
10- Implicative algebras

In this chapter, we present Alexandre Miquel’s implicative algebras1, which aim at providing an alge-
braic framework for classical realizability. We �rst introduce the notion of implicative structures on
which implicative algebras rely. �en, we will show that most of the structures we introduced in Chap-
ter 9 (Complete Heyting/Boolean algebras, AKSs, OCAs) are particular cases of implicative structures.
Next, we show how to embed both the λc -calculus in a manner which is adequate with its second-order
type system. Finally, we introduce the notion of separators and implicative algebras, and show how
they induce realizability triposes.

Most of the results in this chapter are supported by a Coq development• [122]. All along the chapter,
we use the bullet to denote the statements that are formalized.

10.1 Implicative structures

10.1.1 De�nition

Intuitively, implicative structures are tailored to represent both the formulas of second-order logic and
realizers arising from Krivine’s λc -calculus. We shall see in the sequel how they indeed allow us to
de�ne λ-terms, but let us introduce them by focusing on their logical facet. We are interested in formulas
of second-order logic, that is to say of system F , which are de�ned by a simple grammar:

A,B ::= X | A⇒ B | ∀X .A

Implicative structures are therefore de�ned as meet-complete la�ices (for the universal quanti�cation)
with an internal binary operation satisfying the properties of the implication:

De�nition• 10.1. An implicative structure is a complete meet-semila�ice (A,4) equipped with a bi-
nary operation (a,b) 7→ (a → b), called the implication of A , that ful�lls the following axioms:

1. Implication is anti-monotonic with respect to its �rst operand and monotonic with respect to its
second operand, in the sense that for all a,a0,b,b0 ∈ A:

(Variance) if a0 4 a and b 4 b0 then (a → b) 4 (a0 → b0)

2. Arbitrary meets distribute over the second operand of implication, in the sense that for all a ∈ A
and for all subsets B ⊆ A :

(Distributivity)
k

b ∈B

(a → b) = a →
k

b ∈B

b

y
1We insist on the fact that all the results presented in this chapters are his. Most of them are given in [121]. Independently,

structures that are very similar to implicative structures can be found in Frédéric Ruyer’s Ph.D. thesis [147] under the name
of applicative la�ices.
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CHAPTER 10. IMPLICATIVE ALGEBRAS

Remark 10.2. 1. �e distributivity axiom of implicative structures should not be confused with
the property of distributivity for la�ices (see the de�nition of Boolean algebras). In general, the
underlying la�ice of an implicative structure does not have to be distributive.

2.• In the particular case where B = ∅, the axiom of distributivity states that a → > = > for all
a ∈ A. y

10.1.2 Examples of implicative structures

10.1.2.1 Complete Heyting algebras

�e �rst example of implicative structures is given by complete Heyting algebras. Indeed, the axioms
of implicative structures are intuitionistic tautologies veri�ed by any complete Heyting algebra:

Proposition 10.3. If (H ,4,→) is a complete Heyting algebra, then for all a,a′,b,b ′,c ∈ H and for all
subsets B ⊆ H , the following holds:

1.• if a 4 a′, then a′ → b 4 a → b;

2.• if b 4 b ′, then a → b 4 a → b ′;

3.• a f c 4 b ⇔ a 4 c → b

4.• a →
c

b ∈B b =
c

b ∈B (a → b).

Proof. Observe �rst that sinceH is complete, by de�nition we have a → b =
b
{x ∈ H : a′ ∧ x 4 b}.

1. Let a,a′,b ∈ H be �xed. Using this observation above for a′ → b, it su�ces to show that a → b
is an upper bound of the set {x ∈ H : a′ f x 4 b}. Let then x ∈ H be such that a′ f x 4 b. To
show that x 4 a → b, it su�ces to show that a f x 4 b. �is follows from the transitivity of the
order: a f x 4 a′ f x 4 b.

2. Similar to 1.

3. Let a,b,c ∈ H be �xed. �e le�-to-right implication is trivial from the observation above. From
right to le�, we show that a f c 4 c f (c → b) 4 b. �e �rst inequality follows from the
monotonicity of f, the second one follows from the de�nition of c → b.

4. Let a ∈ H and B ⊆ H be �xed. By de�nition, this amounts to showing that:
j
{x ∈ H : a f x 4

k

b ∈B

b} =
k

b ∈B

j
{x ∈ H : a f x 4 b}

which we show by anti-symmetry. To show that the term on the le� hand-side term is inferior
to the one on the right-hand side, it su�ces to show that

b
{x ∈ H : a f x 4

c
b ∈B b} 4 a → b

for any b ∈ B. Let thus x ∈ H be such that a
c
x 4

c
b ∈B b, we need to show that x 4 a → b.

�is follows from the third item and the inequality afx 4
c

b ∈B b 4 b. �e converse inequality
is proved similarly.

�

We deduce that every complete Heyting algebra induces an implicative structure with the same
arrow:

Proposition• 10.4. Every complete Heyting algebra is an implicative structure.

�e converse is obviously false, since the implication of an implicative structureA is in general not
determined by the la�ice structure of A.
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10.1. IMPLICATIVE STRUCTURES

10.1.2.2 Complete Boolean algebras

Since any (complete) Boolean algebra is in particular a (complete) Heyting algebra, a fortiori any com-
plete Boolean algebra induces an implicative structure:

Proposition• 10.5. If B is a (complete) Boolean algebra, then B is a (complete) Heyting algebra where
the implication is de�ned for all a,b ∈ B by a → b , (¬a) g b.

Proof. Let a,b ∈ B be �xed. We show that (¬a) g b is the supremum of {x ∈ B : a f x 4 b}, i.e.
that it belongs to this set and that it is an upper bound of the same. �e �rst part is trivial, since the
distributivity implies that a f (¬a g b) = (a f ¬a) g (a f b) = a f b 4 b. For the second part of the
statement, let c ∈ B be such that afc 4 b. �en we have: c = (cf¬a)g (cfa) 4 (cf¬a)gb 4 ¬agb,
which concludes the proof. �

Proposition• 10.6. If B is a (complete) Boolean algebra, then B induces an implicative structure where
the implication is de�ned for all a,b ∈ B by a → b , ¬a g b.

10.1.2.3 Dummy structures

Given a complete la�ice L, there are at least two possible de�nitions of dummy implicative structures:

Proposition 10.7. If L is a complete la�ice, the following de�nitions give rise to implicative structures:

1.• a → b , > for all a,b ∈ L 2.• a → b , b for all a,b ∈ L

Proof. Trivial in both cases. �

Both de�nitions induce implicative structures which are meaningless from the point of view of
logic. Nonetheless, they will provide us with useful counter-examples.

10.1.2.4 Ordered combinatory algebras

Any ordered combinatory algebra (see De�nition 9.25) also induces an implicative structure, whose
de�nition is related with the de�nition of the realizability tripos. Indeed, remember that given an OCA
A and a set X , the ordering on predicates of P (A)X is de�ned by:

φ `X ψ , ∃r ∈ A.∀x ∈ X .∀a ∈ A.(a ∈ φ (x ) ⇒ ra ∈ ψ (x ))

where r is broadly a realizer of ∀x ∈ X .φ (x ) ⇒ ψ (x ). Similarly, we can de�ne an implication on the
complete la�ice P (A) which give rise to an implicative structure:

Proposition 10.8. IfA is an ordered combinatory algebra, then the complete la�ice P (A) equipped with
the implication:

A→ B , {r ∈ A : ∀a ∈ A.ra ∈ B} (∀A,B ⊆ A)

is an implicative structure

Proof. Both conditions (variance and distributivity) are trivial from the de�nition. �

In particular, the powerset of any IOCA or KOCA induces an implicative structure with the same
construction.
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CHAPTER 10. IMPLICATIVE ALGEBRAS

10.1.2.5 Implicative structure of classical realizability

Our �nal example of implicative structure—which is the main motivation of this work—is given by
classical realizability. As we saw in Chapter 9, the construction of classical realizability models, whether
it be from Krivine’s realizability algebras [98, 99, 100] in a set-theoretic like fashion or in Streicher’s
AKS [151], takes place in a structure of the form (Λ,Π, ·,⊥⊥) where:

• Λ is the set of realizers;

• Π is the set of stacks (or opponents);

• (·) : Λ × Π → Π is a binary operation for pushing a realizer onto a stack;

• ⊥⊥ ⊆ Λ × Π is the pole.

Given such a quadruple, we can de�ne:

• A , P (Π);

• a 4 b , a ⊇ b (for all a,b ∈ A )

• a → b , a⊥⊥ · b = {t · π : t ∈ a⊥⊥,π ∈ b} (for all a,b ∈ A )

where as usual a⊥⊥ is {t ∈ Λ : ∀π ∈ a, (t ,π ) ∈ ⊥⊥} ∈ P (Λ), the orthogonal set of a ∈ P (Π) with respect
to the pole ⊥⊥. Here again, it is easy to verify that this de�nes an implicative structure.

Proposition 10.9. �e triple (A,4,→) is an implicative structure.

Proof. �e proof is again trivial. Variance conditions correspond to the usual monotonicity of truth and
falsity values, while the distributivity follows directly by unfolding the de�nitions. �

Remark 10.10. 1. Actually, in this particular case the implication satis�es two additional laws:

(
k

a∈A

a) → b =
j

a∈A

(a → b) and a → (
j

b ∈B

b) =
j

b ∈B

(a → b)

for alla,b ∈ A,A,B ⊆ A. �ese extra properties also follow directly from the de�nition, however,
they are almost never used in classical realizability.

2. Unlike Streicher’s de�nition of the OCA used for the construction of Krivine’s tripos (see Propo-
sition 9.29), whereA is de�ned as P⊥⊥ (Π), we considerA to be all the sets of P (Π). In this sense,
we are in line with Krivine’s usual de�nitions, where falsity values are not necessarily closed by
double orthogonal. We will see that this presents an advantage over Streicher’s OCAs (and thus
Ferrer et al. IOCAs and KOCAs), namely that we will have the full adjunction:

a ≤ b → c ⇔ ab ≤ c (∀a,b,c ∈ A)

On the contrary, in IOCAs and KOCAs an adjunctor e is required for the right-to-le� implication,
which becomes:

ab ≤ c ⇒ ea ≤ b → c (∀a,b,c ∈ A)

y
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10.2. INTERPRETING THE λ-CALCULUS

10.2 Interpreting the λ-calculus

10.2.1 Interpretation of λ-terms

We motivated the de�nition of implicative structures with the aim of obtaining a common framework
for the interpretation both of types and programs. We shall now see how λ-terms can indeed be de�ned
in implicative structures.

From now on, let A = (A,4,→) denotes an arbitrary implicative structure.

De�nition• 10.11 (Application). Given two elements a,b ∈ A , we call the application of a to b and
write ab the element of A that is de�ned by

ab ,
k
{c ∈ A : a 4 (b → c )}.

As usual, we write ab1b2 · · ·bn for ((ab1) b2) · · ·bn (for all a,b1,b2, . . . ,bn ∈ A). y

If we think of the order relation a 4 b as “a is more precise than b”, the above de�nition actually
de�nes the application ab as the meet of all the elements c such that b → c is an approximation of a.
�is de�nition ful�lls the usual properties of the λ-calculus:

Proposition 10.12 (Properties of application). For all a,a′,b,b ′,c ∈ A :

1.• If a 4 a′ and b 4 b ′ , then ab 4 a′b ′ (Monotonicity)

2.• (a → b)a 4 b (β-reduction)

3.• a 4 (b → ab) (η-expansion)

4.• ab = min{c ∈ A : a 4 (b → c )} (Minimum)

5.• ab 4 c ⇔ a 4 (b → c ) (Adjunction)

Proof. For all a,b ∈ A, let us write Appa,b = {c ∈ A : a 4 (b → c )}, so that ab =
c
Appa,b .

1. We prove the monotonicity w.r.t. to the le� operand a, the monotonicity w.r.t. to the right one is
very similar. Let a,a′,b be elements of A, and assume that a 4 a′. We want to prove:

k
Appa,b 4

k
Appa′,b

It is thus enough to show that Appa,b ⊆ Appa′,b , which is trivial.
2. For any a,b ∈ A, we have by de�nition that b ∈ Appa→b,a , thus

c
Appa→b,a 4 b.

3. Let a,b be elements of A. By distributivity, we have b →
c
Appa,b =

c
{b → c : c ∈ Appa,b }. To

prove the desired inequality, it is enough to show that for any c ∈ Appa,b , we have a 4 b → c ,
which is a tautology.

4. Follows from 3.
5. From le� to right, we prove that a 4 (b → ab) 4 (b → c ) using 3 and the covariance of the

implication. From right to le�, it is clear that if c ∈ Appa,b , then ab =
c
Appa,b 4 c .

�

Remark• 10.13 (Galois connection). �e adjunction ab 4 c ⇔ a 4 (b → c ) expresses the existence
of a family of Galois connections fb a дb indexed by all b ∈ A, where the le� and right adjoints
fb ,дb : A → A are de�ned by:

fb : a 7→ ab and дb : c 7→ (b → c ) (for all a,b,c ∈ A)
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Recall that in a Galois connection, the le� adjoint is fully determined by the right one (and vice-versa,
see Proposition 9.20). In the particular case of a complete Heyting algebra (H ,4,→), this implies that
the application is characterized by ab = a f b for all a,b ∈ H . Indeed, in any Heyting algebra, the
adjunction a f b 4 c ⇔ a 4 (b → c ) holds for all a,b,c ∈ H (Proposition 10.3), by uniqueness of the
le� adjoint, ab and a f b are thus equal. y

De�nition• 10.14 (Abstraction). Given a function f : A → A, we call abstraction of f and write λf
the element of A de�ned by:

λf ,
k

a∈A

(a → f (a))

y

Once again, if we think of the order relation a 4 b as “a is more precise than b”, the meet of the
elements of a set S is an element containing the union of all the informations given by the elements
of S . With this in mind, the above de�nition sets λf as the union of all the step functions a → f (a).
�is de�nition, together with the de�nition of the application, ful�lls again properties expected from
the λ-calculus:

Proposition 10.15 (Properties of the abstraction). �e following holds for any f ,д : A → A:

1.• If for all a ∈ A, f (a) 4 д(a), then λf 4 λд. (Monotonicity)

2.• For all a ∈ A, (λf )a 4 f (a). (β-reduction)

3.• For all a ∈ A, a 4 λ(x 7→ ax ). (η-expansion)

Proof. Let a ∈ A be �xed.

1. By hypothesis, we have for all b ∈ A that
c

a∈A (a → f (a)) 4 b → f (b) 4 b → д(b). We can
thus conclude that λf =

c
a∈A (a → f (a)) 4

c
a∈A (a → д(a)) = λд.

2. By de�nition of the application, in order to show that (λf )a 4 f (a) it is enough to prove the
inequality λf 4 a → f (a), which is obvious.

3. By de�nition of the abstraction, to show that a 4 λ(x 7→ ax ) it is enough to show that for any
x ∈ A we have a 4 x → ax . By distributivity, we have:

x → ax = x →
k
{b ∈ A : a 4 (x → b)} =

k

x,b ∈A

{x → b : a 4 (x → b)}

We conclude by proving that a is a lower bound of the set on the right hand-side, which is a
tautology.

�

We call a λ-term with parameters (in A) any term de�ned from the following grammar:

t ,u ::= x | a | λx .t | tu

where x is a variable and a is an element of A. We can thus associate to each closed λ-term with
parameters t an element tA of A, de�ned by induction on the size of t as follows:

aA , a

(tu)A , (tA )uA

(λx .t )A , λ(a 7→ (t[a/x])A )

(if a ∈ A)

�anks to the properties of the application and of the abstraction in implicative structures that we
proved, we can check that the embedding of λ-term is sound with respect to the β-reduction and the
η-expansion:
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10.2. INTERPRETING THE λ-CALCULUS

(x : a) ∈ Γ
Γ ` x : a (Ax)

Γ ` a : a (A)
FV (t ) ⊆ dom(Γ)

Γ ` t : > (>)

Γ ` t : a a 4 a′

Γ ` t : a′
(4)

Γ ` t : a Γ′ 4 Γ
Γ′ ` t : a

(w )
Γ,x : a ` t : b

Γ ` λx .t : a → b
(λ)

Γ ` t : a → b Γ ` u : a
Γ ` tu : b

(@)
Γ ` t : ai for all i ∈ I

Γ ` t :
c

i ∈I ai
(
c
)

Figure 10.1: Semantic typing rules

Lemma 10.16. �e substitution of variable by parameter is monotonic, that is to say: for each λ-term t
with free variables x1, . . . ,xn , and for all parameters a1,b1, . . . ,an ,bn , if ai 4 b1 for all i ≤ n, then:

(t[a1/x1, . . . ,an/xn])A 4 (t[b1/x1, . . . ,bn/xn])A

Proof. By induction on the structure of t , using Propositions 10.12 and 10.15. �

Proposition 10.17. For all closed λ-terms t and u with parameters in A, the following holds:

1. If t →β u, then tA 4 uA .

2. If t →η u, then uA 4 tA .

Proof. Straightforward from Proposition 10.15 and Lemma 10.16. �

Again, if we think of the order relation a 4 b as “a is more precise than b”, it makes sense that the
β-reduction t →β u is re�ected in the ordering tA 4 uA : the result of a computation contains indeed
less information than the computation itself2.

10.2.2 Adequacy

We now dispose of a structure in which we can interpret types and λ-terms. We saw that the inter-
pretation of terms was intuitively sound with respect to the β-reduction. We shall now prove that the
typing rules of System F are adequate with respect to the interpretation of terms, that is to say that if
t is a closed λ-terms of type T , then tA 4 T A . �e last statement can again be understood as the fact
that a term (i.e. a computation) carries more information than its type, just like a realizer of a formula
is more informative about the formula than the formula itself.

10.2.2.1 Semantic typing rules

To this aim, we start by de�ning a semantic type system, that is a set of inference rules where terms
are typed with elements of A. Typing judgments are thus of the shape Γ ` t : a where:

• t a λ-term with parameters;

• a is an element of the implicative structure A;

• Γ is a �nite list of the shape Γ ≡ x1 : a1, . . . ,xn : an , where the xi are variables and the ai are
elements of A.

2For instance, 0 contains less information than 15 − (3 × 5) or than 1� (
√
(2)).
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Since elements ofA are also their own realizers, we can also identify typing contexts with substitutions
whose values are in A. �e ordering relation naturally extends to typing contexts: we write Γ′ 4 Γ
when for every binding (x : a) ∈ Γ, there exists a binding (x : a′) ∈ Γ′ such that a′ 4 a. In other words,
the relation Γ′ 4 Γ means that dom(Γ) ⊆ dom(Γ′) and that Γ′ restricted to dom(Γ) is lower than Γ
component-wise.

Using the notation t[Γ] to denote the term t under the substitution Γ, we can �nally de�ne the
sequents Γ ` t : a as shorthands for:

Γ ` t : a , FV (t ) ⊆ dom(Γ) ∧ (t[Γ])A 4 a

We can now prove that:

Proposition 10.18 (Semantic typing). �e typing rules in Figure 10.1 are sound, i.e. for each inference
rule, we can deduce the conclusion from its hypotheses.

Proof. Simple proof by case analysis.

• Cases (Ax),(A),(>). Obvious from the de�nition.

• Case (4). Direct by transitivity of the order: if (t[Γ])A 4 a and a 4 a′ then (t[Γ])A 4 a′.

• Case (w ). Follows from the de�nition of Γ′ 4 Γ and the monotonicity of the substitution( Lemma 10.16).

• Case (λ). Assume that t is a term, that a,b are elements of A and that Γ is a context such that
FV (t ) ⊆ dom(Γ) ∪ {a} and (t[Γ,x : a])A 4 b. �en we have:

(λx .t[Γ])A =
k

c ∈A

(c → (t[Γ,x : c])A ) 4 a → (t[Γ,x : a])A 4 a → b

• Case (@). Assume that t ,u are terms, that a,b are elements ofA, and that Γ is a context such that:

FV (t ),FV (u) ⊆ dom(Γ) (t[Γ])A 4 a → b (u[Γ])A 4 u

�en by de�nition and adjunction, we have:

(tu[Γ])A = (t[Γ])A (u[Γ])A and (t[Γ])A (u[Γ])A 4 b ⇔ (t[Γ])A 4 (u[Γ])A → b

We conclude by anti-monotonicity of the implication:

(t[Γ])A 4 a → b 4 (u[Γ])A → b

• Case (
c
). �is case is obvious since the meet is the greatest lower bound. �

�is �nally formalizes the intuition that t 4 a could be read as “t realizes a”. Indeed, if t is a
closed λ-term, and A a formula of system F , the adequacy lemma (Proposition 3.14) of Krivine classical
realizability gives us that t 
 A, while the previous corollary somewhat gives us tA 4 AA . Nonetheless,
to justify formally such a statement, we should de�ne an embedding of formulas and to prove the
adequacy of the translations of terms and types with respect to the typing rules of System F.
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10.2. INTERPRETING THE λ-CALCULUS

(x : A) ∈ Γ
Γ ` x : A (Ax)

Γ,x : A ` t : B
Γ ` λx . t : A→ B

(→I )
Γ ` t : A→ B Γ ` t : A

Γ ` tu : B (→E )

Γ ` t : A X < FV (Γ)

Γ ` t : ∀X .A (∀I )
Γ ` t : ∀X .A

Γ ` t : A{X := B}
(∀E )

Γ ` cc : ((A→ B) → A) → A
(cc )

Figure 10.2: Type system• for the λc -calculus

10.2.2.2 Adequacy of the interpretation

For the formalization of the former result, we chose a slightly di�erent approach that we shall now
sketch. First, we extend the usual formulas of System F by de�ning second-order formulas with param-
eters as:

A,B ::= a | X | A⇒ B | ∀X .A (a ∈ A)

We can then embed closed formulas with parameters into the implicative structureA. �e embedding
is trivially de�ned by:

aA , a

(A⇒ B)A , AA → BA

(∀X .A)A ,
c

a∈A (A{X := a})A

(if a ∈ A)

We de�ne a type system for the λc -calculus with parameters3 (that is λ-terms with parameter plus an
instruction cc). Typing contexts• are de�ned as usual by �nite lists of hypotheses of the shape (x : A)
where x is a variable and A a formula with parameters. �e inference rules, given in Figure 10.2, are
the same as in System F (with the extended syntaxes of terms and formulas with parameters), plus the
additional rules for cc .

In order to prove the adequacy of the type system with respect to the embedding, we de�ne substitutions•,
which we write σ , as functions mapping variables (of terms and types) to element of A:

σ ::= ε | σ [x 7→ a] | σ [X 7→ a] (a ∈ A, x ,X variables)

In the spirit of the proof of adequacy in classical realizability, we say that a substitution σ realizes• a
typing context Γ, which we write σ 
 Γ, if for all bindings (x : A) ∈ Γ we have σ (x ) 4 (A[σ ])A .

�eorem• 10.19. �e typing rules of Figure 10.2 are adequate with respect to the interpretation of terms
and formulas: if t is a λc -term with parameters, A a formula with parameters and Γ a typing context such
that Γ ` t : A then for all substitutions σ 
 Γ, we have (t[σ ])A 4 (A[σ ])A .

Proof. �e proof resembles the usual proof of adequacy in classical realizability, and most of the cases
are very similar to cases of Proposition 10.18. �e additional case for the instruction cc is trivial since
we de�ne ccA ,

c
a,b ∈A (((a → b) → a) → a) = (∀XY .(((X ⇒ Y ) ⇒ X ) ⇒ X ))A (we shall come

back later to this de�nition). �

In the particular case where t is a closed term typed by A in the empty context, we obtain that
tA 4 AA . �is result will be fundamental in the next section.

Corollary• 10.20. For all λ-terms t , if ` t : A, then tA 4 AA .

3In practice, we use Charguéraud’s locally nameless representation [23] for terms and formulas. Without giving too much
details, we actually de�ne pre-terms• and pre-types• which allow both for names (for free variables) and De Bruijn indices
(for bounded variables). Terms• and types• are then de�ned as pre-terms and pre-types without free De Bruijn indices. Such
a representation is particularly convenient to prevent from name clashes to arise.
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CHAPTER 10. IMPLICATIVE ALGEBRAS

10.2.3 Combinators

�e previous results indicates that any closed λ-terms is, through the interpretation, lower than the
interpretation of its principal type. We give here some examples of closed λ-terms which are in fact
equal to their principal types through the interpretation in A. Let us now consider the following
combinators:

i , λx .x k , λxy.x s , λxyz.xz (yz) w , λxy.xyy

It is well-known that these combinators can be given the following polymorphic types:

i : ∀X .X ⇒ X
k : ∀XY .X ⇒ Y ⇒ X
s : ∀XYZ .(X ⇒ Y ⇒ Z ) ⇒ (X ⇒ Y ) ⇒ X ⇒ Z
w : ∀XY .(X ⇒ X ⇒ Y ) ⇒ X ⇒ Y

�rough the interpretation these combinators are identi�ed with their types:

Proposition 10.21. �e following equalities hold in any implicative structure A:

1.• i
A =

c
a∈A (a → a) 3.• s

A =
c

a,b,c ∈A ((a → b → c ) → (a → b) → a → c )
2.• k

A =
c

a,b ∈A (a ⇒ b ⇒ a) 4.• w
A =

c
a,b,c ∈A ((a → a → b) → a → b)

Proof. �e inequality from le� to right are consequences of the adequacy.

1. By de�nition, iA = (λx .x )A =
c

a∈A (a → a)

2. By de�nition, kA = (λxy.x )A =
c

a∈A (a → (λy.a)A ) =
c

a∈A (a → (
c

b ∈A (b → a)). We obtain
the desired equality by distributivity.

3. By de�nition, sA = (λxyz.xy (zy))A =
c

x,y,z∈A (x → y → z → xz (yz)). We thus need to show
that for any x ,y,z ∈ A, we have:

k

a,b,c ∈A

((a → b → c ) → (a → b) → a → c ) 4 x → y → z → xz (yz)

We use the transitivity to show that (the other inequality is trivial):
k

c ∈A

((z → yz → c ) → (z → yz) → z → c ) 4 x → y → z → xz (yz) =
k

c ∈A: xz4yz→c

(x → y → z → c )

where we obtain the equality by unfolding the de�nition of the application and by using the
distributivity. We conclude by showing that for any c ∈ A such that xz 4 yz → c , we have:

(z → yz → c ) → (z → yz) → z → c 4 x → y → z → c

�is follows from the monotony of the arrow, using the adjunction of the implication. For in-
stance, we have:

x 4 (z → yz → c ) ⇔ xz 4 yz → c

4. �e case for w is similar.
�

Finally, in the spirit of the previous equality, we de�ne the interpretation of cc by the interpretation
of its principal type, that is:

ccA , cc =
k

a,b

(((a → b) → a) → a)
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10.2. INTERPRETING THE λ-CALCULUS

Remark 10.22. It is not always the case that a term is equal to its principal type. Consider for instance
a dummy implicative structureA where a → b = > for all elements a,b ∈ A. Suppose in addition that
A has at least two distinct elements, so that ⊥ , >. �en the following holds:

1.• For any a,b ∈ A, we have ab =
c
{c : a 4 b → c} =

c
A = ⊥.

2.• For any f : A → A, we have λf =
c

a∈A (a → f (a)) =
c

a∈A > = >.
3.• ii : ∀X .X → X , yet (ii)A = ⊥ , > = (∀X .X → X )A .
4.• iA = > , ⊥ = (skk)A .

y

10.2.4 �e problem of consistency

�e last remark shows us that not all implicative structures are suitable for interpreting intuitionistic
or classical logic. We thus need to introduce a criterion of consistency:

De�nition 10.23 (Consistency). We say that an implicative structure is:

• intuitionistically consistent if tA , ⊥ for all closed λ-terms;
• classically consistent if tA , ⊥ for all closed λc -terms.

y

We verify that non trivial complete Heyting algebras are consistent as implicative algebras. To this
aim, we �rst show that:

Proposition 10.24. In any complete Heyting algebra A, all closed pure λ-terms t arei nterpreted as the
maximal element: tA = >.

Proof. Remember from Remark 10.13 that the application in the associated implicative structure is char-
acterized by ab = a f b for all a,b ∈ H . We prove a more general proposition, namely that for any
closed λ-term t with parameters a1, . . . ,an ∈ A, we have:

tA < a1 f . . . f an

In the particular case where t is a pure λ-term (i.e. without any parameter), it indeed implies that
tA = >. We proceed by induction on t . �e cases for the application and parameters are trivial, for the
abstraction we have:

(λx .t )A =
k

a∈A

(a → (t[a/x])A ) <
k

a∈A

(a → a f a1 f . . . f an )

We conclude by showing that for any a, we have:

a1 f . . . f an 4 a → a f a1 f . . . f an

which follows by adjunction. �

�e proposition above enforces the observation (see Example 9.32) that Heyting algebras and Boolean
algebras provide us with an interpretation of logic that is degenerated with respect to the computation.
In other words, all proofs collapse to the maximal element >. Nonetheless, this ensures that any non-
degenerated Heyting algebra induces an intuitionistically consistent implicative structure:

Proposition 10.25. Every non-degenerated Heyting algebras gives rise to an intuitionistically consistent
implicative structure.
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CHAPTER 10. IMPLICATIVE ALGEBRAS

We shall now relate the previous de�nition to the usual de�nition of consistency in classical real-
izability. Recall that any abstract Krivine structuresK = (Λ,Π,app,push,k ,k,s,cc,PL,⊥⊥) induces an
implicative structure (A,4,→) whereA = P (Π), a 4 b ⇔ a ⊇ b and a → b = a⊥⊥ · b. Remember that
a realizability model is said to be consistent when there is no proof-like term realizing ⊥. Rephrased in
terms of abstract Krivine structures, a falsity value a ∈ P (Π) is said to be realized by t ∈ PL, which we
write t 
 a, if t ∈ a⊥⊥. �e consistency can then be expressed by this simple criterion:

K is consistent if and only if {⊥}⊥⊥ ∩ PL = Π⊥⊥ ∩ PL = ∅

We thus need to check that this criterion of consistency for the AKS implies the consistency of the in-
duced implicative algebra, i.e. that if t is a closed λc -term, then tA , ⊥. By de�nition of the implicative
algebra A induced the AKS, we have that tA ∈ A = P (Π). �erefore, tA is a falsity value from the
point of view of the AKS. To ensure that it is not equal to ⊥ (i.e. Π), it is enough to �nd a realizer of tA
in the AKS. �e consistency of the AKS precisely states that ⊥ does not have any realizer.

Our strategy to �nd a realizer for tA in the AKS is to use t itself. First, we reduce the problem to the
set of terms that are identi�able with the combinatory terms of the AKS. We call a combinatory term
any term that is obtained by combination of the previous combinators. To each combinatory term t we
associate a term tΛ in Λ, whose de�nition by induction is trivial:

kΛ , k sΛ , s ccΛ , cc (tu)Λ , app(tΛ,uΛ)

Since the set PL is closed under application, for any combinatory term t , its interpretation tΛ is in PL.
�e combinatory completeness of (k,s,cc) with respect to closed λc -terms ensures us that there exists
a combinatory term t0 (viewed as a λ-term) such that t0 →β t . By Proposition 10.17, we thus have
tA0 4 tA . It is thus enough to show that tA0 , ⊥: we reduced the original problem for closed λc -terms
to combinatory terms.

It thus only remains to show that for any combinatory term t0, its interpretation tA0 is not ⊥. For
the reason detailed above, it is su�cient to prove that tA0 is realized. We prove that tA0 is in fact realized
by tΛ0 :

Lemma 10.26. For any combinatory term t , tΛ realizes tA , i.e. tΛ 
 tA

Proof. We proceed by induction on the structure of t , by combining usual results of classical realizability
and properties of the implicative structures:

• For the three combinators k,s,cc, we have that their interpretations in A are equal to their
principal types (see Proposition 10.21), which their associated combinators in the AKS realize.
For instance, kA =

c
a,b ∈A (a → b → a) and kΛ = k 
 ‖∀AB.A→ B → A‖. By de�nition of the

implicative structures, we have
c

a,b ∈A (a → b → a) = ‖∀AB.A→ B → A‖. �us kΛ 
 kA .

• If t = t1t2, we have by induction hypothesis tΛ1 
 tA1 . By η-expansion (Proposition 10.17), we get
that tA1 4 tA2 → tA1 tA2 , and thus by subtyping tΛ1 
 tA2 → tA1 tA2 . Since we have tΛ2 
 tA2 by
induction hypothesis, we can conclude that tΛ1 tΛ2 
 tA1 tA2 .

�

We can thus conclude that the consistency of the AKS induces the one (in the sense of De�ni-
tion 10.23) of the associated implicative structures:

Proposition 10.27. IfK is a consistent abstract Krivine structure, then the implicative structure it induces
is classically consistent.

Proof. Let t be any closed λc -term. We want to show that tA , ⊥ = Π. We show that tA , which
belongs to P (Π) is realized by a proof-like term �
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It is worth noting that the previous reasoning also applies to Krivine ordered combinatory algebras,
since they induce abstract Krivine structures. Besides, the criterion of consistency is de�ned in both case
with respect to the set PL (the �lter for KOCAs, recall that both are identi�ed through the passage from
KOCA to AKS). Beyond that, this set (together with the pole in the case of AKS) is the key ingredient in
the de�nition of the realizability tripos. It is already at the heart of the de�nition of Krivine’s realizabilty
models, where valid formulas are precisely the formulas realized by a proof-like term. We shall then
introduce the corresponding ingredient for implicative structures.

10.3 Implicative algebras

10.3.1 Separation

De�nition• 10.28 (Separator). Let (A,4,→) be an implicative structure. We call a separator over A
any set S ⊆ A such that for all a,b ∈ A, the following conditions hold:

1. kA ∈ S, and sA ∈ S. (Combinators)
2. If a ∈ S and a 4 b, then b ∈ S. (Upwards closure)
3. If (a → b) ∈ S and a ∈ S, then b ∈ S. (Closure under modus ponens)

A separator S is said to be classical if besides ccA ∈ S and consistent if ⊥ < S. y

Remark• 10.29 (Alternative de�nition). In presence of condition (2), condition (3) is equivalent to the
following condition:

(3’) If a ∈ S and b ∈ S then ab ∈ S (Closure under application)

�e proof uses basic properties of application:

• (3)⇒(3’): If a ∈ S and b ∈ S, since a 4 b → ab (Proposition 10.17) by upward closure we have
b → ab ∈ S, and thus ab ∈ S by modus ponens .

• (3’)⇒(3): If a ∈ S and a → b ∈ S, then (a → b)a ∈ S by closure under application. Since
(a → b)a 4 b (Proposition 10.17) by upward closure we conclude that b ∈ S.

y

Intuitively, thinking of elements of an implicative structure as truth values, a separator should be
understood as the set which distinguishes the valid formulas. Considering the elements as terms, it
should rather be viewed as the set of valid realizers. Indeed, conditions (1) and (3’) ensure that all λ-
terms are in any separator. Reading a 4 b as “the formula a is a subtype of the formula b”, condition (2)
ensures the validity of semantic subtyping. �inking of the ordering as “a is a realizer of the formula
b”, condition (2) states that if a formula is realized, then it is in the separator.

De�nition• 10.30 (Implicative algebra). We call implicative algebra any quadruple (A,4,→,S) where
(A,4,→) is an implicative structure and S is a separator over A. We say that an implicative algebra
is classical if its separator is. y

Example• 10.31 (Complete Boolean algebras). If B is a complete Boolean algebra, then B induces an
implicative structure. Besides, the interpretation of any closed λ-term is equal to > (Proposition 10.24),
and it is easy to verify that for all a,b ∈ B, (((a → b) → a) → a) = (¬(¬(¬a g b) g a) g a) = >, so
that in particular ccB = >. �erefore, the singleton {>} is a classical separator for the induced implica-
tive structure (it is obviously closed under modus ponens and upward closure). Any non-degenerated
complete Boolean algebras thus induces a classically consistent implicative algebra.

Alternatively, any �lter forB de�nes a separator: a �lter is upward closed and closed under (binary)
meets by de�nition. Since the application ab in Boolean algebras coincide with the binary meet a f b
(Remark 10.13), any �lter satis�es conditions (2) and (3’) y
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Example 10.32 (Abstract Krivine structure). Recall that any AKS (Λ,Π,app,push,k ,k ,s,cc,PL,⊥⊥)
induces an implicative structure (A,4,→) where A = P (Π), a 4 b ⇔ a ⊇ b and a → b = a⊥⊥ · b. �e
sets of realized formulas, namely S = {a ∈ A : a⊥⊥ ∩ PL , ∅}, de�nes a valid separator. �e condition
of upward-closure is obvious by subtyping and we saw in Lemma 10.26 that kA ,sA ,ccA were realized
respectively by k ,s and cc . As for the closure under modus ponens, for any a,b ∈ A, if (a → b) ∈ S
and a ∈ S, by de�nition there exist t ,u ∈ Λ such that t 
 a → b and u 
 a. �erefore, tu 
 b and thus
b ∈ S . y

10.3.2 λc-terms

�e �rst property that we shall state about classical separators is that they contain the interpretation of
all closed λc -terms. �is follows again from the combinatorial completeness of the basis (k,s,cc) for the
λc -calculus. Indeed, if S is a classical separator over an implicative structure (A,4,→), it is clear that
any combinatory term is in the separator. Again, by combinatory completeness, if t is a closed λc -term,
there exists a combinatory term t0 such that t0 →β t , and therefore tA0 4 tA (by Proposition 10.17). By
upward closure of separators, we deduce that:

Proposition• 10.33. If (A,4,→,S) is a (classical) implicative algebra and t is a closed λ-term (resp.
λc -term), then tA ∈ S.

From the previous proposition and the adequacy of second-order typing rules for the λc -calculus
(�eorem 10.19), we obtain that:

Corollary• 10.34. If (A,4,→,S) is a (classical) implicative algebra, t is a closed λ-term (resp. λc -term)
and A is a formula such that ` t : A, then AA ∈ S.

Remark 10.35. �e la�er corollary provides us with a methodology for proving that an element of a
given implicative algebra is in the separator. In the spirit of realizability, where the standard methodol-
ogy to prove that a formula is realized consists in using typed terms and adequacy as much as possible,
we can use typed terms to prove automatically that the corresponding formulas belongs to the separa-
tor. We shall use this methodology4 abundantly in the sequel. y

10.3.3 Internal logic

In order to be able to de�ne triposes from implicative algebras, we �rst need to equip them with a
structure of Heyting algebra. To this end, we begin with de�ning an entailment relation in the spirit
of �ltered OCAs. We then de�ne quanti�ers and connectives as usual in classical realizability (see
Section 3.3.1.1), and we verify that they satisfy the usual logical rules. �is will lead us to the de�nition
of the implicative tripos.

10.3.3.1 Entailment

In the rest of this section, we work within a �xed implicative algebra (A,4,→,S).

De�nition• 10.36 (Entailment). For all a,b ∈ A, we say that a entails b and write a `S b if a → b ∈ S.
We say that a and b are equivalent and write a �S b if a `S b and b `S a. y

Proposition 10.37 (Properties of `S). For any a,b,c ∈ A, the following holds:

1.• a `S a (Re�exivity)

2.• if a `S b and b `S c then a `S c (Transitivity)

4In the Coq development, this corresponds to the tactic called realizer• which we indeed use a lot.
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3.• if a 4 b then a `S b (Subtyping)

4.• if a �S b then a ∈ S if and only if b ∈ S (Closure under �S)

5.• if a `S b → c then a f b `S c (Half-adjunction property)

6.• ⊥ `S a (Ex falso quod libet)

7.• a `S > (Maximal element)

Proof. 2. We go once and for all through all the steps of the methodology described in Remark 10.35.
If a ` b and b ` c , we have by de�nition that a → b ∈ S and b → c ∈ S. We use the closure
under modus ponens and prove that (a → b) → (b → c ) → (a → c ) ∈ S. Besides, let us de�ne
t , λxyz.y (xz). It is clear that we can derive ` t : ∀abb ′.(a → b) → (b → c ) → (a → c ) in
System F, whence by �eorem 10.19 we have:

tA 4 min
a,b,c ∈A

(a → b) → (b → c ) → (a → c )

Since tA ∈ S (Proposition 10.33) and S is upward closed, we get the expected result. In the
sequel, we shall simply say that the formula is realized by λxyz.y (xz).

3. �is is realized by the identity (by subtyping).
4. Direct from the de�nition of �S and the closure under modus ponens.
5. �e formula (a → b → c ) → afb `S c is realized (using the fact that afb 4 a,b)W = λxy.xyy.

1,6,7. Direct from 3. �

Besides, the entailment relation is compatible with respect to the monotonicity of the arrow:

Proposition 10.38 (Compatibility with→). �e following hold for all a,a′,b,b ′ ∈ A:

1.• If b ` b ′ then a → b ` a → b ′ 2.• If a ` a′ then a′ → b ` a → b

Proof. 1. If b ` b ′, we have by de�nition b → b ′ ∈ S. We use the closure under modus ponens and
prove that (b → b ′) → (a → b) → (a → b ′) ∈ S. �is formula is realized by λxyz.x (yz).

2. Similarly, we prove that (a → b ′) → (a′ → b) → (a → b) ∈ S since it is realized by λxyz.y (xz).�

�erefore, the arrow behaves like Heyting’s arrow with respect to the preorder relation `S in terms
of monotonicity. Nonetheless, we only have half the adjunction with the meet. Indeed, the other
direction (if afb `S c then a `S b → c) does not make sense computationally, since the meet does not
re�ect a logical connective. �is should not come as a surprise, since we explained in Section 9.1.1 that
in realizability, the conjunction was interpreted by the product type rather than the meet.

10.3.3.2 Negation

Recall that the negation is de�ned by ¬a , a → ⊥. If additionally the separator is classical, we can
prove that for any a ∈ A, we have:

Proposition 10.39 (Double negation). If S is a classical separator, the following holds for any a ∈ A:

1.• a `S ¬¬a 2.• ¬¬a `S a

Proof. 1. Trivial, since it is realized by λxk .kx .
2. Follows from the inequality ((a → ⊥) → a) → a 4 ((a → ⊥) → ⊥) → a, whose le� member is

realized by cc.
�
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10.3.3.3 �anti�ers

Following the usual de�nition in classical realizability (see Section 9.1.1), the universal quanti�cation
of a family of truth values is naturally de�ned as its meet. �erefore, we introduce the convenient
notation:

∀
i ∈I

ai ,
k

i ∈I

ai

It is clear that this de�nition is compatible with the expected semantic rules:

Proposition• 10.40 (Universal quanti�er). �e following semantic typing rules are valid in any implica-
tive structures:

Γ ` t : ai for all i ∈ I
Γ ` t : ∀i ∈I ai

Γ ` t : ∀i ∈I ai i0 ∈ I
Γ ` t : ai0

Dually, we follow the usual encodings of the existential quanti�cation (see Section 3.3.1.1), and we
de�ne:

∃
i ∈I

ai ,
k

c ∈A

(
k

i ∈I

(ai → c ) → c )

While it could have seemed more natural to de�ne existential quanti�ers through joins, we should
recall that the arrow does not commute with joins in general. We shall see in Section 10.4.4.2 that when
it does, the realizability tripos precisely collapses to a forcing tripos. Once more, the expected semantic
typing rules are satis�ed:

Proposition• 10.41 (Existential quanti�er). �e following semantic typing rules are valid in any im-
plicative structures:

Γ ` t : ai0 i0 ∈ I

Γ ` λx .xt : ∃i ∈I ai
Γ ` t : ∃i ∈I ai Γ,x : ai ` u : c (for all i ∈ I )

Γ ` t (λx .u) : c

Proof. Straightforward using the adjunction of the application (Proposition 10.12) and la�ices proper-
ties. For instance, for the introduction rule, assume that (t[Γ])A 4 ai for some i ∈ I . �en we have
to prove that (λx .xt[Γ])A 4

c
c ∈A (

c
i ∈I (ai → c ) → c ). Let then c be in A, using the adjunction it

su�ces to prove that:
(λx .xt[Γ])A (

k

i ∈I

(ai → c )) 4 c

Using the property of β-reduction (Proposition 10.17) and the transitivity, it is enough to show that:

(
k

i ∈I

(ai → c ) (t[Γ])A ) 4 c ⇔
k

i ∈I

(ai → c ) 4 (t[Γ])A → c

We conclude using the hypothesis for t and the anti-monotonicity of the arrow. �e proof for the elim-
ination rule is very similar. Observe that we really consider the elements of the implicative structure
as λ-terms, that is to say that we compute with truth values. �

10.3.3.4 Sum and product

We de�ne it by the usual encodings in System F:

a × b ,
k

c ∈A

((a → b → c ) → c )

Recall that the pair 〈a,b〉 is encoded by the λ-term λx .xab, while �rst and second projection are respec-
tively de�ned by π1 , λxy.x and π2 , λxy.y. We can check that the expected semantic typing rules
for pairs are valid
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Proposition• 10.42 (Product). �e following semantic typing rules are valid:

Γ ` t : a Γ ` u : b
Γ ` λz.ztu : a × b

Γ ` t : a × b
Γ ` tπ1 : a

Γ ` t : a × b
Γ ` tπ2 : b

Proof. Straightforward la�ice manipulation, similar to the proof for the existential quanti�er. �

Similarly, we can de�ne a sum type through the usual encoding:

a + b ,
k

c ∈A

((a → c ) → (b → c ) → c )

We check again that the expected semantic typing rules for pairs are valid:

Proposition• 10.43 (Sum). �e following semantic typing rules are valid:

Γ ` t : a
Γ ` λlr .lt : a + b

Γ ` t : b
Γ ` λlr .rt : a + b

Γ ` t : a + b Γ,x : a ` u : c Γ,y : b ` v : c
Γ ` t (λx .u) (λy.v ) : c

Proof. Straightforward la�ice manipulation. �

We are now ready to verify that the entailment relation together with the sum and products induce
a structure of Heyting algebra. We will then focus to the construction of the implicative tripos.

10.4 Implicative triposes

10.4.1 Induced Heyting algebra

�e natural candidate which computationally represents a “meet” of a and b is the product type a × b.
We can verify that it satis�es the expected property (in Heyting algebras) w.r.t. to the arrow:

Proposition• 10.44 (Adjunction). For any a,b,c ∈ A, we have:

a `S b → c if and only if a × b `S c

Proof. Both directions are proofs using the expected realizer and subtyping: from le� to right, we use
λxy.yx to realize (a → b → c ) → a × b → c; from right to le�, we realize (a × b → c ) → a → b → c
with λpxy.p (λz.zxy). �

Corollary 10.45 (Heyting prealgebra). For any implicative algebra (A,4,→,S), the induced quintuple
(A,`S ,×,+,→) is a Heyting prealgebra.

�e former is only a Heyting prealgebra and not a Heyting algebra because the entailment relation is
a preorder (instead of an order). We thus consider the quotientA/�S of the former Heyting prealgebra
by the relation �S , which we write A/S (andH herea�er). We equipH with an order relation:

[a] ≤H [b] , a `S b (for all a,b ∈ A)

where we write [a] for the equivalence class of a ∈ A. We de�ne:

[a]→H [b] , [a → b]
[a] ∧H [b] , [a × b]
[a] ∨H [b] , [a + b]

>H , [>] = S
⊥H , [⊥] = {a ∈ A : ¬a ∈ S}
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Proposition 10.46 (Induced Heyting algebra). �e quintuple (H ,≤H ,∧H ,∨H ,→H ) is a Heyting alge-
bra.

Proof. We �rst show that (H ,≤H ,∧H ,∧H ) is a la�ice. It is clear that (H ,≤H ) is a poset, we then have
to prove that ∧H and ∨H indeed de�nes binary meets and joins. We thus need to prove that for all
a,b,c ∈ A, we have:

1. • [a] × [b] ≤H [a] and [a] × [b] ≤H [b]. In A, the corresponding implications are realized
respectively by λxy.x and λxy.y.

2. • If [c] ≤H [a] and [c] ≤H [b], then [c] ≤H [a] × [b]. Let us assume that c → a ∈ S and
c → b ∈ S. �en by closure of the separator under modus ponens, it su�ces to show that
(c → a) → (c → b) → c → (a × b) ∈ S. �is formula is realized by λtucz.z (tc ) (uc ).

3. • [a] ≤H [a] + [b] and [b] ≤H [a] + [b]. �e corresponding implications inA are realized respec-
tively by λxtu .tx and λxtu .ux .

4. • If [a] ≤H [c] and [b] ≤H [c], then [c] ≤H [a] + [b]. Let us assume that c → a ∈ S and
c → b ∈ S. �en by closure of the separator under modus ponens, it su�ces to show that
(a → c ) → (b → c ) → (a + b) → c ∈ S. �is formula is realized by λxyt .txy.

We already know from Proposition 10.37 that > and ⊥ are respectively the maximal and minimal ele-
ments of A for ≤H . �us (H ,≤H ,∧H ,∧H ) is a bounded la�ice.

Finally, we need to prove that the adjunction [a] ∧H [b] ≤H [c] ⇔ [a] ≤H [b] →H [c] holds for
any a,b,c ∈ A. �is is a direct consequence of the corresponding adjunction that we proved in A for
`S and→ (Proposition 10.44). �

Remark 10.47. If the implicative algebra is classical, for all a ∈ A we have ¬¬a �S a (Proposi-
tion 10.39). �rough the quotient, this implies that ¬¬[a] = [a] for all a ∈ A. �is means that in the
case of a classical implicative algebra, the induced Heyting algebra is actually a Boolean algebra. y

We are almost ready to de�ne the implicative tripos. Following the construction of triposes asso-
ciated to AKSs and KOCAs, we want to de�ne a functor roughly of the form P : I ∈ Setop 7→ AI .
However, as we saw that the implicative algebra A gives rise to a Heyting algebra through a quotient
by (the equivalence relation induced by) the separator. We �rst need to check that the indexed family
AI is an implicative structure. �en we will need to quotient AI by an appropriate separator.

10.4.2 Product of implicative structures

Let I be a set and (Ai )i ∈I be a family of implicative structures, which we write (Ai ,4i ,→i ). �e Carte-
sian product A , ∏

i ∈I Ai is naturally equipped with a structure of implicative structure, using the
order and implication de�ned componentwise:

(ai )i ∈I 4 (bi )i ∈I , ∀i ∈ I .(ai 4i bi ) (ai )i ∈I → (bi )i ∈I , (ai →i bi )i ∈I

Proposition 10.48 (Product of structures). �e triple (A,4,→) is an implicative structure.

Proof. Straightforward, since the variance and the distributivity are veri�ed for each component. �

Since the order relation is de�ned componentwise, in particular the meet of a set of family is the
family of the meet componentwise:

k

(ai )i∈I ∈A

(ai )i ∈I =
( k

ai ∈Ai

ai
)
i ∈I
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As a consequence, all the de�nitions are compatible with the corresponding de�nitions componentwise,
namely for all a,b ∈ A and any f = ( fi : Ai → Ai )i ∈I we have:

ab = (aibi )i ∈I λf = (λfi )i ∈I kA = (kAi )i ∈I sA = (sAi )i ∈I

a × b = (ai × bi )i ∈I a + b = (ai + bi )i ∈I ccA = (ccAi )i ∈I

In the same spirit, it is clear that if (Si )i ∈I ⊆ Ai is a family of separators (i.e. for each i ∈ I , Si is a
separator for Ai ), then the Cartesian product S = ∏

i ∈I Si is a separator for the implicative structure
A. Besides, the entailment relation induced by this separator product corresponds again to the induced
relation componentwise, since for all a,b ∈ A we have:

a `S b , a → b ∈ S ⇔ ∀i ∈ I .(ai →i bi ∈ Si ) ⇔ ∀i ∈ I .(ai `Si bi )

10.4.3 Implicative tripos

We are now ready to de�ne the implicative tripos. Let (A,4,→,S) be a �xed implicative algebra. For
each set I , the Cartesian productAI gives rise to an implicative structure which we write (AI ,4I ,→I ).
As explained in the previous section, the Cartesian product SI de�nes a separator for the implicative
structureAI , which we call the power separator. By de�nition, an element a ofAI belongs to the power
separator SI , if for each i ∈ I , ai belongs to S. In terms of realizability, this intuitively means that for
each i ∈ I , ai is realized.

As we shall see further, this separator is too permissive in the sense that it contains too many
elements and that the corresponding quotient collapses to a forcing tripos. Yet, the separator S induces
another separator, which we write S[I ] and call uniform separator, which is de�ned by:

S[I ] , {a ∈ AI : ∃s ∈ S .∀i ∈ I .s 4 ai }

An element a ∈ A is thus in the uniform separator if it is uniformly realized by the same s in each
component. We clearly have the following inclusion:

S[I ] ⊆ SI ⊆ AI

We write (AI /S[I ],≤S[I ],→S[I ]) the associated Heyting algebra.

�eorem 10.49 (Implicative tripos). Let (A,4,→,S) be an implicative algebra. �e following functor :

T : I 7→ AI /S[I ] T ( f ) :



AI /S[I ] → A J /S[J ]

[(ai )i ∈I ] 7→ [(af (j ) )j ∈J ]
(∀f ∈ J → I )

de�nes5 a tripos.

Proof. We verify that T satis�es all the necessary conditions to be a tripos.

• �e functoriality of T is clear.
• For each I ∈ Set, the image of the corresponding diagonal morphism T (δI ) associates to any

element [(ai j )(i,j )∈I×I ] ∈ T (I × I ) the element [(aii )i ∈I ] ∈ T (I ). We de�ne6:

(=I ) : i, j 7→



c
a∈A (a → a) if i = j

⊥ → > if i , j

5Note that the de�nition of the functor on functions f : J → I assumes implicitly the possibility of picking a representative
in any equivalent class [a] ∈ A/S[I ], i.e. the full axiom of choice.

6�e reader familiar with classical realizability might recognize the usual interpretation of Leibniz’s equality.
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and we need to prove that for all [a] ∈ T (I × I ):

[>]I ≤S[I ] T (δI ) (a) ⇔ [=I ] ≤S[I×I ] [a]

Let then [(ai j )i,j ∈I ] be an element of T (I×I ). From le� to right, assume that [>]I ≤S[I ] T (δI ) (a),
that is to say that there exists s ∈ S such that for any i ∈ I , s 4 > → aii . �en it is easy to
check that for all i, j ∈ I , λz.z (s (λx .x )) 4 i =I j → ai j . Indeed, using the adjunction and the
β-reduction it su�ces to show that for all i, j ∈ I , (i =I j ) 4 (s (λx .x )) → ai j . If i = j, this follows
from the fact that (s (λx .x )) 4 aii . If i , j, this is clear by subtyping.
From right to le�, if there exists s ∈ S such that for any i, j ∈ I , s 4 i =I j → ai j , then in particular
for all i ∈ I we have s 4 (λx .x ) → aii , and then λ .s (λx .x ) 4 > → aii which concludes the case.

• For each projection π 1
I×J : I × J → I in C, the monotone function T (π 1

I , J ) : T (I ) → T (I × J ) has
both a le� adjoint (∃J )I and a right adjoint (∀J )I which are de�ned by:

(∀J )I
( [

(ai j )i,j ∈I×J
] )
,

[
(∀
j ∈J

ai j )i ∈I
]

(∃J )I
( [

(ai j )i,j ∈I×J
] )
,

[
(∃
j ∈J

ai j )i ∈I
]

�e proofs of the adjointness of this de�nition are again easy manipulation of λ-calculus. We only
give the case of ∃, the case for ∀ is easier. We need to show that for any [(ai j )(i,j )∈I×J ] ∈ T (I × J )
and for any [(bi )i ∈I ], we have:

[(ai j )(i,j )∈I×J ] ≤S[I×J ] [(bi )(i,j )∈I ] ⇔
[
(∃
j ∈J

ai j )i ∈I
]
≤S[I ] [(bi )i ∈I ]

Let us �x some [a] and [b] as above. From le� to right, assume that there exists s ∈ S such that
for all i ∈ I , j ∈ J , s 4 ai j → bi , and thus sai j 4 bi . Using the semantic elimination rule of the
existential quanti�er, we deduce that for all i ∈ I , if t 4 ∃j ∈J ai j , then t (λx .sx ) 4 bi . �erefore,
for all i ∈ I we have λy.y (λx .sx ) 4 ∃j ∈J ai j → bi .
From right to le�, assume that there exists s ∈ S such that for all i ∈ I , s 4 ∃j ∈J ai j → bi . For
any j ∈ J , using the semantic introduction rule of the existential quanti�er, we deduce that for
all i ∈ I , λx .xai j 4 ∃j ∈J ai j . �erefore, for all i ∈ I we have λx .s (λz.zx ) 4 ai j → bi .

• �ese adjoints clearly satisfy the Beck-Chevaley condition. For instance, for the existential quan-
ti�er, we have for all I , I ′, J , for any [(ai′j )(i′,j )∈I ′×J ] ∈ T (I ′ × J ) and any s : I → I ′,

(T (s ) ◦ (∃J )I ′ ) ([(ai′j )(i′,j )∈I ′×J ]) = T (s ) (
[
(∃j ∈J ai′j )i′∈I ′

]
)

=
[
(∃j ∈J as (i )j )i ∈I

]

= ((∃J )I ) ([(as (i )j )i j ∈I×J ])
= ((∃J )I ◦ T (s × idJ ) ([(ai j )i,j ∈I×J ])

• Finally, we de�ne Prop , A and verify that tr , [idA] ∈ T (Prop) is a generic predicate. Let
then I be a set, and a = [(ai )i ∈I ] ∈ T (I ). We let χa : i 7→ ai be the characteristic function of a (it
is in I → Prop), which obviously satis�es that for all i ∈ I :

T (χa ) (tr) = [(χa (i ))i ∈I )] = [(ai )i ∈I ]
�

10.4.4 Relation with forcing triposes

10.4.4.1 �e fundamental diagram

We shall now brie�y present a criterion to determine whether an implicative tripos is equivalent to a
forcing tripos. By forcing tripos, we refer to a tripos of the shape T : I 7→ H I whereH is a complete
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Heyting (or Boolean in classical case) algebra (see Example 9.22). In particular, recall that in the case
of forcing (see Section 9.1.2), we have:

∀ = f = ∧

while it is worth observing that the de�nition of the implicative tripos is in adequacy with the usual
situation of in realizability, that is to say that we have:

∀ = f ∧ = ×

In the case of the implicative tripos, the algebra T (I ) of predicates associated to the set I is de�ned
by T (I ) = AI /S[I ], that is: as the quotient of the power implicative algebraAI by the uniform power
separator S[I ]. Note that here, we used the uniform power separator S[I ] and not the pointwise power
separator SI , precisely to avoid a trivialization of the form AI /S I = (A/S )I that would amount to a
forcing tripos, based on the Heyting algebraH = A/S.

Indeed, we saw in Section 10.4.2 that the separator product SI also de�nes a separator for the
algebra AI . We could have considered instead the quotient AI /SI . Since S[I ] ⊆ SI , in particular we
have that if a and b are two elements of AI and if besides a �S[I ] b, then a �S I b. In other words, the
map which associates to each equivalence class w.r.t. S[I ] the equivalence class of its representative
w.r.t. SI :

ιI :
{
AI /S[I ] → AI /SI

[a]/S[I ] 7→ [a]/SI

is surjective onto AI /SI .
Moreover, we could have directly de�ned a tripos by taking the quotient A/S (which de�nes a

Heyting algebra H ), and considered the functor which associates to each I the product (A/S)I . �is
situation corresponds precisely to a forcing tripos. Here again, we can de�ne the map which associates
to each equivalence class [(ai )i ∈I ] w.r.t. S[I ] the sequence of equivalence classes of the ai w.r.t. S:

ρI :
{
AI /S[I ] → (A/S)I

[a]/S[I ] 7→ [ai ]/S

which is surjective onto (A/S)I . Finally, it is clear thatAI /SI and (A/S)I are in bijection: inAI /SI ,
two elements [(ai )i ∈I ] and [(vi )i ∈I ] are in the same equivalence class if they are equivalent componen-
twise, that is for all i ∈ I , ai and bi are equivalent:

[(ai )i ∈I ] �SI [(bi )i∈I ] ⇔ ∀i ∈ I .[ai ] �S [bi ]

Denoting by ϱI the corresponding bijection fromAI /SI to (A/S)I , the situation can then be summa-
rized by the following diagram:

AI AI /S[I ]

AI /SI (A/S)I

= T (I )

= T (1)I

[·]/S[I ]

[·]/SI ρIιI

ϱI

∼

In this diagram, all the maps are surjective, the top right corner corresponds to the implicative tripos
while the bo�om right one corresponds to a forcing tripos. We shall now make use of the diagram to
precise the situation. To this purpose, we �rst need to prove a lemma about morphisms of Heyting
algebras.
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Lemma 10.50. LetH ,H ′ be two Heyting algebras. If f : H → H ′ be a morphism of Heyting algebras,
then f is an isomorphism if and only if f is bijective.

Proof. �e le� to right implication is trivial, we thus have to prove that if f is a one-to-one morphism,
then f −1 is a morphism. It is easy to see that f −1 preserves the la�ice structure and the implication
because f does. For instance for the preservation of meets, for all a,b ∈ H ′ we have:

f −1 (a f b) = f −1 ( f ( f −1 (a)) f f ( f −1 (b))) = f −1 ( f ( f −1 (a) f f −1 (b))) = f −1 (a) f f −1 (b)

As for the preservation of the order, if a,b ∈ H ′ are such that a 4 b, then a = a f b and we have:

f −1 (a) = f −1 (a f b) = f −1 (a) f f −1 (b) 4 f −1 (b)

�erefore, we can conclude that f −1 (a) 4 f −1 (b). �

Using the previous lemma, we obtain the following characterization:

Proposition 10.51. �e following are equivalent:

1. �e map: ρI : (AI /S[I ]) → (A/S)I is an isomorphism (of Heyting Algebras).

2. �e map: ρI : (AI /S[I ]) → (A/S)I is injective.

3. S[I ] = SI .

4. �e separator S ⊆ A is closed under all I -indexed meets.

Proof. �e equivalence between the �rst three conditions follows from the above characterization of
isomorphisms in HA. If (ai )i ∈I ∈ SI and S[I ] = SI , then there exists an s ∈ S such that for all i ∈ I ,
s 4 ai . �en s 4

c
i ∈I ai and the la�er belongs to S by upward closure. �erefore, S is closed under

I -indexed meets. For the converse direction, it su�ces to see that if (ai )i ∈I ∈ SI , then by closure under
I -indexed meets

c
i ∈I ai is in S and is a uniform realizer for (ai )i ∈I , which thus belongs to S[I ]. �

�is diagram is thus the cornerstone on the study of implicative tripos. In particular, the most
interesting realizability models (i.e. those which can not be obtained by forcing) are the ones occurring
in the top right corner when the map ρI is not an isomorphism.

10.4.4.2 Collapse criteria

We shall brie�y present some criteria which characterizes the situations where implicative triposes are
isomorphic to forcing triposes. As we do not want to enter into too much detail here (we leave it for the
forthcoming paper of Alexandre Miquel on the topic), let us loosely use notions that we do not formally
de�ne. Our goal here is mainly to give some intuitions, and to highlight some phenomena that were
already known in Krivine realizability algebras.

First of all, as we mentioned in Section 3.5.3, the construction of Krivine’s realizability models for
the negation of the axiom of choice and the continuum hypothesis deeply relies on the fact that the
formula ind ≡ ∀x .Nat(x ) is not realized. In our framework, this formula can be de�ned by:

indA ,
k

n∈�

k
a∈A�

(a0 →
k

i ∈�

(ai → ai+1) → an )

In fact, this can be reduced to the formula called parallel-or (p-or), which is de�ned in any implicative
structure by:

p-orA , (> → ⊥ → ⊥) f (⊥ → > → ⊥)
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in the sense that if this formula is realized if and only if ind is7. Besides, in the case where the real-
izability algebra (i.e. the λc -calculus) contains an instruction t of non-deterministic choice, it is easy
to de�ne a realizer for the formula p-or. In which case, the realizability models collapses to a forcing
model.

�is phenomenon can be rephrased directly within implicative algebras. First, the operator t is
naturally interpreted in any implicative structure A by:

tA ,
k

a,b ∈A

(a → b → a f b)

and it is an easy exercise of λc -calculus to show that:

Proposition 10.52. If (A,4,→,S) is a classical implicative algebra, then:

tA �S p-or
A �S indA

�en it is possible to show that an implicative tripos is isomorphic to a forcing tripos if and only
if its separator contains tA and is �nitely generated (i.e. it is de�ned as the closure under application
and upwards of a �nite subset of the implicative structure A).

�eorem 10.53 (Characterization of forcing triposes). Let T : Setop → HA be an implicative tripos
induced by an implicative algebra (A,4,→,S). �e following are equivalent:

1. �e tripos T is isomorphic to a forcing tripos

2. �e separator S ⊆ A is a principal �lter of A.

3. �e separator S ⊆ A is �nitely generated and t ∈ S.

Proof. See [121]. �

Furthermore, in the case where the arrow commutes with arbitrary joins, that is if for all b ∈ A the
following holds:

k

a∈A

(a → b) = (
j

a∈A

a) → b

the interpretation of p-or belongs to any separator. Indeed, since⊥ =
b
∅, the previous equality implies

that ⊥ → a = > for any a ∈ A, and in particular:

p-orA = (⊥ → > → ⊥) f (> → ⊥ → ⊥) = >f (> → >) = > → >

�erefore, in the previous situation, tA and indA also belong to all classical separators. �e previous
equation is not meaningless, because when it holds, it allows to de�ne the existential quanti�er as a
join, and it can be read as:

∀
a∈A

(a → b) = (∃
a∈A

a) → b

In other words, we can not expect an implicative algebra which is “too” commutative to induce triposes
which are not isomorphic to a forcing tripos.

7In Krivine’s article, the fact that the algebra∇2 is not trivial precisely relies on the fact that there is no term which realizes
both > → ⊥ → ⊥ and ⊥ → > → ⊥ (see [99, �eorem 31]).
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CHAPTER 10. IMPLICATIVE ALGEBRAS

10.5 Conclusion

We presented in this section the concept of implicative algebra, that relies on the primitive notion
of implicative structure. �ese structures are de�ned as a particular class of meet-complete la�ices
equipped with an arrow, where this arrow satis�es commutations with arbitrary meets which are the
counterpart of the logical commutation between the universal quanti�cation and the implication. We
showed that implicative structures are a generalization Streicher’s AKSs and Ferrer et al.’s KOCAs. In
particular, they allow us to de�ned triposes arising from Krivine classical realizability models, and they
provide us with simple criteria to determine whether the induced triposes are equivalent to forcing
triposes. As such, implicative algebras appear to be a promising framework for the algebraic analysis
of classical realizability.

�is presentation is totally in line with Krivine’s usual presentation of his realizability models,
and in particular it takes position on a presentation of logic through universal quanti�cation and the
implication. �e computational counterpart of this choice is that the presentation relies on the call-
by-name λc -calculus. �is raises the question of knowing whether it is possible to have alternative
presentations with similar structures based on di�erent connectives (and thus di�erent calculi).

In the last two chapters of this manuscript, we will present an a�empt in this perspective. Firstly, we
will introduce the so-called notion of disjunctive algebras, which are primitively de�ned in disjunctive
structures relying on a disjunction ` and a negation ¬. We will relate these connectives to a fragment
of Munch-Maccagnoni’s System L, which amounts to a call-by-name decomposition of the λ-calculus.
In particular, we will see that any disjunctive algebra induces an implicative algebra.

Secondly, we will introduce the dual notion of conjunctive algebras, based on conjunctive structures
whose connectives are a conjunction ⊗ and a negation ¬. Here again, this decomposition of the arrow
corresponds to a fragment of Munch-Maccagnoni’s System L, which amounts to a call-by-value λ-
calculus. We will see that such a structure can naturally be obtained by duality from a disjunctive
algebra.

�ese two di�erent presentations are not as accomplished as the study of implicative algebras. In
particular, we do not dispose of the full embeddings of the corresponding calculus, and we are still
missing some correspondences between the three presentations. Yet, they should rather be taken as a
�rst step toward a complete zoology of the implicative-like algebras. We conjecture that implicative
algebras constitute the more general framework.
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