
11- Disjunctive algebras

We shall now introduce the notion of disjunctive algebra, which is a structure primarily based on dis-
junction, negation (for the connectives) and meets (for the universal quanti�er). Our main purpose is
to draw the comparison with implicative algebras, as an a�empt to justify eventually that the la�er
are at least as general as the former. All along this chapter, we will follow the same rationale which
guided the de�nition of implicative structures, separators, etc… If we will not be able to recover all the
disjunctive counterpart of the properties of implicative algebras, we should anyway be convinced in
the end that disjunctive algebras do not bring any bene�ts over the implicative one, in the sense that
disjunctive algebras are particular cases of implicative algebras.

�e �rst step in this direction is the de�nition of disjunctive structures. Our starting point is the
fact that in classical logic, the following equivalence holds for all formulas A and B:

A→ B ⇔ ¬A ∨ B

In particular, this equivalence suggests that as long as we are interested in a classical framework, we
could as well de�ne the logic with the disjunction and negation as ground connectives. �is is for
instance the choice of Bourbaki in his Éléments de mathématique [21]. �e �rst volume of the famous
treatise begins precisely with the introduction of the logical symbols, which are ¬, ∨ plus two others
used to handle substitutions. �e �rst symbolic shorthand which is de�ned is precisely the implication,
and logic is axiomatized by the following schemes:

S1 : (A ∨A) → A
S2 : A→ (A ∨ B)

S3 : (A ∨ B) → (B ∨A)
S4 : (A→ B) → ((C ∨A) → (C ∨ B))

�ese logical schemes should give us a guideline in the de�nition of separators for disjunctive struc-
tures.

In the seminal paper introducing linear logic [58], Jean-Yves Girard re�nes the structure of the
sequent calculus LK, introducing in particular two connectives for the disjunctions: ` and ⊕. �e �rst
one is said to be multiplicative, while the second one is said to be additive, due to the treatment of
contexts in the corresponding rules:

Γ ` A1,A2,∆
Γ ` A1 `A2,∆

(`r )
Γ1,A ` ∆1 Γ2,B ` ∆2
Γ1,Γ2,A1 `A2 ` ∆1,∆2

(`l )
Γ ` Ai ,∆

Γ ` A1 ⊕ A2,∆
(⊕r )

Γ,A1 ` ∆ Γ,A2 ` ∆
Γ,A1 `A2 ` ∆

(⊕l )

In the (multiplicative) rules for `, contexts are indeed juxtaposed, while they are identi�ed in the
(additive) rule for ⊕. With this �ner set of connectives, Girard shows that the usual implication1 can
be retrieved using the multiplicative disjunction:

A→ B , ¬A` B

1To do justice to Girard’s approach, the implication which is considered in linear logic, wri�en(, is di�erent from the
usual one. �e di�erence between both implications is not relevant in our framework.
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CHAPTER 11. DISJUNCTIVE ALGEBRAS

Dually to these two connectives for the disjunction, two connectives are also introduced for the con-
junction! ⊗ (multiplicative) and & (additive). Disjunctive and conjunctive connectives are related
through some laws of duality which are very similar to De Morgan’s laws for classical logic. For in-
stance, the multiplicative connectives verify that ¬(A ` B) = ¬A ⊗ ¬B and ¬(A ⊗ B) = ¬A ` ¬B. In
particular, this give rises to a second decomposition of the arrow:

A→ B , ¬(A ⊗ ¬B)

In 2009, Guillaume Munch-Maccagnoni gave a computational account of Girard’s presentation for
classical logic with a division between multiplicative and additive connectives [126]. In his calculus,
named L, each connective corresponds to the type of a particular constructor (or destructor). While L
is in essence close to Curien and Herbelin’s λµµ̃-calculus (in particular it is presented with the same
paradigm of duality between proofs and contexts), the syntax of terms does not include λ-abstraction
(and neither does the syntax of formulas includes an implication). �e two decompositions of the arrow
evoked above are precisely re�ected in a decomposition of λ-abstractions (and dually, of stacks) in terms
of L constructors.

Notably, the choice of a decomposition corresponds to a particular choice of an evaluation strategy
for the encoded λ-calculus. When picking the ` connective, the corresponding λ-terms are evaluated
according to a call-by-name evaluation strategy whose machinery resembles the one of the call-by-
name λµµ̃-calculus (see Chapter 4). On the other hand, if the implication is de�ned through the ⊗
connective, the corresponding λ-calculus is reduced in a call-by-value fashion.

We shall begin by considering the call-by-name case, which is closer to the situation of implica-
tive algebras. We start with the presentation of the corresponding fragment of Munch-Maccagnoni’s
calculus, which we call L̀ . In particular, we will see how this calculus induces a realizability model
whose structure leads us to the de�nition of disjunctive structures. We will observe that the encoding of
λ-terms into L̀ can be directly re�ected as an implicative structure induced by each disjunctive struc-
ture. Finally, we shall de�ne the notions of (disjunctive) separator and disjunctive algebra. We will see
that, again, any disjunctive algebra can be viewed as an implicative algebra.

11.1 �e L̀ calculus

We present here the fragment of L induced by the negative connectives `, ¬ and ∀, in order to present
a�erwards the realizability model it induces. Since this calculus has a lot of similarities with respect
to the λµµ̃-calculus, and since the realizability interpretation is akin to the one we gave for the call-
by-name λµµ̃-calculus (see Section 4.4.5), we shall try to be concise. In particular, we skip some proofs
which can be found either in [126] or in previous chapters.

11.1.1 �e L̀ calculus

�e L̀ -calculus is a subsystem of Munch-Maccagnoni’s system L [126], restricted to the negative frag-
ment corresponding to the connectives `, ¬− (which we simply write ¬ since there is no ambiguity
here) and ∀. To ease the connection with the syntax of the λµµ̃-calculus, we slightly change the nota-
tions of the original paper. �e syntax is given by:

Contexts
Terms
Commands

e+ ::= α | (e+1 ,e
+
2 ) | [t−] | µx .c

t− ::= x | µ (α1,α2).c | µ[x].c | µα .c
c ::= 〈t− ||e+〉

Observe in particular that we only have positive contexts and negative terms. We write E for the set of
contexts, T for the set of terms, C for the set of commands, and E0, T0, C0 for the sets of closed contexts,
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11.1. THE L̀ CALCULUS

terms and commands. As for values, they are de�ned by the following fragment of the syntax2:

Values V ::= α | (V1,V2) | [t−]

We denote byV0 the corresponding set of closed values.
Since the notations might be a bit confusing regarding the ones we used in previous chapters (es-

pecially with respect to the λµµ̃-calculus), we shall say a few words about it:

• (e+,e+) are pairs of positive contexts, which we will relate to usual stacks;
• µ (α1,α2).c , which binds the co-variables α1,α2, is the dual destructor;
• [t−] is a constructor for the negation, which allows us to embed a negative term into a positive

context;
• µ[x].c , which binds the variable x , is the dual destructor;
• µα .c and µx .c correspond respectively to µα and µ̃x in the λµµ̃-calculus.

Remark 11.1 (Notations). We shall explain that in (full) L, the same syntax allows us to de�ne terms
t and contexts e (thanks to the duality between them). In particular, no distinction is made between t
and e , which are both wri�en t , and commands are indi�erently of the shape 〈t+ ||t−〉 or 〈t− ||t+〉. For this
reason, in [126] is considered a syntax where a notation x̄ is used to distinguish between the positive
variable x (that can appear in the le�-member 〈x | of a command) and the positive co-variable x̄ (resp.
in the right member |x〉 of a command). In particular, the µα binder of the λµµ̃-calculus would have
been wri�en µx̄ and the µ̃x binder would have been denoted by µα (see [126, Appendix A.2]). We thus
switched the x and α of L (and removed the bar), in order to stay coherent with the notations in the
rest of this manuscript. y

�e reduction rules correspond to what could be expected from the syntax of the calculus: destruc-
tors reduce in front of the corresponding constructors, both µ binders catch values in front of them and
pairs of contexts are expanded if they are not values. As for the η-expansion rules, they are also quite
natural:

〈µ[x].c ||[t]〉 →β c[t/x]
〈t ||µx .c〉 →β c[t/x]
〈µα .c ||V 〉 →β c[V /α]

〈µ (α1,α2).c ||(V1,V2)〉 →β c[V1/α1,V2/α2]
〈t ||(e,e ′)〉 →β 〈µα .〈µα ′.〈t ||(α ,α ′)〉||e ′〉||e〉

c →η 〈µα .c ||α〉
c →η 〈µ (α1,α2).c ||(α1,α2)〉
c →η 〈µ[x].c ||[x]〉
c →η 〈x ||µx .c〉

where in the last→β rule, (e,e ′) < V .
Finally, we shall present the type system of L̀ . In the continuity of the presentation of implicative

algebras, we are interested in a second-order se�ings. Formulas are then de�ned by the following
grammar:

Formulas A,B := X | A` B | ¬A | ∀X .A

Once again, the type system is similar to the one of the λµµ̃-calculus, in the sense that it is presented
in a sequent calculus fashion. We work with two-sided sequents, where typing contexts are de�ned as
usual as �nite lists of bindings between variable and formulas:

Γ ::= ε | Γ,x : A ∆ ::= ε | ∆,α : A

Sequents are of three kinds, as in the λµµ̃-calculus:
2�e reader may observe that in this se�ing, values are de�ned as contexts, so that we may have called them covalues

rather than values. We stick to this denomination to stay coherent with the terminology in Munch-Maccagnoni’s paper [126].
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Γ ` t : A | ∆ Γ | e : A ` ∆
〈t ||e〉 : Γ ` ∆ (Cut)

(α : A) ∈ ∆
Γ | α : A ` ∆ (ax`)

(x : A) ∈ Γ
Γ ` x : A | ∆ (`ax )

c : Γ,x : A ` ∆
Γ | µx .c : A ` ∆

(µ `)
c : Γ ` ∆,α : A
Γ ` µα .c : A | ∆

(`µ )

Γ | e1 : A ` ∆ Γ | e2 : B ` ∆
Γ | (e1,e2) : A` B ` ∆

(` `) c : Γ ` ∆,α1 : A,α2 : B
Γ ` µ (α1,α2).c : A` B | ∆

(``)

Γ ` t : A | ∆
Γ | [t] : ¬A ` ∆

(¬ `)
c : Γ,x : A ` ∆

Γ ` µ[x].c : ¬A | ∆
(`¬)

Γ | e : A[B/X ] ` ∆
Γ | e : ∀X .A ` ∆ (∀`)

Γ ` t : A | ∆ X < FV (Γ,∆)

Γ ` t : ∀X .A (`∀)

Figure 11.1: Typing rules for the L ,̀¬-calculus

• Γ ` t : A | ∆ for typing terms,
• Γ | e : A ` ∆ for typing contexts,
• c : Γ ` ∆ for typing commands.

Just like both connectives ` and ¬ are re�ected by a constructor and a destructor in the syntax, in the
type system each connective corresponds to a le� rule (the introduction rule, for typing the constructor)
and to a right rule (the elimination rule, for typing the destructor), in addition to the usual rules for
typing variables, µ binders and commands. �e type system is given in Figure 11.1.

Remark 11.2 (Universal quanti�er). In L, the universal quanti�cation is also re�ected by constructors
in the syntax. �is has the bene�ts of avoiding the problems of value restriction for the introduction
rule. In our particular se�ing, since all terms are values, the introduction rule does not cause any
problem. Beyond that, the realizability model we are going to de�ne is only a pretext to the introduction
of disjunctive structures, in which we will interpret the universal quanti�cation by meets. �us, it
would be meaningless for us to introduce a syntactic constructor for the universal quanti�er. y

Remark 11.3 (Multiplicativity). We simpli�ed a bit the type system of L to avoid structural rules.
�erefore, the rule (` `) uses the same contexts in both hypotheses and the conclusion, instead of
juxtaposing contexts in the conclusion. Both presentations are equivalent since both type systems
allow for weakening and contraction. y

11.1.2 Embedding of the λ-calculus

Following Munch-Maccagnoni’s paper [126, Appendix E], we can embed the λ-calculus into the L̀ -
calculus. To this end, we are guided by the expected de�nition of the arrow:

A→ B , ¬A` B

It is easy to see that with this de�nition, a stack u · e in A → B (that is with u a term of type A and e
a context of type B) is naturally de�ned as a shorthand for the pair ([u],e ), which indeed inhabits the

280



11.1. THE L̀ CALCULUS

type ¬A` B. Starting from there, the rest of the de�nitions are straightforward:

u · e , ([u],e )
µ ([x],β ).c , µ (α ,β ).〈µ[x].c ||α〉

λx .t , µ̃ ([x],β ).〈t ||β〉
t u , µα .〈t ||u · α〉

�ese de�nitions are sound with respect to the typing rules expected from the λµµ̃-calculus:

Proposition 11.4. �e following typing rules are admissible:

Γ,x : A ` t : B
Γ ` λx .t : A→ B

Γ ` u : A | ∆ Γ | e : B ` ∆
Γ | u · e : A→ B ` ∆

Γ ` t : A→ B | ∆ Γ ` u : A | ∆
Γ ` t u : B | ∆

Proof. Each case is directly derivable from L̀ type system. We abuse the notation to denote by (def)
a rule which simply consists in unfolding the shorthands de�ning the λ-terms.

• Case µ ([x],α ).c:

Γ | α : ¬A ` ∆,α : ¬A,β : B
(ax`)

c : (Γ,x : A ` ∆,β : B)
Γ ` µ[x].c : ¬A | ∆,β : B

(`µ )

〈µ[x].c ||α〉 : (Γ ` ∆,α : ¬A,β : B)
(Cut)

Γ ` µ (α ,β ).〈µ[x].c ||α〉 : ¬A` B | ∆
(``)

Γ ` µ ([x],β ).c : ¬A` B | ∆
(def)

• Case λx .t :
Γ,x : A ` t : B | ∆ Γ | β : B ` ∆,β : B

(ax`)

〈t ||β〉 : (Γ,x : A ` β : B,∆
(Cut)

Γ ` µ ([x],β ).〈t ||β〉 : ¬A` B | ∆
(``)

Γ ` λx .t : A→ B | ∆
(def)

• Case u · e:
Γ ` u : A | ∆
Γ | [u] : A ` ∆

(¬ `)
Γ | e : B ` ∆

Γ | ([u],e ) : ¬A` B ` ∆
(` `)

Γ | u · e : A→ B ` ∆
(def)

• Case t u:

Γ ` t : A→ B | ∆

Γ ` u : A | ∆ Γ | α : B ` ∆,α : B
Γ | u · α : A→ B ` ∆,α : B)

〈t ||u · α〉 : (Γ ` ∆,α : B)
(Cut)

Γ ` µα .〈t ||u · α〉 : B | ∆
(`µ )

Γ ` t u : B | ∆
(def)

�

In addition, the above de�nitions of λ-terms induce the usual rules of β-reduction for the call-by-
name evaluation strategy in the Krivine abstract machine (notice that in the KAM, all stacks are values):

Proposition 11.5 (β-reduction). We have the following reduction rules:

〈t u ||π 〉 →β 〈t ||u · π 〉
〈λx .t ||u · π 〉 →β 〈t[u/x]||π 〉

(π ∈ V +)
(π ∈ V +)
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Proof. If π ∈ V +, we have indeed:

〈t u ||π 〉 = 〈µα .〈t ||u · α〉||π 〉 →β 〈t ||u · π 〉

and:
〈λx .t ||u · π 〉 = 〈µ̃ ([x],β ).〈t ||β〉||([u],π )〉

= 〈µ (α ,β ).〈α ||µ[x].〈t ||β〉〉||([u],π )〉
→β 〈[u]||µ[x].〈t ||π 〉〉
→β 〈t[u/x]||π 〉 �

At this stage, it is clear that the structure of L̀ allows us to recover all the computational strength
of the call-by-name λµµ̃-calculus. As we explained in Section 4.2.4, this also means that we can encode
the term cc of the λc -calculus, and simulate the Krivine abstract machine. �erefore, L̀ is suitable for
the de�nition of a realizability interpretation through these encodings, but as for the full system L, we
can also directly de�ne a realizability model for L̀ .

11.1.3 A realizability model based on the L̀ -calculus

We brie�y go through the de�nition of the realizability interpretation à la Krivine for L̀ . �e reader
should observe that in the end, this interpretation is very similar to the one of the call-by-name λµµ̃-
calculus (see Section 4.4.5). As usual, we begin with the de�nition of a pole:

De�nition 11.6 (Pole). A subset ⊥⊥ ∈ C is said to be saturated whenever for all c,c ′ ∈ C, if c →β c ′

then c ∈ ⊥⊥. A pole is de�ned as any saturated subset of C0. y

As it is common in Krivine’s call-by-name realizability, falsity values are de�ned primitively as sets
of contexts. Truth values are then de�ned by orthogonality to the corresponding falsity values. We say
that a term t is orthogonal (with respect to the pole⊥⊥) to a context e we denote by t⊥⊥e when 〈t ||e〉 ∈ ⊥⊥.
A term t (resp. a context e) is said to be orthogonal to a set S ⊆ E0 (resp. S ⊆ T0), which we write t⊥⊥S ,
when for all e ∈ S , t is orthogonal to e .

Orthogonality satis�es the expected properties of monotonicity:

Proposition 11.7 (Monotonicity). For any subset S of T0 (resp. E0) and any subsetU ∈ P (T0) (resp. any
subset of P (E0)), the following holds:

1. S ⊆ S⊥⊥⊥⊥

2. S⊥⊥ = S⊥⊥⊥⊥⊥⊥

3. (
⋂

S ∈U S )⊥⊥ =
⋃

S ∈U (S⊥⊥)

4. (
⋃

S ∈U S )⊥⊥ ⊇
⋂

S ∈U (S⊥⊥)

As we explained in more details in chapter 4, the realizability interpretation à la Krivine of a calculus
given in a sequent calculus presentation (that is whose reduction rules are presented in the shape of an
abstract machine) can be derived mechanically from a small-step reduction system. We will not do it in
the present case, but it amounts to the case of the call-by-name λµµ̃-calculus. Because of this evaluation
strategy (which is induced here by the choice of connectives), a formula A is primitively interpreted
by its “falsity value of values”, which we write ‖A‖V and call primitive falsity value, which is a set in
P (V0) (and thus in P (E0)). Its truth value |A| is then de�ned by orthogonality to ‖A‖V (and is a set
in P (T0)), while its falsity value ‖A‖ ∈ P (E0) is again obtained by orthogonality to |A|. �erefore, a
universal formula ∀X .A is interpreted by the union over all the possible instantiations for the primitive
falsity value of the variable X by a set S ∈ P (V0). As it is usual in Krivine realizability, to ease the
de�nitions we assume that for each subset S of P (V0), there is a constant symbol Ṡ in the syntax. �e
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interpretation is given by:

‖Ṡ ‖V , S

‖∀X .A‖V ,
⋃

S ∈P (V0) ‖A{X := Ṡ }‖V
‖A` B‖V , {(V1,V2) : V1 ∈ ‖A‖V ∧V2 ∈ ‖B‖V }

‖¬A‖V , {[t] : t ∈ |A|}
|A| , {t : ∀V ∈ ‖A‖V ,t⊥⊥V }
‖A‖ , {e : ∀t ∈ |A|,t⊥⊥e}

Remark 11.8. One could alternatively prefer to consider the following primitive falsity value:

‖A` B‖V , {(e1,e2) : e1 ∈ ‖A‖ ∧ e2 ∈ ‖B‖}

As highlighted by Dagand and Scherer [35], the design choice for primitive falsity value results in
constraints on the de�nition of the reduction rules to make them adequate with the de�nitions. A
short Coq development on the proof of adequacy of L̀ typing rules (for the propositional fragment)
viewed as an evaluating machine is given to support this claim3. In particular, it makes very clear the
impact that the choice of de�nition for ‖A` B‖V has on the reduction system. y

We shall now verify that the type system of L̀ is indeed adequate with this interpretation. We �rst
prove the following simple lemma:

Lemma 11.9 (Substitution). Let A be a formula whose only free variable is X . For any closed formula B,
if S = ‖B‖V , then ‖A[B/X ]‖V = ‖A[Ṡ/X ]‖V .

Proof. Easy induction on the structure of formulas, with the observation that the statement for primitive
falsity values implies the same statement for truth values (|A[B/X ]| = |A[Ṡ/X ]|) and falsity values
(‖A[B/X ]‖ = ‖A[Ṡ/X ]‖). �e key case is for the atomic formula A ≡ X , where we easily check that:

‖X [B/X ]‖V = ‖B‖V = S = ‖Ṡ ‖V = ‖X [Ṡ/X ]‖V
�

�e last step before proving adequacy consists in de�ning substitutions and valuations. We say
that a valuation, which we write ρ, is a function mapping each second-order variable to a primitive
falsity value ρ (X ) ∈ P (V0). A substitution, which we write σ , is a function mapping each variable x to
a closed term c and each variable α to a closed value V ∈ V0:

σ ::= ε | σ ,x 7→ t | σ ,α 7→ V +

We say that a substitution σ realizes a context Γ and note σ  Γ when for each binding (x : A) ∈ Γ,
σ (x ) ∈ |A|. Similarly, we say that σ realizes a context ∆ if for each binding (α : A) ∈ ∆, σ (α ) ∈ ‖A‖V .

We can now state the property of adequacy of the realizability interpretation:

Proposition 11.10 (Adequacy). Let Γ,∆ be typing contexts, ρ be a valuation and σ be a substitution such
that σ  Γ[ρ] and σ  ∆[ρ]. We have:

1. If V + is a positive value such that Γ | V + : A ` ∆, then V +[σ ] ∈ ‖A[ρ]‖V .

2. If t is a term such that Γ ` t : A | ∆, then t[σ ] ∈ |A[ρ]|.
3. If e is a context such that Γ | e : A ` ∆, then e[σ ] ∈ ‖A[ρ]‖.
4. If c is a command such that c : (Γ ` ∆), then c[σ ] ∈ ⊥⊥.

Proof. �e proof is almost the same as for the proof of adequacy for the call-by-name λµµ̃-calculus. We
only give some key cases which are peculiar to this se�ing. We proceed by induction over the typing
derivations. Let σ be a substitution realizing Γ[ρ] and ∆[ρ].

3See https://www.irif.fr/∼emiquey/these/coq/Real.RealLPar.html.
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• Case (` ¬). Assume that we have:

c : Γ,x : A ` ∆
Γ ` µ̃[x].c : ¬A

(`¬)

and let [t] be a term in ‖A[ρ]‖V , that is to say that t ∈ |A[ρ]|. We know by induction hypothesis that
for any valuation σ ′  (Γ,x : A)[ρ], c[σ ′] ∈ ⊥⊥ and we want to show that µ[x].c[σ ]⊥⊥[t]. We have that:

µ[x].c⊥⊥[t] →β c[σ ][t/x] = c[σ ,x 7→ t]

hence it is enough by saturation to show that c[σ ][u/x] ∈ ⊥⊥. Since t ∈ |A[ρ]|, σ [x 7→ t]  (Γ,x : A)[ρ]
and we can conclude by induction hypothesis. �e cases for (µ `), (` µ ) and (` `) proceed similarly.

• Cases (¬ `). Trivial by induction hypotheses.
• Case (` `). Assume that we have:

Γ | e1 : A ` ∆ Γ | u : B ` ∆
Γ | (e1,e2) : A` B ` ∆

(` `)

Let then t be a term in |(A` B)[ρ]|, to show that 〈t ||(e1,e2)〉 ∈ ⊥⊥, we proceed by anti-reduction:

〈t ||(e,e ′)〉 →β 〈µα .〈µα
′.〈t ||(α ,α ′)〉||e ′〉||e〉

It now easy to show, using the induction hypotheses for e and e ′ that this command is in the pole: it
su�ces to show that the term µα .〈µα ′.〈t ||(α ,α ′)〉||e ′〉 ∈ |A|, which amounts to showing that for any
value V1 ∈ ‖A‖V :

〈µα .〈µα ′.〈t ||(α ,α ′)〉||V 〉||→β 〉〈µα
′.〈t ||(V ,α ′)〉||e ′〉 ∈ ⊥⊥

Again this holds by showing that for any V ′ ∈ |B |,

〈µα ′.〈t ||(V ,α ′)〉||V ′〉 →β 〈t ||(V ,V
′)〉 ∈ ⊥⊥

• Case (` ∀). Trivial.

• Case (∀ `). Assume that we have:

Γ | e : A[B/X ] ` ∆
Γ | e : ∀X .A ` ∆ (∀`)

By induction hypothesis, we obtain that e[σ ] ∈ ‖A[B/X ][ρ]‖; so that if we denote ‖B[ρ]‖V ∈ P (V0)
by S , we have:

e[σ ] ∈ ‖A[Ṡ/X ]‖ ⊆
⋃

S ∈P (V0)

‖A[Ṡ/X ][ρ]‖⊥⊥⊥⊥V ⊆ (
⋃

S ∈P (V0)

‖A[Ṡ/X ][ρ]‖V )⊥⊥⊥⊥ = ‖∀X .A[ρ]‖

where we make implicit use of Lemma 11.9. �

As a consequence of the former result and Proposition 11.4, we deduce that the typing rules for the
encoded λµµ̃-rules also are adequate with the realizability interpretation.

Corollary 11.11. �e typing rules for λµµ̃-terms are adequate.

In particular, this means that the realizability interpretation for L̀ is a particular case of the one
we de�ne for the call-by-name λµµ̃-calculus in Section 11.1.3.
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11.2 Disjunctive structures

Let us examine for a minute the situation to which we arrived. First, insofar as the call-by-name ma-
chinery of the λµµ̃-calculus was embeddable into L̀ , in particular the Krivine abstract machine for the
λc -calculus can be recovered in this se�ing. �erefore, we could have used these embedding to make
use of the realizability interpretation for the λc -calculus. Schematically, this would have corresponded
to the following path:

L̀ (Call-by-name) λµµ̃-calculus λc -calculus KAM Realizability model
In particular, thinking of this construction from the point of view of implicative structures, this implies
that we could have de�ned an implicative algebra by proceeding as follows:

L̀ λc -calculus KAM Implicative structure Implicative algebra
On the other hand, we saw in the previous section that the L̀ calculus was suitable for the direct

de�nition of a realizability model. �e interpretation is induced by the reduction system of L̀ , which
directly re�ects the choice of connectives. Instead of embedding an arrow to obtain in the end an
implicative structure, we should expect a direct algebraic counterpart for the structure of the calculus,
and obtain a direct algebraic interpretation looking like:

L̀ Disjunctive structure Disjunctive algebra
Finally, we know that the realizability model obtained directly from the L̀ calculus somehow con-

tains the realizability model that would have been constructed with the arrow. In other words, the
interpretation of L̀ is a particular case of interpretation for a λc -calculus enriched with some addi-
tional structure. �erefore, we expect that, at the level of algebraic structures, any disjunctive algebra
should induce an implicative algebra:

Disjunctive algebra Implicative algebra

11.2.1 Disjunctive structures

Following the rationale guiding the de�nition of implicative structure and algebras, we should now
de�ne the notion of disjunctive structure. Such a structure will then contain two internal laws to re�ect
the negation and the disjunction from the language of formulas. Regarding the expected commutations,
as we choose negative connectives and in particular a universal quanti�er, we should de�ne commu-
tations with respect to arbitrary meets. �e following properties of the realizability interpretation for
L̀ provides us with a safeguard for the de�nition to come:
Proposition 11.12 (Commutations). In any L̀ realizability model (that is to say for any pole ⊥⊥), the
following equalities hold:

1. If X < FV (B), then ‖∀X .(A` B)‖V = ‖ (∀X .A) ` B‖V .

2. If X < FV (A), then ‖∀X .(A` B)‖V = ‖A` (∀X .B)‖V .

3. ‖¬(∀X .A)‖V =
⋂

S ∈P (V0) ‖¬A{X := Ṡ }‖V

Proof. 1. Assume the X < FV (B), then we have:

‖∀X .(A` B)‖V =
⋃

S ∈P (V0)

‖A{X := Ṡ } ` B‖V

=
⋃

S ∈P (V0)

{(V1,V2) : V1 ∈ ‖A{X := Ṡ }‖V ∧V2 ∈ ‖B‖V }

= {(V1,V2) : V1 ∈
⋃

S ∈P (V0)

‖A{X := Ṡ }‖V ∧V2 ∈ ‖B‖V }

= {(V1,V2) : V1 ∈ ‖∀X .A‖V ∧V2 ∈ ‖B‖} = ‖ (∀X .A) ` B‖V
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2. Identical.
3. �e proof is again a simple unfolding of the de�nitions:

‖¬(∀X .A)‖V = {[t] : t ∈ |∀X .A|} = {[t] : t ∈
⋂

S ∈P (V0)

|A{X := Ṡ }|}

=
⋂

S ∈P (V0)

{[t] : t ∈ |A{X := Ṡ }]|} =
⋂

S ∈P (V0)

‖¬A{X := Ṡ }‖V

�

In terms of algebraic structure, the previous proposition advocates for the following equalities:

1.
k

b ∈B

(a ` b) = a ` (
k

b ∈B

b) 2.
k

b ∈B

(b ` a) = (
k

b ∈B

b) ` a 3. ¬
k

a∈A

a =
j

a∈A

¬a

(recall that the order is de�ned as the reversed inclusion of primitive falsity values (whence ∩ is
b

) and
that the ∀ quanti�er is interpreted by

c
.)

De�nition• 11.13 (Disjunctive structure). A disjunctive structure is a complete meet-semila�ice (A,4)
equipped with a binary operation (a,b) 7→ a ` b, called the disjunction of A together with a unary
operation a 7→ ¬a called the negation of A, which ful�ll the following axioms:

1. Negation is anti-monotonic in the sense that for all a,a′ ∈ A:

(Contravariance) if a 4 a′ then ¬a′ 4 ¬a

2. Disjunction is monotonic in the sense that for all a,a′,b,b ′ ∈ A:

(Variance) if a 4 a′ and b 4 b ′ then a ` b 4 a′ ` b ′

3. Arbitrary meets distributes over both operands of disjunction, in the sense that for all a ∈ A and
for all subsets B ⊆ A:

(Distributivity)
k

b ∈B

(a ` b) = a ` (
k

b ∈B

b)
k

b ∈B

(b ` a) = (
k

b ∈B

b) ` a

4. Negation of the meet of set is equal to the join of the set of negated elements, in the sense that
for all subsets A ⊆ A:

(Commutation) ¬
k

a∈A

a =
j

a∈A

¬a

y

As in the case of implicative structures, the commutation laws imply the value of the internal laws
when applied to the maximal element >:

Proposition 11.14. If (A,4,`,¬) is a disjunctive structure, then the following hold for all a ∈ A:

1.• >` a = > 2.• a ` > = > 3.• ¬> = ⊥

Proof. Using Proposition 9.4 and the axioms of disjunctive structures, we prove:

1. for all a ∈ A, >` a = (
c
∅) ` a =

c
x,a∈A {x ` a : x ∈ ∅} =

c
∅ = >

2. for all a ∈ A, a ` > = a ` (
c
∅) =

c
x,a∈A {a ` x : x ∈ ∅} =

c
∅ = >

3. ¬> = ¬(
c
∅) =

b
x ∈A {¬x : x ∈ ∅} =

b
∅ = ⊥

�
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11.2.2 Examples of disjunctive structures

11.2.2.1 Dummy structure

Example• 11.15 (Dummy disjunctive structure). Given a complete la�ice (L,4), the following de�-
nitions give rise to a dummy structure that ful�lls the axioms of De�nition 11.13:

a ` b , > ¬a , ⊥ (∀a,b ∈ A)

�e veri�cation of the di�erent axioms is straightforward. y

11.2.2.2 Complete Boolean algebra

Example• 11.16 (Complete Boolean algebras). Let B be a complete Boolean algebra. It encompasses
a disjunctive structure, that is de�ned by:

• A , B
• a 4 b , a 4 b

• a ` b , a ∨ b (∀a,b ∈ A)

• ¬a , ¬a

�e di�erent axioms are direct consequences of Proposition 9.7. y

11.2.3 Disjunctive structure of classical realizability

If we abstract the structure of the realizability interpretation of L̀ (see Section 11.1.3), it is a structure
of the form (T0,E0,V0, (·, ·),[·],⊥⊥) whereV0 ⊆ E0 is the distinguished subset of (positive) values, (·, ·)
is a binary map from E2

0 to E0 (whose restriction toV0 has values inV0), [·] is an operation from T0 to
V0, and ⊥⊥ ⊆ T0 × E0 is a relation4. From this sextuple, we can de�ne:

• A , P (V0) • a ` b , (a,b) = {(V1,V2) : V1 ∈ a ∧V2 ∈ b}

• a 4 b , a ⊇ b • ¬a , [a⊥⊥] = {[t] : t ∈ a⊥⊥} (∀a,b ∈ A)

Proposition 11.17. �e quadruple (A,4,`,¬) is a disjunctive structure.

Proof. We show that the axioms of De�nition 11.13 are satis�ed.
1. (Contravariance) Let a,a′ ∈ A, such that a 4 a′ ie a′ ⊆ a. �en a⊥⊥ ⊆ a′⊥⊥ and thus

¬a = {[t] : t ∈ a⊥⊥} ⊆ {[t] : t ∈ a′⊥⊥} = ¬a′

i.e. ¬a′ 4 ¬a.
2. (Covariance) Let a,a′,b,b ′ ∈ A such that a′ ⊆ a and b ′ ⊆ b. �en we have

a ` b = {(V1,V2) : V1 ∈ a ∧V2 ∈ b} ⊆ {(V1,V2) : V1 ∈ a
′ ∧V2 ∈ b

′} = a′ ` b ′

i.e. a ` b 4 a′ ` b ′.
3. (Distributivity) Let a ∈ A and B ⊆ A, we have:

k

b ∈B

(a ` b) =
k

b ∈B

{(V1,V2) : V1 ∈ a ∧ e2 ∈ b} = {(V1,V2) : V1 ∈ a ∧V2 ∈
k

b ∈B

b} = a ` (
k

b ∈B

b)

4. (Commutation) Let B ⊆ A, we have (recall that
b

b ∈B b =
⋂

b ∈B b):
j

b ∈B

(¬b) =
j

b ∈B

{[t] : t ∈ b⊥⊥} = {[t] : t ∈
j

b ∈B

b⊥⊥} = {[t] : t ∈ (
k

b ∈B

b)⊥⊥} = ¬(
k

b ∈B

b)

�

Remark 11.18. �e same de�nitions taking A , P (E0) instead of P (V0) also satisfy the same prop-
erties. y

4We could also abstract the di�erent properties axiomatizing the pole and the di�erent sets to obtain some kind of “abstract
L̀ structure”, but there is no point in doing this, since it would be less general than the notion of disjunctive structure anyway.
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11.2.4 Interpreting L̀

Following the interpretation of the λ-calculus in implicative structures, we shall now see how L̀ com-
mands can be recovered from disjunctive structures. From now on, we assume given a disjunctive
structure (A,4,`,¬).
11.2.4.1 Commands

We shall begin with the interpretation of commands. �is poses a novel di�culty with respect to the
de�nition of λ-terms in implicative structures. Indeed, we are looking for an interpretation of terms and
contexts, that is to say for both the realizers and the opponents (while in implicative structures we only
interpreted realizers). �erefore, we �rst need to understand what it means for a command (in terms of
the disjunctive structure) to be well-formed, i.e. to be in the pole. For this, we follow the intuition of the
passage from a KOCA to an AKS (see Proposition 9.34). �is translation indeed de�nes the embedding
of a one-sided structure (the KOCA, with a set A of combinators) to a two-sided structure (the AKS,
with a set Λ of realizers and a set Π of opponents). �e induced AKS is indeed de�ned with the same
domain for terms and stacks Λ = Π = A. In this se�ing, the pole ⊥⊥ is simply de�ned as the order
relation on the KOCA: a term t ∈ Λ is orthogonal to a stack π ∈ Π if t 4 π . �is de�nition is in
accordance with the intuition that the order re�ect the quantity of information that a term (resp. stack,
formula, etc…) carries: if the term t can defeat its opponent π , i.e. if t ? π ∈ ⊥⊥, it means indeed that t
is more de�ned than π .

We thus de�ne the commands of the disjunctive structureA as the pair (a,b) (which we continue to
write 〈a ||b〉) with a,b ∈ A, and we de�ne the pole ⊥⊥ as the ordering relation4. We write CA = A×A
for the set of commands in A and (a,b) ∈ ⊥⊥ for a 4 b. Besides, we de�ne an ordering on commands
which extends the intuition that the order re�ect the “de�nedness” of objects: given two commands
c,c ′ in CA , we say that c is lower than c ′ and we write c E c ′ if c ∈ ⊥⊥ implies that c ′ ∈ ⊥⊥. It is
straightforward to check that:

Proposition• 11.19. �e relation E is a preorder.

Besides, the relation E veri�es the following property of variance with respect to the order 4:

Proposition• 11.20 (Commands ordering). For all t ,t ′,π ,π ′ ∈ A, if t 4 t ′ and π ′ 4 π , then 〈t ||π 〉 E
〈t ′ ||π ′〉.

Proof. Trivial by transitivity of 4. �

Finally, it is worth noting that meets are covariant with respect to E and 4, while joins are con-
travariant:

Lemma• 11.21. If c and c ′ are two functions associating to each a ∈ A the commands c (a) and c ′(a) such
that c (a) E c ′(a), then we have:

k

a∈A

{a : c (a) ∈ ⊥⊥} 4
k

a∈A

{a : c ′(a) ∈ ⊥⊥}
j

a∈A

{a : c ′(a) ∈ ⊥⊥} 4
j

a∈A

{a : c (a) ∈ ⊥⊥}

Proof. Assume c,c ′ are such that for all a ∈ A, ca E c ′a. �en it is clear that by de�nition we have the
inclusion {a ∈ A : c (a) ∈ ⊥⊥} ⊆ {a ∈ A : c ′(a) ∈ ⊥⊥}, whence the expected results. �

11.2.4.2 Contexts

We are now ready to de�ne the interpretation of L̀ contexts in the disjunctive structureA. �e inter-
pretation for the contexts corresponding to the connectives is very natural:

288

https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LPar.html#cord_preOrder
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LPar.html#cord_mon
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LPar.html#cord_meet


11.2. DISJUNCTIVE STRUCTURES

De�nition• 11.22 (Pairing). For all a,b ∈ A, we let (a,b) , a ` b. y

De�nition• 11.23 (Boxing). For all a ∈ A, we let [a] , ¬a. y

Note that with these de�nitions, the encodings of pairs and boxes directly inherit of the properties
of the internal law ` and ¬ in disjunctive structures. As for the binder µx .c , which we write µ̃+c , it
should be de�ned in such a way that if c is a function mapping each a ∈ A to a command c (a) ∈ CA ,
then µ+.c should be “compatible” with any a such that c (a) is well-formed (i.e. c (a) ∈ ⊥⊥). As it belongs
to the side of opponents, the “compatibility” means that it should be greater than any such a, and we
thus de�ne it as a join.

De�nition• 11.24 (µ+). For all c : A → CA , we de�ne:

µ+.c :=
j

a∈A

{a : c (a) ∈ ⊥⊥}
y

�ese de�nitions enjoy the following properties with respect to the β-reduction and theη-expansion
(compare with Proposition 10.17):

Proposition 11.25 (Properties of µ+). For all functions c,c ′ : A → CA , the following hold:

1.• If for all a ∈ A, c (a) E c ′(a), then µ+.c ′ 4 µ+.c (Variance)

2.• For all t ∈ A, then 〈t ||µ+.c〉E c (t ) (β-reduction)

3.• For all e ∈ A, then t = µ+.(a 7→ 〈a ||e〉) (η-expansion)

Proof. 1. Direct consequence of Proposition 11.21.
2,3. Trivial by de�nition of µ+.

�

Remark 11.26 (Subject reduction). �e β-reduction c →β c
′ is re�ected by the ordering relation cEc ′,

which reads “if c is well-formed, then so is c ′”. In other words, this corresponds to the usual property of
subject reduction. In the sequel, we will see that β-reduction rules of L̀ will always been re�ected in
this way through the embedding in disjunctive structures. y

11.2.4.3 Terms

Dually to the de�nitions of (positive) contexts µ+ as a join, we de�ne the embedding of (negative) terms,
which are all binders, by arbitrary meets:

De�nition• 11.27 (µ−). For all c : A → CA , we de�ne:

µ−.c :=
k

a∈A

{a : c (a) ∈ ⊥⊥}
y

De�nition• 11.28 (µ ()c). For all c : A2 → CA , we de�ne:

µ () .c :=
k

a,b ∈A

{a ` b : c (a,b) ∈ ⊥⊥}

y

De�nition• 11.29 (µ[]). For all c : A → CA , we de�ne:

µ[].c :=
k

a∈A

{¬a : c (a) ∈ ⊥⊥}
y
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�ese de�nitions also satisfy some variance properties with respect to the preorderE and the order
relation 4, namely, negative binders for variable ranging over positive contexts are covariant, while
negative binders intended to catch negative terms are contravariant.

Proposition 11.30 (Variance). For any functions c,c ′ with the corresponding arities, the following hold:

1.• If c (a) E c ′(a) for all a ∈ A, then µ−.c 4 µ−.c ′

2.• If c (a,b) E c ′(a,b) for all a,b ∈ A, then µ () .c 4 µ () .c ′

3.• If c (a) E c ′(a) for all a ∈ A, then µ[].c ′ 4 µ[].c

Proof. Direct consequences of Proposition 11.21. �

�e η-expansion is also re�ected as usual by the ordering relation 4:

Proposition 11.31 (η-expansion). For all t ∈ A, the following holds:

1.• t = µ−.(a 7→ 〈t ||a〉)

2.• t 4 µ () .(a,b 7→ 〈t ||(a,b)〉)

3.• t 4 µ[].(a 7→ 〈t ||[a]〉)

Proof. Trivial from the de�nitions. �

�e β-reduction is re�ected by the preorder E:

Proposition 11.32 (β-reduction). For all e,e1,e2,t ∈ A, the following holds:

1.• 〈µ−.c ||e〉E c (e )

2.• 〈µ () .c ||(e1,e2)〉E c (e1,e2)

3.• 〈µ[].c ||[t]〉E c (t )

Proof. Trivial from the de�nitions. �

Finally, we call a L̀ term with parameters in A (resp. context, command) any L̀ term (possibly)
enriched with constants taken in the set A. Commands with parameters are equipped with the same
rules of reduction as in L̀ , considering parameters as inert constants. To every closed L̀ term t (resp.
context e ,command c) we associate an element tA (resp. eA , cA) of A, de�ned by induction on the
structure of t as follows:

Contexts :
aA , a

(e1,e2)
A , (eA1 ,e

A
2 )

[t]A , [tA]
(µx .c )A , µ− (a 7→ (c[x := a])A )

Terms :
aA , a

(µα .c )A , µ− (a 7→ (c[α := a])A )
(µ (α1,α2).c )

A , µ () (a,b 7→ (c[α1 := a,α2 := b])A )
(µ[x].c )A , µ[] (a 7→ (c[x := a])A )

Commands: 〈t ||e〉A , 〈tA ||eA〉)

In particular, this de�nition has the nice property of making the pole ⊥⊥ (i.e. the order relation 4)
closed under anti-reduction, as re�ected by the following property of E:

Proposition 11.33 (Subject reduction). For any closed commands c1,c2 of L̀ , if c1 →β c2 then cA1 Ec
A
2 ,

i.e. if cA1 belongs to ⊥⊥ then so does cA2 .

Proof. Direct consequence of Propositions 11.25 and 12.22. �
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11.2.5 Adequacy

We shall now prove that the interpretation of L̀ is adequate with respect to its type system. Again, we
extend the syntax of formulas to de�ne second-order formulas with parameters by:

A,B ::= a | X | ¬A | A` B | ∀X .A (a ∈ A)

�is allows us to embed closed formulas with parameters into the disjunctive structureA. �e embed-
ding is trivially de�ned by:

aA , a

(¬A)A , ¬AA

(A` B)A , AA ` BA

(∀X .A)A ,
c

a∈A (A{X := a})A

(if a ∈ A)

As for the adequacy of the interpretation for the second-order λc -calculus, we de�ne substitutions,
which we write σ , as functions mapping variables (of terms, contexts and types) to element of A:

σ ::= ε | σ [x 7→ a] | σ [α 7→ a] | σ [X 7→ a] (a ∈ A, x ,X variables)

In the spirit of the proof of adequacy in classical realizability, we say that a substitution σ realizes a
typing context Γ, which write σ  Γ, if for all bindings (x : A) ∈ Γ we have σ (x ) 4 (A[σ ])A . Dually,
we say that σ realizes ∆ if for all bindings (α : A) ∈ ∆ , we have σ (α ) < (A[σ ])A . We can now prove

�eorem 11.34 (Adequacy). �e typing rules of L̀ (Figure 11.1) are adequate with respect to the inter-
pretation of terms (contexts,commands) and formulas. Indeed, for all contexts Γ,∆, for all formulas with
parameters A then for all substitutions σ such that σ  Γ and σ  ∆, we have:

1. for any term t , if Γ ` t : A | ∆, then (t[σ ])A 4 A[σ ]A ;

2. for any context e , if Γ | e : A ` ∆, then (e[σ ])A < A[σ ]A ;

3. for any command c , if c : (Γ ` ∆), then (c[σ ])A ∈ ⊥⊥.

Proof. By induction over the typing derivations.

• Case (Cut). Assume that we have:

Γ ` t : A | ∆ Γ | e : A ` ∆
〈t ||e〉 : Γ ` ∆ (Cut)

By induction hypotheses, we have (t[σ ])A 4 A[σ ]A and (e[σ ])A < A[σ ]A . By transitivity of the
relation 4, we deduce that (t[σ ])A 4 (e[σ ])A , so that (〈t ||e〉[σ ])A ∈ ⊥⊥.

• Case (` ax ). Straightforward, since if (x : A) ∈ Γ, then (x[σ ])A 4 (A[σ ])A . �e case (ax `) is
identical.

• Case (` µ). Assume that we have:

c : Γ ` ∆,α : A
Γ ` µα .c : A | ∆

(`µ )

By induction hypothesis, we have that (c[σ ,α 7→ (A[σ ])A])A ∈ ⊥⊥. �en, by de�nition we have:

((µα .c )[σ ])A = (µα .(c[σ ]))A =
k

b ∈A

{b : (c[σ ,α 7→ b])A ∈ ⊥⊥} 4 (A[σ ])A
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• Case (µ `). Similarly, assume that we have:

c : Γ,x : A ` ∆
Γ | µx .c : A ` ∆

(µ `)

By induction hypothesis, we have that (c[σ ,x 7→ (A[σ ])A])A ∈ ⊥⊥. �erefore, we have:

((µx .c )[σ ])A = (µx .(c[σ ]))A =
j

b ∈A

{b : (c[σ ,x 7→ b])A ∈ ⊥⊥} < (A[σ ])A .

• Case (` `). Assume that we have:

Γ | e1 : A1 ` ∆ Γ | e2 : A2 ` ∆

Γ | (e1,e2) : A1 `A2 ` ∆
(` `)

By induction hypotheses, we have that (e1[σ ])A < (A1[σ ])A and (e2[σ ])A < (A2[σ ])A . �erefore, by
monotonicity of the ` operator, we have:

((e1,e2)[σ ])A = (e1[σ ],e2[σ ])A = (e1[σ ])A ` (e2[σ ])A < (A1[σ ])A ` (A2[σ ])A .

• Case (` `). Assume that we have:

c : Γ ` ∆,α1 : A1,α2 : A2
Γ ` µ (α1,α2).c : A1 `A2 | ∆

(``)

By induction hypothesis, we get that (c[σ ,α1 7→ (A1[σ ])A ,α2 7→ (A2[σ ])A])A ∈ ⊥⊥. �en by de�nition
we have

((µ (α1,α2).c )[σ ])A =
k

a,b ∈A

{a ` b : (c[σ ,α1 7→ a,α2 7→ b])A ∈ ⊥⊥} 4 (A1[σ ])A ` (A2[σ ])A .

• Case (¬ `). Assume that we have:

Γ ` t : A | ∆
Γ | [t] : ¬A ` ∆

(¬ `)

By induction hypothesis, we have that (t[σ ])A 4 (A[σ ])A . �en by de�nition of [ ]A and covariance
of the ¬ operator, we have:

([t[σ ]])A = ¬(t[σ ])A < ¬(A[σ ])A .

• Case (` ¬). Assume that we have:

c : Γ,x : A ` ∆
Γ ` µ[x].c : ¬A | ∆

(`¬)

By induction hypothesis, we have that (c[σ ,x 7→ (A[σ ])A])A ∈ ⊥⊥. �erefore, we have:

((µ[x].c )[σ ])A = (µ[x].(c[σ ]))A =
k

b ∈A

{¬b : (c[σ ,x 7→ b])A ∈ ⊥⊥} 4 ¬(A[σ ])A .

• Case (∀ `) . Assume that we have:

Γ ` e : A{X := B} | ∆
Γ | e : ∀X .A ` ∆ (∀`)

By induction hypothesis, we have that (e[σ ])A < ((A{X := B})[σ ])A = (A[σ ,X 7→ (B[σ ])A])A .
�erefore, we have that (e[σ ])A < (A[σ ,X 7→ (B[σ ])A])A <

c
b ∈A {A{X := b}[σ ]A }.
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• Case (` ∀) . Similarly, assume that we have:

Γ ` t : A | ∆ X < FV (Γ,∆)

Γ ` t : ∀X .A (`∀)

By induction hypothesis, we have that (t[σ ])A 4 (A[σ ,X 7→ b])A for any b ∈ A. �erefore, we have
that (t[σ ])A 4

c
b ∈A (A{X := b}[σ ]A ). �

11.3 From disjunctive to implicative structures

11.3.1 �e induced implicative structure

Recall that the implication is de�ned in terms of the disjunction and the negation by:

a →̀ b , ¬a ` b

�is de�nition can be re�ected at the level of disjunctive structures in the sense that it directly
induces an implicative structure:

Proposition• 11.35. If (A,4,`,¬) is a disjunctive structure, then (A,4,→̀) is an implicative structure.

Proof. We need to show that the de�nition of the arrow ful�lls the expected axioms:

1. (Variance) Let a,b,a′,b ′ ∈ A be such that a′ 4 a and b 4 b ′, then we have:

a →̀ b = ¬a ` b 4 ¬a′ ` b ′ = a′ →̀ b ′

since ¬a 4 ¬a′ by contra-variance of the negation and b 4 b ′.
2. (Distributivity) Let a ∈ A and B ⊆ A, then we have:

k

b ∈B

(a →̀ b) =
k

b ∈B

(¬a ` b) = ¬a ` (
k

b ∈B

b) = a →̀ (
k

b ∈B

b)

by distributivity of the in�mum over the disjunction.

�

�erefore, we can again de�ne for all a,b of A the application ab as well as the abstraction λ f for
any function f from A to A;

ab ,
k
{c ∈ A : a 4 b →̀ c} λ f ,

k

a∈A

(a →̀ f a)

We get for free the properties of these encodings in implicative structures:

Proposition 10.15 (Properties of abstraction and application). �e following properties hold for all
a,a′,b,b ′,c ∈ A and for all f ,д : A → A,

1.• If a 4 a′ and b 4 b ′, then ab 4 a′b ′. (Monotonicity of application)

2.• If f (a) 4 д(a) for all a ∈ A, then λ f 4 λд. (Monotonicity of abstraction)

3.• (λ f )a 4 f a. (β-reduction)

4.• a 4 λ(x 7→ ax ). (η-expansion)

5.• If ab 4 c then a 4 b →̀ c . (Adjunction)
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11.3.2 Interpretation of the λ-calculus

Up to this point, we de�ned two ways of interpreting a λ-term into a disjunctive structures, either
through the implicative structure which is induced by the disjunctive one, or by embedding into the
L̀ -calculus which is then interpreted within the disjunctive structure. As a sanity check, we verify that
both coincide.
Lemma• 11.36. �e shorthand µ ([x],α ).c is interpreted in A by:

(µ ([x],α ).c )A =
k

a,b ∈A

{(¬a) ` b : c[x := a,α := b] ∈4}

Proof.

µ ([x],α ).c )A = (µ (x0,α ).〈µ[x].c ||x0〉)
A

=
k

a′,b ∈A

{a′ ` b : (〈µ[x].c[α := b]||a′〉)A ∈4}

=
k

a′,b ∈A

{a′ ` b : (
k

a∈A

{¬a : cA[x := a,α := b] ∈4} 4 a′}

=
k

a,b ∈A

{(¬a) ` b : cA[x := a,α := b] ∈4}

�

Proposition 11.37 (λ-calculus). LetA` = (A,4,`,¬) be a disjunctive structure, andA→ = (A,4,→̀)
the implicative structure it canonically de�nes, we write ι for the corresponding inclusion. Let t be a closed
λ-term (with parameter in A), and ~t� his embedding in L̀ . �en we have

ι (tA
→

) = ~t�A
`

where tA
→

(resp. tA
`

) is the interpretation of t within A→ (resp. A`).

In other words, this proposition expresses the fact that the following diagram commutes:

λ-calculus L̀

(A→,4,→) (A`,4,`,¬)

~ �

[ ]A→ [ ]A`

ι

Proof. By induction over the structure of terms.

• Case a for some a ∈ A`. �is case is trivial as both terms are equal to a.

• Case λx .u. We have ~λx .u� = µ ([x],α ).〈~t� ||α〉 and

(µ ([x],α ).〈~t� ||α〉)A`
=

k

a,b ∈A

{¬a ` b : (~t[x := a]�A`
,b) ∈ ⊥⊥}

=
k

a,b ∈A

{¬a ` b : ~t[x := a]�A`
4 b}

=
k

a∈A

(¬a ` ~t[x := a]�A`
)
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On the other hand,

ι ([λx .t]A→ ) = ι (
k

a∈A

(a →̀ (t[x := a])A→ )) =
k

a∈A

(¬a ` ι (t[x := a]A→ ))

Both terms are equal since ~t[x := a]�A`
= ι (t[x := a])A→ ) by induction hypothesis.

• Case uv .
On the one hand, we have ~uv� = µ (α ).〈~u� ||([~v�],α )〉 and

(µ (α ).〈~u� ||([~v�],α )〉)A`
=

k

a∈A

{a : (~u�A`
, (¬~v�A

` ` a)) ∈ ⊥⊥}

=
k

a∈A

{a : ~u�A`
4 (¬~v�A

` ` a)}

On the other hand,

ι ([uv]A→ ) = ι (
k

a∈A

{a : (uA→ ) 4 (vA
→

) →̀ a}) =
k

a∈A

{a : ι (uA→ ) 4 ¬(ι (vA→ ) ` a}))

Both terms are equal since ~u�A`
= ι (uA

→

) and ~v�A`
= ι (vA

→

) by induction hypotheses. �

11.4 Disjunctive algebras

11.4.1 Separation in disjunctive structures

We shall now introduce the notion of disjunctive separator. To this purpose, we adapt the de�nition of
implicative separators, using Bourbaki’s axioms for the disjunction and the negation instead of Hilbert’s
combinators s and k. We recall these axioms, which are taken from [21, p.25], to which we added the
��h one:

S1 : (A ∨A) → A
S2 : A→ (A ∨ B)
S3 : (A ∨ B) → (B ∨A)
S4 : (A→ B) → ((C ∨A) → (C ∨ B))
S5 : (A ∨ (B ∨C )) → ((A ∨ B) ∨C )

Remark 11.38 (About S5). �e last axiom will mostly be used to swap the premises of an arrow from
A→ B → C to B → A→ C . In his book, Bourbaki does not need such an operation since he is interested
in the provability of such an arrow, for which he can introduceA and B as hypotheses and try to proveC
using these hypotheses in an arbitrary order. �erefore, the order of the premises is somehow irrelevant
in his approach. On the opposite, we shall now contemplate the notion of separation (just like in the
previous chapter). Typically, we will have to determine whether an element a → b belongs to a given
separator, which is di�erent from determining if b belongs to the separator knowing that a is in it. In
this sense, we are facing a situation which is di�erent from Bourbaki’s se�ing.

Besides, viewed as a combinator, the ��h axiom is clearly independent from the others: it is the
only one that allows us to decompose the operand of a disjunction as a disjunction itself (S1-S4 only
consider premises/conclusions of the form A, A∨ B or (¬A) ∨ B). Even though this informal argument
could appear as not enough convincing, we believe that the question of knowing whether S5 is an axiom
properly speaking is not of big interest here. If it is, then there is no point in considering the stronger
notion of (non-associative) disjunctive algebra since all the realizability algebras are associative. If it is
not, this simply means that there is a way to compile the corresponding combinator thanks to the �rst
four, just like i can be retrieved by skk in implicative algebras. y
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Let (A,4,`,¬) be a �xed disjunctive structure. We thus de�ne the combinators that canonically
correspond to the previous axioms:

s`1 ,
c

a∈A [(a ` a) → a]
s`2 ,

c
a,b ∈A [a → (a ` b)]

s`3 ,
c

a,b ∈A [(a ` b) → b ` a]
s`4 ,

c
a,b,c ∈A [(a → b) → (c ` a) → (c ` b)]

s`5 ,
c

a,b,c ∈A [(a ` (b ` c )) → ((a ` b) ` c )]

Separators for A are de�ned similarly to the separators for implicative structures, replacing the com-
binators k,s and cc by the previous ones.

De�nition• 11.39 (Separator). We call separator for the disjunctive structure A any subset S ⊆ A
that ful�lls the following conditions for all a,b ∈ A:

(1) If a ∈ S and a 4 b then b ∈ S (upward closure)

(2) s1,s2,s3,s4 and s5 are in S (combinators)

(3) If a → b ∈ S and a ∈ S then b ∈ S (closure under modus ponens)

A separator S is said to be consistent if ⊥ < S. y

Remark• 11.40 (Alternative de�nition). As for implicative structures (Remark 10.29), in presence of
condition (1), condition (3) is equivalent to the following condition:

(3’) If a ∈ S and b ∈ S then ab ∈ S (closure under application)

�e proof is exactly the same:

• (3) ⇒(3’): If a ∈ S and b ∈ S, since a 4 b → ab (Section 11.3.1) by upward closure we have
b → ab ∈ S, and thus ab ∈ S by modus ponens .

• (3’)⇒(3): If a ∈ S and a → b ∈ S, then (a → b)a ∈ S by closure under application. Since
(a → b)a 4 b (Section 11.3.1) by upward closure we conclude that b ∈ S.

y

De�nition• 11.41 (Disjunctive algebra). We call disjunctive algebra the given of a disjunctive structure
(A,4,`,¬) together with a separator S ⊆ A. A disjunctive algebra is said to be consistent if its
separator is. y

Remark 11.42. �e reader may notice that in this chapter, we do not distinguish between classical
and intuitionistic separators. Indeed, L̀ and the corresponding fragment of the sequent calculus are
intrinsically classical. As we shall see therea�er, so are the disjunctive algebras: the negation is always
involutive modulo the equivalence �S (Proposition 11.58). y

Example• 11.43 (Complete Boolean algebras). Once again, if B is a complete Boolean algebra, B
induces a disjunctive structure in which it is easy to verify that the combinators s`1 ,s`3 ,s`3 ,s`4 and s`5
are equal to the maximal element >. �erefore, the singleton {>} is a valid separator for the induced
disjunctive structure and any non-degenerated complete Boolean algebras thus induces a consistent
disjunctive algebra. In fact, the �lters for B are exactly its separators. y
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11.4.2 Disjunctive algebra from classical realizability

Recall that any model of classical realizability based on the L̀ -calculus induces a disjunctive structure,
where:

• A , P (V0) • a ` b , (a,b) = {(e1,e2) : e1 ∈ a ∧ e2 ∈ b}

• a 4 b , a ⊇ b • ¬a , [a⊥⊥] = {[v] : v ∈ a⊥⊥} (∀a,b ∈ A)

As in the implicative case, the set of formulas realized by a closed term5, that is to say:

S⊥⊥ , {a ∈ P (V
+

0 ) : a⊥⊥ ∩ T0 , ∅}

de�nes a valid separator. �e conditions (1) and (3) are clearly veri�ed (for the same reasons as in the
implicative case), but we should verify that the formulas corresponding to the combinators are indeed
realized.

Let us then consider the following closed terms:

PS1 , µ ([x],α ).〈x ||(α ,α )〉
PS2 , µ ([x],α ).〈µ (α1,α2).〈x ||α1〉||α〉

PS3 , µ ([x],α ).〈µ (α1,α2).〈x ||(α2,α1)〉||α〉

PS4 , µ ([x],α ).〈µ ([y],β ).〈µ (γ ,δ ).〈y ||(γ ,µz.〈x ||([z],δ )〉〉||β〉||α〉
PS5 , µ ([x],α ).〈µ (β ,α3).〈µ (α1,α2).〈x ||(α1, (α2,α3))〉||β〉||α〉

Proposition 11.44. �e previous terms have the following types in L̀ :

1. ` PS1 : ∀A.(A`A) → A |

2. ` PS2 : ∀AB.A→ A` B |

3. ` PS3 : ∀AB.A` B → B `A |

4. ` PS4 : ∀ABC .(A→ B) → (C `A→ C ` B) |

5. ` PS5 : ∀ABC .(A` (B `C )) → ((A` B) `C ) |

Proof. Straightforward typing derivations in L̀ . �

We deduce that S⊥⊥ is a valid separator:

Proposition 11.45. �e quintuple (P (V0),4,`,¬,S⊥⊥) as de�ned above is a disjunctive algebra.

Proof. Conditions (1) and (3) are trivial. Condition (2) follows from the previous proposition and the
adequacy lemma for the realizability interpretation of L̀ (Proposition 11.10). �

11.4.3 About the combinators

�e interpretations of the terms PS1,PS2,PS3 and PS5 are equal to their principal types.

Proposition• 11.46. We have:

(PS1)
A =

k

a∈A

((a ` a) → a)

5As in the λµµ̃-calculus (see Section 4.4.5), proof-like terms in L̀ simply correspond to closed terms.
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Proof. By de�nition, we have:

(PS1)
A = (µ ([x],α ).〈x ||(α ,α )〉)A =

k

α ,x ∈A

{x → α : x 4 (α ` α )}

Let α ,x be elements of A such that x 4 α ` α . �en by covariance of the arrow and de�nition of the
meet, we deduce that: k

a∈A

{(a ` a) → a} 4 (α ` α ) → α 4 x → α

and this being true for any α ,x ∈ A, we obtain:
k

a∈A

{(a ` a) → a} 4
k

α ,x ∈A

{x → α : x 4 (α ` α )} = (PS1)
A

�e converse inequality can be proved the same way, or can be directly deduced using Proposition 12.29
and the adequacy L̀ typing rules (Proposition 11.34). �

Proposition• 11.47. We have:
(PS2)

A =
k

a,b ∈A

(a → a ` b)

Proof. By de�nition, we have:

(PS2)
A = (µ ([x],α ).〈µ (α1,α2).〈x ||α1〉||α〉)

A =
k

α ,x ∈A

{x → α :
k

α1,α2∈A

{α1 ` α2 : x 4 α1} 4 α }

Using the distributivity of meets over the disjunction, one observe that for any �xed a:
k

α1,α2∈A

{α1 ` α2 : x 4 α1} =
( k

α1∈A

{α1 : x 4 α1}
) ` ( k

α2∈A

{α2}
)
= x ` ⊥

�erefore, we can directly prove that:

(PS2)
A =

k

α ,x ∈A

{x → α : x ` ⊥ 4 α } =
k

α ,x ∈A

{x → x ` ⊥} = k

a,b ∈A

{a → (a ` b)}

�

Proposition• 11.48. We have:

(PS3)
A =

k

a,b ∈A

(a ` b → b ` a)

Proof. We want to prove the inequality from right to le�, the other one being a consequence of semantic
typing. By de�nition, we have:

(PS3)
A = (µ ([x],α ).〈µ (α1,α2).〈x ||(α2,α1)〉||α〉)

A =
k

α ,x ∈A

{
x → α :

k

α1,α2∈A

{α1 ` α2 : x 4 α2 ` α1} 4 α
}

Let α ,x be elements of A such that
c
α1,α2∈A

{α1 ` α2 : x 4 α2 ` α1} 4 α . Using the variance of the
arrow we obtain that:

x →
k

α1,α2∈A

{α1 ` α2 : x 4 α2 ` α1} 4 x → α
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Using the commutation of meet and par, we have:

x →
k

α1,α2∈A

{α1 ` α2 : x 4 α2 ` α1} =
k

α1,α2∈A

{x → α1 ` α2 : x 4 α2 ` α1}

Let then α1,α2 be elements of A such that x 4 α2 ` α1, using the variance of the arrow, we deduce
that: k

a,b ∈A

(a ` b → b ` a) 4 α1 ` α2 → α2 ` α1 4 x → α2 ` α1

Recollecting the pieces, we deduce (by introduction of the meet over α1,α2) that:
k

a,b ∈A

(a ` b → b ` a) 4 x →
k

α1,α2∈A

{α1 ` α2 : x 4 α2 ` α1} 4 x → α

and �nally (by introduction of the meet over α ,x ) that:
k

a,b ∈A

(a ` b → b ` a) 4
k

α ,x ∈A

{
x → α :

k

α1,α2∈A

{α1 ` α2 : x 4 α2 ` α1} 4 α
}
= (PS3)

A

�

Proposition• 11.49. We have:

(PS5)
A =

k

a,b,c ∈A

((a ` (b ` c )) → ((a ` b) ` c )

Proof. Once more, we only want to prove the inequality from right to le�, the other one being a con-
sequence of semantic typing. By de�nition, we have:

(PS5)
A = (µ ([x],α ).〈µ (β ,α3).〈µ (α1,α2).〈x ||(α1, (α2,α3))〉||β〉||α〉)

A

=
c
α ,x ∈A

{
x → α :

c
β,α3∈A

{
β ` α3 :

c
α1,α2∈A

{α1 ` α2 : x 4 α1 ` (α2 ` α3)} 4 β
}
4 α

}
=

c
x,β,α3∈A

{
x → (β ` α3) :

c
α1,α2∈A

{α1 ` α2 : x 4 α1 ` (α2 ` α3)} 4 β
}

=
c

x,α3,α1,α2∈A
{x → (α1 ` α2) ` α3 : x 4 α1 ` (α2 ` α3)}

Let x ,α3,α1,α2 be elements of A such that x 4 α1 ` (α2 ` α3). Using the covariance of the arrow on
the le�, and by de�nition of meets, we get that:

k

a,b,c ∈A

((a ` (b ` c )) → ((a ` b) ` c ) 4 α1 ` (α2 ` α3) → (α1 ` α2) ` α3 4 x → (α1 ` α2) ` α3

�us, we can conclude (by introduction of the meet over x ,α3,α2,α1) that:
k

a,b,c ∈A

((a ` (b ` c )) → ((a ` b) ` c ) 4
k

x,α3,α1,α2∈A

{x → (α1 ` α2) ` α3 : x 4 α1 ` (α2 ` α3)} = (PS5)
A

�

Remark• 11.50. Before turning to the study of the internal logic of disjunctive algebras, we should
say a word on the missing equality for PS4 and s`4 . In contrast with the other four L̀ terms, PS4 makes
use of a context µx .c . �rough the embedding, this binder is translated into a join and we get:

PSA4 =
k

x,α ∈A

{x → α :
k

y,β ∈A

{y → β :
k

γ ,δ ∈A

{γ ` δ : y 4 γ ` j

z∈A

{z : x 4 z → δ }} 4 β } 4 α }
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By manipulation of the meets with their commutation, we can reduce it to:

PSA4 =
k

x,b,cA

{x → (c ` j

z∈A

{z : x 4 z → b}} → (c ` b)}

Nonetheless, this is a priori the best we can do, in the absence of commutation law for the join. In
particular, there is no way to prove that s`4 =

c
a,b,c ∈A ((a → b) → (c ` a) → (c ` b)) is lower than

this term, given a �xed x , there is no way to �nd two elements a and b such that x 4 a → b. Of course,
if the disjunctive algebra has extra commutations (of joins with the negation and the disjunction), the
equality holds, but in this case the disjunctive algebra is in fact a Boolean algebra. y

11.4.4 Internal logic

11.4.4.1 Entailment

As in the case of implicative algebras, we de�ne a relation of entailment:

De�nition• 11.51 (Entailment). For all a,b ∈ A, we say that a entails b and write a `S b if a → b ∈ S.
We say that a and b are equivalent and write a �S b if a `S b and b `S a. y

From the combinators, we directly get that:

Proposition 11.52 (Combinators). For all a,b,c ∈ A, the following holds:

1.• (a ` a) ` a

2.• a ` (a ` b)

3.• (a ` b) ` (b ` a)

4.• (a → b) ` (c ` a) → (c ` b)

5.• a ` (b ` c ) ` (a ` b) ` c

Proposition 11.53 (Preorder). For any a,b,c ∈ A, the following holds:

1.• a `S a (Re�exivity)

2.• if a `S b and b `S c then a `S c (Transitivity)

Proof. We �rst that (2) holds by applying twice the closure by modus ponens, then we use it with the
relation a `S a ` a and a ` a `S proven above to get 1. �

We could pursue our investigation about the properties of the entailment relation as we did in
implicative algebras. Unfortunately, in comparison with the implicative se�ing, we are lacking of a
powerful proof tool. Indeed, remember that for implicative algebras, we were able to compute directly
with truth values, mainly thanks to the fact that any separator contains all closed λ-terms. �is state-
ment was proven using the combinatorial completeness of the separators k and s with respect to the
λ-calculus. Here, we are in a situation drastically di�erent: �rst of all, we do not have any clue about
a potential completeness of PS1, ...,PS5 with respect to L̀ . And even if we were having such a result,
since PSA4 is not equal to s`4 , we still could not use it to prove that every closed L̀ term is in the
separator.

In a nutshell, we are in a situation where we have to do realizability with only a �nite set of realizers,
and the possibility of examining the structure of falsity values case by case. In particular, most of the
proof we present therea�er rely on technical lemmas requiring tedious and boring proofs. We shall skip
some details, taking advantage of our formalization which should help the reader to convince himself
that we are not hiding di�culties under the carpet. �e key lemma in this situation is the closure of
the separator under application (condition (3’)). Indeed, it allows us to prove the following technical
lemmas, which are generalized forms of modus ponens and transitivity, compatible with meets:
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Lemma• 11.54 (Generalized modus ponens). For all subsets A,B ⊆ A, if
c

a∈A,b ∈B (a → b) ∈ S and
(
c

a∈A a) ∈ S, then (
c

b :B b) ∈ S.

Proof. Let A,B ⊆ A be two subsets ofA such that tab ,
c

a∈A,b ∈B (a → b) ∈ S and ta , (
c

a∈A a) ∈ S.
�en by closure under application, we have tabta ∈ S. Using the upward closure, it only remains to
prove that:

tabta 4 (
k

b :B
b)

which is an easy manipulation of meets using the adjunction. �

Lemma• 11.55 (Generalized transitivity). For any subsets A,B,C ⊆ A, if
c

a∈A,b ∈B (a → b) ∈ S andc
b ∈B,c ∈C (b → c ) ∈ S, then

c
a∈A,c ∈C (a → c ) ∈ S.

Proof. LetA,B,C ⊆ A be some �xed sets, such that tab ,
c

a∈A,b ∈B (a → b) ∈ S and tbc =
c

b ∈B,c ∈C (b →
c ) ∈ S. �en we have s`4 tab tbc ∈ S, and it su�ces to show that

s`4 tbc tab =
*.
,

k

a,b,c ∈A

(a → b) → (c ` a) → (c ` b)+/
-
tbc tab 4

k

a∈A,c ∈C

(a → c )

�is is proved again by a straightforward manipulation of the meets using the adjunction. �

As a corollary, we can for instance use the previous lemma to show that:

Proposition• 11.56 (i). We have IA =
c

a∈A (a → a) ∈ S.

Proof. Simple application of Lemma 11.55 to compose s`2 and s`1 . �

11.4.4.2 Negation

We can relate the primitive negation to the one induced by the underlying implicative structure:

Proposition 11.57 (Implicative negation). For all a ∈ A, the following holds:

1.• ¬a `S a → ⊥ 2.• a → ⊥ `S ¬a

Proof. We prove in both cases a slightly more general statement, namely that the meet over all a,b or
the corresponding implication belongs to the separator. �e �rst item follows directly from the fact
that s`2 belongs to the separator, since

c
a∈A (¬a) → (a → ⊥) =

c
a∈A (¬a) → (¬a ` ⊥).

For the second item, the �rst step is to apply Lemma 11.55 with the following hypotheses:
k

a∈A

((a → ⊥) → a → ¬a) ∈ S
k

a∈A

(a → ¬a) → ¬a ∈ S

�e statement on the le� hand-side is proved by subtyping from the identity. On the right hand-side,
we use twice Lemma 11.54 to prove that:

k

a∈A

(a → a) → (¬a → ¬a) → (a → ¬a) → ¬a ∈ S

�e two extra hypotheses are trivially subtypes of the identity again. �is statement follows from this
more general property (recall that a → a = ¬a ` a):

k

a,b ∈A

(a ` b) → a + b

that we shall prove therea�er (see Proposition 11.59). �
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Additionally, we can show that the principle of double negation elimination is valid with respect to
any separator:

Proposition 11.58 (Double negation). For all a ∈ A, the following holds:

1.• a `S ¬¬a 2.• ¬¬a `S a

Proof. �e �rst item is easy since for all a ∈ A, we have a → ¬¬a = (¬a)`¬¬a �S ¬¬a`¬a = ¬a →
¬a. As for the second item, we use Lemma 11.55 and Proposition 11.57 to it reduce to the statement:

k

a∈A

((¬a) → ⊥) → a ∈ S

We use again Lemma 11.55 to prove it, by showing that:
k

a∈A

((¬a) → ⊥) → (¬a) → a ∈ S
k

a∈A

((¬a) → a) → (¬a) → a ∈ S

where the statement on the le� hand-side from by subtyping from the identity. For the one on the right
hand-side, we use the same trick as in the last proof in order to reduce it to:

k

a∈A

(a → ¬a) → (a → a) → (¬a → a) → a) ∈ S

�

11.4.4.3 Sum type

As in implicative structures, we can de�ne the sum type by:

a + b ,
k

c ∈A

((a → c ) → (b → c ) → c ) (∀a,b ∈ A)

We can prove that the disjunction and this sum type are equivalent from the point of view of the
separator:

Proposition 11.59 (Implicative sum type). For all a,b ∈ A, the following holds:

1.• a ` b `S a + b 2.• a + b `S a ` b

Proof. We prove in both cases a slightly more general statement, namely that the meet over all a,b or
the corresponding implication belongs to the separator. For the �rst item, we have:

k

a,b ∈A

(a ` b) → a + b =
k

a,b,c ∈A

(a ` b) → (a → c ) → (b → c ) → c

Swapping the order of the arguments, we prove that
c

a,b,c ∈A (b → c ) → (a ` b) → (a → c ) → c ∈ S.
For this, we use Lemma 11.55 and the fact that:

k

a,b,c ∈A

(b → c ) → (a ` b) → (a ` c ) ∈ S
k

a,c ∈A

(a ` c ) → (a → c ) → c ∈ S

�e le� hand-side statement is proved using s`4 , while on the right hand-side we prove it from the fact
that: k

a,c ∈A

(a → c ) → (a ` c ) → c ` c ∈ S
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which is a subtype of s`4 , by using Lemma 11.55 again with s`1 and by manipulation on the order of the
argument.

�e second item is easier to prove, using Lemma 11.55 again and the fact that:
k

a,b ∈A

a + b → (a → (a ` b)) → (b → (a ` b)) → (a ` b) ∈ S

which is a subtype of IA (which belongs to S). �e other part, which is to prove that:
k

a,b ∈A

((a → (a ` b)) → (b → (a ` b)) → (a ` b)) → (a ` b) ∈ S

follows from Lemma 11.54 and the fact that
c

a,b ∈A (a → (a ` b)) and
c

a,b ∈A (b → (a ` b)) are both
in the separator.

�

11.4.5 Induced implicative algebras

We shall now prove that the combinators de�ning implicative separators also belong to any disjunctive
separator. Since conditions (1) and (3) of disjunctive and implicative separators are equal, this will in
particular prove that any disjunctive algebra is a particular case of implicative algebra.

Proposition• 11.60 (Combinator kA). For any disjunctive algebra (A,4,`,¬,S), we have kA ∈ S.

Proof. �is directly follows by upwards closure from the fact that
c

a,b ∈A a → (b ` a) ∈ S. �

Proposition• 11.61 (Combinator sA). For any disjunctive algebra (A,4,`,¬,S), we have sA ∈ S.

Proof. We make several applications of Lemmas 11.55 and 11.54 consecutively. We prove that:
k

a,b,c ∈A

((a → b → c ) → (a → b) → a → c ) ∈ S

is implied by Lemma 11.55 and:
k

a,b,c ∈A

((a → b → c ) → (b → a → c )) ∈ S and
k

a,b,c ∈A

((b → a → c ) → (a → b) → a → c ) ∈ S

�e statement on the le� hand-side is an ad-hoc lemma, while the other is proved by generalized tran-
sitivity (Lemma 11.54), using a subtype of s`4 as hypothesis, from:

k

a,b,c ∈A

((a → b) → (a → a → c )) → (a → b) → a → c ∈ S

�e la�er is proved, using again generalized transitivity with a subtype of s`4 as premise, from:
k

a,b,c ∈A

(a → a → c ) → (a → c ) ∈ S

�is is proved using again Lemmas 11.55 and 11.54 with s`5 and a variant of s`4 . �

Proposition• 11.62 (Combinator ccA). For any disjunctive algebra (A,4,`,¬,S), we have ccA ∈ S.
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Proof. We make several applications of Lemmas 11.55 and 11.54 consecutively. We prove that:
k

a,b ∈A

((a → b) → a) → a ∈ S

is implied by generalized modus ponens (Lemma 11.55) and:

and

c
a,b ∈A ((a → b) → a) → (¬a → a → b) → ¬a → a ∈ S

c
a,b ∈A ((¬a → a → b) → ¬a → a) → a ∈ S

�e statement above is a subtype of s`4 , while the other is proved, by Lemma 11.55, from:

and

c
a,b ∈A ((¬a → a → b) → ¬a → a) → ¬a → a ∈ S

c
a∈A ((¬a) → a) → a ∈ S

�e statement below is proved as in Proposition 11.58, while the statement above is proved by a variant
of the modus ponens and: k

a,b ∈A

(¬a → a → b) ∈ S

We conclude by proving this statement using the connections between ¬a and a → ⊥, reducing the
la�er to: k

a,b ∈A

(a → ⊥) → a → b ∈ S

which is a subtype of the identity. �

As a consequence, we get the expected theorem:

�eorem• 11.63. Any disjunctive algebra is a classical implicative algebra.

Proof. �e conditions of upward closure and closure under modus ponens coincide for implicative and
disjunctive separators, and the previous propositions show that k,s and cc belong to the separator of
any disjunctive algebra. �

Corollary 11.64. If t is a closed λ-term and (A,4,`,¬,S) a disjunctive algebra, then tA ∈ S.

11.4.6 From implicative to disjunctive algebras

On the converse direction, we could wonder whether it is possible to get a disjunctive algebra from
an implicative one. �e �rst step in this direction would be to de�ne a disjunctive structure from an
implicative structure, and to this end, the natural candidates for the disjunction and the negation are:

a ` b , a + b ¬a , a → ⊥

Indeed, we saw that in the implicative algebra underlying any disjunctive algebra (A,4,`,¬,S), we
had the equivalences a ` b �S a + b and ¬a �S a → ⊥ (Propositions 11.57 and 11.59).

However, there is no reason for the required laws of commutation:
k

b ∈B

(a + b) = a + (
k

b ∈B

b)
k

b ∈B

(b + a) = (
k

b ∈B

b) + a (
k

a∈A

a) → ⊥ =
j

a∈A

(a → ⊥)

to hold in an implicative structure. If we focus on the particular case of implicative algebras arising
from an abstract Krivine structure (or alternatively in any Krivine realizability model), the equality for
the negation holds, but the equalities for the sum type are not true in general. More precisely, they
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hold in the case were the arrow commutes with the joins, in which case we know that any separator on
such a structure will induce a forcing tripos. Nonetheless, in the case where these equalities hold, it is
easy to see that any implicative algebra induces a disjunctive algebra since the axioms s`1 ,s`2 ,s`3 ,s`4 ,s`5
are all realized by closed λ-terms. Writing ¬⊥a for a → ⊥, we have:

Proposition 11.65. If (A,4,→,S) is an implicative algebra and (A,4,+,¬⊥) is a disjunctive structure,
then (A,4,+,¬⊥,S) is a disjunctive algebra.

Proof. �e conditions of upward closure and closure under modus ponens coincide for implicative and
disjunctive separators, and �nding realizers for s`1 ,s`2 ,s`3 ,s`4 ,s`5 (with ` = +) is an easy exercise of
λ-calculus. �

In other words, implicative algebras which induce disjunctive algebras through6 + and · → ⊥ are
particular cases of implicative algebras satisfying extra properties of commutation.

11.5 Conclusion

Since any disjunctive algebra is a particular case of implicative algebra, it is clear that the construction
leading to the implicative tripos can be rephrased in this framework. In particular, the same criterion
allows us to determine whether the implicative tripos is isomorphic to a forcing tripos. Notably, a
disjunctive algebra with extra-commutations for the disjunction ` and the negation ¬ with arbitrary
joins will induce an implicative algebra where the arrow commutes with arbitrary joins. �erefore, the
induced tripos would collapse to a forcing situation (see Section 10.4.4.2).

Of course, we could reproduce the whole construction (that is studying the product of disjunctive
structures, then the quotient by the uniform separator, and verifying the necessary conditions for the
functor T : I 7→ AI /S[I ] to be a tripos) directly in the se�ing of disjunctive algebras. Nonetheless,
insofar as we are interested in the most general framework (and especially in existence of triposes which
are not isomorphic to forcing triposes), there is no point in doing this. Indeed, the main conclusion that
we draw from this chapter is the following slogan:

Implicative algebras are more general than disjunctive algebras.

In particular, even though we are still missing some properties which would be convenient to be
able to use disjunctive algebras in practice, the former slogan dissuades us to pursue in this direction.
Nonetheless, we should point out the main feature that is missing in our analysis of disjunctive algebras,
namely a computational completeness with respect to L̀ . We obtained in the end that any closed λ-term
is in the separator of any disjunctive algebra, which provides us with the possibility of proving that a
given element belongs to the separator by �nding the adequate realizer. Especially, since we know that
the disjunction a ` b is equivalent, with respect to separators, to the sum type a + b (and similarly for
the negation ¬a and the implication a → ⊥), any formula can be realized by a λ-term for the equivalent
formula encoded with + and ¬⊥. However, this is not really convenient in practice and it would be
nice to be able to realize formulas directly through L̀ terms. We do not know if this is possible in the
absolute. It would make sense to prove that the combinators s`1 ,s`2 ,s`3 ,s`4 ,s`5 are complete with respect
to L̀ terms, but all our a�empts in this direction have shown to be unsuccessful.

6 Of course, one could still argue that there are maybe be�er candidates for embedding a negation and a disjunction into
implicative structures. Inasmuch as the disjunction and negation that are obtained in the construction of the implicative
tripos are + and ¬⊥, we believe this choice to be legitimate.
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