
2- �e λ-calculus

2.1 �e λ-calculus

In the previous section, we introduced the concepts of logic and proofs. We shall now present the
notion of programs and computations through the so-called λ-calculus. �e λ-calculus is indeed to be
understood as a minimalistic programming language: on the one hand, it is as powerful as any other
programming language, and on the other hand, it is de�ned by a very simple syntax which makes it
very practical to reason with.

�e λ-calculus was originally introduced in 1932 by Church [24] with the aim of providing a foun-
dation for logic which would be more natural than Russell’s type theory or Zermelo’s set theory, and
would rather be based on functions1. While his formal system turned out to be inconsistent, funda-
mental discoveries were made at this time on the underlying pure λ-calculus. In particular, it gave
a negative answer to Hilbert’s long-standing Entscheidungsproblem for �rst-order logic: Church �rst
proved in [26] that the convertibility problem for pure λ-calculus was recursively undecidable, then he
deduced that no recursive decision procedure existed for validity in �rst-order predicate logic [25].

2.1.1 Syntax

�e syntax of the λ-calculus is given by the following grammar:

t ,u ::= x | λx .t | t u

Rather than programs, we speak of λ-terms or simply of terms, and denote by Λ the set of all terms. �e
three syntactic categories of terms can be understood as follows:

• the term x designates a variable (and is formally taken among an alphabet of variables V), just
as the x is a variable in the mathematical expression x2;

• λx .t is a function waiting for an argument bound by the variable x , where t , the body of the
function, is a term depending on x . �e working mathematician can think of λx .t as a notation
for the function x 7→ t (x).

• t u is the application of the term t to the term u.

While the notations might seem a bit puzzling at �rst sight, they have the huge bene�ts of unveiling
the idea of free and bound variables. Consider for instance the term λx .yx . �e variable x occurs twice,
and each occurrence plays a di�erent role: in ‘λx .’, x declares the expected parameter x (we speak of
binding occurrence); in ‘yx ’, x refers to the previously de�ned parameter (we speak of bound occurrence.
As it is used to bind variables, the constructor λ is also called a binder. Back to our example, unlike the
variable x , the variable y occurs freely in the term λx .yx . �is is formally expressed by the fact that y
belongs to the set of free variables of this term, whose de�nition is given herea�er.

1�is has the advantage of avoiding the use of free variables, for reasons Church explained in [24, pp. 346–347].

39

CHAPTER 2. THE λ-CALCULUS

De�nition 2.1 (Free variables). �e set FV (t) of free variables of the λ-term t is de�ned by induction
over the syntax of terms:

FV (x) = {x } FV (λx .t) = FV (t)\{x } FV (tu) = FV (t) ∪ FV (u)

A variable x is said to be free in t if x ∈ FV (t). y

Remark 2.2. We consider application to be le�-associative, that is that t u r abbreviates (t u) r . We also
consider that application has precedence over abstraction: λx .t u is equivalent to λx .(tu). We might
sometimes mark application by parentheses (t)u to ease the reading of terms. Finally, we will o�en use
the notation λxy.t as a shorthand for λx .λy.t (and λxyz.t for λx .λy.λz.t , etc). y

2.1.2 Substitutions and α-conversion

Before going any further, we need to say a word about α-equivalence. Consider for instance the terms
λx .x and λy.y. As explained before, they correspond respectively to the functions x 7→ x and y 7→ y,
of which any mathematician would say that they are the same. In practice, they are the same up to
the renaming of the bound variable x by y. Whenever two terms are the same up to the renaming of
bound variables, we say that they are α-equivalent. For instance, the terms (λx .x)λy.y and (λx .x)λx .x
are α-equivalent while λxy.y x and λxy.x y are not. �is observation might seem meaningless from a
mathematical point of view, since α-equivalent functions represent the same function. But from the
point of view of programming language, this is much more subtle since two α-equivalent programs are
di�erent syntactic objects. When it is possible we will always reason up to α-equivalence, but we will
see in Chapter 6 that it is not always possible to avoid considering this question.

Remark 2.3 (Integrals and α-conversion). �e reader inclined towards mathematical analogies can
think of integrals as a good example for α-conversion (and binding of variables). For instance, the
integrals

∫ t
0 f (x)dx and

∫ t
0 f (y)dy are the same (α-equivalent) since one can pass from one to the

other by renaming the bound variable x in y (or the other way round). y

�is being said, we can now speak of substitution. Just as we de�ned it for �rst-order variables
in formulas (De�nition 1.6), we need to de�ne the substitution of variables by λ-terms. Once more,
substitution is a notion that is o�en taken for granted in mathematics. For instance, considering the
polynomial P (x) = x2+3x+1, P (2) is P (2) = 22+3×2+1, that is to say P (x) in which 2 substitutes x , but
substitution of a variable by an expression is never properly de�ned. �is is �ne as long as substitution
is to be performed by human beings, since it is highly intuitive. However, when it comes to computers,
this has to be precisely de�ned.

De�nition 2.4 (Substitution). �e substitution of a variable x in a term t byu, wri�en t[u/x], is de�ned
inductively on the structure of t by:

x[u/x] , u

y[u/x] , y

(λy.t)[u/x] , λy.(t[u/x])
(λx .t)[u/x] , λx .t

(t t ′)[u/x] , (t[u/x]) (t ′[u/x])

(if x , y,y < FV (u))

y

It is worth noting that substitutions of the shape (λy.t)[u/x] are blocked wheny , x andy ∈ FV (u).
For that ma�er, since we reason up to α-equivalence and it is clear that λx .x and λy.y are α-equivalent,
we can perform (λy.y)[u/x] which is equal to λy.y (i.e. λx .x).

40

2.1. THE λ-CALCULUS

2.1.3 β-reduction

We said that λ-terms were our model for programs, we shall now see how they compute. As a ma�er
of fact, computation is quite simple to understand since that it is de�ned by one unique rule. �is rule
is called the β-reduction and corresponds to mathematical application of a function to its argument.
Consider for instance a polynomial P (x), if you apply a function x 7→ P (x) to the integer 2, you want
to “compute” to P (2), that is P (x) in which x has been substituted by 2. More generally, if you apply
x 7→ P (x) to some term n (think for instance of n = f (2) for some function f), you expect to get P (n)
(or P (f (2))), that is P (x) in which x has been substituted by n. �e β-reduction is de�ned accordingly:
when a function λx .t is applied to a term u, it reduces to t[u/x]. �is reduction rule is formally wri�en:

(λx .t)u 1−→β t[u/x]

where the 1 denotes the fact that this reduction is performed in one step. �e term (λx .t)u is called
a redex since it gives rise to a step of reduction. �e full β-reduction, wri�en −→β , is de�ned as the
contextual and re�exive-transitive closure of this rule:

• �rst we extend to contextual reduction (i.e. reduction within terms):

t u 1−→β t ′u
t u 1−→β t u ′

λx .t 1−→β λx .t ′

(if t 1−→β t ′)
(if u 1−→β u

′)
(if t 1−→β t ′)

• second we take the re�exive-transitive closure (i.e. consider an arbitrary number of step of re-
ductions):

t 0−→β u , t = u

t n+1−→β u , ∃t ′ ∈ Λ,t 1−→β t ′ ∧ t ′
n
−→β u

t *−→β u , ∃n ∈ �,t
n
−→β u

t −→β u , t *−→β u

Remark 2.5 (Contexts). �e contextual closure of β-reduction can also be done by de�ning evaluation
contexts C[] and by adding the rule:

C[t] 1−→β C[t ′] (if t 1−→β t ′)

�e contexts corresponding to the full β-reduction are given by the following grammar:

C ::= [] | C u | t C | λx .C

�e use of contexts is a common and useful tool to specify reduction rules. y

Remark 2.6 (Reduction vs. equality). A major di�erence with mathematics is to be mentioned: if t
reduces to u, we do not consider that t is equal to u. To carry on the comparison with mathematics,
here we are somehow considering that 2+ 3 −→ 5 and not that 2+ 3 = 5. In other words, computation
ma�ers.

Nevertheless, we could still de�ne an equality =β as the symmetric-transitive closure of the full
β-reduction −→β (or equivalently as the smallest equivalence relation containing −→β). �is equality
is usually called β-equivalence. y

Now, let us consider the following λ-terms:

S = λxyz.x z (y z)
C = λxy.x y
I = λx .x

and de�ne t = S (I C) (I I) (C I). It is an easy exercise to check that this term reduces to I , and it
is interesting to observe that there are di�erent ways to reduce t to obtain the result. �is simple
observation carries in fact two fundamental concepts: determinism and con�uence.

41

CHAPTER 2. THE λ-CALCULUS

De�nition 2.7 (Determinism). A reduction −→ is said to be non-deterministic if there exists a term t
and two termsu,u ′ such thatu , u ′ and t 1−→ u and t 1−→ u ′. �is situation can be visually represented
by:

t

u ′u

A reduction is said deterministic if it does not admit any such situation. y

De�nition 2.8 (Con�uence). A reduction −→ is said to be con�uent if whenever for any terms t ,u,u ′
such that t −→ u and t −→ u ′, there exists a term r such that u −→ r and u ′ −→ r . Visually, this can
be expressed by:

t

u ′u

r

y

�e full β-reduction is clearly non-deterministic, but it is also con�uent. �is property is funda-
mental in order to consider the λ-calculus as a suitable model of computation: it ensures that if an
expression may be evaluated in two di�erent ways, both will lead to the same result.

Example 2.9 (Arithmetical operations). Con�uence is an obvious property of arithmetical operations.
For instance, we could turn the computational axioms (PA1-PA4) of �rst-order arithmetic into reduction
rules:

0 + x 1−→ x
s (x) + y 1−→ s (x + y)

0 × x 1−→ 0
s (x) × y 1−→ (x × y) + y

(for all x ∈ �)
(for all x ,y ∈ �)
(for all x ∈ �)

(for all x ,y ∈ �)

�en, taking the contextual and transitive closures of this reduction, we can prove that it is con�uent.
�is is nothing more than the well-known fact that to compute the value of an arithmetic expression,
one can compute any of its subexpression in any order to get the �nal result. y

�eorem 2.10 (Con�uence). �e β-reduction is con�uent.

Proof. �e proof of this result can be found for instance in [10]. �

Finally, the λ-calculus is a model of computation (just like Turing machines) since any computation
can be done using its formalism. Of course, this raises the question of de�ning what is a computation.
We will not answer to this question here (there is plenty of literature on the subject), but we should
mention that the de�nition of Turing-completeness is in fact simultaneous to the proof of Turing-
completeness of the λ-calculus [154].

�eorem 2.11 (Turing-completeness). �e λ-calculus and Turing machines are equivalent, that is, they
can compute the same partial functions from � to �.

42

2.1. THE λ-CALCULUS

2.1.4 Evaluation strategies

One way to understand the property of con�uence is that whatever the way we choose to perform a
computation, it will lead to the same result. �us we can actually choose any strategy of reduction.
Indeed, when it comes to implementation, one has to decide what to do in the case of a critical pair
and has roughly three choices: go to the le�, go to the right or �ip a coin. An evaluation strategy is a
restriction of the full β-reduction to a deterministic reduction. We will mainly speak of three evaluation
strategies in this manuscript, which are respectively called call-by-name, call-by-value and call-by-need.
In a nutshell, when applying a function λx .t to a term u (which might itself contain redexes and be
reducible):

• the call-by-name strategy will directly substitute x by u to give t[u/x];

• the call-by-value strategy will �rst reduce u, try to reach a value2 V and if so, substitute x by V
to give t[V /x];

• the call-by-need strategy will substitute x by a shared copy of u, and in the case where u has to
be reduced at some point (is “needed”), it will reduce it and share the result of the computation.

If you think of a multivariate polynomial P (x ,y) wherey does not occur, for instance P (x ,y) = 2x2+x+1,
and you want to compute the result of the application of the function x 7→ P (x ,y) to 2+ 3. �e call-by-
name strategy will perform the substitution and give 2× (2+3)2+ (2+3)+1 (and then reduce 2+3 to 5
twice), while the call-by-value strategy will reduce 2+ 3 to 5 and then perform the substitution to give
2 × (5)2 + 5 + 1. �e call-by-need strategy is slightly more subtle and will somehow reduce to a state
2x2 + x + 1 with the information that x = 2 + 3. �en, since x is “needed”, it will reduce x = 2 + 3 to
x = 5, and then �nish the computation. When applying the function y 7→ P (x ,y) to 2 + 3, since y does
not appear in P (x ,y), neither the call-by-name nor the call-by-need strategies will compute 2 + 3. On
the contrary, the call-by-value strategy will compute 2+3 it anyway before performing the substitution
of y by 5 to reduce to the same expression 2x2 + x + 1.

�ese three evaluation strategies will be discussed more formally in the sequel, so that we delay
their formal introduction to Chapter 4 for call-by-name and call-by-value, and to Chapter 5 and 6 for
call-by-need.

2.1.5 Normalization

When we evoked the call-by-value evaluation strategy in the previous section, we said that to reduce a
redex (λx .t)u it would try to reduceu to a value. Indeed, it is not always the case that a term reduces to
a value, or more generally that a reduction ends. Indeed, consider for instance the following λ-terms:

δ , λx .x x Ω , δ δ

and try to reduce Ω. You will observe that Ω −→β Ω −→β . . . , so that the reduction never stops and
never reaches a value. �is terms is said to be non-terminating, non-normalizing or diverging. More
surprisingly, if we consider the λ-term t , (λxy.x) I Ω, we can observe that if we reduce the rightmost
redex in Ω, we will obtain t −→β t −→β If we start by reducing the le�most redex, we will get
(λy.I) Ω, then we can still reduce it to itself by reducing the redex in Ω, or get I . To sum up, we are in
front of the following situation:

2�e notion of value depends on the choice of reduction rules and will be more formally de�ned in the future. Most of the
time, the set of valuesV is de�ned by: V ::= x | λx .t . For the moment, you can think of it as a term that is reduced enough to
know how to drive the computation forward: a variable blocks the computation, while a function is demanding an argument.

43

CHAPTER 2. THE λ-CALCULUS

(λxy.x) I Ω (λxy.x) I Ω (λxy.x) I Ω . . .

(λy.I) Ω (λy.I) Ω (λy.I) Ω . . .

I

1

1 1

1 1

1

1 1

1 1

which can be compacted into:

(λxy.x) I Ω (λy.I) Ω I
1

n n

1

In this example, we see that the reduction term t can either loop forever on t or (λy.I) Ω, or reduce to
I that is not reducible. �is term is said to be weakly normalizing, because there exists a reduction path
which is normalizing, and others which do not terminate.

De�nition 2.12 (Normalization). A term t is said to be in normal form if it can not be reduced, that is if
it does not contain any redex. A reduction path normalizes if it ends on a term in normal form. A term
is said to be strongly normalizing if all its reduction paths normalize. It is called weakly normalizing if
there is one reduction path which normalizes. y

Example 2.13. �e terms I and I I are strongly normalizing, the term (λx .I) Ω is weakly normalizing
and Ω is not normalizing. y

2.1.6 On pureness and side-e�ects

�e λ-calculus is said to be a purely functional language. �is designation refers to the fact that it
behaves like mathematical functions: when computing the application of a function to its arguments,
the result of the computation only depends on the arguments. In particular, it does not depend of an
exterior state (like a memory cell, the hour or the temperature of the room, etc…). Neither does it modify
any such state nor does it write in a �le or print things on a screen. As opposed to pure computations,
a computation with side-e�ects refers to a computation which modi�es something else than its return
value. For instance, if we de�ne the following programs in pseudo-code:

program b l a (a) :
r e t u r n a +2

program b l i (a) :
p r i n t (4 2)
r e t u r n a +2

program b l o (a) :
b : = a
r e t u r n a +2

then bla is a purely functional program, whereas bli and blo are not. Indeed, bli prints 42 and blo
assigns a value in a global state b, and both operations are side-e�ects.

Even though we explained that any computation could be performed in the formalism of the pure λ-
calculus, side-e�ects are not computable as such. Yet, they can be simulated by means of computational
translations. In a few words, for a given e�ect, there is a corresponding translation ~·� which embeds
the whole λ-calculus Λ into a fragment ~Λ� ⊂ Λ in which everything works like if this side-e�ect was
computable.

~Λ�

Λ
• t

•~t�

44

2.2. THE SIMPLY-TYPED λ-CALCULUS

(x : A) ∈ Γ
Γ ` x : A (Ax)

Γ,x : A ` t : B
Γ ` λx . t : A→ B

(λ) Γ ` t : A→ B Γ ` u : A
Γ ` t u : B (@)

Figure 2.1: Simply-typed λ-calculus

For instance, for the print operation, you can think of a translation such that every term t is translated
into a function ~t� taking a printing function in argument and computing more or less like t . �en,
within ~Λ�, it becomes possible to use a printing operation since every term has one at hand. Besides,
every computation that was possible in Λ is reproducible through the translation in ~Λ�, so that the
Turing-completeness is not a�ected.

In Section 8.3, we will present formally the case of continuation-passing style translation which
enables us to simulate backtracking operations.

2.2 �e simply-typed λ-calculus

If we look closer at the diverging term Ω and try to draw a analogy with a mathematical function, we
remark that there is no simple function equivalent to its constituent δ . Indeed, such a function would be
x 7→ x (x) and would require to be given an argument that is both a function and an argument for this
function. A way of analyzing more precisely the impossibility is to reason in terms of types. �e type
of a mathematical element is the generic set to which it belongs, for instance � for a natural number,
� for a real or�→ � for a function from integers to integers. Assume for instance that the argument
x is of type T . As x is applied to itself, it means that x is also a function of type T → U for some type
U , hence we would haveT = T → U . If you think of this in terms of integers and functions, this would
require for instance an equality as � = �→ �, which does not hold.

�e formal idea underlying this intuition is the notion of simple type. �e grammar of simple types
is given by:

T ,U ::= X | T → U (X ∈ A)

whereA is a set of atomic types. An atomic type intuitively represents a base type (as�), whileT → U
is the type of functions from T to U .

De�nition 2.14 (Type system). A typing judgment is triple (Γ,t ,T) wri�en Γ ` t : T which reads “t
has type T in the context Γ” and where the typing context Γ is a list of pairs of the forms x : T (with
x a variable and T a type). �is hypothesis means that the variable x is assumed of type T . Formally,
typing contexts are de�ned by:

Γ,Γ′ ::= ε | Γ,x : T
where we assume that a variable x occurs at most once in a context Γ. A type system allows to assign a
type to term by means of typing rules, which are simply de�ned as inference rules whose premises and
conclusion are typing judgments, and a typing derivation is a derivation using typing rules. y

Given a type system, we say that a term t is typable if there exists a type T such that the typing
judgment ` t : T is derivable. �e simply-typed λ-calculus is the restriction of λ-calculus to the set of
terms that are typable using the type system described in Figure 2.1.

Remark 2.15 (Untypability of Ω). �e typing rules are in one-to-one correspondence with the syntactic
categories of the λ-calculus. �is implies that the only possible way to type δ = λx .xx would be along
a derivation of this shape:

?
x :?A ` x :?C →?B (Ax) ?

x :?A ` x :?C (Ax)

x :?A ` xx :?B (@)

` λx .xx :?A→?B
(λ)

45

CHAPTER 2. THE λ-CALCULUS

where we mark all the hypothetical types with a question mark. In details, we �rst would have to
introduce an arrow of type ?A →?B for some types ?A and ?B, resulting in an hypothesis x :?A. �en
we would necessarily have to type the application xx :?B, which requires to type x (the argument) with
a type ?C and x (the function) with the type ?C →?B. Since the only available hypothesis on x is x :?A,
this implies that ?C =?A and that ?C =?A→?B. Since the syntactic equality ?A =?A→?B do not hold,
this is impossible. �us δ and Ω are not typable. y

We can check that the type system follows our intuition, since a term λx .t is indeed typed byT → U
provided that the term t is of typeU if x is of typedU . Similarly, if t is of typeT → U andu is of typeT ,
then the application t u is of type U , just as the application of a function of type � → � to an integer
has the type �. However, the fact that a term t has a type T → U does not mean that it is of the form
λx .t ′. It is rather to be understood as the fact that t can be reduced to a term of this shape. �is is
stressed by the following fundamental results, that express that typing is preserved through reduction
and that typable terms are normalizing.

Proposition 2.16 (Subject reduction). If t is a term such that Γ ` t : T for some context Γ and some type
T , and if besides t −→β u for some term u, then Γ ` u : T .

Proof. By induction on the reduction rules, it mostly amounts to showing that substitution preserves
typing, that if Γ,x : T ` t : U and Γ ` u : T , then Γ ` t[u/x] : U . �e la�er is proved by induction on
typing rules. �

�eorem 2.17 (Normalization). If t is a term such that Γ ` t : T for some context Γ and some type T ,
then t strongly normalizes.

Proof. A proof of this result can be found in [12]. We will use very similar ideas in the next chapters to
prove normalization properties. �

�ese two results are crucial when de�ning a calculus. Subject reduction is sometimes called type
safety, since it ensures that typability is not a�ected by reduction. �e normalization is also a property
of security for a language: it guarantees that any (typed) computation will eventually terminate. �is
is why these properties will be milestones (or grails, depending on the di�culty of proving them) for
the various calculi we study in Chapter 5 to 8.

2.3 �e Curry-Howard correspondence

If, hypothetically, one day a reader starts this manuscript without any knowledge of the Curry-Howard
correspondence and arrives at this point, she is about to be rewarded by learning something wonderful.
�e Curry-Howard correspondence is based on a very simple observation [77]. If you compare the
following propositional logical rules:

A ∈ Γ
Γ ` A

(Ax)
Γ,A ` B

Γ ` A⇒ B
(⇒I)

Γ ` A⇒ B Γ ` A
Γ ` B

(⇒E)

with the typing rules we just de�ned:

(x : A) ∈ Γ
Γ ` x : A (Ax)

Γ,x : A ` t : B
Γ ` λx . t : A→ B

(λ) Γ ` t : A→ B Γ ` u : A
Γ ` t u : B (@)

you will observe a striking similarity. �e structure of these rules is indeed exactly the same, up to the
presence of λ-terms in typing rules. In addition to seeing λ-terms as terms representing mathematical
functions, we can thus also consider them as proof terms. Take for instance the rule (λ), it can be read:
if t is a proof of B under the assumption of a proof x of A, then λx .t is a proof of A⇒ B, that is a term

46

2.4. EXTENDING THE CORRESPONDENCE

waiting for a proof of A to give a proof of B. Similarly, the rule (@) tells us that if t is a proof of A⇒ B
and u is a proof of A, then t u is a proof of B, which is exactly the principle of modus ponens.

Based on this observation, for now on we will identify the two arrow connectives⇒ and→, and
we consider that types are propositional formulas and vice versa. �is is schematically represented by
the following informal diagram:

FormulasTypes

Proofsλ-terms

�is correspondence is sometimes also called the Curry-Howard isomorphism (since typing rules
and logical rules are in one-to-one correspondence) or the proof-as-program interpretation. �is obser-
vation, which is somewhat obvious once we saw it, is actually the cornerstone of modern proof theory.
�e bene�ts of this interpretation are two-ways. From proofs to programs, many logical principles can
be revisited computationally. A famous example of this is Gödel negative translation which compu-
tationally corresponds to continuation-passing style translation (see Section 4.3.2). But the other way
round is the more interesting3: enrich our comprehension of logic from programming principles. �is
is one of the motivation to extend this correspondence.

2.4 Extending the correspondence

2.4.1 λ×+-calculus

As we saw, the simply-typed λ-calculus is in correspondence with a fragment of propositional logic
that is called minimal logic. To recover a full interpretation of propositional logic, we need to give
a computational content to the connective ∧ and ∨. �e natural way4 of doing this is to enrich the
calculus with new syntactic constructions which have the expected typing rules. If we consider for
example the rules for the conjunction:

Γ ` A Γ ` B
Γ ` A ∧ B

(∧I)
Γ ` A ∧ B
Γ ` A

(∧1
E)

Γ ` A ∧ B
Γ ` B

(∧2
E)

we see on the introduction rule that the corresponding should be able to compose a proof of A and
a proof of B to get a proof of A ∧ B. �is naturally corresponds to a pair (t ,u) of proofs (and to the
type A × B), while the elimination rules, allowing to extract a proof of A (or B) from a proof of A ∧ B,
naturally lead us to the �rst and second projection π1 and π2. We can then extend the syntax to de�ne
the λ×-calculus (or λ-calculus with pairs):

t ,u ::= x | λx .t | t u | (t ,u) | π1 (t) | π2 (t)

�is also induces two new reductions rules when projections (the destructor) are applied to a pair (the
constructor):

π1 (t ,u)
1−→β t π2 (t ,u)

1−→β u

3For this reason, we prefer the name of proof-as-program correspondence.
4We will see in the next chapter (Section 3.3.1.1) that another solution consists in encoding the connective in the logic

and transporting this encoding to λ-terms. In the case of conjunction, this corresponds to the usual encodings of pairs and
projections: (t ,u) , λx .xtu, π1 (t) , λxy.x and π2 (t) , λxy.y.

47

CHAPTER 2. THE λ-CALCULUS

and the following typing rules:

Γ ` t : A Γ ` u : B
Γ ` (t ,u) : A × B

(∧I)
Γ ` t : A × B
Γ ` π1 (t) : A

(∧1
E)

Γ ` t : A × B
Γ ` π2 (t) : B

(∧2
E)

Similarly, we can add pa�ern-matching to meet the disjunction rules. �is consists again in three
steps. First, we extend the syntax with le� and right injections ι1 (t) and ι2 (t) and pa�ern matching
match t with [x 7→ u1 | y | u2]:

t ,u ::= · · · | ι1 (t) | ι2 (t) | match t with [x 7→ u1 | y 7→ u2]

Second, we de�ne the reduction rules for the case where we apply the disjunctive destructor to one of
the constructor:

match ι1 (t) with [x 7→ u1 | y 7→ u2] 1−→β u1[t/x]
match ι2 (t) with [x 7→ u1 | y 7→ u2] 1−→β u2[t/x]

Last, we add the expected typing rules:

Γ ` t : A
Γ ` ι1 (t) : A + B

(ι1)
Γ ` t : B

Γ ` ι2 (t) : A + B
(ι2)

Γ ` t : A + B Γ,x1 : A ` u1 : C Γ,x2 : B ` u2 : C
Γ ` match t with [x 7→ u1 | y 7→ u2] : C

(match)

�e resulting calculus, called the λ×,+-calculus, still satis�es the property of subject reduction and ty-
pable terms are also normalizing. We have thus extended the matching of types and formulas to con-
junction and disjunction, to obtain the following correspondence:

Types Formulas
→ ⇒

× ∧

+ ∨

2.4.2 Entering the cube

Up to now, we stressed the link between the simply-typed λ-calculus and minimal logic, and between
the λ×,+-calculus and propositional logic. We can actually add some entries to our table of correspon-
dence for other logical systems:

Calculus Logical system

simply-typed λ-calculus minimal logic

λ×+ -calculus propositional logic

λΠ -calculus �rst-order logic

System F second-order logic

We will not introduce formally the λΠ-calculus or System F (which is also referred to as λ2) at
this stage. We mention them, amongst others, because we will use variants of these calculi in the
next chapters, and more importantly to give an overview of the possible �avors of extensions for the
simply-typed λ-calculus.

48

2.4. EXTENDING THE CORRESPONDENCE

�e λ-cube, introduced by Barendregt [11], presents a broader set of calculi extending the simply-
typed calculus:

λω λΠω

λ2 λΠ2

λω λΠω

λ→ λΠ

On each axis of the cube is added a new form of abstraction:

• the vertical axis adds the dependency of terms in types,
• the horizontal axis adds the dependency of types in terms,
• the last axis adds the dependency of types in types.

For instance, terms of the λ2-calculus can take a type in argument, making the calculus polymorphic.
Roughly, this means that we can generalize the simply-typed identity λx .x of type � → � or A → A
into a term of type ∀X .X → X (where X is an abstraction over types). On the opposite, types of the
λΠ-calculus can depend on a term, allowing intuitively the de�nition of a type Vect(n) of “tuple of
integers of size n” and of a term of type ∀n.Vect(n).

2.4.3 Classical logic

A notable example of extension in the proof-as-program direction is due to Gri�n in the early 90s [62].
He discovered that the control operator call/cc (for call with current continuation) of the Scheme
programming language could be typed with Peirce’s law:

` call/cc : ((A→ B) → A) → A
(cc)

In particular, this typing rule is sound with respect to the computational behavior of call/cc, which
allows terms for backtracking. We leave detailed explanations about this fact for the next chapter
(Section 3.2), but this discovery was essential to mention already in this chapter.

Indeed, as Peirce’s law implies, in an intuitionistic framework, all the other forms of classical rea-
soning (see Section 1.1.2.1), this discovery opened the way for a direct computational interpretation of
classical proofs. But most importantly, this lead to a paradigmatic shi� from the point of view of logic.
Instead of trying to get an axiom by means of logical translations (e.g. negative translation for classi-
cal reasoning), and then transfer this translation to program along the Curry-Howard correspondence
(e.g. continuation-passing style for negative translation), one could rather try to add an operator whose
computational behavior is adequate with the expected axiom. �is is one of the underlying mo�o of
Krivine classical realizability that we will present in the next chapter.

In the spirit of the Curry-Howard correspondence, if an extension of the λ-calculus is to bring more
logical power, it should come thanks to more computational power. �is is for instance the case of
side-e�ects (such that backtracking, addition of a store, exceptions, etc…), that the pure λ-calculus does
not handle directly. So that we can add the following entry in the proof-as-program Rose�a Stone5:

Computation Logic

side-e�ects new reasoning principles

5We do plead guilty to stealing the Rose�a Stone from Pédrot’s PhD thesis [133].

49

CHAPTER 2. THE λ-CALCULUS

�is thesis is in line with this perspective. Half of if (Part II) is precisely dedicated to the study of a
calculus which, by the use of side-e�ects and extension of the λ-calculus, allows to derive a proof of the
axiom of dependent choice. �e other half (Part III) is devoted to the study of algebraic models which
arise from the interpretation of logic through classical realizability.

50

