
4- �e λµµ̃-calculus

4.1 Sequent calculus

4.1.1 Gentzen’s LK calculus

�e sequent calculus was originally introduced by Gentzen [56, 57] who was trying to reformulate
the system of natural deduction in a more symmetric presentation. He was looking at the time for a
proof of normalization for the natural deduction system in order to prove the coherence of �rst-order
arithmetic. �e principal novelty of this system is that it gives an equal importance to le� and right parts
(hypotheses and conclusions) of sequents. In particular, sequents are of the form Γ ` ∆, where both Γ
and ∆ are sequences of formulas. Besides, the deductive system does no longer make the distinction
between introduction and elimination rules but is only compound of (le� and right) introduction rules.
Intuitively, a sequent is provable if the conjunction of hypotheses on the le� entails the disjunction of
(possible) conclusions on the right. More precisely, we can de�ne the formula associated to the sequent
A1, . . . ,An ` B1, . . . ,Bp as the formula A1∧ . . .∧An → B1∨ . . .∨Bp , and prove the previous statement,
namely that a sequent is valid if and only if its associated formula is valid (Proposition 4.3). To put it
di�erently, a sequent Γ ` ∆ is intuitively derivable if there is a formula in ∆ that is provable using the
hypotheses in Γ.

4.1.1.1 Language

In the original presentation of Gentzen [56, 57], who was interested in �rst-order arithmetic, �rst-order
expressions and binary predicates where de�ned by the following grammar:

Terms t ,u ::= x | n ∈ � | t + u | t − u | t × u
Predicates P ::= t = u | t < u

As explained in Section 1.1.1, this corresponds to the axiomatic part of a theory. Here we rather want
to deal with the deductive part of the proof system, that is the set of inferences rules that encompasses
the logical part of the theory. Hence we shall consider the generic case of �rst-order logic formulas (see
Example 1.2), which are built from a �xed set V of variables and a �xed signature Σ1 for �rst-order
terms, and from a signature Σ2 for predicates:

Terms e1,e2 ::= x | f (e1, ...,ek)
Predicates A,B ::= P (e1, . . . ,ek) | ∀x .A | ∃x .A | A→ B | A ∧ B | A ∨ B

(x ∈ V , f ∈ Σ1)
(P ∈ Σ2)

A sequent, wri�en Γ ` ∆, is a pair of two (possibly empty) lists of formulas Γ and ∆, de�ned by:

Γ,∆ ::= ε | Γ,A

71

CHAPTER 4. THE λµµ̃-CALCULUS

Identity rules
Γ ` A,∆ Γ,A ` ∆

Γ ` ∆
(Cut)

A ` A
(Ax)

Structural rules
Γ ` ∆
Γ ` A,∆

(wr)
Γ ` A,A,∆
Γ ` A,∆

(cr)
Γ ` σ (∆)
Γ ` ∆

(σr)

Γ ` ∆
Γ,A ` ∆

(wl)
Γ,A,A ` ∆
Γ,A ` ∆

(cl)
σ (Γ) ` ∆
Γ ` ∆

(σl)

Logical rules
Γ,A ` ∆
Γ ` ¬A,∆

(¬r)
Γ,A ` B,∆

Γ ` A→ B,∆
(→r)

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧ B,∆

(∧r)
Γ ` A,B,∆
Γ ` A ∨ B,∆

(∨r)

Γ ` A,∆
Γ,¬A ` ∆

(¬l)
Γ ` A,∆ Γ,B ` ∆

Γ,A→ B ` ∆
(→l)

Γ,A,B ` ∆
Γ,A ∧ B ` ∆

(∧l)
Γ,A ` ∆ Γ,B ` ∆

Γ,A ∨ B ` ∆
(∨l)

Γ ` A,∆ x < FV (Γ,∆)

Γ ` ∀x .A,∆
(∀r)

Γ,A[t/x] ` ∆
Γ,∀x .A ` ∆

(∀l)
Γ ` A[t/x],∆
Γ ` ∃x .A,∆

(∃r)
Γ,A ` ∆ x < FV (Γ,∆)

Γ,∃x .A ` ∆
(∃l)

Figure 4.1: Gentzen LK calculus

4.1.1.2 Deductive system

�e rules of Gentzen deductive system, given in Figure 4.1 and named LK, are spli�ed in three groups:

• identity rules, which specify the two pure manners of proving a sequent, namely reducing to an
hypothesis or by introducing a cut over a formula;

• structural rules, which correspond to contexts management: they allows us to weaken, rearrange
(σ is a permutation) or duplicate formulas within le� and right contexts;

• logical rules, which are the le� and right introduction rules for logical connectives.

Intuitively, a sequent Γ ` ∆ is derivable if there is a formula in ∆ that is provable using the hypotheses in
Γ. �is intuition is actually valid up to the subtlety that we do not necessarily know which formula of the
right-handside is proven. In fact, there is not necessarily one speci�c formula that is proven, but rather
a superposition of formulas. For instance, as we shall see a derivation of the sequent ` A(x) ∨ ¬A(x)
proves neither A(x) nor ¬A(x), it only proves that for any x , one of both is true. If A(x) is the formula
“the cat is alive at the instant x”, we are in presence of a Schrödinger’s cat1.

�is presentation is indeed more symmetric than natural deduction, in that it highlights the dual
behaviors of hypothesis and conclusions. �is observation will be re�ected through the proofs-as-
programs interpretation of sequent calculus in the next section. Lastly, this deduction system encom-
passes classical logic. In particular, it is easy to derive proofs for the excluded-middle, the double-
negation elimination or the law of Peirce (see Figure 4.2). Actually, the case of intuitionistic logic,
named LJ, corresponds to the same calculus where only one formula is allowed in the right-hand side
of sequents.

As an example to illustrate the construction of proof derivations in LK, we shall now prove the
claim that a sequent is provable if and only if its associate formula is.

1We are very grateful to Alexandre Miquel for this very nice metaphor.

72

4.1. SEQUENT CALCULUS

A ` A
(Ax)

` A,¬A
(¬r)

` A ∨ ¬A
(∨r)

A ` A
(Ax)

` A,¬A
(¬r)

¬(¬A) ` A
(¬l)

` ¬(¬A) → A
(→r)

A ` A
(Ax)

A ` B,A
(wr)

` A→ B,A
(→r)

A ` A
(Ax)

(A→ B) → A ` A
(→l)

` ((A→ B) → A) → A
(→r)

(a) Excluded-middle (b) Double-negation elimination (c) Peirce’s law

Figure 4.2: Proof of classical principles in LK

De�nition 4.1 (Admissible rule). A rule is said to be admissible in a proof system if there exists a
derivation of its conclusion using its hypotheses as axioms. y

Lemma 4.2. �e following rules are admissible in LK:

A ∈ Γ
Γ ` A

(Axr)
A ∈ ∆
A ` ∆

(Axl)
A ∈ Γ A ∈ ∆

Γ ` ∆
(Ax)

Proof. We only give the proof for the �rst rule. Knowing that A ∈ Γ we can assume that Γ is of the
general form B1, . . . ,Bn ,A,C1, . . . ,Cp and prove the �rst rule as follows:

A ` A
(Axl)

.... (wl)

A,B1, . . . ,Bn ,C1, . . . ,Cp−1 ` A

A,B1, . . . ,Bn ,C1, . . . ,Cp−1,Cp ` A
(wl)

B1, . . . ,Bn ,A,C1, . . . ,Cp−1,Cp ` A
(σl)

Proofs for the other two cases are very similar. �

Proposition 4.3 (Associated formula). A sequent Γ ` ∆ is valid if and only if its associated formula is
valid.

Proof. �e proof on the le�-to-right part is le� as an exercise for the willful reader. We only give the
right-to-le� proof in the case where Γ and ∆ both contains two formulas:

` A1 ∧A2 → B1 ∨ B2

A1,A2 ` A1
(Axr)

A1,A2 ` A2
(Axr)

A1,A2 ` A1 ∧A2
(∧r)

A1,A2 ` A1 ∧A2,B1,B2
(wr)

B2 ` B1,B2
(Axl)

B1 ∨ B2 ` B1,B2
(∨l)

A1,A2,B1 ∨ B2 ` B1,B2
(wr)

A1,A2,A1 ∧A2 → B1 ∨ B2 ` B1,B2
(→l)

A1,A2 ` B1,B2
(Cut)′

We implicitly use the fact that the following rule is admissible (which also is an easy exercise):
` A Γ,A ` ∆

Γ ` ∆
(Cut)′

�

4.1.2 Alternative presentation

In order to give a computational content to sequent calculus, we will use a slightly di�erent presenta-
tion. While this presentation does not bring any logical bene�ts (it actually has the drawback of making
the size of proofs grow), it forces the derivation to be somewhat more structured by preventing arbi-
trary changes of side (le� or right) when applying inference rules. �ite the opposite, at any time is
explicitly identi�ed which formula is being worked on. In a nutshell, instead of considering one unique
kind of sequent Γ ` ∆, this presentation now distinguishes between three kinds of sequents:

73

CHAPTER 4. THE λµµ̃-CALCULUS

Identity rules:
A ∈ ∆

Γ | A ` ∆
(Axl)

A ∈ Γ
Γ ` A | ∆

(Axr)
Γ ` A | ∆ Γ | A ` ∆

Γ ` ∆
(Cut)

Structural rules:
Γ,A ` ∆
Γ | A ` ∆

(focl)
Γ ` ∆,A
Γ ` A | ∆

(focr)

Logical rules:
Γ,A ` B | ∆

Γ ` A→ B | ∆
(→r)

Γ ` A | ∆ Γ ` B | ∆
Γ ` A ∧ B | ∆

(∧r)
Γ ` A | ∆

Γ ` A ∨ B | ∆
(∨1

r)
Γ ` B | ∆

Γ ` A ∨ B | ∆
(∨2

r)

Γ ` A | ∆ Γ | B ` ∆
Γ | A→ B ` ∆

(→l)
Γ,A,B ` ∆

Γ | A ∧ B ` ∆
(∧l)

Γ,A ` ∆ Γ,B ` ∆
Γ | A ∨ B ` ∆

(∨l)

Figure 4.3: Sequent calculus with focus

(A→ B) → A ` (A→ B) → A | A
(Axr)

(A→ B) → A, A ` A | B
(Axr)

(A→ B) → A | A ` A,B
(Axl)

(A→ B) → A, A ` A,B
(Cut)

(A→ B) → A, A ` B | A
(µ)

(A→ B) → A ` A→ B | A
(→r)

(A→ B) → A | A ` A
(Axl)

(A→ B) → A | (A→ B) → A ` A
(→l)

(A→ B) → A ` A
(Cut)

(A→ B) → A ` A |
(focr)

` ((A→ B) → A) → A |
→r

Figure 4.4: Peirce’s law

1. sequents of the form Γ ` A | ∆, where the focus is put on the (right) formula A;
2. sequents of the form Γ | A ` ∆, where the focus is put on the (le�) formula A;
3. sequents of the form Γ ` ∆, where no focus is set.

In a right (resp. le�) sequent Γ ` A | ∆, the singled out formula2 A reads as the conclusion “where the
proof shall continue” (resp. hypothesis “where it happened before”). �e rules of this sequent calculus
with focus are given in Figure 4.3 for the propositional fragment. It is easy to check that any of the
structural and identity rules of LK are admissible within this framework, and that any derivation in one
system is derivable in the other. We could also have given the rules for �rst-order quanti�cations in
the same way, but it is not the point here. Actually, neither did we include the negation rule, which we
could have done directly. Another solution to retrieve the negation would be to add constant symbols
> and ⊥ with the following axioms:

Γ | ⊥ ` ∆
(⊥)

Γ ` > | ∆
(>)

�en de�ning the negation by ¬A , A → ⊥, it is easy to check that the rules (¬r) and (¬l) are
admissible.

To be fair, we should confess two things. First, that in itself, this presentation is mainly motivated
here to make a transition to the type system of the λµµ̃-calculus, that we shall introduce in the next

2�is formula is o�en referred to as the formula in the stoup, a terminology due to Girard [59].

74

4.2. THE λµµ̃-CALCULUS

section. �at is, as a deductive system for mathematicians, this is LK buried under administrative duties.
As an example to illustrate the di�erence between LK and this presentation, we give in Figure 4.4 the
derivation tree for the law of Peirce, which is indeed bigger than its twin in LK. Second, we should
mention that LK can be directly use as a type system for a calculus, namely Munch-Maccagnoni’s
system L [126]. If the second part of this thesis is presented in the framework of λµµ̃-calculus, it could
as well have been rephrased entirely using system L, of which we use fragments in the third part. In
other words, the current section is motivated by the sole purpose of making obvious the equivalence
between both presentations.

4.2 �e λµµ̃-calculus

We shall now present the λµµ̃-calculus, originally introduced by Curien and Herbelin [32] to emphasize
implicit symmetries of computation such as the duality between programs and contexts or the duality
between call-by-name and call-by-value evaluation strategies. One of the huge advantages that this
calculus has over the usual λ-calculus is that its reduction system comes directly in the form of an
abstract machine. As we will discuss in the next sections, this is particularly convenient when it comes
to the de�nition of a realizability interpretation or of a continuation-passing style translation. Actually,
this also was one of the starting observation that led to the very de�nition of the λµµ̃-calculus3: when
it comes to abstract machines, the evolution of types has much more to do with sequent calculus than
with natural deduction. Consider for instance the rules (Push) and (Grab) of Krivine abstract machine:

(Push)
(Grab)

tu ? π � t ?u · π
(λx . t) ?u · π � t[u/x] ? π

In the �rst rule, if u has type A and π type B, then resulting stack u · π is of type A→ B: this is a le�-
introduction rule of implication. �en the second rule reads as a cut between two implications which
have been introduced on each side:

Γ,x : A ` t : B | ∆
Γ ` λx .t : A→ B | ∆

(→r)
Γ ` u : A | ∆ Γ | π : B ` ∆

Γ | u · π : A→ B ` ∆
(→l)

(λx .t ?u · π) : (Γ ` ∆)
(Cut)

where we make use of the three kinds of sequents from last section.

4.2.1 Syntax

�e syntax of the λµµ̃-calculus, just like the one of the λc -calculus, is divided in three categories: terms
(or proofs), which represent programs; evaluation contexts4 (or co-proofs), which represent environ-
ments of execution; commands, which are pairs consisting of a term and a context and represent a
closed system containing both the program and its environment. Formally, terms, contexts and com-
mands are de�ned by the following grammar:

Terms p ::= a | λa.p | µα .c
Contexts e ::= α | p · e | µ̃a.c
Commands c ::= 〈p ||e〉

where variables a,b, ... and co-variables α ,β , ... range over two �xed alphabets. To draw the parallel
with the λc -calculus and the Curry-Howard correspondence, a command is a process or a state of an

3See the introduction of [32].
4We draw the reader’s a�ention to the fact that the terminology of contexts is already overloaded, and we insist on the

fact that here they refer to co-terms. Nonetheless, the usual notion of evaluation contexts (see Remark 2.5) and this one are
not disconnected, since both refer to the environment in which a term is evaluated.

75

CHAPTER 4. THE λµµ̃-CALCULUS

abstract machine, representing the evaluation of a proof (the program) against a co-proof (the context).
�e notion of evaluation context is a generalization of the notion of stacks where µ̃a.c can be read as a
context leta = [] in c . As for terms, the µ operator comes from Parigot’s λµ-calculus [131], µα binds a
context to a context variable α in the same way µ̃a binds a proof to some proof variable a. In particular,
as we shall see now, it allows to capture evaluation contexts and as such is a control operator which
plays a role similar to call/cc.

4.2.2 Reduction rules and evaluation strategies

�e reduction rules of the λµµ̃-calculus are parameterized by a particular set of proofs, wri�enV , and
a particular set of contexts, wri�en E:

〈p ||µ̃a.c〉 → c[p/a]
〈µα .c ||e〉 → c[e/α]
〈λa.p ||u · e〉 → 〈u ||µ̃a.〈p ||e〉〉

(p ∈ V)
(e ∈ E)

IfV and E are not restricted enough, these rules admit a critical pair:

〈µα .c ||µ̃a.c ′〉
↙ ↘

c[µ̃a.c ′/α] c ′[µα .c/a]

Unlike the λ-calculus, the λµµ̃-calculus is clearly not con�uent: in the above critical pair, if c = 〈b ||β〉
and c ′ = 〈d ||γ 〉 for distinct variables, then the reduction is blocked a�er one step for each command
and c , c ′. Moreover, the critical pair can be interpreted in terms of non-determinism. Indeed, we can
de�ne a fork instruction by t , λab .µα .〈µ 〈a ||α〉||µ̃ .〈b ||α〉〉, which veri�es indeed that:

(Fork) 〈t||p0 · p1 · e〉 → 〈p0 ||e〉 and 〈t||p0 · p1 · e〉 → 〈p1 ||e〉.

�e di�erence between call-by-name and call-by-value can be characterized by how this critical
pair is solved, by de�ning V and E in such a way that the two rules do not overlap. �is justi�es the
de�nition of a subcategoryV of proofs, that we call values, and of the dual subset E of contexts that we
call co-values:

(Values) V ::= a | λa.p (Co-values) E ::= α | q · e

�e call-by-name evaluation strategy amounts to the case whereV , Proofs and E , Co-values. �is
is re�ected in the reduction of the command where a function is applied to a stack:

〈λa.p ||u · e〉 → 〈u ||µ̃a.〈p ||e〉〉 → 〈p[u/a]||e〉

We observe that the variable is substituted no ma�er what by the proof u (unreduced). Dually, the
call-by-value corresponds to V , Values and E , Contexts. In this case, assuming that the proof u
reduces5 to a value Vu , the previous command will reduce as follows:

〈λa.p ||u · e〉 → 〈u ||µ̃a.〈p ||e〉〉 *→ 〈Vu ||µ̃a.〈p ||e〉〉 → 〈p[Vu/a]||e〉

where the substitution in p is done only a�er u has reduced. If u does not reduce to a value in front of
µ̃a.〈p ||e〉 (which is the case if u drops its evaluation context), this substitution never happens.

Finally, it is worth noting that the µ binder is a control operator, since it allows for catching eval-
uation contexts and backtracking further in the execution. �is is then the key ingredient that makes
the λµµ̃-calculus a proof system for classical logic, as the continuation-passing style translation or the
embedding of call/cc will emphasize in the next sections.

5�at is to say that for any command e , the command 〈u ||e〉 reduces to 〈Vu ||e〉.

76

4.2. THE λµµ̃-CALCULUS

Γ ` p : A | ∆ Γ | e : A ` ∆
〈p ||e〉 : (Γ ` ∆)

(Cut)

(a : A) ∈ Γ
Γ ` a : A | ∆ (Axr)

Γ,a : A ` p : B | ∆
Γ ` λa.p : A→ B | ∆

(→r)
c : (Γ ` ∆,α : A)
Γ ` µα .c : A | ∆

(µ)

(α : A) ∈ ∆
Γ | α : A ` ∆ (Axl)

Γ ` p : A | ∆ Γ | e : B ` ∆
Γ | p · e : A→ B ` ∆

(→l)
c : (Γ,a : A ` ∆)
Γ | µ̃a.c : A ` ∆

(µ̃)

Figure 4.5: �e simply-typed λµµ̃-calculus

4.2.3 Type system

4.2.3.1 Two-sided sequents

�e type system for the simply-typed λµµ̃-calculus, given in Figure 4.5, corresponds exactly to the de-
ductive system of sequent calculus with focus in Figure 4.3. It is therefore the programming counterpart
of a proof-as-program correspondence between sequent calculus and abstract machines. Commands
are typed by the (Cut) rule, right introduction rules correspond to typing rules for proofs, while le�
introduction rules are typing rules for evaluation contexts. �e duality between hypotheses and con-
clusion in the sequent calculus is thus directly re�ected into the duality between proofs and contexts.

4.2.3.2 One-sided sequents

�e very same type system can be expressed through one-sided sequents, where hypotheses in Γ and ∆
are regrouped in a same context, wri�en Γ∪∆, where hypotheses α : A formerly in ∆ are distinguished
with an annotation on the type: α : A⊥⊥. �e typing rules are the same, except that the three kinds of
sequents are now denoted by:

Γ ` p : A Γ ` e : A⊥⊥ Γ ` c

In the case of simple types, the ordering of hypotheses is irrelevant, in the sense that any sequent
derivable with a context Γ would also be derivable with σ (Γ) for any permutation σ . However, if
necessary (for instance with dependent types), it is always possible to consider that hypotheses are
introduced with an index so that Γ ∪∆ is de�ned to match the order of introduction of the hypotheses.
Technically, it su�ces to rede�ne inferences rules to include these indices, for instance:

c : (Γ ` ∆,α :n A) |Γ | + |∆| = n

Γ ` µα .c : A | ∆

�is allows us to de�ne a function join by:

join((a :n A,Γ),∆,n) = (a : A),join(Γ,∆,n + 1)
join(Γ, (α :n A,∆),n) = (α : A⊥⊥),join(Γ,∆,n + 1

join(ε,ε,n) = ε

and we let Γ∪∆ , join(Γ,∆,0). One-sided or two-sided sequents are then essentially a ma�er of taste.
In the next chapters we will mostly use two-sided sequents, because they are closer to the original
presentations of LK or the λµµ̃-calculus. Yet, we always consider that contexts are implicitly numbered
so that we can make use of Γ ∪ ∆ in the right order if needed.

77

CHAPTER 4. THE λµµ̃-CALCULUS

a : (A→ B) → A ` a : (A→ B) → A | •
(Axr)

•,a′ : A ` a′ : A | •
(Axr)

• | α : A ` α : A,•
(Axl)

〈a′ ||α〉 : (•,a′ : A ` α : A,β : B)
(Cut)

•,a′ : A ` µβ .〈a′ ||α〉 : B | α : A)
µ

• ` λa′.µβ .〈a′ ||α〉 | α : A
→r

| α : A ` α : A
(Axl)

• | λa′.µβ .〈a′ ||α〉 · α : (A→ B) → A ` α : A)
→l

〈a ||λa′.µβ .〈a′ ||α〉 · α〉 : (a : (A→ B) → A ` α : A)
(Cut)

a : (A→ B) → A ` µα .〈a ||λa′.µβ .〈a′ ||α〉 · α〉 : A |
µ

` λa.µα .〈a ||λa′.µβ .〈a′ ||α〉 · α〉 : ((A→ B) → A) → A |
→r

Figure 4.6: Proof term for Peirce’s law

4.2.4 Embedding of the λc-calculus

In order to get more familiar with the syntax and computation of the λµµ̃-calculus, let us draw the
analogy with the λc -calculus. Let us begin by embedding the syntax of the call-by-name Krivine abstract
machine for λ-terms (that is without call/cc). �e embedding ~·� is straightforward:

~t ? π � , 〈~t� ||~π �〉

~x� , x

~λx .t� , λx .~t�

~t u� , µα .〈~t� ||~u� · α〉

~α� , α

~t · π � , ~t� · ~e�

It is then an easy exercise to check that typing judgments are preserved through the embedding6, and
it also easily veri�ed that in the call-by-name se�ing, reductions are also preserved:

(Push)
(Grab)

~tu ? π � = 〈µα .〈~t� ||~u� · α〉||~π �〉 → 〈~t� ||~u� · ~π �〉 = ~t ?u · π �
~λx . t ?u · π � = 〈λx .~t� || ~u� · ~π �〉 2→ 〈~t�[~u�/x]||~π �〉 = ~t[u/x]? π �

Actually, the full λc calculus can be retrieved since the call/cc operator and continuation constants
kπ can also be soundly embedded. Interestingly, by being more atomic the syntax of the λµµ̃-calculus
forces us to de�ne both terms in a way that the corresponding reductions rules:

(Save)
(Restore)

call/cc ? t · π � t ?kπ · π
kπ ? t · π ′ � t ? π

are decomposed into elementary steps. Indeed, let us de�ne the following proof terms:

call/cc , λa.µα .〈a ||kα · α〉 ke , λa′.µ .〈a′ ||e〉

and set ~cc� , call/cc and ~kπ � , k~π � . As expected, call/cc can be typed with Peirce’s law (see
Figure 4.6), as a ma�er of fact its very de�nition is obtained from the proof of Peirce’s law in Figure 4.4
through Curry-Howard isomorphism. Let us observe the computational behavior of call/cc: in front
of a context of the right shape (that is a stack q · e with e of type A), it catches the context e thanks to
the µα binder and reduces as follows:

〈call/cc||q · e〉 = 〈λa.µα .〈a ||kα · α〉||q · e〉 → 〈µα .〈q ||kα · α〉||e〉 → 〈q ||ke · e〉

In particular, if q · e = ~t · π �, we recognize the (Save) rule. Notice also that the proof term now on
top of the stack ke = λa′.µ .〈a′ ||e〉 (which, if e was of typeA, is of typeA→ B, see Figure 4.6) contains

6�at is to say that if a typing judgment Γ ` t : A is derivable then Γ ` ~t� : A | ε is derivable within the λµµ̃-calculus. To
be precise, this would require to restrict to simple types for t or to extend the λµµ̃-calculus type system to second-order, but
in fact both lead to the desired result.

78

4.3. CONTINUATION-PASSING STYLE TRANSLATION

a second binder µ . In front of a stack q′ · e ′, this binder will now catch the context e ′ and replace it by
the former context e:

〈ke ||q
′ · e ′〉 = 〈λa′.µ .〈a′ ||e〉||q′ · e ′〉 → 〈µ .〈q′ ||e〉||e ′〉 → 〈q′ ||e〉

Here again, we recognize exactly the (Restore) rule of the λc -calculus. For both cc and kπ (and both
reduction rules), their de�nitions in the λµµ̃-calculus is more atomic and highlights that these terms
computes in two elementary steps: they �rst grab (by means of a λ abstraction) a term t on the stack,
then they capture the evaluation context e (by means of a µ abstraction) and reduce accordingly to their
speci�cation (call/cc furnishes to t the continuation ke while ke ′ drops the continuation context and
let t be evaluated in the (restored) context e ′).

4.2.5 Soundness

When de�ning a proof system by means of a calculus, one should necessarily proceed to a sanity
check. It is standard to consider a calculus safe if it enjoys properties such as type safety (like subject
reduction), soundness and normalization, which correspond respectively to the following questions: Is
the reduction system correct with respect to the type system? Is there a proof of false? Does the typing
ensure normalization of terms?

�ere are actually many ways to answer each of these questions. Let us brie�y present three of
them. �e �rst option is to prove everything directly, from scratch. �e property of subject reduction
is usually proved by a cautious induction over the reduction rules, with a bunch of auxiliary lemmas
about substitution. Assuming that the normalization holds, it can be combined with subject reduction
to prove the soundnes: if there was a proof of false then this proof can be reduced to a term in normal
form (normalization) which is also a proof of false (subject reduction). �en if su�ces to show that
there is no such term. Finally, the normalization is proved by any possible means (most of the time it is
the hardest part), for instance by a combinatorial argument, like identifying a decreasing quantity on
the typing derivation, or by adapting one the following techniques.

A second technique consists in the de�nition of a realizability interpretation for the calculus. While
the interpretation can be tricky in itself to de�ne and prove adequate, in the end the adequacy generally
gives normalization and soundness for free.

A third solution relies on the de�nition of an embedding into another proof system for which these
properties holds. �en, if the translation is adequate in the sense that it preserves types and reduction,
the normalization of the target calculus ensures the one of the source, and the non existence of a proof
of false (or the corresponding translated type) in the target language should also ensure the soundness
of the source language. Aside from proving these properties, an interest of this technique is that it might
decompose or reduce di�culties of the source calculus (for instance the presence of control operators)
into well-known pieces of the target calculus (for instance the simply-typed λ-calculus). A standard
class of such embeddings are the continuation-passing style translations that we shall now present.

We will then take the call-by-name and call-by-value λµµ̃-calculi as examples, and use both a
continuation-passing style translation and a realizability interpretation in each case to prove that these
calculi enjoy the properties of soundness and normalization.

4.3 Continuation-passing style translation

4.3.1 Principles

In the realm of the proofs-as-programs correspondence, continuation-passing style (CPS) translations
are twofold: they bring both a program translation and a logical translation. We shall �rst focus on
the computational aspect, and emphasize the logical side in the next section. As a program transla-
tion, continuation-passing style translations are a well-known class of computational reductions from

79

CHAPTER 4. THE λµµ̃-CALCULUS

a calculus to another one. In particular, they have a lot of application in terms of compilation. �e
terminology was �rst introduced in 1975 by Sussman and Steele in a technical report about the Scheme
programming language [152]. �ey illustrate this technique with the example of the factorial. Using a
mixed notation between pseudo-code and λ-calculus7, a standard recursive de�nition of the factorial is
given by:

fact aux := λn.if n = 0 then 1 else n × fact (n − 1)

It is easy to check that fact computes correctly the factorial, for instance when applied to 3 it reduces
as follows:

fact 3 → 3 × fact 2 → 3 × 2 × fact 1 → 3 × 2 × 1 × fact 0 → 3 × 2 × 1 → 6

However, there is another way to drive the same computation forward, which Sussman and Steele [152]
describe by:

“It is always possible, if we are willing to specify explicitly what to do with the answer, to
perform any calculation in this way: rather than reducing to its value, it reduces to an appli-
cation of a continuation to its value. �at is, in this continuation-passing programming style,
a function always “returns” its result by “sending” it to another function. �is is the key idea.”

�is corresponds to this alternative de�nition of the factorial:

fact := λnk .if n = 0 then k 1 else fact (n − 1) (λr .k (n × r))

where the abstracted variable k is expecting the continuation as an argument. A continuation is a
function waiting for the return value to drive the computation forward. In other words, from the point
of view of the program, a continuation is a term that rei�es the future of the computation. For instance,
when applied to 3 and a function answer as continuation, the execution thread of fact is now:

fact 3 answer → fact 2 (λr . answer (3 × r))
→ fact 1 (λr .(λr . answer (3 × r)) (2 × r))
→ fact 0 (λr .(λr .(λr . answer (3 × r)) (2 × r) (1 × r))
→ (λr .(λr .(λr . answer (3 × r)) (2 × r)) (1 × r)) 1
→ (λr .(λr . answer (3 × r)) (2 × r)) 1
→ (λr . answer (3 × r)) 2
→ answer 6

We notice that if the �rst argument n is di�erent from 0, fact makes a recursive call to itself with n− 1
and a new continuation that is waiting for the answer r to compute the product n × r and return it to
the former continuation8. �is idea could of course be generalized to translate as well the arithmetic
primitives: any integer n could be transformed into the function n := λk .k n that expects a continuation
and apply this continuation to n. Similarly, the multiplication operator could be transformed into an
operator × waiting for the translations n,m of two integers and a continuation k , furnishing to n and
m the adequate continuations to extract their values and �nally return the multiplication to k : × :=

7�is could be formally embedded in the λ×+-calculus with integers, but there is no interest in being so formal here.
8In fact, we could optimize the continuation in the continuation-passing style translated form of the factorial to obtain an

alternative de�nition of the factorial function, which has the same computational behavior of without continuation:
fact := λn.fact auxn 1

fact aux := λmr .if m = 0 then r else fact aux (n − 1) (n × r)
In that case, the function fact is said to be tail-recursive, and reduces as follows:

fact 3 → fact aux 3 1 → fact aux 2 3 → fact aux 1 6 → fact aux 0 6 → 6
where we skipped the arithmetic reductions.

80

4.3. CONTINUATION-PASSING STYLE TRANSLATION

λtuk .t (λn.u (λm.k (n×m)). Again, when applied to a continuation answer and the translation of 3 and
2, this term will compute the expected result by passing of continuations along the execution:

× 3 2 answer → 3 (λn.2 (λm.answer (n ×m)))

→ (λn.2 (λm.answer (n ×m))) 3
→ 2 (λm.answer (3 ×m))
→ (λm.answer (3 ×m)) 2
→ answer 6

It is worth noting that the continuation-passing style translation also proposes an operational semantics
in that it makes explicit the order in which the reduction steps are computed. In particular, di�erent
evaluation strategies correspond to di�erent continuation-passing style translations9. �is was studied
by Plotkin for the call-by-name and call-by-value strategies within the λ-calculus [139], and we shall
recall in the sequel the corresponding translations for the λµµ̃-calculus [32].

In addition to the operational semantics, continuation-passing style translations allow to bene�t
from properties already proved for the target calculus. Besides, the passing of continuations provides
a way to handle the �ow of control, and in particular to embed control operators (like call/cc or
the µ operator). For instance, we will see how to de�ne translations p 7→ ~p� from the simply-typed
λµµ̃-calculus (the source language) to the simply-typed λ-calculus (the target language) along which the
properties of normalization and soundness can be transfered. In details, these translations will preserve
reduction, in that a reduction step in the source language gives rise to a step (or more) in the target
language:

c 1−→ c ′ ⇒ ~c�
+
−→β ~c

′� (4.1)

We will say that a translation is typed when it comes with a translation A 7→ ~A� from types of the
source language to types of the target language, such that a typed proof in the source language is
translated into a typed proof of the target language:

Γ ` p : A | ∆ ⇒ ~Γ�,~∆� ` ~p� : ~A� (4.2)

Lastly, these translations will map the type ⊥ into a type ~⊥� which is not inhabited:

0 p : ~⊥� (4.3)

Assuming that the previous properties hold, one automatically gets:

�eorem 4.4 (Bene�ts of the translation). If the target language of the translation is sound and normal-
izing, and if besides the equations (4.1), (4.2) and (4.3) hold, then:

1. If ~p� normalizes, then p normalizes

2. If p is typed, then p normalizes

3. �e source language is sound, i.e. there is no proof ` p : ⊥

Proof. 1. By contrapositive, if p does not normalizes, then according to equation (4.1) neither does
~p�.

2. Ifp is typed, then ~p� is also typed by(4.2), and thus normalizes. Using the �rst item,p normalizes.
3. By reductio ad absurdum, direct consequence of (4.3). �

9For instance, in our example the translation of the operator × corresponds to the call-by-name translation, because it
is waiting for the unevaluated translations of 3 and 2 and takes the responsibility of evaluating them when needed. On the
opposite, the call-by-value translation × := λnmk .k (n ×m) would have been waiting directly for integers (values) and the
application of a function to its argument (that is the translation of t u) should then have been in charge of performing the
evaluation of the argument: t u := λk .u λv .t v k .

81

CHAPTER 4. THE λµµ̃-CALCULUS

4.3.2 �e underlying negative translation

As mentioned in the last paragraphs, continuation-passing style translations have their logical coun-
terpart, since they induce a translation on formulas. If we observe for instance the translation of 2,
de�ned as λk .k 2, we see that it now expects a continuation waiting for an integer (atomic type nat)
whose return type is unknown, say R. �at is, the atomic type nat is translated into:

nat , (nat→ R) → R

As for the multiplication operator, its translation ×, which is waiting for two translated integers and a
continuation is now of type:

(nat→ nat→ nat) , nat→ nat→ (nat→ R) → R = nat→ nat→ nat

In the case where R is taken to be ⊥, this corresponds exactly to Gödel-Gentzen negative translation
ϕN of formula:

ϕN , ¬¬ϕ (ϕ atomic)
(ϕ → ψ)N , ϕN → ψN

(ϕ ∨ψ)N , ¬(¬ϕN ∧ ¬ψN)

(ϕ ∧ψ)N , (ϕN ∧ψN)

(¬ϕ)N , ¬ϕN

(∀x .ϕ)N , ∀x .¬ϕN

(∃x .ϕ)N , ¬(∀x .¬ϕN)

�is translation actually de�nes an embedding of classical (�rst-order) logic into intuitionistic (�rst-
order) logic, in the sense that if T is a set of axioms, then the sequent T ` Φ is provable in LK if and
only if the translated sequent T N ` ΦN is provable in LJ (intuitionistic sequent calculus). �is is to be
related with the fact that it allows to embed control operators in the λ-calculus. Since classical logic
is computationally obtained from intuitionistic logic (λ-calculus) by addition of a control operator, it
is quite natural that a sound embedding of the calculus with control operator back to the λ-calculus
de�nes an embedding of classical logic within intuitionistic logic.

4.3.3 �e bene�ts of semantic artifacts

Continuation-passing style translations are thus a powerful tool both on the computational and the
logical facets of the proofs-as-programs correspondence, which we use in the forthcoming sections to
prove normalization and soundness of the λµµ̃-calculus. Rather than giving directly the appropriate
de�nitions, we would like to insist on a convenient methodology to obtain CPS translations as well as
realizability interpretations (which are deeply connected). �is methodology is directly inspired from
Danvy et al method to derive hygienic semantics artifacts for a call-by-need calculus [37]. Reframed in
out se�ing, it essentially consists in the successive de�nitions of:

1. an operational semantics,
2. a small-step calculus or abstract machine,
3. a continuation-passing style translation,
4. a realizability model.

�e �rst step is nothing more than the usual de�nition of a reduction system. �e second step consists
in re�ning the reduction system to obtain small-step reduction rules (as opposed to big-step ones),
that are �ner-grained reduction steps. �ese steps should be as atomic as possible, and in particular,
they should correspond to an abstract machine in which the sole analysis of the term (or the context)
should determine the reduction to perform. Such a machine is called in context-free form [37]. If so, the
de�nition of a CPS translation is almost straightforward, as well as the realizability interpretation. Let
us now illustrate this methodology on the call-by-name and call-by-value λµµ̃-calculi.

82

4.4. THE CALL-BY-NAME λµµ̃-CALCULUS

4.4 �e call-by-name λµµ̃-calculus

4.4.1 Reduction rules

We recall here the (big-step) reduction rules of the call-by-name λµµ̃-calculus (Section 4.2.2), where the
µ̃ operator gets the priority over the µ operator:

〈p ||µ̃a.c〉 → c[p/a]
〈µα .c ||E〉 → c[E/α]
〈λa.p ||q · e〉 → 〈q ||µ̃a.〈p ||e〉〉

As such, these rules de�ne an abstract machine which is not in context-free from since to reduce a
command one need to analyze simultaneously what is the term and what is the context.

4.4.2 Small-step abstract machine

To alleviate this ambiguity, we will re�ne the reduction system into small-step rules in which it is
always speci�ed which part of the command is being analyzed. If we examine the big-step rules, the
only case where the knowledge of only one side su�ces: when the context is of the form µ̃a.c , which
has the absolute priority. So that we can start our analysis of a command by looking at its le�-hand
side. If it is a µ̃a.c , we reduce it, otherwise, we can look at the right-hand side. Now, if the term is of the
shape µα .c , it should be reduced, otherwise, we can analyze the le�-hand side again. �e only case le�
is when the context is a stack q · e and the term is a function λa.p, in which case the command reduces.

�e former case suggests two things: �rst, that the reduction should proceed by alternating exam-
ination of the le�-hand and the right-hand side of commands. Second, that there is a descent in the
syntax from the most general level (context e) to the most speci�c one (values10 V), passing by p and E
in the middle:

Terms p ::= µα .c | a | V
Values V ::= λa.p

Contexts e ::= µ̃a.c | E
Co-values E ::= α | p · e

So as to stick to this intuition, we denote commands with the level of syntax we are examining (ce ,ct ,cE ,cV),
and de�ne a new set of reduction rules which are of two kinds: computational steps, which re�ect the
former reduction steps, and administrative steps, which organize the descent in the syntax. For each
level in the syntax, we de�ne one rule for each possible construction. For instance, at level e , there is
one rule if the context is of the shape µ̃a.c , and one rule if it is of shape E. �is results in the following
set of small-step reduction rules:

〈p ||µ̃a.c〉e ce [p/a]
〈p ||E〉e 〈p ||E〉p
〈µα .c ||E〉p ce [E/α]
〈V ||E〉p 〈V ||E〉E
〈V ||q · e〉E 〈V ||q · e〉V
〈λa.p ||q · e〉V 〈q ||µ̃a.〈p ||e〉〉e

where the last two rules could be compressed in one rule:

〈λa.p ||q · e〉E 〈q ||µ̃a.〈p ||e〉〉e

Note that there is no rule for variables and co-variables, since they block the reduction. It is obvious that
theses rules are indeed a decomposition of the previous ones, in the sense that if c,c ′ are two commands
such that c 1→ c ′, then there exists n > 1 such that c n c ′.

10Observe that values usually include variables, but here we rather consider them in the category p. �is is due to the
fact that the operator µ̃ catches proofs at level p and variables are hence intended to be substituted by proofs at this level.
�rough the CPS, we will see that we actually need values to be considered at level p as they are indeed substituted by proofs
translated at this level.

83

CHAPTER 4. THE λµµ̃-CALCULUS

4.4.3 Call-by-name type system

�e previous subdivision of the syntax and reductions also suggests a �ne-grained type system, where
sequents are annotated with the adequate syntactic categories:

Γ `V V : A | ∆
Γ `p V : A | ∆ (V)

(a : A) ∈ Γ
Γ `p a : A | ∆ (Axr)

c : (Γ `c ∆,α : A)
Γ `p µα .c : A | ∆

(µ)
Γ,a : A `p p : B | ∆

Γ `V λa.p : A→ B | ∆
(→r)

Γ | E : A `E ∆
Γ | E : A `e ∆

(E)
c : (Γ,a : A `c ∆)
Γ | µ̃a.c : A `e ∆

(µ̃)
(α : A) ∈ ∆

Γ | α : A `E ∆
(Axl)

Γ `p p : A | ∆ Γ | e : B `e ∆

Γ | p · e : A→ B `E ∆
(→l)

While this does not bring any bene�t when building typing derivations (when collapsed at level e
and p, this type system is exactly the original one), it has the advantage of spli�ing the rules in more
atomic ones which are closer from the reduction system. Hence it will be easier to prove that the CPS
translation is typed using these rules as induction bricks.

4.4.4 Continuation-passing style translation

4.4.4.1 Translation of terms

Once we have an abstract-machine in context-free form at hands, the corresponding continuation-
passing style translation is straightforward. It su�ces to start from the higher level in the descent
(here e) and to de�ne a translation for each level which, for each element of the syntax, simply describe
the corresponding small-step rule. In the current case, this leads to the following de�nition:

~µ̃a.c�e p , (λa.~c�c) p

~E�e p , p ~E�E
~µα .c�p E , (λα .~c�c) E

~a�p , a

~V �p E , E ~V �V
~q · e�E V , V ~q�p ~e�e
~α�E , α

~λa.p�V q e , (λa.e ~p�p) q

where administrative reductions peculiar to the translation (like continuation-passing) are compressed,
and where ~〈p ||e〉�c , ~e�e ~p�p . �e expanded version is simply:

~µ̃a.c�e , λa.~c�c
~E�e , λp.p ~E�E
~µα .c�p , λα .~c�c
~a�p , a

~V �p , λE.E ~V �V
~q · e�E , λV .V ~q�p ~e�e
~α�E , α

~λa.p�V , λqe .(λa.e ~p�p) q

�is induces a translation of commands at each level of the translation:

~〈p ||e〉�ec , ~e�e ~p�p ~〈V ||E〉�Ec , ~E�E ~V �V
~〈p ||E〉�

p
c , ~p�p ~E�E ~〈V ||q · e〉�Vc , ~V �V ~q�p ~e�e

which is easy to prove correct with respect to computation, since the translation is de�ned from the
reduction rules. We �rst prove that substitution is sound through the translation, and then prove that
the whole translation preserves the reduction.

Lemma 4.5. For any variable a (co-variable α) and any proof q (co-value E), the following holds for any
command c :

~c[q/a]�c = ~c�c [~q�p/a] ~c[E/α]�c = ~c�c [~E�E/α]

�e same holds for substitution within proofs and contexts.

84

4.4. THE CALL-BY-NAME λµµ̃-CALCULUS

Proof. Easy induction on the syntax of commands, proofs and contexts, the key cases corresponding to
(co-)variables:

~α�e [~E�E/α] = (λp.p α)[~E�E/α] = λp.p ~E�E = ~E�e = ~α[E/α]�e
�

Proposition 4.6. For all levels ι,o of e,p,E, and any commands c,c ′, if cι 1 c ′o , then ~c�ιc
+
−→β ~c

′�oc .

Proof. �e proof is an easy induction on the reduction . Administrative reductions are trivial, the
cases for µ and µ̃ correspond to the previous lemma, which leaves us with the case for λ:

~〈λa.p ||q · e〉�Vc = (λqe .(λa.e ~p�p) q) ~q�p ~e�e
2−→β (λa.~e�e ~p�p) ~q�p = ~〈q ||µ̃a.〈p ||e〉〉�

e
c
�

4.4.4.2 Translation of types

�e computational translation induces the following translation on types:

~A�e , ~A�p → ⊥

~A�p , ~A�E → ⊥

~A�E , ~A�V → ⊥

~A→ B�V , ~A�p → ~B�e → ⊥

~X �V , X (X variable)

where we take ⊥ as return type for continuations. �is extends naturally to typing contexts, where the
translation of Γ is de�ned at level p while ∆ is translated at level E:

~Γ,a : A�p , ~Γ�p ,a : ~A�p ~∆,α : A�E , ~∆�E ,α : ~A�E

As we did not include any constant of atomic types, the choice for the translation of atomic types is
somehow arbitrary, and corresponds to the idea that a constant c would be translated into λk .k c . We
could also have translated atomic types at level p, with constants translated as themselves. In any case,
the translation of proofs, contexts and commands is well-typed:

Proposition 4.7. For any contexts Γ and ∆, we have

1. if Γ ` p : A | ∆ then ~Γ�p ,~∆�E ` ~p�p : ~A�p
2. if Γ | e : A ` ∆ then ~Γ�p ,~∆�E ` ~e�e : ~A�e
3. if c : Γ ` ∆ then ~Γ�p ,~∆�E ` ~c�c : ⊥

Proof. �e proof is done by induction over the typing derivation. We can re�ne the statement by using
the type system presented in Section 4.4.3, and proving two additional statements: if Γ `V V : A | ∆
then ~Γ�p ,~∆�E ` ~V �V : ~A�p (and similarly for E). We only give two cases, other cases are easier or
very similar.

• Case c . If c = 〈p ||e〉 is a command typed under the hypotheses Γ,∆:

Γ `p p : A | ∆ Γ | e : A `e ∆

〈p ||e〉 : Γ `c ∆
(Cut)

then by induction hypotheses for e and p, we have that ~Γ�p ,~∆�E ` ~e�e : ~A�p → ⊥ and that
~Γ�p ,~∆�E ` ~p�p : ~A�p , thus we deduce that ~Γ�p ,~∆�E ` ~e�e ~p�p : ⊥.

85

CHAPTER 4. THE λµµ̃-CALCULUS

• Case V . If λa.p has type A→ B:
Γ,a : A `p p : B | ∆

Γ `V λa.p : A→ B | ∆
(→r)

then by induction hypothesis, we get that ~Γ�p ,~∆�E ,a : ~A�p ` ~p�p : ~B�p . By de�nition, we have
~λa.p�V = λqe .(λa.e ~p�p) q, which we can type:

e : ~B�e ` e : ~B�p → ⊥
(Ax)

~Γ�p ,~∆�E ,a : ~A�p ` ~p�p : ~B�p
~Γ�p ,~∆�E ,e : ~B�e ,a : ~A�p ` e ~p�p : ⊥ (→E)

~Γ�p ,~∆�E ,e : ~B�e ` λa.e ~p�p : ~A�p → ⊥
(→I)

q : ~A�p ` q : ~A�p
(Ax)

~Γ�p ,~∆�E ,q : ~A�p ,e : ~B�e ` (λa.e ~p�p) q : ⊥
(→E)

~Γ�p ,~∆�E ` λqe .(λa.e ~p�p) q : ~A�p → ~B�e → ⊥
(→I)

�

Up to this point, we already proved enough to obtain the normalization of the λµµ̃-calculus for the
operational semantics considered:
�eorem 4.8 (Normalization). Typed commands of the simply typed call-by-name λµµ̃-calculus are nor-
malizing.

Proof. By applying the generic result for translations (�eorem 4.4) since the required conditions are
satis�ed: the simply-typed λ-calculus is normalizing (�eorem 2.17), and Propositions 4.18 and 4.19
correspond exactly to equations (5.1) and (5.2). �

It only remains to prove that there is no term of the type ~⊥�p to ensure the soundness of the
λµµ̃-calculus.
Proposition 4.9. �ere is no term t in the simply typed λ-calculus such that ` t : ~⊥�p .

Proof. By de�nition, ~⊥�p = (⊥ → ⊥) → ⊥. Since λx .x is of type ⊥ → ⊥, if there was such a term t ,
then we would obtain ` t λx .x : ⊥, which is absurd. �

�eorem 4.10. �ere is no proof p (in the simply typed call-by-name λµµ̃-calculus) such that ` p : ⊥ | .

Proof. Simple application of �eorem 4.4. �

4.4.5 Realizability interpretation

We shall present in this section a realizability interpretation à la Krivine for the call-by-name λµµ̃-
calculus. As Krivine classical realizability is naturally suited for a second-order se�ing, we shall �rst
extend the type system to second-order logic. As we will see, the adequacy of the typing rules for
universal quanti�cation almost comes for free. However, we could also have sticked to the simple-
typed se�ing, whose interpretation would have required to explicitly interpret each atomic type by a
falsity value.

4.4.5.1 Extension to second-order

We �rst give the usual typing rules à la Curry for �rst- and second-order universal quanti�cations in
the framework of the λµµ̃-calculus. Note that in the call-by-name se�ing, these rules are not restricted
and de�ned at the highest levels of the hierarchy (e for context, p for proofs).

Γ | e : A[n/x] ` ∆
Γ | e : ∀x .A ` ∆

(∀1
l)

Γ ` p : A | ∆ x < FV (Γ,∆)

Γ ` p : ∀x .A | ∆ (∀1
r)

Γ | e : A[B/X] ` ∆
Γ | e : ∀X .A ` ∆

(∀2
l)

Γ ` p : A | ∆ X < FV (Γ,∆)

Γ ` p : ∀X .A | ∆ (∀2
r)

86

4.4. THE CALL-BY-NAME λµµ̃-CALCULUS

4.4.5.2 Realizability interpretation

We shall now present the realizability interpretation. As shown in Section 4.2.4, the call-by-name eval-
uation strategy allows to fully embed the λc -calculus. It is no surprise that the respective realizability
interpretations for these calculi are very close. �e major di�erence lies in the presence of the µ̃ oper-
ator which has no equivalent in the λc -calculus, and forces to add a level in the interpretation. While
we could directly state the de�nition and prove its adequacy, we rather wish to a�ract the reader a�en-
tion to the fact that this de�nition is a consequence of the small-steps operational semantics. Indeed,
going back to the intuition of a game underlying the de�nition of Krivine realizability, we are looking
for sets of proofs (truth values) and set of contexts (falsity values) which are “well-behaved” against
their respective opponents. �at is, given a formula A, we are looking for players for A which com-
pute “correctly” in front of any contexts opposed to A. If we take a closer look at the de�nition of the
context-free abstract machine (Section 4.4.2), we see that the four levels e ,p,E,V are precisely de�ned as
sets of objects computing “correctly” in front of any object in the previous category: for instance, proofs
in p are de�ned together with their reductions in front of any context in E. �is was already re�ected
in the continuation-passing style translation. �is suggests a four-level de�nition of the realizability
interpretation, which we compact in three levels as the lowest level V can easily be inlined at level p
(this was already the case in the small-step operational semantics and we could have done it also for
the CPS).

�e interpretation uses again the standard model� for the interpretation of �rst-order expressions
and is parameterized by a pole ⊥⊥, whose de�nition exactly matches the one for the λc -calculus:

De�nition 4.11 (Pole). A pole is any subset ⊥⊥ of commands which is closed by anti-reduction, that is
for all commands c,c ′, if c ∈ ⊥⊥ and c → c ′, then c ∈ ⊥⊥. y

We try to stick as much as possible to the notations and de�nitions of Krivine realizability. In
particular, we de�ne Π (the base set for falsity values) as the set of all co-values: Π , E. Falsity
value functions, which are again de�ned as functions F : �k → P (Π), are once more associated
with predicate symbols Ḟ , so that we use the very same de�nition of formulas with parameters. �e
interpretation of formulas with parameters is de�ned by induction on the structure of formulas:

‖Ḟ (e1, . . . ,ek)‖E , F (~e1�, . . . ,~ek �)

‖A→ B‖E , {p · e : p ∈ |A|p ∧ e ∈ ‖B‖e }

‖∀x .A‖E ,
⋃
n∈�

‖A[n/x]‖E

‖∀X .A‖E ,
⋃

F :�k→P (Π)

‖A[Ḟ/X]‖E

|A|p , ‖A‖⊥⊥E = {p : ∀e ∈ ‖A‖E ,〈p ||e〉 ∈ ⊥⊥}
‖A‖e , |A|⊥⊥p = {e : ∀e ∈ ‖A‖E ,〈p ||e〉 ∈ ⊥⊥}

�is de�nition exactly matches the one for the λc -calculus, considering that the “extra” level of interpre-
tation ‖A‖e is hidden in the la�er, since all stacks are co-values. �e expected monotonicity properties
are satis�ed:

Proposition 4.12 (Monotonicity). For any formula A, the following hold:

1. ‖A‖E ⊆ ‖A‖e
2. |A|⊥⊥⊥⊥p = |A|p

3. |∀x .A|p =
⋂

n∈� |A[n/x]|p

4. |∀X .A|p =
⋂

F :�k→P (Π) |A[Ḟ/X]|p
5. ‖∀x .A‖e ⊇

⋃
n∈� ‖A[n/x]‖e

6. ‖∀X .A‖e ⊇
⋃

F :�k→P (Π) ‖A[Ḟ/X]‖e

87

CHAPTER 4. THE λµµ̃-CALCULUS

Proof. �ese properties actually hold for arbitrary sets A and orthogonality relation ⊥. Facts 1 and 2
are simply the usual properties of bi-orthogonal sets: A ⊆ A⊥⊥ and A⊥⊥⊥ = A⊥. Facts 3 and 4 are the
usual equality (

⋃
A∈A A)⊥ =

⋂
A∈A A⊥. Facts 5 and 6 are the inclusion (

⋂
A∈A A)⊥ ⊇

⋃
A∈A A⊥. �

A valuation is de�ned again as a function ρ which associates a natural number ρ (x) ∈ � to every
�rst-order variable x and a falsity value function ρ (X) : �k → P (Π) to every second-order variable X
of arity k . As for substitutions, wri�en σ , they now map variables to closed proofs (wri�en σ ,a := p)
and co-variables to co-values (wri�en σ ,α := E). We denote again by A[ρ] (resp. p[σ],e[σ , ...) the
closed formula (resp. proofs, context,…) where all variables are substituted by their values through ρ.

Given a closed (one-sided) context Γ, we say that a substitutionσ realizes Γ, which we writeσ Γ, if
for any (a : A) ∈ Γ, σ (a) ∈ |A|p and if for any (α : A⊥⊥) ∈ Γ, σ (α) ∈ ‖A‖E . We are now equipped to prove
the adequacy of the typing rules for the (call-by-name) λµµ̃-calculus with respect to the realizability
interpretation we de�ned.

Proposition 4.13 (Adequacy). Let Γ,∆ be typing contexts, ρ be any valuation and σ be a substitution
such that σ (Γ ∪ ∆)[ρ], then

1. if Γ ` p : A | ∆, then p[σ] ∈ |A[ρ]|p
2. if Γ | e : A ` ∆, then e[σ] ∈ ‖A[ρ]‖e
3. if c : Γ ` ∆, then c[σ] ∈ ⊥⊥

Proof. By mutual induction over the typing derivation.

• Case (Cut). We are in the following situation:

Γ ` p : A | ∆ Γ | e : A ` ∆
〈p ||e〉 : Γ ` ∆ (Cut)

By induction, we have p[σ] ∈ |A[ρ]|p and e[σ] ∈ ‖A[ρ]‖e , thus 〈p[σ]||e[σ]〉 ∈ ⊥⊥.

• Case (Axr). We are in the following situation:

(a : A) ∈ Γ
Γ ` a : A | ∆ (Axr)

Since σ Γ[ρ], we deduce that σ (a) ∈ |A|p ⊂ |A[ρ]|.

• Case (Axl). We are in the following situation:

(α : A) ∈ ∆
Γ | α : A ` ∆ (Axl)

Since σ ∆[ρ], we deduce that σ (α) ∈ ‖A[ρ]‖.

• Case (µ). We are in the following situation:

c : (Γ ` ∆,α : A)
Γ ` µα .c : A | ∆

(µ)

Let E be any context in ‖A[ρ]‖E , then (σ ,α := E) (Γ∪∆)[ρ],α : A⊥⊥[ρ]. By induction, we can deduce
that c[σ ,α := E] = (c[σ])[E/α] ∈ ⊥⊥. By de�nition,

〈(µα .c)[σ]||E〉 = 〈µα .c[σ]||E〉 → c[σ][E/α] ∈ ⊥⊥

thus we can conclude by anti-reduction.

88

4.4. THE CALL-BY-NAME λµµ̃-CALCULUS

• Case (µ̃). We are in the following situation:

c : (Γ,a : A ∆)

Γ | µ̃a.c : A ` ∆
(µ̃)

Let p be a proof in |A[ρ]|p , by assumption we have (σ ,a := p) (Γ,a : A ∪ ∆)[ρ]. As a consequence,
we deduce from the induction hypothesis that c[σ ,a := p] = (c[σ])[p/a] ∈ ⊥⊥. By de�nition, we have:

〈p ||(µ̃a.c)[σ]〉 = 〈p ||µ̃a.c[σ]〉 → (c[σ])[p/a] ∈ ⊥⊥

so that we can conclude by anti-reduction.

• Case (→r). We are in the following situation:

Γ,a : A ` p : B | ∆
Γ ` λa.p : A→ B | ∆

(→r)

Let q ·e be a stack in ‖ (A→ B)[ρ]‖E , that is to say that q ∈ |A[ρ]|p and e ∈ ‖B[ρ]‖e . By de�nition, since
q ∈ |A[ρ]|p , we have (σ ,a := q) (Γ,a : A ∪ ∆)[ρ]. By induction hypothesis, this implies in particular
that p[σ ,a := q] ∈ |B[ρ]|p and thus 〈p[σ ,a := q]||e〉 ∈ ⊥⊥. We can now use the closure by anti-reduction
to get the expected result:

〈λa.p[σ]||q · e〉 → 〈q ||µ̃a.〈p[σ]||e〉〉 → 〈p[σ ,a := q]||e〉 ∈ ⊥⊥

• Case (→l). We are in the following situation:

Γ ` q : A | ∆ Γ | e : B ` ∆
Γ | q · e : A→ B ` ∆

→E

By induction hypothesis, we obtain that q[σ] ∈ |A[ρ]|p and e[σ] ∈ ‖B[ρ]‖e . By de�nition, we thus
have that (q · e)[σ] ∈ ‖A→ B‖E ⊆ ‖A→ B‖e .

• Case (∀1
r). We are in the following situation:

Γ ` p : A | ∆ x < FV (Γ,∆)

Γ ` p : ∀x .A | ∆ (∀1
r)

By induction hypothesis, since x < FV (Γ,∆), for any n ∈ � we have (Γ ∪ ∆)[ρ,x ← n] = (Γ ∪ ∆)[ρ]
and thus σ ` (Γ ∪ ∆)[ρ,x ← n]. We obtain by induction hypothesis that p[σ] ∈ |A[ρ,x ← n]|p for any
n ∈ �, i.e. that p[σ] ∈ ⋂

n∈� |A[ρ,x ← n]|p = |∀x .A[ρ]|p . �e case (∀2
r) is identical to this one.

• Case (∀1
l). We have that

Γ | e : A[n/x] ` ∆
Γ | e : ∀x .A ` ∆

(∀1
l)

thus by induction hypothesis we get that e[σ] ∈ ‖ (A[n/x])[ρ]‖e . �erefore we have in particular that
e[σ] ∈ ⋃

n∈� ‖ (A[n/x])[ρ]‖e ⊆ ‖∀x .A[ρ]‖e (Proposition 4.22). �e case (∀2
r) is identical to this one. �

Once the adequacy is proved, normalization and soundness almost come for free. �e normalization
is a direct corollary of the following observation, whose proof is the same as for Proposition 6.9:

Proposition 4.14. �e set ⊥⊥⇓ , {c : c normalizes} of normalizing commands de�nes a valid pole.

�eorem 4.15 (Normalization). For any contexts Γ,∆ and any command c , if c : Γ ` ∆, then c normalizes.

89

CHAPTER 4. THE λµµ̃-CALCULUS

Proof. By adequacy, any typed command c belongs to the pole⊥⊥⇓ modulo the closure under a substitu-
tion σ realizing the typing contexts. It su�ces to observe that to obtain a closed term, any free variable
a of type A in c can be substituted by an inert constant a which will realize its type (since it forms a
normalizing command in front of any E in ‖A‖E). �us c[a/a,b/b, . . .] normalizes and so does c . �

Similarly, the soundness is an easy consequence of adequacy, since the existence of a proof p of type
⊥ = ∀X .X would imply that p ∈ |⊥|p for any pole ⊥⊥. For any consistent pole (say the empty pole), this
is absurd.

�eorem 4.16 (Soundness). �ere is no proof p (in the second-order call-by-name λµµ̃-calculus) such that
` p : ⊥ | .

For what concerns the induced model, it is worth noting that the notion of proof-like terms for the
λc -calculus corresponds to closed proofs in the λµµ̃-calculus. Indeed, recall that continuation constants
are translated by ke , λa′.µ .〈a′ ||e〉, where e necessarily contains a free co-variable (or a stack bo�om
if we had included co-constants in our syntax). �e restriction to closed realizers is thus enough to
obtain a sound model.

4.5 �e call-by-value λµµ̃-calculus

We shall now reproduce this approach for the call-by-value λµµ̃-calculus. Since most of the steps are
very similar, we will try to be briefer in this section.

4.5.1 Reduction rules

We recall the reductions rules for the call-by-value evaluation strategy, in which µ gets the priority
over µ̃:

〈µα .c ||e〉 → c[e/α]
〈V ||µ̃a.c〉 → c[V /a]
〈λa.p ||q · e〉 → 〈q ||µ̃a.〈p ||e〉〉

4.5.2 Small-step abstract machine

We can split again the previous operational semantics into small-step reduction rules. �e underlying
syntactical subcategories for proofs, contexts and command are almost the same as in the call-by-name
se�ing, except that variables are now substituted by (and thus at the level of) values, while co-variables
are no longer co-values. Besides, the absolute priority is given to proofs at level p, so that the hierarchy
is reordered in p,e,V ,E. �e corresponding syntax is given by:

Terms p ::= µα .c | V
Values V ::= a | λa.p

Contexts e ::= µ̃a.c | E | α
Co-values E ::= p · e

and the small-step reduction system is given by:

〈µα .c ||e〉p cp[e/α]
〈V ||e〉p 〈V ||e〉e
〈V ||µ̃a.c〉e cp[V /a]
〈V ||E〉e 〈V ||E〉V
〈λa.p ||E〉V 〈λa.p ||E〉E
〈λa.p ||q · e〉E 〈q ||µ̃a.〈p ||e〉〉p

�is de�nes an abstract-machine in context-free form, and the last two rules can again be compacted in
one. We could also give a type system subdivided according to the syntactic hierarchy, which is exactly

90

4.5. THE CALL-BY-VALUE λµµ̃-CALCULUS

as expected. At this stage, we hope that any reader would be bored if we were to introduce it formally,
therefore we shall omit it.

4.5.3 Continuation-passing style translation

4.5.3.1 Translation of terms

Having the abstract-machine in context-free form at our disposal, we can give the continuation-passing
style corresponding to this operational semantics. �e direct translation of small-step rules gives:

~〈p ||e〉�c , ~p�p ~e�e
~µα .c�p e , (λα .~c�c) e

~V �p e , e ~V �V
~µ̃a.c�e V , (λa.~c�c)V

~q · e�e V , V ~q�p ~e�e
~α�e , α

~a�V , a

~λa.p�V q e , q (λa.~p�p e)

where administrative reductions particular to the translation are compressed. �e expanded version is
then:

~〈p ||e〉�c , ~p�p ~e�e
~µα .c�p , λα .~c�c
~V �p , λe .e ~V �V
~µ̃a.c�e , λa.~c�c

~q · e�E , λV .V ~q�p ~e�e
~α�E , α

~a�V , a

~λa.p�V , λqe .q (λa.~p�p e)

�is induces a translation of commands at each level of the translation:

~〈p ||e〉�
p
c , ~p�p ~e�e ~〈V ||p〉�ec , ~e�e ~V �V ~〈V ||q · e〉�Vc , ~V �V ~q�p ~e�e

which is again easy to prove correct with respect to computation, since the translation is de�ned from
the reduction rules. �is requires again a lemma on the soundness of substitution through the CPS.

Lemma 4.17. For any variable a (co-variable α) and any valueV (context e), the following holds for any
command c :

~c[V /a]�c = ~c�c [~V �V /a] ~c[e/α]�c = ~c�c [~e�e/α]

�e same holds for substitution within proofs and contexts.

Proof. By induction on the syntax of commands, proofs and contexts, the key cases corresponding to
(co-)variables:

~a�p[~V �V /a] = (λe .e a)[~V �V /a] = λe .e ~V �V = ~V �p = ~a[V /a]�p
�

Proposition 4.18. For all levels ι,o of e,p,E, and any commands c,c ′, if cι 1 c ′o , then ~c�ιc
+
−→β ~c

′�oc .

Proof. �e proof is again an easy induction on the reduction . Administrative reductions are trivial,
the cases for µ and µ̃ correspond to the previous lemma, which leaves us again with the more interesting
cases of λ:

~〈λa.p ||q · e〉�Vc = (λqe .q (λa.~p�p e)) ~q�p ~e�e
2−→β ~q�p (λa.~p�p ~e�e) = ~〈q ||µ̃a.〈p ||e〉〉�

p
c

�

91

CHAPTER 4. THE λµµ̃-CALCULUS

4.5.3.2 Translation of types

�e computational translation induces the following translation on types:

~A�p , ~A�e → ⊥

~A�e , ~A�V → ⊥

~A→ B�V , ~A�p → ~B�e → ⊥

~X �V , X (X variable)

where we take⊥ as return type for continuations. �is translation extends naturally to contexts, where
the translation of Γ is de�ned at level V while ∆ is translated at level e:

~Γ,a : A�V , ~Γ�V ,a : ~A�V ~∆,α : A�e , ~∆�e ,α : ~A�e

�e translation of proofs, contexts and commands is well-typed:

Proposition 4.19. For any contexts Γ and ∆, we have

1. if Γ ` p : A | ∆ then ~Γ�V ,~∆�e ` ~p�p : ~A�p

2. if Γ | e : A ` ∆ then ~Γ�V ,~∆�e ` ~e�e : ~A�e

3. if c : Γ ` ∆ then ~Γ�V ,~∆�e ` ~c�c : ⊥

Proof. �e proof is done by induction over the typing derivation. �e proof is essentially the same than
in the call-by-name case, the main di�erence being in the case of (→r), which is the only one we give
here. If λa.p has type A→ B:

Γ,a : A `p p : B | ∆
Γ `V λa.p : A→ B | ∆

(→r)

then by induction hypothesis, we get that ~Γ�V ,~∆�e ,a : ~A�V ` ~p�p : ~B�p . By de�nition, we have
~λa.p�V = λqe .q (λa.~p�p e), which we can type:

q : ~A�p ` q : ~A�e → ⊥
(Ax)

~Γ�p ,~∆�E ,a : ~A�p ` ~p�p : ~B�e → ⊥ e : ~B�e ` e : ~B�e
(Ax)

~Γ�V ,~∆�e ,e : ~B�e ,a : ~A�V ` ~p�p e : ⊥ (→E)

~Γ�V ,~∆�e ,e : ~B�e ` λa.~p�p e : ~A�e
(→I)

~Γ�V ,~∆�e ,q : ~A�p ,e : ~B�e ` q (λa.~p�p e) : ⊥
(→E)

~Γ�V ,~∆�e ` λqe .q (λa.~p�p e) : ~A�p → ~B�e → ⊥
(→I)

�

�e continuation-passing style translation preserves both reduction and typing, thus it is su�cient
to deduce the normalization and the soundness (observe that we have again ~⊥�p = (⊥ → ⊥) → ⊥)
for the call-by-value λµµ̃-calculus. �e proofs are exactly the same as in the call-by-name case.

�eorem 4.20 (Normalization). Typed commands of the simply-typed call-by-value λµµ̃-calculus are
normalizing.

�eorem 4.21 (Soundness). �ere is no proof p (in the simply-typed call-by-value λµµ̃-calculus) such
that ` p : ⊥ | .

92

4.5. THE CALL-BY-VALUE λµµ̃-CALCULUS

4.5.4 Realizability interpretation

�e realizability interpretation follows the same guidelines than in the call-by-name se�ing. �e ma-
jor change comes with the syntactic hierarchy: given a formula A, its interpretation |A|p (the truth
value |A|) will be de�ned by orthogonality to ‖A‖e (falsity value ‖A‖), which will be itself de�ned by
orthogonality to |A|V . �e la�er is sometimes called truth value of values of the formula A, and is rem-
iniscent of call-by-value interpretations in Krivine realizability (see for instance [126, 108]). �e main
consequence of these bi-orthogonal de�nitions of truth values is that it requires a value restriction for
universal quanti�cations:

Γ | e : A[n/x] ` ∆
Γ | e : ∀x .A ` ∆

(∀1
l)

Γ ` V : A | ∆ x < FV (Γ,∆)

Γ ` V : ∀x .A | ∆ (∀1
r)

Γ | e : A[B/X] ` ∆
Γ | e : ∀X .A ` ∆

(∀2
l)

Γ ` V : A | ∆ X < FV (Γ,∆)

Γ ` V : ∀X .A | ∆ (∀2
r)

As we will study value restriction more in depth in Chapter 7 (with di�erent motivations), we do not
want to give too much details at this stage. We only mention that this restriction is necessary to obtain
the adequacy of typing rules, and can be understood as a consequence of the strict inclusion between
the orthogonal of an intersection and the union of orthogonal sets: ⋃

A∈A A⊥ ((
⋂

A∈A A)⊥. For
further explanations on the topic, we refer the reader to the appendices of [126].

Apart from this, the interpretation is straightforward. Poles are de�ned as usual as sets of com-
mands closed under anti-reduction, and predicates are now interpreted as function F : �k → P (V0)
whereV0 is the set of closed values. �e interpretation of formulas with parameters is then de�ned by
induction on the structure of formulas:

|Ḟ (e1, . . . ,ek) |V , F (~e1�, . . . ,~ek �)

|A→ B |V , {λa.p : ∀u ∈ |A|V ,p[u/a] ∈ |B |p }
|∀x .A|V ,

⋂
n∈�

|A[n/x]|V

|∀X .A|V ,
⋂

F :�k→P (V0)

|A[Ḟ/X]|V

‖A‖e , |A|⊥⊥V = {e | ∀V ∈ |A|V ,〈V ||e〉 ∈ ⊥⊥}

|A|p , ‖A‖⊥⊥e = {t | ∀e ∈ ‖A‖e ,〈p ||e〉 ∈ ⊥⊥}

�e intuition underlying this de�nition is the very same: a proof in the truth value (of values) |∀x .A|V of
a universally quanti�ed formula has to be in the corresponding truth value |A[n/x]|V for every possible
instantiation n ∈ � of the variable x . As for values in |A → B |V , they are functions of the form λa.p
where, according to the operational semantics, the abstracted a variable is intended to be substituted
by a value (i.e. a realizer in |A|V), giving raise to a proof at level p (i.e. a realizer in |B |p).

�is interpretation satis�es the following monotonicity relations:

Proposition 4.22 (Monotonicity). For any formula A, the following hold:

1. |A|V ⊆ |A|p
2. ‖A‖⊥⊥⊥⊥e = ‖A‖e

3. ‖∀x .A‖e ⊇
⋃

n∈� ‖A[n/x]‖e

4. ‖∀X .A‖e ⊇
⋃

F :�k→P (Π) ‖A[Ḟ/X]‖e
5. |∀x .A|p ⊆

⋂
n∈� |A[n/x]|p

6. |∀X .A|p ⊆
⋂

F :�k→P (Π) |A[Ḟ/X]|p

Proof. Usual properties of orthogonality with respect to unions and intersections. �

A valuation is de�ned again as a function ρ which associates a natural number ρ (x) ∈ � to every
�rst-order variable x and a function ρ (X) : �k → P (V0) to every second-order variable X of arity k .

93

CHAPTER 4. THE λµµ̃-CALCULUS

As for substitutions, wri�en σ , they now map variables to closed values (wri�en σ ,a := V) and co-
variables to contexts (wri�en σ ,α := e).

Given a closed (one-sided) context Γ, we say that a substitutionσ realizes Γ, which we writeσ Γ, if
for any (a : A) ∈ Γ, σ (a) ∈ |A|V and if for any (α : A⊥⊥) ∈ Γ, σ (α) ∈ ‖A‖e . We are now equipped to prove
the adequacy of the typing rules for the (call-by-value) λµµ̃-calculus with respect to the realizability
interpretation we de�ned.

Proposition 4.23 (Adequacy). Let Γ,∆ be typing context, and ρ Γ and ρ ∆, then

1. if Γ ` p : A | ∆, then p[σ] ∈ |A[ρ]|p
2. if Γ | e : A ` ∆, then e[σ] ∈ ‖A[ρ]‖e
3. if c : Γ ` ∆, then c[σ] ∈ ⊥⊥

Proof. �e proof is again a mutual induction over the typing derivation. Cases (Cut),(Axr),(Axl),(µ),(µ̃),(∀1
l)

and (∀2
l) are essentially the same as in the call-by-name se�ing. Cases (∀1

r),(∀2
r) are the same, except that

they require to re�ne the induction hypotheses to also prove that if Γ ` V : A | ∆, then V [σ] ∈ |A[ρ]|V .
We only prove the two cases le�, which are the cases for the implication.

• Case (→r). We are in the following situation:

Γ,a : A ` p : B | ∆
Γ ` λa.p : A→ B | ∆

(→r)

By induction hypothesis, ifV ∈ |A[ρ]|V , then (σ ,a := V) (Γ,a : A∪∆) and thusp[σ ,a := V] ∈ |B[ρ]|p .
By de�nition of truth values of values, λa.p[σ] = (λa.p)[σ] is thus in |(A→ B)[ρ]|V .

• Case (→l). We are in the following situation:

Γ ` q : A | ∆ Γ | e : B ` ∆
Γ | q · e : A→ B ` ∆

(→l)

Let λa.p ∈ |(A → B)[ρ]|V , that is p[V /a] ∈ |B[ρ]|p for any V ∈ |A[ρ]|V . By induction, we have that
q[σ] ∈ |A[ρ]|p . Besides,

〈λa.p ||q[σ] · e[σ]〉 → 〈q[σ]||µ̃a.〈p ||e[σ]〉〉

thus by anti-reduction, it su�ces to show that µ̃a.〈p ||e〉 ∈ ‖A[ρ]‖e . Once more, consideringV ∈ |A[ρ]|V ,
since

〈V ||µ̃a.〈p ||e[σ]〉〉 → 〈p[V /a]||e[σ]〉

we can conclude by anti-reduction: using the hypothesis for p[V /a] and the induction hypothesis to
get e[σ] ∈ ‖B[ρ]‖e , we deduce that the la�er command is in the pole. �

Normalization and soundness are again direct consequences of adequacy, the proofs being similar
we do not recall them.

�eorem 4.24 (Normalization). Typed commands of the second-order call-by-value λµµ̃-calculus are nor-
malizing.

�eorem 4.25 (Soundness). �ere is no proof p (in the second-order call-by-value λµµ̃-calculus) such that
` p : ⊥ | .

94

4.6. FROM ADEQUACY TO OPERATIONAL SEMANTICS

4.6 From adequacy to operational semantics

We should say a word about the dogmatism of our presentation. As we were interested in proving
properties of a language with its operational semantics, we started from the reduction system, then
de�ned the adequate realizability interpretation. However, as highlighted by Dagand and Scherer [35],
it is possible to work the other way round. While studying the computational content of the adequacy
lemma11 (in the case of simply-typed lambda-calculus), they showed in passing that one could �rst
de�ne the desired interpretation (i.e. truth and falsity values at each levels), then deduce the reduction
rules from the proof of adequacy. �eir paper was supported by a Coq development which we adapted to
match the framework of the λµµ̃-calculus12. To be�er illustrate this observation, our development also
includes a positive product typeA×B (inhabited by pairs and contexts of the shape µ̃ (a,b).c to destruct
pairs). We give several cases depending on whether product type and arrow type are interpreted in a
call-by-value or call-by-name fashion.

To come full circle, we would like to a�ract the reader’s a�ention to the fact that when the adequacy
lemma is de�ned as a program, it almost gives the de�nition of the corresponding CPS translation. �is
is particularly re�ected on the call-by-value cases for pairs and stacks. In the la�er, using informal
notations, the function rea which proves the adequacy is de�ned by:

rea (u · e : Γ | A→ B ` ∆) (ρ Γ) (σ ∆) := λ f .(rea u ρ σ) (λV . f V (rea e ρ σ))

which is to compare with the following (call-by-value) CPS translation:

~q · e�e , λ f .~q�p (λV . f V ~e�e)

�is corresponds intuitively to the following reduction rules:

〈p ||q · e〉 → 〈q ||µ̃a.〈p ||a · e〉〉
〈V ||µ̃a.c〉 → c[V /a]
〈λa.p ||V · e〉 → 〈p[V /a]||e〉

All in all, if the reader was to remember only one idea of this chapter, we would like this idea to
be the claim that given a calculus, the given of a �ne-grain operational semantics naturally induces
a continuation-passing style translation and a realizability interpretation à la Krivine (and even vice-
versa). �is should not come as a surprise as all these artifacts relies on a common notion of computa-
tion, which they share. As we saw with the call-by-name and call-by-value λµµ̃-calculi, these artifacts
can be derived methodically and provides us with powerful proof tools.

11�e main claim of their paper is that proofs of normalization by realizability and by evaluation are almost the same, in
that the proof of the adequacy lemma, as a program (that is, roughly, a function taking a typing derivation for a term and
constructing the proof that this term is a realizer of the corresponding type), is a normalization machine: it takes a term
and evaluates it again a well-chosen stack to use induction hypotheses. If we observe carefully the proofs of adequacy for
the λc -calculus or the ones of the λµµ̃-calculi we presented, this is indeed their computational contents: almost all cases are
proved by reducing a process, then using induction hypotheses and the closure of the pole under anti-reduction.

12�e source can be browsed here or downloaded here.

95

http://www.irif.fr/~emiquey/these/real/Real.MuMutilde.html
http://www.irif.fr/~emiquey/these/real/MuMutilde.v

CHAPTER 4. THE λµµ̃-CALCULUS

96

