delimits the expressiveness of the theory;
• axioms, a minimal set5 of closed formulas taken as true;
• a deductive system, which allows to deduce theorems from the axioms.

By minimal, we mean that none of the axioms should be proved from the other one using the deductive
system, which we shall now de�ne. By closed, we mean that a formula can only contain variables that
are bound by some quanti�er. For instance, ∀x .∃y.y = x + x is a closed formula but ∃y.y = x + x is not
since x is free. Formally, we de�ne by induction the set of free variables FV (A) of a formula A and say
that a formula A is closed if FV (A) = ∅.

5�ese sets will mostly be �nite in this manuscript.
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CHAPTER 1. LOGIC

De�nition 1.5 (Free variables). �e sets of free variables of �rst-order terms and formulas are induc-
tively de�ned by :

FV (x ) , {x }

FV (A⇒ B) , FV (A) ∪ FV (B)

FV (A ∧ B) , FV (A) ∪ FV (B)

FV (A ∨ B) , FV (A) ∪ FV (B)

FV ( f (e1, ...,ek )) , FV (e1) ∪ . . . ∪ FV (ek )

FV (P (e1, . . . ,ek )) , FV (e1) ∪ . . . ∪ FV (ek )

FV (∀x .A) , FV (A)\{x }

FV (∃x .A) , FV (A)\{x }
y

Similarly, we de�ne A[e/x], which reads “the formula A in which x is substituted by e”, that we will
use in the next section.

De�nition 1.6 (Substitution). �e substitution of a variable x by an expression e is de�ned by induction
over terms:

y[e/x] , e

y[e/x] , y

( f (e1, ...,ek ))[e/x] , f (e1[e/x], . . . ,ek [e/x])

(if x = y)
(if x , y)

and formulas:

(P (e1, . . . ,ek ))[e/x] , P (e1[e/x], . . . ,ek [e/x])
(A⇒ B)[e/x] , A[e/x]⇒ B[e/x]
(A ∧ B)[e/x] , A[e/x] ∧ B[e/x]
(A ∨ B)[e/x] , A[e/x] ∨ B[e/x]
(∀y.A)[e/x] , ∀y.(A[e/x])
(∀y.A)[e/x] , ∀y.A
(∃y.A)[e/x] , ∃y.(A[e/x])
(∃y.A)[e/x] , ∃y.A

(if x , y,y < FV (e ))
(otherwise)

(if x , y,y < FV (e ))
(otherwise)

Observe that in the case where the variable x corresponds to the variable bound by a quanti�er (e.g.
∀x .A), the substitution is erased. y

1.1.2 Deductive system

�e aim of a deductive system is to capture the notion of logical consequence in a theory. �ere exist
numerous deductive systems doing so, of which the most known are Hilbert’s deduction system, natu-
ral deduction and Gentzen’s sequent calculus. We will implicitly present Hilbert’s system in Chapter 10,
and we will introduce sequent calculus in Chapter 4. Let us focus now on the system of natural deduc-
tion, that we present with explicit contexts. Assume that we have a �xed language, for instance the lan-
guage of �rst-order logic. We call context any list (possibly empty) of formulas wri�en Γ ≡ A1, . . . ,An .
Formally, this corresponds to the simple following grammar:

Γ ::= ε | Γ,A

and we de�ne FV (Γ) as the union of free variables in each formula:

FV (ε ) , ε FV (Γ,A) , FV (Γ) ∪ FV (A)

A judgment is a pair (Γ,A) wri�en Γ ` A, where Γ is a context and A is a formula. Intuitively, the
sequent Γ ` A expresses that the formula A is a logical consequence of the hypotheses Γ. Sequents
are deduced from each other by means of a deductive system. A deductive system is given by a set of
inference rules , which are of the form:

J1 . . . Jn
J

(bli)
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1.1. THEORY

Propositional logic

(Introduction rules) (Elimination rules)

A ∈ Γ
Γ ` A

(Ax)
Γ ` >

(>)
Γ ` ⊥
Γ ` A

(⊥)

Γ,A ` B
Γ ` A⇒ B

(⇒I )
Γ ` A⇒ B Γ ` A

Γ ` B
(⇒E )

Γ ` A Γ ` B
Γ ` A ∧ B

(∧I )
Γ ` A ∧ B
Γ ` A

(∧1
E )

Γ ` A ∧ B
Γ ` B

(∧2
E )

Γ ` A
Γ ` A ∨ B

(∨1
I )

Γ ` B
Γ ` A ∨ B

(∨2
I )

Γ ` A ∨ B Γ,A ` C Γ,B ` C
Γ ` C

(∨E )

First-order logic

Γ ` A x < FV (Γ)

Γ ` ∀x .A
(∀I )

Γ ` ∀x .A
Γ ` A[t/x]

(∀E )

Γ ` A[t/x]
Γ ` ∃x .A

(∃I )
Γ ` ∃x .A Γ,A ` B x < FV (Γ,B)

Γ ` B
(∃E )

Figure 1.1: Natural deduction

where bli is the name of the rule, where the judgment J is the conclusion of the rule and where J1, . . . , Jn
are its premises. �e rules of natural deduction, given in Figure 1.1, are divided in two sorts of rules:

• introduction rules, that give the necessary premises to introduce a connective,

• elimination rules, that give a conclusion that is derivable from a connective.

For instance, the elimination for the connective ⇒ is none other than the Aristotelian principle of
modus ponens:

Γ ` A⇒ B Γ ` A
Γ ` B

(⇒E )

expressing that knowing A⇒ B and A, one can deduce B. Some rules (the axiom rule, the introduction
of ∀ and the elimination of ∃) also have a side-condition to restrict their scope. For example, the rule
(Ax) only applies if the formula A appears in the list Γ of hypotheses, while the introduction rule for ∀
applies only if the variable x does not occur freely in Γ (intuitively, x refers to any arbitrary term).

Succession of inferences are then arranged in the form of a derivation tree, whose root is traditionally
located at the bo�om. A sequent Γ ` A is said to be derivable if there exists a derivation tree whose
root is this sequent. �is derivation tree is also called proof tree or simply proof .

Example 1.7 (Plato likes �sh). Let us illustrate how natural deduction works by constructing the
derivation tree corresponding to the syllogism: “Plato is a cat, all cats likes �sh thus Plato likes �sh”.
We de�ne two predicates Cat(x ) and x ♥ y by :

Cat(x ) , “ x is a cat” x ♥ y , “ x likes y”

and denote Plato by and “�sh” by . Our hypothesis, which will constitute the context Γ, are then
de�ned by:

Γ = Cat( ),∀x .(Cat(x ) ⇒ x ♥ )

27



CHAPTER 1. LOGIC

All this being set, we are now ready to give the expected derivation:

∀x .(Cat(x ) ⇒ x ♥ ) ∈ Γ

Γ ` ∀x .(Cat(x ) ⇒ x ♥ )
(Ax)

Γ ` Cat( ) ⇒ ♥

(∀E )
Cat( ) ∈ Γ

Γ ` Cat( )
(Ax)

Γ ` ♥

(⇒E )

�is proof tree re�ects the structure of the expected proof. From bo�om to top (and right to le�), this
proof can be read6:

• Plato likes �sh by application of the modus ponens (⇒E ), since “if Plato is a cat then Plato likes
�sh” and “Plato is a cat”,

• the la�er holds because it is an hypothesis (Ax),

• the former holds because it is in fact true for any individual (∀E ): “for all x , if x is a cat then x
likes �sh”,

• this last statement is an hypothesis (Ax).

We enjoin the reader desirous of ge�ing more familiar with the manipulation of proof trees to do the
following exercises:

1. Introduce a predicate Fish(x ) ,“x is a �sh”. �en generalize the hypothesis as “any cat like any
�sh” and consider some �sh to prove that Plato likes it.

2. Give a di�erent derivation of the same judgment.

3. Change the hypothesis “Plato is a cat” by “Plato does not like �sh” and prove that “Plato is not a
cat”. y

1.1.2.1 Intuitionistic and classical logic

Alternatively, one can think of an inference rule as a logical axiom. Indeed, the choice of inference rules
is not inconsequential and all deductive systems are not equivalent. Natural deduction, as we presented
it, is said to be intuitionistic or constructive, because it only entails constructive principle. For instance,
to construct a proof of a disjunction A ∨ B, we need to actually choose between its le�-hand side A or
its right-hand side B. As a consequence, the De Morgan law:

¬(A ∧ B) ⇒ (¬A) ∨ (¬B)

is not provable7 in natural deduction with an empty context. Intuitively, this is due to the fact that the
knowledge of ¬(A∧B) only provides us with the information that “A and B” is not true, it does not tell
us whether A or B (or both) is false. Hence we have no way to prove (¬A) ∨ (¬B), which requires to
give either a proof of ¬A or a proof of ¬B. Similarly, the principle of excluded-middle:

A ∨ (¬A)

6�is corresponds to the way the proof tree is build. �e natural way of constructing a “hand-wri�en” proof would be
just the opposite, from top to bo�om: We know that for any individual x , if x is a cat, then x likes �sh. In particular, if Plato is
a cat, then he likes �sh. But we also know that Plato is a cat, hence he likes �sh.

7�e De Morgan law is not “false” in the sense that its negation is provable (which is not), but it is indeed not provable (we
will prove this in Section 1.2). Such an a�rmation might seem puzzling at �rst sight (how can we prove the unprovability of
a formula?), but it is one of the biggest motivation to the introduction of a semantical truth through models.
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1.1. THEORY

is not provable8 for all formulas, since it requires to e�ectively know whether A is true or not. If we
can prove one of A or ¬A, we can obviously prove A ∨ (¬A), if not we are stuck.

On the opposite, classical logic allows for instance to deduce a proof of A ∨ B from a reductio ad
absurdum: supposing that neither A nor B, one might obtain a proof of false (⊥) which is absurd, and
conclude that the hypothesis was false, hence A or B is true. �is formally corresponds to the addition
of an extra logical axiom, which is usually chosen amongst these three principles:

A ∨ (¬A) (¬¬A) ⇒ A ((A⇒ B) ⇒ A) ⇒ A
(Excluded-middle) (Double-negation elimination) (Peirce’s law)

None of these axioms is provable in intuitionistic natural deduction, and they are logically equivalent
in the sense that any one of them is deducible from any other one9. It is worth saying that in spite of
our presentation—which is mostly intuitionistic in this chapter—, classical logic is the logic the wo.man
in the street is accustomed to. In particular, most of mathematicians consider the double-negation
elimination or the excluded-middle as valid principles for reasoning and proving theorems.

Remark 1.8. �e Curry-Howard correspondence, that will be presented in Section 2.3, makes this idea
of constructivism even stronger: it associates to each proof a program whose computation corresponds
to the proof. Originally formulated in an intuitionistic se�ing, it was then extended to a classical frame-
work thanks to a clever interpretation of Peirce’s law. All this manuscript is dedicated to the study of
classical proofs through this interpretation. y

1.1.3 �eory

Given by a language together with a deductive system and a set of axioms, a theory T allows to deduce
theorems by means of logical consequences. Formally, a demonstration or proof of a formula A in the
theory T is a derivation whose conclusion is of the form Γ ` A, where Γ is a (�nite) set of axioms of T .
When such a demonstration exists, A is called a theorem of T . �e theory T is said to be incoherent
or inconsistent whenever the formula ⊥ is a theorem of T (or, equivalently, when any formula is a
theorem of T ). Otherwise, the theory is said to be coherent or consistent. Furthermore, a theory T is
said to be complete if for each formula A, either A is a theorem of T either its negation ¬A is.

Example 1.9 (Intuitionistic logic). �e theory of intuitionistic propositional logic NJ is the theory
obtain from the propositional rules of natural deduction (see Figure 1.1) with no further axioms. y

Example 1.10 (Relations). A relation corresponds to a predicate R (x ,y) of arity 2, that we rather write
x R y. Numerous generic properties about relations can be de�ned in �rst-order logic, amongst which:

(R1)
(R2)
(R3)
(R4)
(R5)

Re�exivity : ∀x .x R x
Transitivity : ∀x .∀y.∀z.x R y ⇒ y R z ⇒ x R z
Anti-symmetry : ∀x .∀y.x R y ⇒ y R x ⇒ x = y
Symmetry : ∀x .∀y.x R y ⇒ y R x
Totality : ∀x .∀y.x R y ∨ y R x

A relation is called a pre-order, and o�en wri�en ≤ , if it is re�exive and transitive i.e. if (R1),(R2)
are theorems of the ambient theory. If (R3) is also a theorem (the pre-order is anti-symmetric), it is
called an order. An order is total if it satis�es the condition (R5). An equivalence is a relation for which
(R1),(R2) and (R4) holds. y

8We will give a formal argument of this statement in Section 1.2.2. In fact, we will even prove that the excluded-middle is
independent from intuitionistic logic, that is to say that neither the excluded-middle nor its negation are provable.

9Proving the equivalence is a nice and classical exercise.
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CHAPTER 1. LOGIC

Example 1.11 (�eory of equality). �e theory of equality, in the language of �rst-order arithmetic,
corresponds to the following axioms:

(E1)
(E2)
(E3)
(E4)
(E5)
(E6)
(E7)

∀x .(x = x )
∀x .∀y.∀z.(x = y ∧ x = z ⇒ y = z)
∀x .∀y.(x = y ⇒ s (x ) = s (y))
∀x .∀y.∀z.(x = y ⇒ x + z = y + z)
∀x .∀y.∀z.(x = y ⇒ z + x = z + y)
∀x .∀y.∀z.(x = y ⇒ x × z = y × z)
∀x .∀y.∀z.(x = y ⇒ z × x = z × y)

Observe that the �rst two axioms (E1) and (E2) imply that the relation of equality is re�exive, transitive,
symmetric and anti-symmetric. y

If equalities as 1 = 1 or 1 + 2 = 1 + 2 are simple consequences of the axioms (E1-E7), the equality
1 + 1 = 2 (i.e. s (0) + s (0) = s (s (0))) is still not provable. Indeed, such an equality relies on properties
of the addition and not of the equality. Similarly, 1 × 1 = 1 relies on properties of the multiplication.
�ese properties are expressed by Peano axioms, which de�ne the theory of �rst-order arithmetic.

Example 1.12 (Peano arithmetic). �e theory of Peano arithmetic, that we write (PA), is obtained by
adding to the theory of equality the six axioms below:

(PA1)
(PA2)
(PA3)
(PA4)
(PA5)
(PA6)

∀x .(0 + x = x )
∀x .∀y.(s (x ) + y = s (x + y))
∀x .(0 × x = 0)
∀x .∀y.(s (x ) × y = (x × y) + y)
∀x .∀y.(s (x ) = s (y) ⇒ x = y)
∀x .(s (x ) , 0)

as well as the axioms of induction:

(PA7) ∀z1 . . . zn (A[x/0] ∧ ∀x .(A⇒ A[s (x )/x]) ⇒ ∀x .A)

for each formula A whose free variables are x ,z1, . . . ,zn . y

Finally, we have now at our disposal a theory in which we can indeed assert that 1 + 1 = 2

�eorem 1.13 (1+1=2). PA ` s (0) + s (0) = s (s (0))

Proof. We only sketch the proof in english, and let any circumspect reader derive the formal proof tree.
�e axiom PA2 implies that s (0) + s (0) = s (0 + s (0)) and PA1 implies that 0 + s (0) = s (0). Using the
axiom (E3) of equality, we deduced that s (0 + s (0)) = s (s (0)), and we conclude by transitivity of the
equality (E2). �

It is easy to check that expected properties of arithmetic are provable with these axioms, for instance
that the successor corresponds indeed to the addition of 1 (i.e. s (0)):

PA ` ∀x .x + s (0) = s (x )

or that the principle of strong induction holds:

PA ` ∀x .(∀y.(y < x ⇒ A(y)) ⇒ A(x )) ⇒ ∀xA(x )
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1.1.3.1 Gödel’s incompleteness

Unfortunately for Leibniz’s and Hilbert’s dream of an absolute truth, the notion of provability does not
meet this expectancy. Indeed, this syntactic concept of truth does not allow to decide of the truth of all
statements: some statements are neither provable nor provable. More precisely, as soon as a theory T
is expressive enough, either there is a closed formula G such that T 0 G and T 0 ¬G or the theory is
incoherent. �is is known as Gödel �rst incompleteness theorem [61], who managed to adapt the old
liar’s paradox:

“I am a liar”

to the theory of arithmetic. Roughly, Gödel de�ned an encoding p·q of the formulas and demonstrations
of �rst-order arithmetic to natural numbers10 �is encodings allows to convert the statement “A is a
theorem of T ” into the statement “x is the code of a theorem of T ”, which can be expressed as an
arithmetic formula. �is permits the de�nition of the following formula G:

G , ¬Th(pGq) (“ pGq is not the code of a theorem of T ”).

If T is coherent, T can not prove G, otherwise G would be a theorem and T would prove pGq is not
the code of a theorem of T . Neither can T prove ¬G, i.e. pGq is the code of a theorem, since G would
not be a theorem and T would be inconsistent.

To Hilbert’s claim “For us mathematicians there is no ‘Ignorabimus’[…] we shall know!”, Gödel’s
theorem somehow answers: “No, my dear, we won’t !”.

�eorem 1.14 (First incompleteness theorem). If T is coherent and contains PA, then T is incomplete.

1.2 Models

We shall now contemplate a semantic notion of truth, namely the satis�ability by a model. As explained
in the introduction, while a theory speci�es the axioms and rules that are to be satis�ed, giving an
axiomatic representation of the world, a model M of a theory T is the given of one possible world
in which all the theorems of T are satis�ed. If the distinction between the syntax and the semantics
of a sentence can be traced back to older works1, model theory as the study of the interpretation of a
language by means of set-theoretic structures is mostly based on Alfred Tarski’s truth de�nition [153].

Given a theory T , that is to say a language L together with a set of axioms and deduction rules, a
model is the given of a universe in which the language L is interpreted and of a relation of satis�ability
such that the interpretation of each theorem of T is satis�ed. Let us examine a simple example before
giving a formal de�nition.

Example 1.15. Consider the language of �rst-order arithmetic (Example 1.3), in a theory without
axioms (i.e. theorems are logical tautologies), and consider the statement:

∀x .(0 + x = x )

which is the �rst axiom (PA1) of Peano arithmetic. In this context, it is not an theorem, hence it can
be either true or false in a model. �e �rst natural interpretation we might come with is to choose as
universe the set � of natural numbers, to interpret ‘0’ by the natural 0, ‘+’ by the addition of natural

10You can think of this as an enumeration of every possible formulas and demonstrations. It corresponds to something like
0 is the code for >,1 is the code for ⊥,…, 42 is the code for the proof of the conjunction of formulas of code 5 and 7, etc… and
p∀x .∀y.x + y = 27q = 137668. �e key point is that every formula and demonstration have a code.

11Besides the aforementioned works on non-Euclidean geometries, Frege’s works can be pointed out: he formally intro-
duced the distinction between the character x and the quoted ‘x ’ to distinguish between the signi�ed and the signi�er.
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numbers and ‘ =′ by the equality on natural numbers. We write � � A to denote that � satis�es the
formula A, and we de�ne the satis�ability of the universal quanti�er by:

� � ∀x .A(x ) if and only if for all n ∈ �,� � A(n)

�en (PA1) is true with respect to this interpretation, since for any natural number n, � � 0 + n = n.
Now, we could also give a di�erent interpretation. Consider the setW of (�nite) words de�ned on

the usual alphanumeric alphabet ‘0−9,a−z’. We interpret 0 by the character 0, + by the concatenation
of words and = by the equality. We de�ne the satis�ability of the universal quanti�er in a similar way:

W � ∀x .A(x ) if and only if for all w ∈ W ,W � A(w )

�en (PA1) is false with respect to this interpretation: indeed, if we consider for instance the word
‘abc’, we have 0 + abc = 0abc , abc , i.e. W 2 0 + abc = abc . �us W does not satis�es (PA1):
W 2 ∀x .(0 + x = x ). y

Formally, given a language L , a pair (M,I) is said to be an L -structure if I maps the symbols
of L to appropriate elements ofM: function symbols are mapped to functions (of the corresponding
arity) and predicates are mapped to functional relations.M is called the universe of the structure, and
I its interpretation function.

De�nition 1.16 (Model). Given a L -structure, a formula A(m1, . . . ,mn ) with parameters inM is de-
�ned as a formula A(x1, . . . ,xn ) whose free variables x1, . . . ,xn have been substituted by elements
m1, . . . ,mn ofM. Finally, a L -structure (M,I) is said to be a model of a theory T if there is a relation
of satis�ability over formulas with parameters inM, such that every theorem of T are satis�ed byM.
�is relation is o�en denoted byM � A and reads A is valid (or true) inM orM satis�es A. y

In practice, the relation of satis�ability is de�ned primitively on atomic formulas and then by in-
duction on the structure of a formula. If the de�nition is adequate with the deductive system, then the
resulting relation de�nes indeed a model.

De�nition 1.17 (Adequacy). Let L be a language, T be a theory based on this language andM be
an L -structure.

• A judgment Γ ` A in T is adequate (w.r.t. to the modelM) if the validity of the premises (M � Γ)
entails the validity of the conclusion (M � A).

• More generally, we say that an inference rule

J1 · · · Jn
J0

is adequate (w.r.t. to the modelM) if the adequacy of all judgments J1, . . . , Jn implies the adequacy
of the typing judgment J0. y

Proposition 1.18. If all the axioms of a theory T are valid in a structure M, and if all its rules of
inference are adequate, thenM is a model of T .

Proof. Indeed, if there is a proof of a formula A in T , this proof is build out of axioms and inferences
rules. Since axioms are valid in M and inference rules are adequate w.r.t. M, by induction we get
that adequate judgments at every �oors of the tree. In particular, the root of the proof tree (T ` A) is
adequate, that is to say thatM ` A is valid. �is is true for every theorem of T , henceM is a model
of T . �
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In particular, if T is not coherent (i.e. T ` ⊥), then ⊥ is valid in any modelM. By contraposition,
this gives us a semantic criterion of coherency.

Corollary 1.19 (Coherence). If a theory T has a model M such that ⊥ is not valid in M, then T is
coherent.

Unlike for provability, in a model any statement is necessarily2 either satis�ed or not. Neverthe-
less, the same theory can admit very di�erent models, and a statement can be true in some of them,
false in others. �is justi�es the introduction of the notion of completeness, which corresponds to the
implication dual to soundness (which is the very de�nition of a model):

(Soundness)
(Completeness)

T ` A ⇒ M � A
M � A ⇒ T ` A

De�nition 1.20 (Completeness). A theory T is said to be complete with respect to a class of modelsM
if for all formula A, the satis�ability of A inM (M � A) for any such modelM implies the provability
of A in T (T ` A). y

We shall examine now some examples of models.

1.2.1 Truth tables

�e easiest model of all for propositional logic is known since the antiquity, and consists in a truth table
with only two elements3 > and ⊥. �e interpretation of the di�erent connectives is de�ned as internal
laws, whose values are given by the following truth tables:

p ∧ q

q
p > ⊥

> > ⊥

⊥ ⊥ ⊥

p ∨ q

q
p > ⊥

> > >

⊥ > ⊥

p ⇒ q

q
p > ⊥

> > ⊥

⊥ > >

p ¬p

> ⊥

⊥ >

Formally, given a propositional theory T this corresponds to a modelM = {>,⊥, } such that the
interpretation function maps every axioms (atomic propositions) to > and to the following de�nition
of the satis�ability relation :

M � >
M � A ∧ B if and only if M � A and M � B
M � A ∨ B if and only if M � A or M � B
M � A⇒ B if and only if M � A implies M � B
M � ¬A if and only if M 2 A

�is de�nition can be extended to judgments by de�ning:

M � A1, . . . ,An if and only if M � A1 ∧ · · · ∧An
M � Γ ` A if and only if M � Γ implies M � A

and it is easy to check that all the inference rules for propositional logic in Figure 1.1 are adequate.
Besides, it is worth noting that such a model always validates the excluded middle since:

M � A ∨ (¬A) ⇔ M � A orM � (¬A) ⇔ M � A orM 2 A

12�is actually means that we consider our meta-theory to be classical, but for the sake of simplicity, we do not want to
dwell on considerations about meta-theory here.

13Formally, we should call them True and False (or with any other names), which are elements of the model, so as to
distinguish them from > and ⊥, which are elements of the syntax and of whom they are the interpretations. We abuse the
notations in the same way for the logical connectives.
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1.2.2 Heyting algebra

Heyting algebras, named a�er the mathematician Arend Heyting, are a generalization of truth tables
for intuitionistic logic. �ey allow to interpret propositions in a partially ordered set that has more
than just two points, where the structure of ordering re�ects the logical behavior of connectives. �e
main intuition can be resumed by the mo�o:

“the higher an element is, the truer it is”

In particular, if x ≤ y and x is “true”, then so is “y”. Reading this order the other way around, x ≤ y
means than x is more precise (or contains more information, is more constrained) than y. Implica-
tive algebras, that we will present in Chapter 10, are a generalization of Heyting algebras (and of this
intuition).

De�nition 1.21 (La�ice). A la�ice is a partially ordered set (L,≤) such that every pair of elements
(a,b) ∈ L2 has a lower bound a ∧ b and an upper bound a ∨ b. y

�is de�nes two internal laws ∧,∨ : L2 → L, of which we can show4 that they ful�ll the following
properties:

• for all a,b ∈ L, a ∧ b = b ∧ a and a ∨ b = b ∨ a (Commutativity)
• for all a,b,c ∈ L, a ∧ (b ∧ c ) = (a ∧ b) ∧ c and a ∧ (b ∧ c ) = (a ∧ b) ∧ c (Associativity)
• for all a,b ∈ L, ∀a,b,a ∧ (a ∨ b) = a = a ∨ (a ∧ b) (Absorption )
• for all a,b ∈ L, a ≤ b ⇔ a ∨ b = b ⇔ a ∧ b = a (Consistency (w.r.t. ≤))

De�nition 1.22 (Heyting algebra). A Heyting algebra H is de�ned as a bounded la�ice (H ,≤) such
that for all a and b inH there is a greatest element x ofH such that

a ∧ x ≤ b

�is element is denoted by a → b, while the upper and lower bound of H are respectively wri�en >
and ⊥. y

It is worth noting that by de�nition we have:

a ∧ (a → b) ≤ b

that is, following our intuition, that b is “truer” than a ∧ (a → b). Indeed, if a and a → b are true, so
should be b according to the rule of modus ponens. Besides, a ∧ (a → b) is indeed more precise than
just b, in that it contains information that b has not.

Given a Heyting algebra, it su�ces to de�ne the interpretation of atomic formulas to get a model
of propositional intuitionistic logic. Assume that every atomic formula A is mapped to a truth value
|A| that is an element of H , so that every axiom is mapped to >. In the case of the theory NJ, this
requirement simply corresponds to the equation |>| = >. �en we can naturally extend the de�nition
of | · | to meet all the formulas:

|A ∧ B | , |A| ∧ |B |

|A ∨ B | , |A| ∨ |B |

|A⇒ B | , |A| → |B |

|¬A| , |A| → ⊥

and extend once again the de�nition to judgments by:

|A1, . . . ,An | , |A1 | ∧ . . . ∧ |An | |Γ ` A| , |Γ | → |A|

14�e lower bound a ∧b (resp. upper bound a ∨b) is de�ne as the biggest (resp. lowest) element being lower (resp. bigger)
than a and b: a∧b , min{c ∈ L : c ≤ a∧c ≤ b} . From this de�nition, it is an easy exercise to prove the expected properties.
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Finally, satis�ed formulas are de�ned as formulas whose truth value is >:

H � A if and only if |A| = >

It is easy to check that the rules of propositional logic are all adequate with this interpretation and thus
that this indeed de�nes a model.

Proposition 1.23 (Soundness). If H is a Heyting algebra and A a formula, then the provability of A
implies its validity inH :

(` A) ⇒ (H � A).

But more interestingly, intuitionistic logic has the property of being complete with respect to Heyt-
ing algebras. �is means that a formula that is satis�ed by any Heyting algebra is provable in natural
deduction.

Proposition 1.24 (Completeness). Let A be a formula. If for any Heyting algebraH , A is valid (H � A)
then A is provable:

(∀H .H � A) ⇒ (` A).

As a consequence, to know that a formula A is not provable in intuitionistic logic, it is enough to
�nd one Heyting algebra in which it is not valid. Besides, if there is also one model in which it is valid,
then the formula is independent: neitherA nor its negation ¬A are provable, and both theories obtained
by de�ning A or its negation are coherent, since they admit a model.

�is is for instance the case of the excluded-middle. Indeed, a truth table is a particular case of
Heyting algebra reduced to two values ⊥ and >, so that we already know a model in which A∨ (¬A) is
valid. We can easily construct a Heyting algebra in which it is not valid. Consider the la�ice {0, 1/2,1},
by de�nition of ∧,∨,⇒,¬, we get:

p ∧ q

q
p 0 1/2 1

0 0 0 0
1/2 0 1/2 1/2

1 0 1/2 1

p ∨ q

q
p 0 1/2 1

0 0 1/2 1
1/2 1/2 1/2 1
1 1 1 1

p → q

q
p 0 1/2 1

0 1 1 1
1/2 0 1 1
1 0 1/2 1

p ¬p

0 1
1/2 0
1 0

�is de�nes a Heyting algebraH1/2, where we can observe that 1/2∨ (¬1/2) = 1/2∨ (1/2→ 0) = 1/2∨0 = 1/2,
which invalidates the excluded-middle. So that for any formula A mapped to 1/2, the excluded-middle
is not satis�ed:

H1/2 2 A ∨ (¬A).

�is concludes the proof of the independence of the excluded-middle from intuitionistic logic.
Last but not least, Heyting algebras also provide a model for �rst-order (intuitionistic) logic, pro-

vided that they are complete as a la�ice.

De�nition 1.25 (Complete la�ice). A la�ice L is said complete when every subset A of L admits
a supremum, wri�en ∧

A, and an in�mum, wri�en ∨
A. A Heyting algebra H is complete if it is

complete as a la�ice. y

Given a complete Heyting algebra H , it is possible to construct a model for �rst-order logic. �e
interpretation of predicates and quanti�ers is de�ned as follows:

• any k-ary predicate P (x1, . . . ,xk ) is interpreted as a k-ary function Ṗ : H k → H , so that the
formulas with parameters P (m1, . . . ,mk ) is interpreted by:

|P (m1, . . . ,mk ) | = Ṗ (m1, . . . ,mk )
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• the universal quanti�er ∀ is interpreted as the in�mum over all possible instantiation of its vari-
able by an element ofH :

|∀x .A(x ) | =
∧
m∈H

|A(m) |

• the existential quanti�er ∃ is interpreted as the supremum over all possible instantiation of its
variable by an element ofH :

|∃x .A(x ) | =
∨
m∈H

|A(m) |

Observe that once again, this de�nition matches our intuition: ∀x .A(x ) is interpreted as an ele-
ment that is lower (and contains indeed more information) than every possible A(m); when ∃x .A(x ) is
interpreted as an element higher (and contains indeed less information) than every possible A(m).

1.2.3 Kripke forcing

Kripke models, introduced by Saul Kripke [89, 90], give another semantics for intuitionistic logic. �ey
are quite di�erent of Heyting algebras in that they are not based on a la�ice and, most importantly,
because the relation of satis�ability is de�ned in a very di�erent way. Besides, we will use an intuition
based on Kripke forcing in Chapter 6 (to de�ne the environment-passing style translation of a classical
call-by-need calculus), which also motivates their presentation in this section.

Intuitively, a Kripke model is a universe containing di�erent worlds. Every world contains a speci�c
information, and this information can only be re�ned in the future of this world. Each world is thus
connected to the possible worlds accessible from it, which all contain at least the same information.
We shall present another metaphor due to Van Dalen [158] a�er giving the formal de�nition of Kripke
models.

De�nition 1.26 (Kripke model). A Kripke model is a quadrupleM = (W ,≤,D,V ) where:

• W is a set of possible worlds,

• ≤ is a pre-order and denotes the relation of accessibility between worlds,

• D is a function that maps every world w to the set D (w ) of terms de�ned in it,

• V is a function that maps ak-ary predicate P (x1, ...,xk ) and a worldw to the set of tuple (t1, ...,tk ) ∈
D (w )k such that P (t1, ...,tk ) is true in w .

�e setW is supposed to be given with a distinguished world w0 ∈ W such that every other world
are accessible from it:

∀w ′ ∈ W ,w0 ≤ w ′

Furthermore, D and V are required to be monotonic in the sense that if an element is de�ned (resp. an
atomic formula holds) in a given world w , then it has to be de�ned in every world w ′ accessible from
w . Formally, for all w ,w ′ ∈W and any predicate P :

w ≤ w ′ ⇒ D (w ) ⊆ D (w ′) w ≤ w ′ ⇒ V (P ,w ) ⊆ V (P ,w ′)
y

Given a Kripke modelM = (W ,≤,D,V ), we de�ne a relation w  A that denotes the validity of
the formula A in the world w . We say that the world w forces A and we call  the forcing relation. �is
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w0

w1A

w0

w0w1 w2A B

w0

w1A(0) 0,1

0

M 2 A ∨ ¬A M 2 ¬(A ∧ B) ⇒ (¬A ∨ ¬B) M 2 (¬∀xA(x )) ⇒ ∃x .¬A(x )

(a) Excluded-middle (b) De Morgan’s law (c) (¬∀x .A) , (∃x .¬A)

Figure 1.2: Examples of Kripke counter-models

relation is de�ned by induction on the structure of formulas:

w  P (t1, ...tk ) , (t1, ...,tk ) ∈ V (P ,w )

w  A ∧ B , (w  A) ∧ (w  B)

w  A ∨ B , (w  A) ∨ (w  B)

w  A⇒ B , ∀w ′ ≥ w .w ′  A⇒ w ′  B

w  ¬A , ∀w ′ ≥ w .w ′ 1 A

w  ∀x .A(x ) , ∀w ′ ≥ w .∀d ∈ D (w ′),w ′  A(d ).

w  ∃x .A(x ) , ∃d ∈ D (w ),w  A(d )

w  Γ ` A , (∀C ∈ Γ,w  C ) ⇒ w  A

Finally, we say that a modelM satis�es a formula A (resp. a judgment Γ ` A) and writeM � A if and
only if w0  A.

Remark 1.27. Van Dalen describes Kripke models using a di�erent intuition. Rather than poorly
reformulating his point of view, we quote his metaphor as such (see [158, pp.12-13]):

�e basic idea is to mimic the mental activity of Brouwer’s individual, who creates all of math-
ematics by himself. �is idealized mathematician, also called creating subject by Brouwer, is
involved in the construction of mathematical objects, and in the construction of proofs of state-
ments. �is process takes place in time. So at each moment he may create new elements, and
at the same time he observes the basic facts that hold for his universe so far. In passing from
one moment in time to the next, he is free how to continue his activity, so the picture of his
possible activity looks like a partially ordered set (even like a tree). At each moment there is a
number of possible next stages. �ese stages have become known as possible worlds. Observe
that the ‘truth’ at a node w essentially depends on the future. �is is an important feature
in intuitionism (and in constructive mathematics, in general). �e dynamic character of the
universe demands that the future is taken into account. �is is particularly clear for ∀. If we
claim that “all dogs are friendly”, then one unfriendly dog in the future may destroy the claim.

y

�is semantics is also sound and complete with respect to intuitionistic logic, and allows to de�ne
very simple models that do not satisfy classical principles. We give as examples in Figure 1.2 counter-
models for the excluded-middle, the De Morgan’s law and the equivalence between ¬∀x .A and ∃x .¬A.
Once again, thanks to the completeness of Kripke models, this is enough to prove that these principles
(which all hold in the two-points Heyting algebra) are independent from intuitionistic logic.

1.2.4 �e standard model of arithmetic

Lastly, we shall introduce brie�y the standard model of arithmetic. �is model is de�ned as the L -
structure (where L refers to the language of arithmetic) whose domain is the set� of natural numbers
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and in which each symbol of L is interpreted canonically (the symbol ’0’ is interpreted by 0, the symbol
’s’ by the function n 7→ n + 1, and so on). Abusing the notation, this L -structure build on the set �
is itself wri�en �. Formally, to each closed term t of the language L is associated a natural number
Val(t ), called the value of t . �is value is de�ned inductively on the structure of t by:

Val(0) , 0
Val(s (t )) , Val(t ) + 1

Val(t + u) , Val(t ) + Val(u)
Val(t × u) , Val(t ) Val(u)

and satis�es that for all n ∈ �, Val(n) = n, where n = sn (0). �e satis�ability relation� � A is de�ned
again by induction on the structure of A by:

� � t = u , Val (t ) = Val (u)
� 2 ⊥
� � A⇒ B , � 2 A ∨� � B

� � A ∧ B , � � A ∧� � B

� � A ∨ B , � � A ∨� � B

� � ∀x .A , for all n ∈ �, � � A[n/x]

It is easy to show that this indeed de�nes a model of Peano arithmetic, and in particular that it entails
its consistency. Yet, it should be observed that this de�nition is in�nitary, since the interpretation of
∀x .A requires to know the interpretation of A[n/x] for all n ∈ �. �is implies that the meta-theory
in which we reason needs to account for mechanisms allowing to construct in�nitary objects and to
reason on them. For instance, this is not possible within Peano arithmetic, where all the objects are
�nite natural numbers. Hence Peano arithmetic a priori cannot prove its own consistency, at least by
this way. Gödel actually closed the problem with his second incompleteness theorem, which states that
a consistent theory T containing (PA) cannot prove its own consistency unless it is inconsistent.
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