
12- Conjunctive algebras

In the previous chapter, we studied disjunctive algebras, which we introduced as a result of the decom-
position of the implication with a disjunction and a negation. In particular, we saw that this decompo-
sition canonically corresponds to the L̀ calculus, into which the λ-calculus can be embedded. Notably,
the so-de�ned λ-calculus is equipped with a call-by-name evaluation strategy, as in the Krivine abstract
machine for the λc -calculus. We showed that this correspondence has a direct algebraic counterpart,
since disjunctive algebras are in fact particular cases of implicative algebras.

We shall now study the dual case of structures resulting of the decomposition of the arrow into
primitive negations and conjunctions. We mentioned in particular that Girard’s decomposition of the
arrow in linear logic can be expressed in terms of the multiplicative law of conjunction, wri�en ⊗, by:

A→ B , ¬(A ⊗ ¬B)

�e connective ⊗ is indeed related to the disjunction ` by duality through the laws ¬(A`B) = ¬A⊗¬B
and ¬(A ⊗ B) = ¬A` ¬B. �e typing rules for this connective in linear logic are given by:

Γ,A,B ` ∆
Γ | A ⊗ B ` ∆

Γ ` A | ∆ Γ ` B | ∆
Γ ` A ⊗ B | ∆

which are again dual to the rules for the disjunction.
We shall now follow the same process as in the previous chapter, but with the conjunction ⊗ as a

primitive connective. First, we will present L⊗ , the fragment of Munch-Maccagnoni’s L calculus [126]
which corresponds to the connectives ¬ and ⊗. We will observe that this fragment allows for the
encoding of a call-by-value λ-calculus. Next, we will give the realizability interpretation à la Krivine
for this calculus. �en, based on the structure of this realizability model, we will introduce the notion
of conjunctive structure. We will show that these structures are dual to the disjunctive structures we
formerly introduced. Again, we will show how to embed terms and contexts of L⊗ into conjunctive
structures. Finally, we will de�ne the notion of a separator for conjunctive structures, leading to the
de�nition of conjunctive algebras. We shall prove that any disjunctive algebra induces a conjunctive
algebra by duality.

Unfortunately, we did not achieve to prove the converse, namely that disjunctive algebras could be
obtained by duality from conjunctive algebras. In fact, beyond that, we are lacking some basic results
to be able to manipulate elements of conjunctive structures in the same computational fashion as in
implicative or disjunctive algebras. As a consequence, we do not prove that disjunctive algebras can
be recovered from conjunctive algebras by duality. As such, our study of conjunctive algebras thus
remains incomplete. We shall come back to this aspect in the conclusion of this chapter.

12.1 A call-by-value decomposition of the arrow

We begin with the presentation of the fragment of L induced by the positive connectives ⊗,¬+ and ,∃.
Next we shall see the realizability interpretation it induces, with the purpose of justifying a�erwards

307

CHAPTER 12. CONJUNCTIVE ALGEBRAS

the de�nition of conjunctive structures. Again, since this calculus has a lot of similarities with the call-
by-value λµµ̃-calculus (see Section 4.5) in addition to being dual to L̀ , we shall try to be concise in this
section.

12.1.1 �e L⊗ calculus

�e L⊗ calculus is thus a subsystem of L. It corresponds exactly to the restriction of L to its positive
fragment induced by the connectives ⊗,¬ and ,∃. �e syntax of terms, contexts and commands is given
by:

Contexts
Terms
Commands

e− ::= α | µ (x ,y).c | µ[α].c | µx .c
t+ ::= x | (t ,t) | [e] | µα .c
c ::= 〈t+ ||e−〉

We write T0, E0, C0 for the sets of closed terms, contexts and commands. In this framework, values are
de�ned by:

Values V ::= x | (V ,V) | [e−]

Observe in particular that any (negative) context is a value. We denote byV0 the set of closed values.
�e syntax is really close to the one of L̀ (it has the same constructors, but terms are now positive
while contests are negative), we recall the meanings of the di�erent constructions:

• (t+,t+) are pairs of positive terms;
• µ (x1,x2).c , which binds the variables x1,x2, is the dual destructor;
• [e−] is a constructor for the negation, which allows us to embed a negative context intro a positive

term;
• µ[x].c , which binds the variable x , is the dual destructor;
• µα .c and µx .c correspond respectively to µα and µ̃x in the λµµ̃-calculus.

Remark 12.1 (Notations). As we explained in the previous chapter, in L [126] is considered a syntax
where a notation x̄ is used to distinguish between the positive variable x (that can appear in the le�-
member 〈x | of a command) and the co-variable x̄ (resp. in the right member |x〉 of a command). �e
positive variable that we write x is also wri�en x in [126], while the negative co-variable α is denoted
by ᾱ . y

�e reduction rules correspond to the intuition one could have from the syntax of the calculus: all
destructors and binders reduce in front of the corresponding values, while pairs of terms are expanded
if needed. �e rules are given by:

〈µα .c ||e〉 →β c[e/α]
〈[e]||µ[α].c〉 →β c[e/α]
〈V ||µx .c〉 →β c[V /x]

〈(V ,V ′) ||µ (x ,x ′).c〉 →β c[V /x ,V ′/x ′]
〈(t ,u) ||e〉 →β 〈t ||µx .〈u ||µy.〈(x ,y) ||e〉〉〉

c →η 〈µα .c ||α〉
c →η 〈[α]||µ[α].c〉
c →η 〈x ||µx .c〉
c →η 〈(x1,x2) ||µ (x1,x2).c〉

where (t ,u) < V in the last β-reduction rule.
Lastly, we shall present the type system of L⊗ . Second-order formulas are de�ned from the positive

connectives by:

Formulas A,B := X | A ⊗ B | ¬A | ∃X .A

308

12.1. A CALL-BY-VALUE DECOMPOSITION OF THE ARROW

Γ ` t : A | ∆ Γ | e : A ` ∆
〈t ||e〉 : Γ ` ∆ (Cut)

(α : A) ∈ ∆
Γ | α : A ` ∆ (ax`)

(x : A) ∈ Γ
Γ ` x : A | ∆ (`ax)

c : Γ ` ∆,x : A
Γ | µx .c : A ` ∆

(µ `)
c : Γ,α : A ` ∆
Γ ` µα .c : A | ∆

(`µ)

c : (Γ,x : A,x ′ : B ` ∆)
Γ | µ (x ,x ′).c : A ⊗ B ` ∆

(⊗ `)
Γ ` t : A | ∆ Γ ` u : B | ∆

Γ ` (t ,u) : A ⊗ B | ∆
(`⊗)

c : Γ,x : A ` ∆
Γ | µ[α].c : ¬A

(¬ `)
Γ | e : A ` ∆

Γ ` [e] : ¬A ` ∆
(`¬)

Γ ` e : A | ∆ X < FV (Γ,∆)

Γ | e : ∃X .A ` ∆ (∃l)
Γ ` V : A[B/X] | ∆

Γ ` V : ∃X .A (∃r)

Figure 12.1: Typing rules for the L⊗-calculus

We still work with two-sided sequents, where typing contexts are de�ned as �nite lists of bindings
between variable and formulas:

Γ ::= ε | Γ,x : A ∆ ::= ε | ∆,α : A

Sequents are again of three kinds, as in the λµµ̃-calculus and L̀ :
• Γ ` t : A | ∆ for typing terms,
• Γ | e : A ` ∆ for typing contexts,
• c : Γ ` ∆ for typing commands.

�e type system is given in Figure 12.1, where each connective corresponds to a le� and a right rule.
Remark 12.2 (Existential quanti�er). As in the type system of L̀ , we do not associate the existen-
tial quanti�er to a constructor. Indeed, since our primary motivation is the de�nition of conjunctive
structures, in which this quanti�er will simply be expressed by arbitrary joins, it would be irrelevant
to add a constructor now. In turn, observe that we restrict the introduction of the existential quanti�er
to values. y

12.1.2 Embedding of the λ-calculus

Guided by the expected de�nition of the arrow:

A→ B , ¬(A ⊗ ¬B)

we can follow Munch-Maccagnoni’s paper [126, Appendix E], to embed the λ-calculus into L⊗ .
With this de�nition, a stack u ·e in A→ B (that is with u a term of type A and e a context of type B)

is naturally embedded as a term (u,[e]), which is turn into the context µ[α].〈(u,[e]) ||α〉 which indeed
inhabits the “arrow” type ¬(A ⊗ ¬B). Starting from this, the rest of the de�nitions are direct:

µ (x ,[α]).c , µ (x ,x ′).〈x ′ ||µ[α].c〉
λx .t , [µ (x ,[α]).〈t ||α〉]
t · e , µ[α].〈(t ,[e]) ||α〉
t u , µα .〈t ||u · α〉

309

CHAPTER 12. CONJUNCTIVE ALGEBRAS

�ese shorthands allow for the expected typing rules:

Proposition 12.3. �e following typing rules are admissible:

Γ,x : A ` t : B
Γ ` λx .t : A→ B

Γ ` u : A | ∆ Γ | e : B ` ∆
Γ | u · e : A→ B ` ∆

Γ ` t : A→ B | ∆ Γ ` u : A | ∆
Γ ` t u : B | ∆

Proof. Each case is directly derivable from L⊗ type system. We abuse the notations to denote by (def)
a rule which simply consists in unfolding the shorthands de�ning the λ-terms.

• Case µ (x ,[α]).c:

c : (Γ,x : A ` ∆,α : B)
Γ ` µ[x].c : ¬A | ∆,β : B

(µ `)
Γ,x : A,x ′ : ¬B ` x ′ : ¬B | ∆

(`ax)

〈x ′ ||µ[α].c〉 : (Γ,x : A,x ′ : ¬B ` ∆)
(Cut)

Γ | µ (x ,x ′).〈x ′ ||µ[α].c〉 : A ⊗ ¬B ` ∆
(⊗ `)

Γ | µ (x ,[α]).c : A ⊗ ¬B ` ∆
(def)

• Case λx .t :
Γ,x : A ` t : B | ∆ Γ | β : B ` ∆,β : B

(ax`)

〈t ||β〉 : (Γ,x : A ` β : B,∆)
(Cut)

Γ | µ (x ,[β]).〈t ||β〉 : A ⊗ ¬B ` ∆
Γ ` [µ (x ,[β]).〈t ||β〉] : ¬(A ⊗ ¬B) | ∆

(`¬)

Γ ` λx .t : A→ B | ∆
(def)

• Case u · e:

Γ ` u : A ` ∆
Γ | e : B ` ∆

Γ ` [e] : ¬B | ∆
(`¬)

Γ ` (u,[e]) : A ⊗ ¬B | ∆
(` ⊗)

Γ | α : (A ⊗ ¬B) ` ∆,α : (A ⊗ ¬B)
(ax`)

〈(u,[e]) ||α〉 : (Γ ` ∆,α : A ⊗ ¬B)
(Cut)

Γ | µ[α].〈(u,[e]) ||α〉 : ¬(A ⊗ ¬B) ` ∆
(¬ `)

Γ | u · e : A→ B ` ∆
(def)

• Case t u:

Γ ` t : A→ B | ∆
Γ ` u : A | ∆ Γ | α : B ` ∆,α : B

Γ | u · α : A→ B ` ∆,α : B
〈t ||u · α〉 : (Γ ` ∆,α : B)

(Cut)

Γ ` µα .〈t ||u · α〉 : B | ∆
(`µ)

Γ ` t u : B | ∆
(def)

�

Besides, the usual rules of β-reduction for the call-by-value evaluation strategy are simulated through
the reduction of L⊗:

Proposition 12.4 (β-reduction). We have the following reduction rules:

〈t u ||e〉 →β 〈t ||u · e〉
〈λx .t ||u · e〉 →β 〈u ||µx .〈t ||e〉〉
〈V ||µx .c〉 →β c[V /x]

310

12.1. A CALL-BY-VALUE DECOMPOSITION OF THE ARROW

Proof. �e third rule is included in L⊗ reduction system, the �rst follows from:

〈tu ||e〉 = 〈µα .〈t ||u · α〉||e〉 →β 〈t ||u · e〉

For the second rule, we �rst check that we have:

〈(V ,[e]) ||µ (x ,[α]).c〉 = 〈(V ,[e]) ||µ (x ,x ′).〈x ′ ||µ[α].c〉〉 →β 〈[e]||µ[α].c[V /X]〉 →β c[V /x][e/α]

from which we deduce:

〈λx .t ||u · e〉 = 〈[µ (x ,[α]).〈t ||α〉]||µ[α].〈(u,[e]) ||α〉〉
→β 〈(u,[e]) ||µ (x ,[α]).〈t ||α〉〉
→β 〈u ||µy.〈(y,[e]) ||µ (x ,[α]).〈t ||α〉〉〉
→β 〈u ||µx .〈t ||e〉〉

�

�erefore, L⊗ allows us to recover the full computation strength of the call-by-value λµµ̃-calculus.
We shall now see that it is suitable for a realizability interpretation which is very similar to the corre-
sponding interpretation for the call-by-value λµµ̃-calculus (see Section 4.5.4).

12.1.3 A realizability model based on the L⊗-calculus

We brie�y recall the de�nitions necessary to the realizability interpretation à la Krivine of L⊗ . Most of
the properties being the same as for L̀ or any of the several interpretations we gave in the previous
chapters, we spare the reader from a useless copy-paste and go straight to the point.

A pole is de�ned as usual as any subset of C0 closed by anti-reduction. We write ⊥⊥ for the pole,
and t⊥⊥e for the orthogonality relation it induces. As it is common in call-by-value realizability model
(see Section 4.5.4), formulas as interpreted as truth values of values, which we call primitive truth values.
Falsity values are then de�ned by orthogonality to the corresponding primitive truth values, and truth
values are de�nes by orthogonality to falsity values. �erefore, an existential formula ∃X .A is inter-
preted by the union over all the possible instantiations for the primitive truth value of the variable X
by a set S ∈ P (V0). As it is usual in Krivine realizability, in order to ease the de�nition we assume that
for each subset S of P (V0), there is a constant symbol Ṡ in the syntax. �e interpretation is given by:

|Ṡ |V , S

|A ⊗ B |V , {(t ,u) : t ∈ |A|V ∧ u ∈ |B |V }
|¬A|V , {[e] : e ∈ ‖A‖}
|∃X .A|V ,

⋃
S ∈P (V0) |A{X := Ṡ }|V

‖A‖ , {e : ∀V ∈ |A|V ,V⊥⊥e}
|A| , {t : ∀e ∈ ‖A‖,t⊥⊥e}

We de�ne again valuations, which we write ρ, as functions mapping each second-order variable to
a primitive falsity value ρ (X) ∈ P (V0). In this framework, we say that a substitution, which we denote
by σ , is a function mapping each variable x to a closed value V ∈ V0 and each variable α to a closed
context e ∈ E0:

σ ::= ε | σ ,x 7→ V | σ ,α 7→ e

We write σ Γ and we say that a substitution σ realizes a context Γ, when for each binding (x : A) ∈ Γ,
we have σ (x) ∈ |A|V . Similarly, we say that σ realizes a context ∆ if for each binding (α : A) ∈ ∆, we
have σ (α) ∈ ‖A‖.

311

CHAPTER 12. CONJUNCTIVE ALGEBRAS

Lemma 12.5 (Adequacy). Let Γ,∆ be typing contexts, ρ be a valuation and σ be a substitution which
veri�es that σ Γ[ρ] and σ ∆[ρ]. We have:

1. If V + is a value such that Γ ` V + : A | ∆, then V +[σ] ∈ |A[ρ]|V .

2. If e is a context such that Γ | e : A ` ∆, then e[σ] ∈ ‖A[ρ]‖.
3. If t is a term such that Γ ` t : A | ∆, then t[σ] ∈ |A[ρ]|.
4. If c is a command such that c : (Γ ` ∆), then c[σ] ∈ ⊥⊥.

Proof. �e proof is again an induction over typing derivations. �e proof being very similar to the one
for L̀ (Proposition 11.10), the call-by-value λµµ̃-calculus (Proposition 4.23) or L [126], we leave it to
the reader. �

12.2 Conjunctive structures

We shall now introduce the notion of conjunctive structure. Following the methodology from the pre-
vious chapter, we begin by observing the existing commutations in the realizability models induced
by L⊗ . Since we are in a structure centered on positive connectives, we should pay a�ention to the
commutations with joins:

Proposition 12.6 (Commutations). In any L⊗ realizability model (that is to say for any pole ⊥⊥), the
following equalities hold:

1. If X < FV (B), then |∃X .(A ⊗ B) |V = |(∃X .A) ⊗ B |V .

2. If X < FV (A), then |∃X .(A ⊗ B) |V = |A ⊗ (∃X .B) |V .

3. |¬(∃X .A) |V =
⋂

S ∈P (V0) |¬A{X := Ṡ }|V

Proof. 1. Assume the X < FV (B), then we have:

|∃X .(A ⊗ B) |V =
⋃

S ∈P (V0)

|A{X := Ṡ } ⊗ B |V

=
⋃

S ∈P (V0)

{(V1,V2) : V1 ∈ |A{X := Ṡ }|V ∧V2 ∈ |B |V }

= {(e1,e2) : e1 ∈
⋃

S ∈P (V0)

|A{X := Ṡ }|V ∧ e2 ∈ |B |V }

= {(e1,e2) : e1 ∈ |∃X .A|V ∧ e2 ∈ ‖B‖} = |(∃X .A) ⊗ B |V

2. Identical.
3. �e proof is again a simple unfolding of the de�nitions:

|¬(∃X .A) |V = {[t] : t ∈ |∃X .A|} = {[t] : t ∈
⋂

S ∈P (V0)

|A{X := Ṡ }|}

=
⋂

S ∈P (V0)

{[t] : t ∈ |A{X := Ṡ }]|} =
⋂

S ∈P (V0)

|¬A{X := Ṡ }|V

�

Since we are interested in primitive truth values, which are logically ordered by inclusion (in par-
ticular, the existential quanti�er is interpreted by unions, thus joins), in terms of algebraic structures,
the previous proposition advocates for the equalities:

1.
j

b ∈B

(a ⊗ b) = a ⊗ (
j

b ∈B

b) 2.
j

b ∈B

(b ⊗ a) = (
j

b ∈B

b) ⊗ a 3. ¬
j

a∈A

a =
k

a∈A

¬a

312

12.2. CONJUNCTIVE STRUCTURES

De�nition• 12.7 (Conjunctive structure). A conjunctive structure is a complete join-semila�ice (A,4)
equipped with a binary operation (a,b) 7→ a ⊗ b, called the conjunction of A, and a unary operation
a 7→ ¬a called the negation of A, that ful�ll the following axioms:

1. Negation is anti-monotonic in the sense that for all a,a′ ∈ A:

(Variance) if a 4 a′ then ¬a′ 4 ¬a

2. Conjunction is monotonic in the sense that for all a,a′,b,b ′ ∈ A:

(Variance) if a 4 a′ and b 4 b ′ then a ⊗ b 4 a′ ⊗ b ′

3. Arbitrary meets distributes over both operands of conjunction, in the sense that for all a ∈ A
and for all subsets B ⊆ A:

(Distributivity)
j

b ∈B

(a ⊗ b) = a ⊗ (
j

b ∈B

b)
j

b ∈B

(b ⊗ a) = (
j

b ∈B

b) ⊗ a

4. Negation of an arbitrary join is equal to the meet of the set of negated elements, in the sense that
for all subsets A ⊆ A:

(Commutation) ¬
j

a∈A

a =
k

a∈A

¬a

y

Remark 12.8. Recall that a complete join-semila�ice is a complete la�ice (�eorem 9.3). �erefore,
conjunctive structures also have arbitrary meets. �e novelty, in comparison with implicative and
disjunctive structures, is that the de�nition of conjunctive separators will make use of arbitrary meets
(while the properties of distributivity and commutation are given for arbitrary joins). �is mismatch is
at the origin of most of the di�culties that we will meet in the sequel. y

As in the cases of implicative and disjunctive structures, the commutations imply that:

Proposition 12.9. If (A,4,⊗,¬) is a conjunctive structure, then the following hold for all a ∈ A:

1.• ⊥ ⊗ a = ⊥

2.• a ⊗ ⊥ = ⊥

3.• ¬⊥ = >

Proof. Using proposition 9.4 and the axioms of conjunctive structures, one can prove:

1. ⊥ ⊗ a = (
b
∅) ⊗ a =

b
x,a∈A {x ⊗ a : x ∈ ∅} =

b
∅ = ⊥

2. Identical.
3. ¬⊥ = ¬(

b
∅) =

c
x ∈A {¬x : x ∈ ∅} =

c
∅ = >

�

12.2.1 Examples of conjunctive structures

12.2.1.1 Dummy structure

Following the constraints given by the lemma above, we have at least one way to de�ne a dummy
structure:

Example• 12.10 (Dummy conjunctive structure). Given a complete la�ice L, the following de�nitions
give rise to a dummy structure that ful�lls the axioms of De�nition 11.13:

a ⊗ b , ⊥ ¬a , > (∀a,b ∈ A)

�e veri�cation of the di�erent axioms is straightforward. y

313

https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#TensorStructure
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#tensor_bot_l
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#tensor_bot_r
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#tensor_top
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.Dummies.html#dummy_tens

CHAPTER 12. CONJUNCTIVE ALGEBRAS

12.2.1.2 Complete Boolean algebras

Example• 12.11 (Complete Boolean algebras). Let B be a complete Boolean algebra. It embodies a
conjunctive structure, that is de�ned by:

• A , B
• a 4 b , a 4 b

• a ⊗ b , a ∧ b (∀a,b ∈ A)

• ¬a , ¬a

�e di�erent axioms are direct consequence of proposition 9.7. y

12.2.2 Conjunctive structure of classical realizability

As for the disjunctive case, we can abstract the structure of the realizability interpretation of L⊗ into a
structure of the form (T0,E0,V0, (·, ·),[·],⊥⊥), whereV0 ⊆ T0 is the distinguished subset of values, (·, ·)
is a map from T 2

0 to T0 (whose restriction to V0 has values in V0), [·] is an operation from E0 to V0,
and ⊥⊥ ⊆ T0 × E0 is a relation. From this sextuple we can de�ne:

• A , P (V0) • a ⊗ b , (a,b) = {(V1,V2) : V1 ∈ a ∧V2 ∈ b}

• a 4 b , a ⊆ b • ¬a , [a⊥⊥] = {[e] : e ∈ a⊥⊥} (∀a,b ∈ A)

Proposition 12.12. �e quadruple (A,4,⊗,¬) is a conjunctive structure.

Proof. We show that the axioms of De�nition 12.7 are satis�ed.

1. Anti-monotonicity. Let a,a′ ∈ A, such that a 4 a′ ie a ⊆ a′. �en a′⊥⊥ ⊆ a⊥⊥ and thus

¬a′ = {[t] : t ∈ a′⊥⊥} ⊆ {[t] : t ∈ a⊥⊥} = ¬a

i.e. ¬a′ 4 ¬a.

2. Covariance of the conjunction. Let a,a′,b,b ′ ∈ A such that a′ ⊆ a and b ′ ⊆ b. �en we have

a ⊗ b = {(t ,u) : t ∈ a ∧ u ∈ b} ⊆ {(t ,u) : t ∈ a′ ∧ u ∈ b ′} = a′ ⊗ b ′

i.e. a ⊗ b 4 a′ ⊗ b ′

3. Distributivity. Let a ∈ A and B ⊆ A, we have:
j

b ∈B

(a ⊗ b) =
j

b ∈B

{(v,u) : t ∈ a ∧ u ∈ b} = {(t ,u) : t ∈ a ∧ u ∈
j

b ∈B

b} = a ⊗ (
j

b ∈B

b)

4. Commutation. Let B ⊆ A, we have (recall that
c

b ∈B b =
⋂

b ∈B b):
k

b ∈B

{¬b} =
k

b ∈B

{[t] : t ∈ b⊥⊥} = {[t] : t ∈
k

b ∈B

b⊥⊥} = {[t] : t ∈ (
j

b ∈B

b)⊥⊥} = ¬(
j

b ∈B

b)

�

12.2.3 Interpreting L⊗ terms

We shall now see how to embed L⊗ commands, contexts and terms into any conjunctive structure. For
the rest of the section, we assume given a conjunctive structure (A,4,⊗,¬).

314

https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.BooleanAlgebras.html#CBA_TS

12.2. CONJUNCTIVE STRUCTURES

12.2.3.1 Commands

Following the same intuition as for the embedding of L̀ into disjunctive structures, we de�ne the
commands 〈a ||b〉 of the conjunctive structure A as the pairs (a,b), and we de�ne the pole ⊥⊥ as the
ordering relation 4. We write CA = A ×A for the set of commands in A and (a,b) ∈ ⊥⊥ for a 4 b.

We consider the same relation E over CA , which was de�ned by:

c E c ′ , if c ∈ ⊥⊥ then c ′ ∈ ⊥⊥ (∀c,c ′ ∈ CA)

Since the de�nition of commands only relies on the underlying la�ice ofA, the relationE has the same
properties as in disjunctive structures and in particular it de�nes a preorder (see Section 11.2.4.1).

12.2.3.2 Terms

�e de�nitions of terms are very similar to the corresponding de�nitions for the dual contexts in dis-
junctive structures.

De�nition• 12.13 (Pairing). For all a,b ∈ A, we let (a,b) , a ⊗ b. y

De�nition• 12.14 (Boxing). For all a ∈ A, we let [a] , ¬a. y

De�nition• 12.15 (µ+).
µ+.c ,

k

a∈A

{a : c (a) ∈ ⊥⊥}
y

We have the following properties for µ+:, whose proofs are trivial:

Proposition 12.16 (Properties of µ+). For any functions c,c ′ : A → CA , the following hold:

1.• If for all a ∈ A, c (a) E c ′(a), then µ+.c ′ 4 µ+.c (Variance)

2.• For all t ∈ A, then t = µ+.(a 7→ 〈t ||a〉) (η-expansion)

3.• For all e ∈ A, then 〈µ+.c ||e〉E c (e) (β-reduction)

Proof. 1. Direct consequence of Proposition 11.21.
2,3. Trivial by de�nition of µ+.

�

12.2.3.3 Contexts

Dually to the de�nitions of the (positive) contexts µ+ as a meet, we de�ne the embedding of (negative)
terms, which are all binders, by arbitrary joins:

De�nition• 12.17 (µ−). For all c : A → CA , we de�ne:

µ−.c ,
j

a∈A

{a : c (a) ∈ ⊥⊥}

y

De�nition• 12.18 (µ ()). For all c : A2 → CA , we de�ne:

µ () .c ,
j

a,b ∈A

{a ⊗ b : c (a,b) ∈ ⊥⊥}

y

315

https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#pairing
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#box
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mup
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mup_mon
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mup_eta
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mup_beta
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mun
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mu_pair

CHAPTER 12. CONJUNCTIVE ALGEBRAS

De�nition• 12.19 (µ[]). For all c : A → CA , we de�ne:

µ[].c ,
j

a∈A

{¬a : c (a) ∈ ⊥⊥}

y

Again, these de�nitions satisfy variance properties with respect to the preorder E and the order
relation4. Observe that the µ () and µ− binders, which are negative binders catching positive terms, are
contravariant with respect to these relations while the µ[] binder, which catches a negative context, is
covariant.

Proposition 12.20 (Variance). For any functions c,c ′ with the corresponding arities, the following hold:

1.• If c (a) E c ′(a) for all a ∈ A, then µ−.c ′ 4 µ−.c

2.• If c (a,b) E c ′(a,b) for all a,b ∈ A, then µ () .c ′ 4 µ () .c

3.• If c (a) E c ′(a) for all a ∈ A, then µ[].c 4 µ[].c ′

Proof. Direct consequences of Proposition 11.21. �

�e η-expansion is also re�ected by the ordering relation 4:

Proposition 12.21 (η-expansion). For all t ∈ A, the following holds:

1.• µ−.(a 7→ 〈t ||a〉) = t

2.• µ () .(a,b 7→ 〈t ||(a,b)〉) 4 t

3.• µ[].(a 7→ 〈t ||[a]〉) 4 t

Proof. Trivial from the de�nitions. �

�e β-reduction is again re�ected by the preorder E as the property of subject reduction:

Proposition 12.22 (β-reduction). For all e,e1,e2,t ∈ A, the following holds:

1.• 〈µ−.c ||e〉E c (e)

2.• 〈µ () .c ||(e1,e2)〉E c (e1,e2)

3.• 〈µ[].c ||[t]〉E c (t)

Proof. Trivial from the de�nitions. �

12.2.4 Adequacy

We shall now prove that the interpretation of L⊗ is adequate with respect to its type system. Again, we
extend the syntax of formulas to de�ne second-order formulas with parameters by:

A,B ::= a | X | ¬A | A ⊗ B | ∃X .A (a ∈ A)

�is allows us to de�ne an embedding of closed formulas with parameters into the conjunctive structure
A;

aA , a

(¬A)A , ¬AA

(A ⊗ B)A , AA ⊗ BA

(∃X .A)A ,
b

a∈A (A{X := a})A

(if a ∈ A)

316

https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mu_neg
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mun_mon
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mu_pair_mon
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mu_neg_mon
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mun_eta
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mu_pair_eta
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mu_neg_eta
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mun_beta
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mu_pair_beta
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.LTensor.html#mu_neg_beta

12.2. CONJUNCTIVE STRUCTURES

As in the previous chapter, we de�ne substitutions, which we write σ , as functions mapping vari-
ables (of terms, contexts and types) to element of A:

σ ::= ε | σ [x 7→ a] | σ [α 7→ a] | σ [X 7→ a] (a ∈ A, x ,X variables)

We say that a substitution σ realizes a typing context Γ, which write σ Γ, if for all bindings (x : A) ∈ Γ
we have σ (x) 4 (A[σ])A . Dually, we say that σ realizes ∆ if for all bindings (α : A) ∈ ∆ , we have
σ (α) < (A[σ])A .

�eorem 12.23 (Adequacy). �e typing rules of L⊗ (Figure 12.1) are adequate with respect to the interpre-
tation of terms (contexts,commands) and formulas: for all contexts Γ,∆, for all formulas with parameters
A and for all substitutions σ such that σ Γ and σ ∆, we have:

1. For any term t , if Γ ` t : A | ∆, then (t[σ])A 4 A[σ]A ;

2. For any context e , if Γ | e : A ` ∆, then (e[σ])A < A[σ]A ;

3. For any command c , if c : (Γ ` ∆), then (c[σ])A ∈ ⊥⊥.

Proof. By induction on the typing derivations. Since most of the cases are similar to the corresponding
cases for the adequacy of the embedding of L̀ into disjunctive structures, we only give some key cases.

• Case (` ⊗). Assume that we have:
Γ ` t1 : A1 | ∆ Γ ` t2 : A2 | ∆

Γ ` (t1,t2) : A1 ⊗ A2 | ∆
(` ⊗)

By induction hypotheses, we have that (t1[σ])A 4 (A1[σ])A and (t2[σ])A 4 (A2[σ])A . �erefore, by
monotonicity of the ⊗ operator, we have:

((t1,t2)[σ])A = (t1[σ],t2[σ])A = (t1[σ])A ⊗ (t2[σ])A 4 (A1[σ])A ` (A2[σ])A .

• Case (⊗ `). Assume that we have:
c : Γ,x1 : A1,x2 : A2 ` ∆

Γ | µ (x1,x2).c : A1 ⊗ A2 ` ∆
(⊗ `)

By induction hypothesis, we get that (c[σ ,x1 7→ (A1[σ])A ,x2 7→ (A2[σ])A])A ∈ ⊥⊥. �en by de�nition
we have

((µ (x1,x2).c)[σ])A =
j

a,b ∈A

{a ` b : (c[σ ,x1 7→ a,x2 7→ b])A ∈ ⊥⊥} < (A1[σ])A ⊗ (A2[σ])A .

• Case (∃ `). Assume that we have:

Γ | e : A ` ∆ X < FV (Γ,∆)

Γ | e : ∃X .A ` ∆ (∃ `)

By induction hypothesis, we have that for all a ∈ A, (e[σ])A < ((A)[σ ,x 7→ a])A . �erefore, we have
that (e[σ])A <

b
a∈A (A{X := a}[σ])A .

• Case (` ∃). Similarly, assume that we have:

Γ ` t : A{X := B} | ∆
Γ ` t : ∃X .A | ∆ (` ∃)

By induction hypothesis, we have that (t[σ])A 4 (A[σ ,X 7→ (B[σ])A])A . �erefore, we have that
(t[σ])A 4 gb ∈A {A{X := b}[σ]A }. �

317

CHAPTER 12. CONJUNCTIVE ALGEBRAS

12.2.5 Duality between conjunctive and disjunctive structures

We now show how disjunctive structures and conjunctive structures are connected by a form of du-
ality. Per se, this connection only re�ects the well-known duality between call-by-value and call-by-
name [32]. In fact, the passage from one structure to the other exactly re�ects the dual translation from
the λµµ̃-calculus to itself [32, Section 7] which sends terms to contexts and vice-versa. �is duality is
also re�ected in L [126] already in its syntax, in which the same constructors are used both for terms
and contexts. Here, since the term t and the context e of a well-formed command are connected by
tA 4 eA , we materialize the duality by reversing the order relation. We know that reversing the order
in a complete la�ice yields a complete la�ice in which meets and joins are exchanged (Proposition 9.5).
�erefore, it only remains to prove that the axioms of disjunctive and conjunctive structures can be
deduced through this duality one from each other.

12.2.5.1 From disjunctive to conjunctive structures

Let (A,4,`,¬) be a disjunctive structure. We de�ne:

• A⊗ , A` •
c⊗ ,

b` • a ⊗ b , a ` b

• a / b , b 4 a •
b⊗ ,

c̀
• ¬a , ¬a

(∀a,b ∈ A)

As expected, we have that:

�eorem• 12.24. �e structure (A⊗, /,⊗,¬) de�ned above is a conjunctive structure.

Proof. We check that for all a,a′,b,b ′ ∈ A and for all subsets A ⊆ A, we have:

1.• If a / a′ then ¬a′ / ¬a (Variance)
2.• If a / a′ and b / b ′ then a ⊗ b / a′ ⊗ b ′. (Variance)
3.• (

c⊗
a∈A a) ⊗ b =

c⊗
a∈A (a ⊗ b) and b ⊗ (

c⊗
a∈A a) =

c⊗
a∈A (b ⊗ a) (Distributivity)

4.• ¬(
b⊗

a∈A a) =
c⊗

a∈A (¬a) (Commutation)

All the proof are trivial from the corresponding properties of disjunctive structures. �

12.2.5.2 From conjunctive to disjunctive structures

Let (A,4,⊗,¬) be a conjunctive structure. We de�ne:

• A` , A⊗ •
c̀
,

b⊗ • a ` b , a ⊗ b

• a / b , b 4 a •
b` , c⊗ • ¬a , ¬a

(∀a,b ∈ A)

Again, we have that:

�eorem• 12.25. �e structure (A⊗, /,⊗,¬) de�ned above is a conjunctive structure.

Proof. We check that for all a,a′,b,b ′ ∈ A and for all subsets A ⊆ A, we have:

1.• If a / a′ then ¬a′ / ¬a. (Variance)
2.• If a / a′ and b / b ′ then a ` b / a′ ` b ′. (Variance)
3.• (

c̀
a∈A a) ` b =

c̀
a∈A (a ` b) and a ` (

c̀
b ∈B b) =

c̀
b ∈B (a ` b) (Distributivity)

4.• ¬(
c̀

A) =
b

à∈A (¬a) (Commutation)

All the proof are trivial from the corresponding properties of conjunctive structures. �

318

https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#PS_TS
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#rev_tneg_mon
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#rev_tensor_mon
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#rev_tensor_join_l
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#rev_tneg_join
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#TS_PS
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#rev_pneg_mon
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#rev_parr_mon
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#rev_parr_join_l
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#rev_pneg_meet

12.3. CONJUNCTIVE ALGEBRAS

12.3 Conjunctive algebras

12.3.1 Separation in conjunctive structures

We shall now de�ne the notion of separator for conjunctive structures. To this end, we consider axioms
(i.e. combinators) which correspond to the dual properties axiomatizing the disjunction` in disjunctive
algebras. Remember that in a conjunctive structure, the arrow is de�ned:

a
⊗
→ b , ¬(a ⊗ ¬b) (∀a,b ∈ A)

We thus de�ne the following combinators:

s⊗1 ,
c

a∈A
[
a
⊗
→ (a ⊗ a)

]
s⊗2 ,

c
a,b ∈A

[
(a ⊗ b)

⊗
→ a

]
s⊗3 ,

c
a,b ∈A

[
(a ⊗ b)

⊗
→ (b ⊗ a)

]
s⊗4 ,

c
a,b,c ∈A

[
(a

⊗
→ b)

⊗
→ (c ⊗ a)

⊗
→ (c ⊗ b)

]
s⊗5 ,

c
a,b,c ∈A

[
(a ⊗ (b ⊗ c))

⊗
→ ((a ⊗ b) ⊗ c))

]
which leads us to the expected de�nition of a separator:

De�nition• 12.26 (Separator). Given a conjunctive algebra (A,4,⊗,¬), we call separator for A any
subset S ⊆ A that ful�lls the following conditions for all a,b ∈ A:

(1) If a ∈ S and a 4 b then b ∈ S (upward closure)
(2) s⊗1 ,s

⊗

2 ,s
⊗

3 ,s
⊗

4 and s⊗5 are in S (combinators)
(3) If a ⊗

→ b ∈ S and a ∈ S then b ∈ S (closure under modus ponens)

A separator S is said to be consistent if ⊥ < S. y

Example• 12.27 (Complete Boolean algebras). Once again, if B is a complete Boolean algebra, B
induces a disjunctive structure in which it is easy to verify that the combinators s⊗1 ,s

⊗

3 ,s
⊗

3 ,s
⊗

4 and s⊗5
are equal to >. �erefore, the singleton {>} or any �lter for B are valid separators for the induced
conjunctive structure. y

12.3.2 Conjunctive algebra from classical realizability

Remember that any model of classical realizability based on L⊗ induces a conjunctive structure, where:

• A , P (V0) • a ⊗ b , (a,b) = {(V1,V2) : V1 ∈ a ∧V2 ∈ b}

• a 4 b , a ⊆ b • ¬a , [a⊥⊥] = {[e] : e ∈ a⊥⊥} (∀a,b ∈ A)

As in the implicative and disjunctive cases, the set of formulas realized by a closed term1, that is to say:

S⊥⊥ , {a ∈ P (V
+

0) : a⊥⊥⊥⊥ ∩ T0 , ∅}

de�nes a valid separator. �e condition (1) and (3) are clearly veri�ed (for the same reasons as in
the disjunctive and implicative cases), but we should verify that the formulas corresponding to the
combinators are indeed realized. Let us then consider the following closed terms:

TS1 , λa.(a,a)

TS2 , λ(a,b).a

TS3 , λ(a,b).(b .a)

TS4 , λ f .(λ(c,a).(c, f a))

TS5 , λ(a, (b,c)).((a,b),c

1As in the λµµ̃-calculus (see Section 4.4.5) and L̀ , proof-like terms in L⊗ simply correspond to closed terms.

319

https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#TensorAlgebra
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.BooleanAlgebras.html#CBA_TA

CHAPTER 12. CONJUNCTIVE ALGEBRAS

where we use the shorthands:
λx .t , [µ (x ,[α]).〈t ||α〉]

λ(a,b).t , λx .µα .〈x ||µ (a,b).〈t ||α〉〉

λ(a, (b,c)).t , λ(a,x).µα .〈x ||µ (b,c).〈t ||α〉〉

To show that these terms indeed realize the expected formulas, we need to introduce the additional rule
for the universal quanti�er and to give its realizability interpretation:
Γ ` V : A | ∆ X < FV (Γ,∆)

Γ ` V : ∀X .A (`∀)
Γ ` e : A[B/X] | ∆
Γ | e : ∀X .A ` ∆ (∀`) |∀X .A|V ,

⋂
S ⊆P (V0) |A{X := Ṡ }|V

Lemma 12.28. �e typing rules above are adequate with respect to the realizability interpretation of L⊗ .

Proof. �e proof, which relies on the value restriction for the right rule, is the same as for L or L̀ . �

Proposition 12.29. �e previous terms have the following types in L̀ :

1. ` TS1 : ∀A.A→ (A ⊗ A) |

2. ` TS2 : ∀AB.(A ⊗ B) → A |

3. ` TS3 : ∀AB.A ⊗ B → B ⊗ A |

4. ` TS4 : ∀ABC .(A→ B) → (C ⊗A→ C ⊗B) |

5. ` TS5 : ∀ABC .(A⊗ (B⊗C)) → ((A⊗B)⊗C) |

Proof. Straightforward typing derivations in L⊗ . �

We deduce that S⊥⊥ is a valid separator for the conjunctive structure, and thus that any realizability
model based on L⊗ induces a conjunctive algebra:

Proposition 12.30. �e quintuple (P (V0),4,⊗,¬,S⊥⊥) as de�ned above is a conjunctive algebra.

Proof. Conditions (1) and (3) are trivial. Condition (2) follows from the previous propositions and the
adequacy of the realizability interpretation of L⊗ , observing that by de�nition of the conjonctive struc-
ture, we have |∀X .A|V =

c
a∈A |A{X := ȧ}|V . �

12.3.3 From disjunctive to conjunctive algebras

We shall now prove that any disjunctive algebra induces by duality a conjunctive algebra, using the
construction we presented before to obtain a conjunctive structure from the underlying disjunctive
structures. �e key of this construction was to consider the reversed la�ice, inversing thus meets and
joins:

• A⊗ , A` •
c⊗ ,

b` • a ⊗ b , a ` b

• a / b , b 4 a •
b⊗ ,

c` • ¬a , ¬a
(∀a,b ∈ A)

Since both structures have the same career and disjunction, we will adopt the following notation to
distinguish the conjunctive and disjunctive arrows:

a →̀ b , ¬a ` b a
⊗
→ b , ¬(a ⊗ ¬b) (∀a,b ∈ A)

�e question is now to determine, given a separator S` for the disjunctive structure, how to de�ne
a separator S⊗ for the conjunctive structure. Since separator are upwards closed and the la�ice un-
derlying the disjunctive structure is reversed in the conjunctive one, we should consider a set which is
downward closed with respect to the order4. To this purpose, we use the only contravariant operation
we have at hands, and we de�ne S⊗ as the pre-image of S` through the negation:

S⊗ , ¬−1 (S`) = {a ∈ A : ¬a ∈ S`}
By de�nition, we thus have the following lemma:

320

12.3. CONJUNCTIVE ALGEBRAS

Lemma• 12.31. For all a ∈ A, a ∈ S⊗ if and only if ¬a ∈ S`.

Besides, it is easy to show that the so-de�ned S⊗ is indeed upward closed with respect to the
reversed order:

Lemma• 12.32. For all a,b ∈ A, if a / b and a ∈ S⊗ then b ∈ S⊗ .

Proof. Straightforward: if a /b and a ∈ S⊗ , then ¬a ∈ S` and ¬a 4 ¬b, thus ¬b ∈ S` and b ∈ S⊗ . �

�erefore, it remains to prove thatS⊗ contains the expected combinators, and that it is closed under
modus ponens. For both proofs, the following proposition is fundamental:

Proposition• 12.33 (Contraposition). For all a,b ∈ A, we have:

a
⊗
→ b ∈ S⊗ ⇔ ¬a →̀ ¬b ∈ S`

Proof. Let a,b ∈ A be �xed. We do the proof directly by equivalence, since all the required equivalences
hold for disjunctive algebras:

a
⊗
→ b ∈ S⊗ ⇔ ¬(a ⊗ ¬b) ∈ S⊗

⇔ ¬¬(a ` ¬b) ∈ S`
⇔ (a ` ¬b) ∈ S`
⇔ (¬¬a ` ¬b) ∈ S`
⇔ ¬a →̀ ¬b ∈ S`

(by de�nition)
(by de�nition)

(by DNE + Modus ponens)
(by DNI + `-compatible)

(by de�nition)

where DNE and DNI refer to the elimination and introduction of double negation (Proposition 11.58).
�e `-compatibility refers to the possibility of applying arrows of the shape (a → b) ∈ S` to get (b `
c) ∈ S` from (a ` c) ∈ S` (by application of s`4). �e detailed proof is given in the Coq development.

�

In particular, we can now deduce that S⊗ is closed under modus ponens. �e proof is straightfor-
ward from the previous lemma and Lemma 12.31.

Corollary• 12.34 (Modus Ponens). For all a,b ∈ A, if a ∈ S⊗ and a
⊗
→ b ∈ S⊗ , then b ∈ S⊗ .

We now prove that s⊗1 , s⊗1 , s⊗1 , s⊗1 and s⊗1 belong to S⊗ . In each case, the proof somewhat consists in
using the previous lemmas to be able to make use of the fact the dual combinator which is in S`.

Proposition• 12.35 (s⊗1). s⊗1 ∈ S⊗

Proof. We want to show that s⊗1 =
c⊗

a∈A a
⊗
→ a ⊗ a is in S⊗ . By de�nition of ⊗

→ and commutation of
the negation, we have s⊗1 =

c⊗
a∈A ¬(a ⊗ ¬(a ⊗ a)) = ¬

b⊗
a∈A (a ⊗ ¬(a ⊗ a)). To prove that the former

is in the store, it su�ces to prove that:

¬¬
j⊗

a∈A
(a ` ¬(a ⊗ a)) ∈ S` i.e. ¬¬

k̀
a∈A

(a ` ¬(a ` a)) ∈ S`

We conclude by double negation introduction (Proposition 11.58) and generalized modus ponens (Lemma
11.54) with s`3 and s`1 . �

Proposition• 12.36 (s⊗2). s⊗2 ∈ S⊗

Proof. We want to show that s⊗2 =
c

a,b ∈A (a ⊗ b)
⊗
→ a is in S⊗ . By de�nition of ⊗

→ and commutation
of the negation, we have s⊗2 =

c
a,b ∈A ¬((a ⊗ b) ⊗ ¬a) = ¬

b⊗
a,b ∈A ((a ⊗ b) ⊗ ¬a). To prove that the

former is in the store, it su�ces to prove that:

¬¬
j⊗

a∈A
((a ⊗ b) ⊗ ¬a) i.e. ¬¬

k̀
a∈A

((a ⊗ b) ⊗ ¬a)

We conclude by double negation introduction (Proposition 11.58) and generalized modus ponens (Lemma
11.54) with s`3 and s`2 . �

321

https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#in_tsep
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#up_closed_tsep
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#arrow_tsep_psep
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#modus_ponens_tsep
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#tsep_TS1
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#tsep_TS2

CHAPTER 12. CONJUNCTIVE ALGEBRAS

�e three other proofs for s⊗3 , s⊗4 and s⊗5 are identical and le� to the reader.

Proposition• 12.37. s⊗3 ∈ S
⊗

Proposition• 12.38. s⊗4 ∈ S
⊗

Proposition• 12.39. s⊗5 ∈ S
⊗

We can thus conclude thatS⊗ is indeed a separator for the conjunctive structure, or, in other words:

�eorem• 12.40. �e quintuple (A⊗, /,⊗,¬,S⊗) de�nes a conjunctive algebra.

12.4 Conclusion

12.4.1 On conjunctive algebras

First, we should say is that we are still missing many things in the understanding of conjunctive al-
gebras. In particular, as such we are not able to prove the converse direction, that is that disjunctive
algebras can be obtained from conjunctive algebras by duality. Neither are we in the position of de�ning
a conjunctive tripos to study its connection with the implicative and disjunctive cases. �e main reason
for this is that in conjunctive structures, the application induced by the λ-calculus does not satisfy2 the
usual adjunction:

a 4 b → c ⇔ ab 4 c

�is property being crucial in most of the proofs we presented for implicative and disjunctive algebras,
we are not able to follow the same track. In particular, the adjunction is central in the de�nition of the
induced Heyting algebra (thus of the induced tripos).

In fact, the absence of this property is in itself a reassuring fact. Indeed, one of the lesson we learned
from the λµµ̃-calculus, is that through the duality of computation, on the side of terms, the call-by-name
evaluation strategy computes as the call-by-value evaluation strategy does on the side of contexts, and
vice-versa. �erefore, it is not that surprising that the application (on the side of terms) does not satisfy
the same properties in disjunctive and conjunctive structures. Actually, we can say more, namely that in
a structure with all commutations (of the connectives with meets and joins), the adjunction holds3. But
again, such a structure can only induce triposes4 which are necessarily isomorphic to forcing triposes.
As such, it is thus a feature for conjunctive structures not to satisfy the (call-by-name) adjunction.

We did not have the time to explore this question much in depth, but at �rst sight, it reminds us of the
situation in Streicher’s AKSs or Ferrer et al. KOCAs, where an adjunctor is needed for the equivalence
to holds. In these particular se�ings, the problem is due to the fact that (call-by-name) falsity values
are restricted to those which are closed under bi-orthogonality. It is worth notice that one of the usual
interest of considering this particular shape of falsity values is related to value restriction (see [126] for
a discussion on the topic). While we saw how to circumvent this di�culty in implicative and disjunctive
structures, it might be the case that it is unavoidable in a call-by-value fashion. Anyway, if the necessity
of an adjunctor has the downside of complicating proofs, it does not prevent from inducing triposes.
�erefore, this could be on solution to obtain a notion of conjunctive tripos. Another solution may
consist in de�ning another application for which the adjunction holds. To this purpose, one track to
follow could be to observe the behavior of the usual application (in disjunctive structure) on elements
of the conjunctive through the embedding given in Section 12.2.5.2.

2�e le� to right implication is trivially satis�ed, the not satis�ed implication it the right to le� one.
3�is only a su�cient condition, but we conjecture having extra-commutations to obtain the adjunction is also necessary.
4To be precise, since we were not able to de�ne conjunctive triposes, we should rather say that a conjunctive structure

with all the commutations would probably induce disjunctive structures with the same commutations. �ese disjunctive
structures would only induce triposes isomorphic to forcing triposes. Yet, we believe that in the case where a canonical
notion conjunctive triposes could be de�ned, the very same would happen.

322

https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#tsep_TS3
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#tsep_TS4
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#tsep_TS5
https://www.irif.fr/~emiquey/these/ImpAlg/ImpAlg.TensorAlgebras.html#PA_TA

12.4. CONCLUSION

12.4.2 On the algebraization of Krivine classical realizability

In the last three chapters, we have shown that the underlying algebraic structures of classical real-
izability can be rei�ed into algebras whose structures depend on the choice of logical connectives.
Realizability models based on the λc -calculus, whose type system is de�ned with an arrow as logical
connective, are particular instances of implicative algebras; models based on L̀ , whose type system
is de�ned with a disjunction and a negation as logical connectives, are particular cases of disjunctive
algebras; models based on L⊗ , whose connectives are a conjunction and a negation, are particular cases
of conjunctive algebras. We highlighted the fact that the choice of connective (and therefore the cor-
responding algebraic structure) was related to the choice of a strategy of evaluation for the λ-calculus:
call-by-name naturally corresponds to implicative and disjunctive algebras, while conjunctive algebras
canonically embodies a call-by-value λ-calculus.

In the continuity of classical realizability, one of the main features of these algebraic structures
is to give di�erent semantics to the logical connectives ∧,∨ and to the quanti�ers. For instance, the
conjunction a ∧ b is interpreted by the product type a × b in implicative algebras; whereas the uni-
versal quanti�cation ∀X .A(X) is interpreted by a meet

c
b ∈A A(b). �is distinction between both in-

terpretations leaves the door open to the de�nition of triposes that re�ect Krivine realizability mod-
els [98, 99, 100, 101]. In particular, these models are more general than the models one can obtain
by means of a forcing construction. It is worth noting that in the construction of realizability triposes
from an implicative algebraA, the structure of Heyting algebra which is obtained through the quotient
(AI /S[I],`S[I]) (and therefore, the hyperdoctrine and the tripos) ignores the former order relation 4
and the former meets and joins f,g. More, whenever the underlying algebraic structure A has too
many commutation properties, then the connective × (resp +) becomes equivalent to ∧ (resp ∨). As a
consequence, everything happens as if they were the same inA, that is as ifA were a Boolean algebra:
the induced tripos is isomorphic to a forcing tripos. Schematically, the situation can be summed up by
the following diagram5:

Implicative algebras
⇒ ∧ ∀ M �
→ ×

c
∈ S

Disjunctive algebras
¬ ∨ ∀ M �
¬ ` c

∈ S`

Conjunctive algebras
¬ ∧ ∃ M �
¬ ⊗

b
∈ S⊗

Boolean algebras
¬ ∧ ∀ M �
¬ f

c
∈ F

a → b = ¬a ` b

a → b = ¬a g b
` = g

a / b = b 4 a, S⊗ = ¬−1 (S`)

⊗ = f

In this diagram, plain arrows A → B indicate that the structure A is a particular case of B, while
the dashed one A d B means that B can be obtained from A through a construction. We annotate the
arrow with the key de�nitions in the passage from one structure to another.

As we explained in Chapters 10 and 11, the le� part of this diagram can be re�ected at the level
of the induced triposes. Indeed, if a structure A is particular case of a class of structures B (i.e. for an
arrow A → B above), then the tripos TA that A induces is also a particular case of tripos TB : formally,
this is re�ected by a surjective map TB (I) � TA (I) for all I ∈ Setop (see the diagram in Section 10.4.4.1).

Up to now, the conclusion from the last chapters is that implicative algebras appear as the more
5Where we writeM � to represent the criterion of validity and where F denotes a �lter of Boolean algebra.

323

CHAPTER 12. CONJUNCTIVE ALGEBRAS

general se�ing. Nonetheless, we did not achieve yet a complete study of conjunctive algebras. In partic-
ular, we are lacking the de�nition of an application (from the point of view of λ-calculus) satisfying the
adjunction necessary to obtain a Heyting algebra (and thus a tripos). Besides, we are also missing an ar-
row in the previous diagram, from conjunctive to disjunctive algebra. We conjecture that there should
be a way to prove that from any conjunctive algebra can be obtained a disjunctive algebra through the
same duality, that is by reversing the order (see Section 12.2.5.2) and taking as (disjunctive) separator
the preimage ¬−1 (S⊗) of the (conjunctive) separator. In particular, we believe that the induced triposes
should be proved to be isomorphic. In addition to giving a proof to support the claim that implicative al-
gebras provide us with the more general framework, such a result would have a particular signi�cance,
showing that call-by-name and call-by-value calculi induce equivalent realizability models.

In a long-term perspective, several directions of investigation emerge. First, implicative algebras
appear as a promising new tool from a model-theoretic point of view. �ey indeed provide us with a
framework whose ground structure is as simple as Boolean algebras, while carrying all the computa-
tional power of the λ-calculus. In particular, they seem easier to manipulate than Krivine’s realizability
algebras while providing us with the same expressiveness. Since Krivine’s realizability models seem to
bring novel possibilities with respect to the traditional models of set theory, implicative algebras might
be the more convenient structure to develop the model-theoretic analysis of classical realizability.

Second, we saw that implicative algebras identify types and programs, somewhat performing the
last step of uni�cation in the proofs-as-programs correspondence. As such, implicative algebras are
tailored to the second-order λc -calculus, that is to say the second-order classical logic, but they clearly
scale to high-order classical logic. On its computational facet, following the leitmotiv of the second part
of this thesis, it raises the question of extending the calculus with side-e�ects. For instance, we wonder
how our interpretations for the (call-by-need) λ[lvτ?]-calculus or—which is more ambitious—for dLPAω

may be interpreted algebraically. In particular, an interpretation of dLPAω in terms of implicative alge-
bras might help us to answer the questions we raised in Section 8.5 about the structure of the induced
model. Especially, we could hope to take advantage of the criteria of collapsing so as to determine
whether dLPAω allows for realizability models which are not equivalent to forcing constructions.

Furthermore, in the continuity of the study of disjunctive and conjunctive algebras, it would be
interesting to determine how much of these structures can be combined without collapsing to a forcing
situation. To put it di�erently, we saw that an implicative (resp. disjunctive) algebra in which arbitrary
meets and joins distribute over all the connectives can only induce a tripos which is isomorphic to a
forcing tripos. Yet, it is not clear whether it is possible to de�ne an algebra which is both disjunctive
and conjunctive without collapsing to a Boolean algebra. Such a structure would make sense to model
the call-by-push-value paradigm [109], whose evaluation is directed by the polarity of terms (and thus
requires a syntax with connectives of both polarities). Among other things, call-by-push value has
shown to be a conducing se�ing for the study of side-e�ects in the realm of the proofs-as-programs
correspondence.

Last, all along this manuscript we have been using several times Krivine realizability as a tool to
prove properties for di�erent calculi. Even if this perspective is at �rst sight fuzzier than the previous
ones, it could be interesting to determine whether the reasoning process—i.e. de�ning a realizability
interpretation and proving its adequacy in order to �nally deduce theorems (mainly normalization and
consistence properties)—can be transposed algebraically. In other words, we wonder whether, given a
calculus, one could hope to de�ne an embedding of this given calculus into an implicative algebra, next
prove the adequacy of the embedding; then consider, for instance, the “separator” of normalizing terms
to prove the normalization of the calculus. In itself, such an approach would probably be very closed
from the usual one, but having a unifying framework might bring us some bene�ts.

For all these reasons, I am convinced that implicative algebras have a bright future ahead. We hope
that this thesis would have done its bit towards a broader di�usion of their potentialities and features.
I have a dream that one day, we will all compute with formulas as if they were λ-terms…

324

