
6- Normalization of classical call-by-need

�e call-by-need evaluation strategy

A famous functional programmer once was asked to give an overview talk. He began with :
“�is talk is about lazy functional programming and call by need.” and paused. �en, quizzi-
cally looking at the audience, he quipped: “Are there any questions?” �ere were some, and so
he continued: “Now listen very carefully, I shall say this only once.”

�is story, borrowed from [37], illustrates demand-driven computation and memoization of interme-
diate results, two key features of the call-by-need evaluation strategy that distinguish it from the call-
by-name and call-by-value evaluation strategies (see Section 2.1.4).

�e call-by-name evaluation strategy passes arguments to functions without evaluating them, post-
poning their evaluation to each place where the argument is needed, re-evaluating the argument several
times if needed. For instance, the following reduction paths correspond to call-by-name evaluations in
the λ-calculus extended with natural numbers:

(λxy.yx) (2 + 3) (λx .1) −→β (λy.y (2 + 3)) λx .1 −→β (λx .1) (2 + 3) −→β 1
(λxy.yx) (2 + 3) (λx .x) −→β (λy.y (2 + 3)) λx .x −→β (λx .x) (2 + 3) −→β 2 + 3 −→β 5

(λxy.yx) (2 + 3) (λx .x × x) 2−→β (λx .x × x) (2 + 3) −→β (2 + 3) × (2 + 3) 2−→β 5 × 5 −→β 25

We observe for instance that (2 + 3) is never evaluated in the �rst example, while it is computed twice
for the third one.

Conversely, the call-by-value evaluation strategy evaluates the arguments of a function into so-
called “values” prior to passing them to the function. �e evaluation is then shared between the di�erent
places where the argument is needed. Yet, if the argument is not needed, it is evaluated uselessly. �e
evaluation of the same examples in call-by-value gives:

(λxy.yx) (2 + 3) (λx .1) −→β (λxy.yx) 5 (λx .1) −→β (λy.y5) (λx .1) −→β (λx .1) 5 −→β 1
(λxy.yx) (2 + 3) (λx .x) −→β (λxy.yx) 5 (λx .x) −→β (λy.y5) (λx .x) −→β (λx .x) 5 −→β 5

(λxy.yx) (2 + 3) (λx .x × x) −→β (λxy.yx) 5 (λx .x × x) −→β (λy.y5) (λx .x × x) 2−→β 5 × 5 −→β 25

We notice that in the �rst case, (2 + 3) is always evaluated once, which is be�er in the third case but
useless in the �rst one. Also, remark that at the time where it is evaluated (the �rst step), it is impossible
to predict how many times the argument will be used because it depends on the function that will be
bind later to y (compare the second and third examples).

�e call-by-need evaluation strategy is an evaluation strategy which evaluates arguments of func-
tions only when needed, and, when needed, shares the computed results across all places where the
argument is needed. In the �rst presentations of call-by-need λ-calculi [7, 112], this was done thanks
to an additional letx = . . . in . . . constructor. �e �rst example, in call-by-need, reduces as follows:

(λxy.yx) (2 + 3) (λx .1) −→β letx = 2 + 3 in (λy.yx) (λx .1)
−→β letx = 2 + 3 in lety = λx .1 in y x
−→β letx = 2 + 3 in lety = λx .1 in (λx .1)x
−→β letx = 2 + 3 in lety = λx .1 in let z = x in 1

111

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

In particular, we observe that since it is never needed, (2+3) is not evaluated. As for the third example,
the reduction path is as follows1:

(λxy.yx) (2 + 3) (λx .x × x) −→β letx = 2 + 3 in(λy.yx) (λx .x × x)
−→β letx = 2 + 3 in lety = (λx .x × x) inyx
−→β letx = 2 + 3 in lety = (λx .x × x) in(λx .x × x)x
−→β letx = 2 + 3 in lety = (λx .x × x) in let z = x in z × z
−→β letx = 2 + 3 in lety = (λx .x × x) in let z = x inx × z
−→β letx = 5 in lety = (λx .x × x) in let z = x inx × z
−→β letx = 5 in lety = (λx .x × x) in let z = x in 5 × z
−→β letx = 5 in lety = (λx .x × x) in let z = x in 5 × x
−→β letx = 5 in lety = (λx .x × x) in let z = x in 5 × 5
−→β letx = 5 in lety = (λx .x × x) in let z = x in 25

We see that each time that function is applied to an argument, the la�er is lazily stored. When, further
in the execution, (2 + 3) is demanded by the le�-member of the multiplication, its value is computed.
�anks to the letx = . . . in . . . binder, this value is shared and when it is required a second time by
the right-member of the multiplication, it is already available.

�e call-by-need evaluation is at the heart of a functional programming language such as Haskell.
It has in common with the call-by-value evaluation strategy that all places where a same argument is
used share the same value. Nevertheless, it observationally behaves like the call-by-name evaluation
strategy, in the sense that a given computation eventually evaluates to a value if and only if it eval-
uates to the same value (up to inner reduction) along the call-by-name evaluation. In particular, in
a se�ing with non-terminating computations, it is not observationally equivalent to the call-by-value
evaluation. Indeed, if the evaluation of a useless argument loops in the call-by-value evaluation, the
whole computation loops (e.g. in (λ .I) Ω)), which is not the case of call-by-name and call-by-need
evaluations.

Continuation-passing style semantics

�e call-by-name, call-by-value and call-by-need evaluation strategies can be turned into equational
theories. For call-by-name and call-by-value, this was done by Plotkin [139] through continuation-
passing style semantics characterizing these theories. For call-by-name, the corresponding induced
equational theory2 is Church’s original theory of the λ-calculus based on the operational rule β .

For call-by-value, Plotkin showed that the induced equational theory includes the key operational
rule βV . �e induced equational theory was further completed implicitly by Moggi [124] with the
convenient introduction of a native let operator. Moggi’s theory was then explicitly shown complete
for CPS semantics by Sabry and Felleisen [148].

For the call-by-need evaluation strategy, a speci�c equational theory re�ecting the intensional be-
havior of the strategy into a semantics was proposed independently by Ariola and Felleisen [3] and by
Maraist, Odersky and Wadler [113]. A continuation-passing style semantics was proposed in the 90s
by Okasaki, Lee and Tarditi [128]. However, this semantics does not ensure normalization of simply-
typed call-by-need evaluation, as shown in [4], thus failing to ensure a property which holds in the
simply-typed call-by-name and call-by-value cases (see Chapter 4).

1Observe that, as in the �rst example, we need to perform α-conversion on the �y, due to the let · · · = . . . in . . . bindings
which behave like an explicit substitution. We will come back to this point in Section 6.4.1.

2Later on, Lafont, Reus and Streicher [103] gave a more re�ned continuation-passing style semantics which also validates
the extensional rule η.

112

�e λlv-calculus: call-by-need with control

Continuation-passing style semantics de facto gives a semantics to the extension of λ-calculus with
control operators, i.e. with operators such as Scheme’s call/cc, Felleisen’s C,K , orA operators [41],
Parigot’s µ and [] operators [130], Crolard’s catch and throw operators [31]. In particular, even
though call-by-name and call-by-need are observationally equivalent in the pure λ-calculus, their dif-
ferent intentional behaviors induce di�erent continuation-passing style semantics, leading to di�erent
observational behaviors when control operators are considered.

Nonetheless, the semantics of calculi with control can also be reconstructed from an analysis of the
duality between programs and their evaluation contexts, and the duality between the let construct
(which binds programs) and a control operator such as Parigot’s µ (which binds evaluation contexts).
As explained in Chapter 4, such an analysis can be done in the context of the λµµ̃-calculus [32, 68].

Such an analysis is done in [4] in a variant of the λµµ̃-calculus which includes co-constants ranged
over by κ . Recall from Section 4.2 that the syntax of the λµµ̃-calculus can be re�ned into the following
subcategories of terms and contexts:

Terms t ::= µα .c | V
Values V ::= a | λx .t | k

Contexts e ::= µ̃x .c | E
Co-values E ::= α | t · e | κ

to which we add constants k and co-constants κ . �en, by presenting reduction rules parameterized
over a set of termsV and a set of evaluation contexts E:

〈t ||µ̃x .c〉 → c[t/x] t ∈ V
〈µα .c ||e〉 → c[e/α] e ∈ E
〈λx .t ||u · e〉 → 〈u ||µ̃x .〈t ||e〉〉

the di�erence between call-by-name and call-by-value can be characterized by the de�nition of these
sets: the call-by-name evaluation strategy amounts to the case where V , Proofs and E , Co-values
while call-by-value dually corresponds toV , Values and E , Contexts.

As for the call-by-need case, intuitively, we would like to setV , Values (we only substitute eval-
uated terms of which we share the value) and E , Co-values (a term is only reduced if it is in front
of a co-value). However, such a de�nition is clearly not enough since any command of the shape
〈µα .c ||µ̃x .c ′〉 would be blocked. We thus need to understand how the computation is driven forward,
that is to say when we need to reduce terms. We observed that contexts that are either a co-constant
κ or an applicative context3 t · E eagerly demand a value. Such contexts are called forcing contexts, and
denoted by F . When a variable x is in front of a forcing context, that is in 〈x ||F 〉, the variable x is said to
be needed or demanded. �is allows us to identify meta-contexts C which are nesting of commands of
the form 〈t ||e〉 for which neither t is inV (meaning it is some µα .c) nor e in E (meaning it is an instance
of some µ̃x .c which is not a forcing context). �ese contexts, de�ned by the following grammar:

Meta-contexts C[] ::= [] | 〈µα .c ||µ̃x .C[]〉

are such that in a µ̃-binding of the form µ̃x .C[〈x ||F 〉], x is needed and a value is thus expected. �ese
contexts, called demanding contexts are evaluation contexts whose evaluation is blocked on the evalu-
ation of x , therefore requiring the evaluation of what is bound to x . In this case, we say that the bound
variable x has been forced.

All this suggests another re�nement of the syntax, introducing a division between weak co-values
(resp. weak values), also called catchable contexts (since they are the one caught by a µα binder), and
strong co-values (resp. strong values), which are precisely the forcing contexts. In comparison, with

3�ere is a restriction on the form of applicative contexts: the general form t · e is not necessarily a valid application,
since for example in 〈µα .c ||t · µ̃x〈y ||α〉〉, the context t · µ̃x〈y ||α〉 forces the execution of c even though its value is not needed.
Applicative contexts are thus considered of the restricted shape t · E.

113

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

(x : A) ∈ Γ
Γ ` x : A | ∆ (x)

Γ,x : A ` t : B | ∆
Γ ` λx .t : A→ B | ∆

(→r)
c : (Γ ` ∆,α : A)
Γ ` µα .c : A | ∆

(µ)

(α : A) ∈ ∆
Γ | α : A ` ∆ (α)

Γ ` t : A | ∆ Γ | E : B ` ∆
Γ | t · E : A→ B ` ∆

(→l)
c : (Γ,x : A ` ∆)
Γ | µ̃x .c : A ` ∆

(µ̃)

Γ ` t : A | ∆ Γ | e : A ` ∆
〈t ||e〉 : (Γ ` ∆)

(Cut)
(κ : A) ∈ S
Γ | κ : A ` ∆ (κ)

(k : X) ∈ S

Γ ` k : X | ∆
(k)

Figure 6.1: Typing rules for λlv

our former division, note that catchable contexts correspond to the union of former co-values with
demanding contexts. Formally, the syntax is de�ned by4:

Strong values v ::= λx .t | k
Weak values V ::= v | x
Terms t ::= V | µα .c

Forcing contexts F ::= t · E | κ
Catchable contexts E ::= F | α | µ̃x .C[〈x ||F 〉]
Contexts e ::= E | µ̃x .c

We can �nally de�ne V , Weak values and E , Catchable contexts. �e so-de�ned call-by-need
calculus is close to the calculus called λlv in Ariola et al [4]5.

�e λlv reduction, wri�en as→lv , denotes thus the compatible re�exive transitive closure of the
rules:

〈V ||µ̃x .c〉 →lv c[V /x]
〈µα .c ||E〉 →lv c[E/α]
〈λx .t ||u · E〉 →lv 〈u ||µ̃x .〈t ||E〉〉

Observe that the next reduction is not necessarily at the top of the command, but may be buried
under several bound computations µα .c . For instance, the command 〈µα .c ||µ̃x1.〈x1 ||µ̃x2.〈x2 ||F 〉〉〉, where
x1 is not needed, reduces to 〈µα .c ||µ̃x1.〈x1 ||F 〉〉, which now demands x1.

�e λlv -calculus can be equipped with a type system (see Figure 6.1) made of the usual rules of
the classical sequent calculus [32], where we adopt the convention that constants k and co-constants
κ come with a signature S which assigns them a type.

Realizability and CPS interpretations of classical call-by-need

In the cases of the call-by-name and call-by-value evaluation strategies, the approach based on the
λµµ̃-calculus leads to continuation-passing style semantics (Sections 4.4.4 and 4.5.3) similar to the ones
given by Plotkin or, in the call-by-name case, also to the one by Lafont, Reus and Streicher [103]. In
the case of call-by-need calculus, a continuation-passing style semantics for λlv is de�ned in [4] via
a calculus called λ[lvτ?]. �is calculus is equivalent to λlv but is presented in such a way that the
head redex of a command can be found by looking only at the surface of the command, from which a
continuation-passing style semantics directly comes. �is semantics, distinct from the one in [128], is
the object of study in this chapter.

�e contribution of this chapter is twofold. On the one hand, we give a proof of normalization for the
λ[lvτ?]-calculus. �e normalization is obtained by means of a realizability interpretation of the calculus,

4In syntactic category, we implicitly assume µ̃x .c to only cover the cases which are not of the form µ̃x .C[〈x ||F 〉].
5�e di�erence is in the fact that we had constants to preserve the duality. Also, a similar calculus, which we shall call

weak λlv , was previously studied in [6] with E de�ned instead to be µ̃x .C[〈x ||E〉] (with same de�nition ofC) and a de�nition
ofV which was di�erent whether µ̃x .c was a forcing context (V was then the strong values) or not (V was then the weak
values). Another variant is discussed in Section 6 of [4] where E is similarly de�ned to be µ̃x .C[〈x ||E〉] and V is de�ned to
be (uniformly) the strong values. All three semantics seem to make sense to us.

114

6.1. THE λ[LV τ?]-CALCULUS

which is inspired from Krivine classical realizability [95]. As advocated in Section 4.3.3, the realizability
interpretation is obtained by pushing one step further the methodology of Danvy’s semantics artifacts
already used in [4] to derive the continuation-passing-style semantics. While we only use it here to
prove the normalization of the λ[lvτ?]-calculus, our interpretation incidentally suggests a way to adapt
Krivine’s classical realizability to a call-by-need se�ing. �is opens the door to the computational
interpretation of classical proofs using lazy evaluation or shared memory cells.

On the other hand, we provide a type system for the continuation-passing-style transformation
presented in [4] for the λ[lvτ?]-calculus such that the translation is well-typed. �is presents various
di�culties. First, since the evaluation of terms is shared, the continuation-passing-style translation
is actually combined with a store-passing-style transformation. Second, as the store can grow along
the execution, the translation also includes a Kripke-style forcing to address the extensibility of the
store. �is induces a target language which we call system Fϒ and which is an extension of Girard-
Reynolds system F [60] and Cardelli system F <: [22]. Last but not least, the translation needs to take
into account the problem of α-conversion. In a nutshell, this is due to the fact that terms can contain
unbound variables that refer to elements of the store. So that a collision of names can result in auto-
references and non-terminating terms. We deal with this in two-ways: we �rst elude the problem by
using a fresh name generator and an explicit renaming of variables through the translation. �en we
re�ne the translation to use De Bruijn levels to access elements of the store, which has the advantage of
making it closer to an actual implementation. Surprisingly, the passage to De Bruijn levels also unveils
some computational content related to the extension of stores.

6.1 �e λ[lvτ?]-calculus

6.1.1 Syntax

While all the results that are presented in the sequel of this chapter could be directly expressed using
the λlv -calculus, the continuation-passing style translation we present naturally arises from the decom-
position of this calculus into a di�erent calculus with an explicit environment, the λ[lvτ?]-calculus [4].
Indeed, as we shall explain therea�er, the decomposition highlights di�erent syntactic categories that
are deeply involved in the de�nition and the typing of the continuation-passing style translation.

�e λ[lvτ?]-calculus is a reformulation of the λlv -calculus with explicit environments, which we
call stores, that are denoted by τ . Stores consists of a list of bindings of the shape [x := t], where x is a
term variable and t a term, and of bindings of the shape [α := e] where α is a context variable and e a
context. For instance, in the closure cτ [x := t]τ ′, the variable x is bound to t in c and τ ′. Besides, the
term t might be an unevaluated term (i.e. lazily stored), so that if x is eagerly demanded at some point
during the execution of this closure, t will be reduced in order to obtain a value. In the case where t
indeed produces a value V , the store will be updated with the binding [x := V]. However, a binding of
this shape (with a value) is �xed for the rest of the execution. As such, our so-called stores somewhat
behave like lazy explicit substitutions or mutable environments 6.

�e lazy evaluation of terms allows us to reduce a command 〈µα .c ||µ̃x .c ′〉 to the command c ′ to-
gether with the binding [x := µα .c]. In this case, the term µα .c is le� unevaluated (“frozen”) in the
store, until possibly reaching a command in which the variable x is needed. When evaluation reaches
a command of the form 〈x ||F 〉τ [x := µα .c]τ ′, the binding is opened and the term is evaluated in front

6To draw the comparison between our structures and the usual notions of stores and environments, two things should
be observed. First, the usual notion of store refers to a structure of list that is fully mutable, in the sense that the cells can
be updated at any time and thus values might be replaced. Second, the usual notion of environment designates a structure
in which variables are bounded to closures made of a term and an environment. In particular, terms and environments are
duplicated, i.e. sharing is not allowed. Such a structure resemble to a tree whose nodes are decorated by terms, as opposed
to a machinery allowing sharing (like ours) whose the underlying structure is broadly a directed acyclic graphs. See for
instance [104] for a Krivine abstract machine with sharing.

115

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

〈t ||µ̃x .c〉τ → cτ [x := t]
〈µα .c ||E〉τ → cτ [α := E]

〈V ||α〉τ [α := E]τ ′ → 〈V ||E〉τ [α := E]τ ′
〈x ||F 〉τ [x := t]τ ′ → 〈t ||µ̃[x].〈x ||F 〉τ ′〉τ
〈V ||µ̃[x].〈x ||F 〉τ ′〉τ → 〈V ||F 〉τ [x := V]τ ′
〈λx .t ||u · E〉τ → 〈u ||µ̃x .〈t ||E〉〉τ

Figure 6.2: Reduction rules of the λ[lvτ?]-calculus

of the context µ̃[x].〈x ||F 〉τ ′:

〈x ||F 〉τ [x := µα .c]τ ′ → 〈µα .c ||µ̃[x].〈x ||F 〉τ ′〉τ

�e reader can think of the previous rule as the “defrosting” operation of the frozen term µα .c: this term
is evaluated in the pre�x of the store τ which predates it, in front of the context µ̃[x].〈x ||F 〉τ ′ where the
µ̃[x] binder is waiting for an (unfrozen) value. �is context keeps trace of the su�x of the store τ ′ that
was a�er the binding for x . �is way, if a value V is indeed furnished for the binder µ̃[x], the original
command 〈x ||F 〉 is evaluated in the updated full store:

〈V ||µ̃[x].〈x ||F 〉τ ′〉τ → 〈V ||F 〉τ [x := V]τ ′

�e brackets are used to express the fact that the variable x is forced at top-level (unlike contexts of the
shape µ̃x .C[〈x ||F 〉] in the λlv -calculus). �e reduction system resembles the one of an abstract machine.
Especially, it allows us to keep the standard redex at the top of a command and avoids searching through
the meta-context for work to be done.

Note that our approach slightly di�er from [4] in that we split values into two categories: strong
values (v) and weak values (V). �e strong values correspond to values strictly speaking. �e weak
values include the variables which force the evaluation of terms to which they refer into shared strong
value. �eir evaluation may require capturing a continuation. �e syntax of the language is given by:

Strong values v ::= λx .t | k
Weak values V ::= v | x
Terms t ::= V | µα .c

Forcing contexts F ::= κ | t · E
Catchable contexts E ::= F | α | µ̃[x].〈x ||F 〉τ
Evaluation contexts e ::= E | µ̃x .c

Closures l ::= cτ
Commands c ::= 〈t ||e〉
Stores τ ::= ε | τ [x := t] | τ [α := E]

�e reduction, wri�en→, is the compatible re�exive transitive closure of the rules 7 given in Figure 6.2.

�e di�erent syntactic categories can be understood as the di�erent levels of alternation in a context-
free abstract machine: the priority is �rst given to contexts at level e (lazy storage of terms), then to
terms at level t (evaluation of µα into values), then back to contexts at level E and so on until level v .
�ese di�erent categories are directly re�ected in the de�nition of the context-free abstract machine
(that we will present in Section 6.1.3) and in the continuation-passing style translation (and thus in-
volved when typing it). We choose to highlight this by distinguishing di�erent types of sequents already
in the typing rules that we shall now present.

7We chose to make the substitutions of α variables e�ective while they are kept in an environment in [4]. �is explains
that we have one less rule.

116

6.1. THE λ[LV τ?]-CALCULUS

(k : X) ∈ S

Γ `v k : X
(k)

Γ,x : A `t t : B
Γ `v λx .t : A→ B

(→r)
(x : A) ∈ Γ
Γ `V x : A (x)

Γ `v v : A
Γ `V v : A (↑V)

(κ : A) ∈ S
Γ `F κ : A⊥⊥

(κ)
Γ `t t : A Γ `E E : B⊥⊥
Γ `F t · E : (A→ B)⊥⊥

(→l)
(α : A) ∈ Γ
Γ `E α : A⊥⊥

(α)
Γ `F F : A⊥⊥
Γ `E F : A⊥⊥

(↑E)

Γ `V V : A
Γ `t V : A (↑t)

Γ,α : A⊥⊥ `c c
Γ `t µα .c : A (µ)

Γ `E E : A⊥⊥
Γ `e E : A⊥⊥

(↑e)
Γ,x : A `c c

Γ `e µ̃x .c : A⊥⊥
(µ̃)

Γ,x : A,Γ′ `F F : A⊥⊥ Γ `τ τ : Γ′
Γ `E µ̃[x].〈x ||F 〉τ : A⊥⊥

(µ̃ [])
Γ `t t : A Γ `e e : A⊥⊥

Γ `c 〈t ||e〉
(c)

Γ,Γ′ `c c Γ `τ τ : Γ′
Γ `l cτ

(l)

Γ `τ ε : ε (ε)
Γ `τ τ : Γ′ Γ,Γ′ `t t : A
Γ `τ τ [x := t] : Γ′,x : A

(τt)
Γ `τ τ : Γ′ Γ,Γ′ `E E : A⊥⊥
Γ `τ τ [α := E] : Γ′,α : A⊥⊥

(τE)

Figure 6.3: Typing rules of the λ[lvτ?]-calculus

6.1.2 Type system

Unlike in the usual type system for sequent calculus where a judgment contains two typing contexts
(one on the le� for proofs, denoted by Γ, one on the right for contexts denoted by ∆), we use one-sided
sequents (see Section 4.2.3.2): we group both typing contexts into one single context, denoting the types
for contexts (that used to be in ∆) with the exponent ⊥⊥. �is allows us to draw a strong connection in
the sequel between the typing context Γ and the store τ , which contain both kind of terms.

We have nine kinds of sequents, one for typing each of the nine syntactic categories. We write them
with an annotation on the ` sign, using one of the le�ers v , V , t , F , E, e , l , c , τ . Sequents themselves
are of four sorts: those typing values and terms are asserting a type, with the type wri�en on the right;
sequents typing contexts are expecting a type A with the type wri�en A⊥⊥; sequents typing commands
and closures are black boxes neither asserting nor expecting a type; sequents typing substitutions are
instantiating a typing context. In other words, we have the following nine kinds of sequents:

Γ `l l
Γ `c c
Γ `τ τ : Γ′

Γ `t t : A
Γ `V V : A
Γ `v v : A

Γ `e e : A⊥⊥
Γ `E E : A⊥⊥
Γ `F F : A⊥⊥

where types and typing contexts are de�ned by:

A,B ::= X | A→ B Γ ::= ε | Γ,x : A | Γ,α : A⊥⊥

�e typing rules are given on Figure 6.3 where we assume that a variable x (resp. co-variable α) only
occurs once in a context Γ (we implicitly assume the possibility of renaming variables by α-conversion).
�is type system enjoys the property of subject reduction, whose proof is done by reasoning by induc-
tion over the derivation of the reduction cτ → c ′τ ′, and relies on the fact that the type system admits
a weakening rule.

Lemma 6.1. �e following rule is admissible for any level o of the hierarchy e,t ,E,V ,F ,v,c,l ,τ :

Γ `o o : A Γ ⊆ Γ′

Γ′ `o o : A
(w)

117

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

Proof. Easy induction on the structure of typing derivations obtained through the type system in Fig-
ure 6.3. �

�eorem 6.2 (Subject reduction). If Γ `l cτ and cτ → c ′τ ′ then Γ `l c
′τ ′.

Proof. By induction over the induction over the derivation of the reduction cτ → c ′τ ′ (see Figure 6.2).
• Case 〈t ||µ̃x .c〉τ → cτ [x := t]. A typing derivation of the closure on the le�-hand side has the form:

Πt

Γ,Γ′ `t t : A

Πc

Γ,Γ′,x : A `c c
(c)

Γ,Γ′ `e µ̃x .c : A
(µ̃)

Πτ
Γ `τ τ : Γ′

Γ,Γ′ `c 〈t ||µ̃x .c〉
(c)

Γ `l 〈t ||µ̃x .c〉τ
(l)

hence we can derive:

Πc

Γ,Γ′,x : A `c c
(c)

Πτ
Γ `τ τ : Γ′

Πt

Γ,Γ′ `t t : A
Γ `τ τ [x := t] : (Γ′,x : A)

(τt)

Γ `l cτ [x := t]
(l)

• Case 〈µα .c ||E〉τ → cτ [α := E]. A typing derivation of the closure on the le�-hand side has the form:

Πc

Γ,Γ′,α : A⊥⊥ `c c
(c)

Γ,Γ′ `t µα .c : A
(µ)

ΠE

Γ,Γ′ `E E : A⊥⊥
Γ,Γ′ `e E : A⊥⊥

(↑e)

Γ,Γ′ `c 〈µα .c ||E〉
(c)

Πτ
Γ `τ τ : Γ′

Γ `l 〈µα .c ||E〉τ
(l)

hence we can derive:

Πc

Γ,Γ′,α : A⊥⊥ `c c
(c)

Πτ
Γ `τ τ : Γ′

ΠE

Γ,Γ′ `E E : A
Γ `τ τ [α := E] : (Γ′,α : A⊥⊥)

(τE)

Γ `l cτ [α := E]
(l)

• Case 〈V ||α〉τ [α := E]τ ′ → 〈V ||E〉τ [α := E]τ ′. A typing derivation of the closure on the le�-hand
side has the form:

ΠV

Γ,Γ0,α : A⊥⊥,Γ1 `t V : A

Γ,Γ0,α : A⊥⊥,Γ1 `F α : A⊥⊥
Γ,Γ0,α : A⊥⊥,Γ1 `E α : A⊥⊥

(α)

Γ,Γ0,α : A⊥⊥,Γ1 `e α : A⊥⊥
(↑e)

Γ,Γ0,α : A⊥⊥,Γ1 `c 〈V ||α〉
(c)

Πτ
Γ ` τ : Γ0

ΠE

Γ,Γ0 `E E : A⊥⊥
Γ `τ τ [α := E] : Γ0,α : A⊥⊥

(τE)
Πτ ′

Γ `τ τ [α := E]τ ′ : Γ0,α : A⊥⊥,Γ1
(τ τ ′)

Γ `l 〈V ||α〉τ [α := E]τ ′
(l)

where we cheated to compact each typing judgment for τ ′ (corresponding to types in Γ1) in Πτ ′ . �ere-
fore, we can derive:

ΠV

Γ,Γ0,α : A⊥⊥,Γ1 `t V : A

ΠE

Γ,Γ0,α : A⊥⊥,Γ1 `E E : A⊥⊥
Γ,Γ0,α : A⊥⊥,Γ1 `e E : A⊥⊥

(↑e)

Γ,Γ0,α : A⊥⊥,Γ1 `c 〈V ||E〉
(c)

Πτ
Γ ` τ : Γ0

ΠE

Γ,Γ0 `E E : A⊥⊥
Γ `τ τ [α := E] : Γ0,α : A⊥⊥

(τE)
Πτ ′

Γ `τ τ [α := E]τ ′ : Γ0,α : A⊥⊥,Γ1
(τ τ ′)

Γ `l 〈V ||α〉τ [α := E]τ ′
(l)

118

6.1. THE λ[LV τ?]-CALCULUS

• Case 〈x ||F 〉τ [x := t]τ ′ → 〈t ||µ̃[x].〈x ||F 〉τ ′〉τ . A typing derivation of the closure on the le�-hand side
has the form:

Γ,Γ0,x : A,Γ1 `V x : A (x)

Γ,Γ0,x : A,Γ1 `t x : A (↑t)
ΠF

Γ,Γ0,x : A,Γ1 `e F : A⊥⊥
Γ,Γ0,x : A,Γ1 `c 〈x ||F 〉

(c)

Πτ
Γ ` τ : Γ0

Πt
Γ,Γ0 `t t : A

Γ `τ τ [x := t] : Γ0,x : A
(τt)

Πτ ′

Γ `τ τ [x := t]τ ′ : Γ0,x : A,Γ1
(τ τ ′)

Γ `l 〈V ||F 〉τ [x := t]τ ′
(l)

hence we can derive:

Πt
Γ,Γ0,Γ1 `t t : A

Γ,Γ0,x : A,Γ1 `V x : A (x)

Γ,Γ0,x : A,Γ1 `t x : A (↑t)
ΠF

Γ,Γ0,x : A,Γ1 `e F : A⊥⊥
Γ,Γ0,x : A,Γ1 `c 〈x ||F 〉

(c)
Πτ ′

Γ,Γ0,x : A `τ τ ′ : Γ1
Γ,Γ0,x : A `l 〈x ||F 〉τ ′

(l)

Γ,Γ0 `E µ̃[x].〈x ||F 〉τ ′ : A⊥⊥
(µ̃ [])

Γ,Γ0 `e µ̃[x].〈x ||F 〉τ ′ : A⊥⊥
(↑e)

Γ,Γ0 `c 〈t ||µ̃[x].〈x ||F 〉τ ′〉
(c)

Πτ
Γ ` τ : Γ0

Γ `l 〈t ||µ̃[x].〈x ||F 〉τ ′〉τ
(l)

• Case 〈V ||µ̃[x].〈x ||F 〉τ ′〉τ → 〈V ||F 〉τ [x := V]τ ′. A typing derivation of the closure on the le�-hand
side has the form:

ΠV
Γ,Γ0,Γ1 `t V : A

Γ,Γ0,x : A,Γ1 `V x : A (x)

Γ,Γ0,x : A,Γ1 `t x : A (↑t)
ΠF

Γ,Γ0,x : A,Γ1 `e F : A⊥⊥
Γ,Γ0,x : A,Γ1 `c 〈x ||F 〉

(c)
Πτ ′

Γ,Γ0,x : A `τ τ ′ : Γ1
Γ,Γ0,x : A `l 〈x ||F 〉τ ′

(l)

Γ,Γ0 `E µ̃[x].〈x ||F 〉τ ′ : A⊥⊥
(µ̃ [])

Γ,Γ0 `e µ̃[x].〈x ||F 〉τ ′ : A⊥⊥
(↑e)

Γ,Γ0 `c 〈V ||µ̃[x].〈x ||F 〉τ ′〉
(c)

Πτ
Γ ` τ : Γ0

Γ `l 〈V ||µ̃[x].〈x ||F 〉τ ′〉τ
(l)

�erefore we can derive:

ΠV
Γ,Γ0,x : A,Γ1 `t V : A

ΠF

Γ,Γ0,x : A,Γ1 `e F : A⊥⊥
Γ,Γ0,x : A,Γ1 `c 〈V ||F 〉

(c)

Πτ
Γ ` τ : Γ0

ΠV
Γ,Γ0 `t V : A

Γ `τ τ [x := V] : Γ0,x : A
(τt)

Πτ ′

Γ `τ τ [x := V]τ ′ : Γ0,x : A,Γ1
(τ τ ′)

Γ `l 〈V ||F 〉τ [x := V]τ ′
(l)

where we implicitly used Lemma 6.1 to weaken ΠV :

ΠV
Γ,Γ0 `t V : A Γ,Γ0 ⊆ Γ,Γ0,x : A,Γ1

Γ,Γ0,x : A,Γ1 `t V : A (w)

119

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

• Case 〈λx .t ||u · E〉τ → 〈u ||µ̃x .〈t ||E〉〉τ . A typing proof for the closure on the le�-hand side is of the
form:

Πt

Γ,Γ′,x : A `t t : B
Γ,Γ′ `v λx .t : A→ B

(→r)

Γ,Γ′ `V λx .t : A→ B
(↑V)

Γ,Γ′ `t λx .t : A→ B
(↑t)

Πu

Γ,Γ′ `t u : A
ΠE

Γ,Γ′ `E E : B⊥⊥
Γ,Γ′ `F u · E : (A→ B)⊥⊥

(→l)

Γ,Γ′ `E u · E : (A→ B)⊥⊥
(↑E)

Γ,Γ′ `e u · E : (A→ B)⊥⊥
(↑e)

Γ,Γ′ `c 〈λx .t ||u · E〉
(c)

Πτ
Γ `τ τ : Γ′

Γ `l 〈λx .t ||u · E〉τ
(l)

We can thus build the following derivation:

Πu

Γ,Γ′ `t u : A

Πt

Γ,Γ′,x : A `t t : B

ΠE

Γ,Γ′,x : A `E E : B⊥⊥
Γ,Γ′,x : A `e E : B⊥⊥

(↑e)

Γ,Γ′,x : A `c 〈t ||E〉
(c)

Γ,Γ′ `e µ̃x .〈t ||E〉 : A⊥⊥
(µ̃)

Γ,Γ′ `c 〈u ||µ̃x .〈t ||E〉〉
(c)

Πτ
Γ `τ τ : Γ′

Γ `l 〈u ||µ̃x .〈t ||E〉〉τ
(l)

where we implicitly used Lemma 6.1 to weaken ΠE :

ΠE

Γ,Γ `E E : B⊥⊥ Γ,Γ′ ⊆ Γ,Γ′,x : A
Γ,Γ′,x : A `E E : B⊥⊥

(w)

�

6.1.3 Small-step reductions rules

As in the cases of the call-by-name and call-by-value λµµ̃-calculi (see Sections 4.4 and 4.5), the reduction
system can be decomposed into small-step reduction rules. We annotate again commands with the
level of syntax we are examining (ce ,ct , . . .), and de�ne a new set of reduction rules which separate
computational steps (corresponding to big-step reductions), and administrative steps, which organize
the descent in the syntax. In order, a command �rst put the focus on the context at level e , then on the
term at level t , and so on following the hierarchy e,t ,E,V ,F ,v . �is results again in an abstract machine
in context-free form, since each step only analyzes one component of the command, the “active” term or
context, and is parametric in the other “passive” component. In essence, for each phase of the machine,
either the term or the context is fully in control and independent, regardless of what the other half
happens to be.

We recall the resulting abstract machine from [4] in Figure 6.4. Except for a subtlety of α-conversion
that we will explain in Section 6.4.1, these rules directly lead to the de�nition of the CPS in [4] that we
shall type in the next sections. Furthermore, the realizability interpretation à la Krivine (that we are
about to present in the coming section) is deeply based upon this set of rules. Indeed, remember that
a realizer is precisely a term which is going to behave well in front of any opponent in the opposed
falsity value. We shall thus take advantage of the context-free rules where at each level, the reduction
step is de�ned independently of the passive component.

120

6.2. REALIZABILITY INTERPRETATION OF THE SIMPLY-TYPED λ[LV τ?]-CALCULUS

〈t ||µ̃x .c〉eτ → ceτ [x := t]
〈t ||E〉eτ → 〈t ||E〉tτ

〈µα .c ||E〉tτ → ceτ [α := E]
〈V ||E〉tτ → 〈V ||E〉Eτ

〈V ||α〉Eτ [α := E]τ ′ → 〈V ||E〉Eτ [α := E]τ ′
〈V ||µ̃[x].〈x ||F 〉τ ′〉Eτ → 〈V ||F 〉V τ [x := V]τ ′

〈V ||F 〉Eτ → 〈V ||F 〉V τ

〈x ||F 〉V τ [x := t]τ ′ → 〈t ||µ̃[x].〈x ||F 〉τ ′〉τ
〈v ||E〉V τ → 〈v ||F 〉V τ

〈v ||u · E〉Fτ → 〈v ||e · E〉vτ

〈λx .t ||u · E〉vτ → 〈u ||µ̃x .〈t ||E〉〉eτ

Figure 6.4: Context-free abstract machine for the λ[lvτ?]-calculus

6.2 Realizability interpretation of the simply-typed λ[lvτ?]-calculus

6.2.1 Normalization by realizability

�e proof of normalization for the λ[lvτ?]-calculus that we present in this section is inspired from
techniques of Krivine’s classical realizability [95], whose notations we borrow. Actually, it is also very
close to a proof by reducibility8. In a nutshell, to each type A is associated a set |A|t of terms whose
execution is guided by the structure of A. �ese terms are the ones usually called realizers in Krivine’s
classical realizability. �eir de�nition is in fact indirect, and is done by orthogonality to a set of “correct”
computations, called a pole. �e choice of this set is central when studying models induced by classical
realizability for second-order-logic, but in the present case we only pay a�ention to the particular
pole of terminating computations. �is is where lies the main di�erence with a proof by reducibility,
where everything is done with respect to SN , while our de�nition are parametric in the pole (which
is chosen to be the set of normalizing closures in the end). �e adequacy lemma, which is the central
piece, consists in proving that typed terms belong to the corresponding sets of realizers, and are thus
normalizing.

More in details, our proof can be sketched as follows. First, we generalize the usual notion of closed
term to the notion of closed term-in-store. Intuitively, this is due to the fact that we are no longer
interested in closed terms and substitutions to close open terms, but rather in terms that are closed
when considered in the current store. �is is based on the simple observation that a store is nothing
more than a shared substitution whose content might evolve along the execution. Second, we de�ne the
notion of pole ⊥⊥, which are sets of closures closed by anti-evaluation and store extension. In particular,
the set of normalizing closures is a valid pole. �is allows us to relate terms and contexts thanks to a
notion of orthogonality with respect to the pole. We then de�ne for each formula A and typing level o
(of e,t ,E,V ,F ,v) a set |A|o (resp. ‖A‖o) of terms (resp. contexts) in the corresponding syntactic category.
�ese sets correspond to reducibility candidates, or to what is usually called truth values and falsity
values in realizability.

Finally, the core of the proof consists in the adequacy lemma, which shows that any closed term
of type A at level o is in the corresponding set |A|o . �is guarantees that any typed closure is in any
pole, and in particular in the pole of normalizing closures. Technically, the proof of adequacy evaluates
in each case a state of an abstract machine (in our case a closure), so that the proof also proceeds by

8See for instance the proof of normalization for system D presented in [92, 3.2])

121

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

evaluation. A more detailed explanation of this observation as well as a more introductory presentation
of normalization proofs by classical realizability are given in an article by Dagand and Scherer [35].

6.2.2 Realizability interpretation for the λ[lvτ?]-calculus

We begin by de�ning some key notions for stores that we shall need further in the proof.

De�nition 6.3 (Closed store). We extend the notion of free variable to stores:

FV (ε) , ∅

FV (τ [x := t]) , FV (τ) ∪ {y ∈ FV (t) : y < dom(τ)}

FV (τ [α := E]) , FV (τ) ∪ {β ∈ FV (E) : β < dom(τ)}

so that we can de�ne a closed store to be a store τ such that FV (τ) = ∅. y

De�nition 6.4 (Compatible stores). We say that two stores τ and τ ′ are independent and note τ#τ ′
when dom(τ) ∩ dom(τ ′) = ∅. We say that they are compatible and note τ �τ ′ whenever for all variables
x (resp. co-variables α) present in both stores: x ∈ dom(τ) ∩ dom(τ ′); the corresponding terms (resp.
contexts) in τ and τ ′ coincide: formally τ = τ0[x := t]τ1 and τ ′ = τ ′0[x := t]τ ′1 . Finally, we say that τ ′ is
an extension of τ and note τ C τ ′ whenever dom(τ) ⊆ dom(τ ′) and τ � τ ′. y

De�nition 6.5 (Compatible union). We denote by ττ ′ the compatible union join(τ ,τ ′) of closed stores
τ and τ ′, de�ned by:

join(τ0[x := t]τ1,τ
′
0[x := t]τ ′1) , τ0τ

′
0[x := t]join(τ1,τ

′
1)

join(τ ,τ ′) , ττ ′

join(ε,τ) , τ

join(τ ,ε) , τ

(if τ0#τ ′0)
(if τ#τ ′)

y

�e following lemma (which follows easily from the previous de�nition) states the main property
we will use about union of compatible stores.

Lemma 6.6. If τ and τ ′ are two compatible stores, then τ C ττ ′ and τ ′ C ττ ′. Besides, if τ is of the form
τ0[x := t]τ1, then ττ ′ is of the form τ0[x := t]τ1 with τ0 C τ0 and τ1 C τ1.

As we explained in the introduction of this section, we will not consider closed terms in the usual
sense. Indeed, while it is frequent in the proofs of normalization (e.g. by realizability or reducibility) of
a calculus to consider only closed terms and to perform substitutions to maintain the closure of terms,
this only makes sense if it corresponds to the computational behavior of the calculus. For instance, to
prove the normalization of λx .t in typed call-by-name λµµ̃-calculus, one would consider a substitution
ρ that is suitable for with respect to the typing context Γ, then a context u · e of type A → B, and
evaluates :

〈λx .tρ ||u · e〉 → 〈tρ [u/x]||e〉

�en we would observe that tρ [u/x] = tρ[x :=u] and deduce that ρ[x := u] is suitable for Γ,x : A, which
would allow us to conclude by induction.

However, in the λ[lvτ?]-calculus we do not perform global substitution when reducing a command,
but rather add a new binding [x := u] in the store:

〈λx .t ||u · E〉τ → 〈t ||E〉τ [x := u]

�erefore, the natural notion of closed term invokes the closure under a store, which might evolve
during the rest of the execution (this is to contrast with a substitution).

122

6.2. REALIZABILITY INTERPRETATION OF THE SIMPLY-TYPED λ[LV τ?]-CALCULUS

De�nition 6.7 (Term-in-store). We call closed term-in-store (resp. closed context-in-store, closed closures)
the combination of a term t (resp. context e , command c) with a closed store τ such that FV (t) ⊆ dom(τ).
We use the notation (t |τ) to denote such a pair. y

We should note that in particular, if t is a closed term, then (t |τ) is a term-in-store for any closed
store τ . �e notion of closed term-in-store is thus a generalization of the notion of closed terms, and
we will (ab)use of this terminology in the sequel. We denote the sets of closed closures by C0, and will
identify (c |τ) and the closure cτ when c is closed in τ . Observe that if cτ is a closure in C0 and τ ′ is a
store extending τ , then cτ ′ is also in C0. We are now equipped to de�ne the notion of pole, and verify
that the set of normalizing closures is indeed a valid pole.

De�nition 6.8 (Pole). A subset ⊥⊥ ⊆ C0 is said to be saturated or closed by anti-reduction whenever for
all (c |τ), (c ′ |τ ′) ∈ C0, if c ′τ ′ ∈ ⊥⊥ and cτ → c ′τ ′ then cτ ∈ ⊥⊥. It is said to be closed by store extension if
whenever cτ ∈ ⊥⊥, for any store τ ′ extending τ : τ C τ ′, cτ ′ ∈ ⊥⊥. A pole is de�ned as any subset of C0
that is closed by anti-reduction and store extension. y

�e following proposition is the one supporting the claim that our realizability proof is almost a
reducibility proof whose de�nitions have been generalized with respect to a pole instead of the �xed
set SN.

Proposition 6.9. �e set ⊥⊥⇓ = {cτ ∈ C0 : cτ normalizes } is a pole.

Proof. As we only considered closures in C0, both conditions (closure by anti-reduction and store ex-
tension) are clearly satis�ed:

• if cτ → c ′τ ′ and c ′τ ′ normalizes, then cτ normalizes too;
• if c is closed in τ and cτ normalizes, if τ C τ ′ then cτ ′ will reduce as cτ does (since c is closed

under τ , it can only use terms in τ ′ that already were in τ) and thus will normalize. �

De�nition 6.10 (Orthogonality). Given a pole ⊥⊥, we say that a term-in-store (t |τ) is orthogonal to a
context-in-store (e |τ ′) and write (t |τ)⊥⊥(e |τ ′) if τ and τ ′ are compatible and 〈t ||e〉ττ ′ ∈ ⊥⊥. y

Remark 6.11. �e reader familiar with Krivine’s forcing machine [98] might recognize his de�nition
of orthogonality between terms of the shape (t ,p) and stacks of the shape (π ,q), where p and q are
forcing conditions:

(t ,p)⊥⊥(π ,q) ⇔ (t ? π ,p ∧ q) ∈ ⊥⊥

(�e meet of forcing conditions is indeed a re�nement containing somewhat the “union” of information
contained in each, just like the union of two compatible stores.) y

We can now relate closed terms and contexts by orthogonality with respect to a given pole. �is
allows us to de�ne for any formula A the sets |A|v , |A|V , |A|t (resp. ‖A‖F ,‖A‖E , ‖A‖e) of realizers (or
reducibility candidates) at level v ,V , t (resp F , E, e) for the formula A. It is to be observed that realizers
are here closed terms-in-store.

De�nition 6.12 (Realizers). Given a �xed pole ⊥⊥, we set:

|X |v = {(k |τ) : ` k : X }
|A→ B |v = {(λx .t |τ) : ∀uτ ′,τ � τ ′ ∧ (u |τ ′) ∈ |A|t ⇒ (t |ττ ′[x := u]) ∈ |B |t }
‖A‖F = {(F |τ) : ∀vτ ′,τ � τ ′ ∧ (v |τ ′) ∈ |A|v ⇒ (v |τ ′)⊥⊥(F |τ)}
|A|V = {(V |τ) : ∀Fτ ′,τ � τ ′ ∧ (F |τ ′) ∈ ‖A‖F ⇒ (V |τ)⊥⊥(F |τ ′)}
‖A‖E = {(E |τ) : ∀Vτ ′,τ � τ ′ ∧ (V |τ ′) ∈ |A|V ⇒ (V |τ ′)⊥⊥(E |τ)}
|A|t = {(t |τ) : ∀Eτ ′,τ � τ ′ ∧ (E |τ ′) ∈ ‖A‖E ⇒ (t |τ)⊥⊥(E |τ ′)}
‖A‖e = {(e |τ) : ∀tτ ′,τ � τ ′ ∧ (t |τ ′) ∈ |A|t ⇒ (t |τ ′)⊥⊥(e |τ)}

y

123

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

Remark 6.13. We draw the reader a�ention to the fact that we should actually write |A|⊥⊥v , ‖A‖⊥⊥F , etc…
and τ ⊥⊥ Γ, because the corresponding de�nitions are parameterized by a pole ⊥⊥. As it is common in
Krivine’s classical realizability, we ease the notations by removing the annotation ⊥⊥whenever there is
no ambiguity on the pole. y

If the de�nition of the di�erent sets might seem complex at �rst sight, we claim that they are quite
natural with regard to the methodology of Danvy’s semantics artifacts presented in [4]. Indeed, having
an abstract machine in context-free form (the last step in this methodology before deriving the CPS)
allows us to have both the term and the context (in a command) that behave independently of each
other. Intuitively, a realizer at a given level is precisely a term which is going to behave well (be in the
pole) in front of any opponent chosen in the previous level (in the hierarchyv,F ,V ,etc…). For instance,
in a call-by-value se�ing, there are only three levels of de�nition (values, contexts and terms) in the
interpretation, because the abstract machine in context-free form also has three. Here the ground level
corresponds to strong values, and the other levels are somewhat de�ned as terms (or context) which
are well-behaved in front of any opponent in the previous one. �e de�nition of the di�erent sets
|A|v , ‖A‖F , |A|V , etc… directly stems from this intuition.

In comparison with the usual de�nition of Krivine’s classical realizability, we only considered or-
thogonal sets restricted to some syntactical subcategories. However, the de�nition still satis�es the
usual monotonicity properties of bi-orthogonal sets:

Proposition 6.14. For any type A and any given pole ⊥⊥, we have the following inclusions:

1. |A|v ⊆ |A|V ⊆ |A|t ;

2. ‖A‖F ⊆ ‖A‖E ⊆ ‖A‖e .

Proof. All the inclusions are proved in a similar way. We only give the proof for |A|v ⊆ |A|V . Let ⊥⊥ be
a pole and (v |τ) be in |A|v . We want to show that (v |τ) is in |A|V , that is to say thatv is in the syntactic
category V (which is true), and that for any (F |τ ′) ∈ ‖A‖F such that τ � τ ′, (v |τ)⊥⊥(F |τ ′). �e la�er
holds by de�nition of (F |τ ′) ∈ ‖A‖F , since (v |τ) ∈ |A|v . �

We now extend the notion of realizers to stores, by stating that a store τ realizes a context Γ if it
binds all the variables x and α in Γ to a realizer of the corresponding formula.

De�nition 6.15. Given a closed store τ and a �xed pole ⊥⊥, we say that τ realizes Γ, which we write9

τ Γ, if:

1. for any (x : A) ∈ Γ, τ ≡ τ0[x := t]τ1 and (t |τ0) ∈ |A|t

2. for any (α : A⊥⊥) ∈ Γ, τ ≡ τ0[α := E]τ1 and (E |τ0) ∈ ‖A‖E
y

In the same way as weakening rules (for the typing context) were admissible for each level of the
typing system :

Γ `t t : A Γ ⊆ Γ′

Γ′ `t t : A
Γ `e e : A⊥⊥ Γ ⊆ Γ′

Γ′ `e e : A⊥⊥
. . . Γ `τ τ : Γ′′ Γ ⊆ Γ′

Γ′ `τ τ : Γ′′

the de�nition of realizers is compatible with a weakening of the store.

Lemma 6.16 (Store weakening). Let τ and τ ′ be two stores such that τ C τ ′, let Γ be a typing context
and let ⊥⊥ be a pole. �e following statements hold:

1. ττ ′ = τ ′

9Once again, we should formally write τ ⊥⊥ Γ but we will omit the annotation by ⊥⊥ as o�en as possible.

124

6.2. REALIZABILITY INTERPRETATION OF THE SIMPLY-TYPED λ[LV τ?]-CALCULUS

2. If (t |τ) ∈ |A|t for some closed term (t |τ) and type A, then (t |τ ′) ∈ |A|t . �e same holds for each
level e,E,V ,F ,v of the typing rules.

3. If τ Γ then τ ′ Γ.

Proof. 1. Straightforward from the de�nitions.
2. �is essentially amounts to the following observations. First, one remarks that if (t |τ) is a closed

term, so is (t |ττ ′) for any store τ ′ compatible with τ . Second, we observe that if we consider for
instance a closed context (E |τ ′′) ∈ ‖A‖E , then ττ ′�τ ′′ implies τ�τ ′′, thus (t |τ)⊥⊥(E |τ ′′) and �nally
(t |ττ ′)⊥⊥(E |τ ′′) by closure of the pole under store extension. We conclude that (t |τ ′)⊥⊥(E |τ ′′)
using the �rst statement.

3. By de�nition, for all (x : A) ∈ Γ, τ is of the form τ0[x := t]τ1 such that (t |τ0) ∈ |A|t . As τ and τ ′
are compatible, we know by Lemma 8.16 that ττ ′ is of the form τ ′0[x := t]τ ′1 with τ ′0 an extension
of τ0, and using the �rst point we get that (t |τ ′0) ∈ |A|t . �

We are now equipped to prove the adequacy of the type system for the λ[lvτ?]-calculus with respect
to the realizability interpretation.
De�nition 6.17 (Adequacy). Given a �xed pole ⊥⊥, we say that:

• A typing judgment Γ `t t : A is adequate (w.r.t. the pole ⊥⊥) if for all stores τ Γ, we have
(t |τ) ∈ |A|t .

• More generally, we say that an inference rule
J1 · · · Jn

J0

is adequate (w.r.t. the pole ⊥⊥) if the adequacy of all typing judgments J1, . . . , Jn implies the ade-
quacy of the typing judgment J0.

y

Remark 6.18. 1. As usual, it is clear from the la�er de�nition that a typing judgment that is deriv-
able from a set of adequate inference rules is adequate too.

2. �e interpretation we gave here relies on the fact that the calculus is simply-typed with constants
inhabiting the atomic types. If we were interested in open formulas (or second-order logic), we
should as usual (see Section 3.4.4) consider valuation to close formulas, which would map second-
order variables to set of strong values. y

Proposition 6.19 (Adequacy). �e typing rules of Figure 6.3 for the λ[lvτ?]-calculus without co-constants
are adequate with any pole. In other words, if Γ is a typing context, ⊥⊥ a pole and τ a store such that τ Γ,
then the following holds:

1. If v is a strong value such that Γ `v v : A, then (v |τ) ∈ |A|v .

2. If F is a forcing context such that Γ `F F : A⊥⊥, then (F |τ) ∈ ‖A‖F .

3. If V is a weak value such that Γ `V V : A, then (V |τ) ∈ |A|V .

4. If E is a catchable context such that Γ `E E : A⊥⊥, then (E |τ) ∈ ‖A‖F .

5. If t is a term such that Γ `t t : A, then (t |τ) ∈ |A|t .

6. If e is a context such that Γ `e e : A⊥⊥, then (e |τ) ∈ ‖A‖e .

7. If c is a command such that Γ `c c , then cτ ∈ ⊥⊥.

8. If τ ′ is a store such that Γ `τ τ ′ : Γ′, then ττ ′ Γ,Γ′.

9. If cτ ′ is a closure such that Γ `l cτ ′, then cττ ′ ∈ ⊥⊥.

Proof. We proceed by induction over the typing rules.

125

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

• Case Constants. �is case stems directly from the de�nition of |X |v for X atomic.

• Case (→r). �is case exactly matches the de�nition of |A→ B |v . Assume that

Γ,x : A `t t : B
Γ `v λx .t : A→ B

(→r)

and let ⊥⊥ be a pole and τ a store such that τ Γ. If (u |τ ′) is a closed term in the set |A|t , then, up to
α-conversion for the variable x , ττ ′ Γ by Lemma 6.16 and ττ ′[x := u] Γ,x : A. Using the induction
hypothesis, (t |ττ ′[x := u]) is indeed in |B |t .

• Case (→l). Assume that
Γ `t u : A Γ `E E : B⊥⊥
Γ `F u · E : (A→ B)⊥⊥

(→l)

and let ⊥⊥ be a pole and τ a store such that τ Γ. Let (λx .t |τ ′) be a closed term in the set |A → B |v
such that τ � τ ′, then we have:

〈λx .t ||u · E〉ττ ′ → 〈u ||µ̃x .〈t ||E〉〉ττ ′ → 〈t ||E〉ττ ′[x := u]

By de�nition of |A→ B |v , this closure is in the pole, and we can conclude by anti-reduction.

• Case (↑V). �is case, as well as every other case where typing a term (resp. context) at a higher level
of the hierarchy (rules (↑E), (↑t), (↑e)), is a simple consequence of Proposition 6.14. Indeed, assume for
instance that

Γ `v v : A
Γ `V v : A (↑V)

and let ⊥⊥ be a pole and τ a store such that τ Γ. By induction hypothesis, we get that (v |τ) ∈ |A|v .
�us, if (F |τ ′) is in ‖A‖F , by de�nition (v |τ)⊥⊥(F |τ ′).

• Case (x). Assume that
(x : A) ∈ Γ
Γ `V x : A (x)

and let ⊥⊥ be a pole and τ a store such that τ Γ. As (x : A) ∈ Γ, we know that τ is of the form
τ0[x := t]τ1 with (t |τ0) ∈ |A|t . Let (F |τ ′) be in ‖A‖F , with τ � τ ′. By Lemma 8.16, we know that ττ ′ is
of the form τ0[x := t]τ1. Hence, we have:

〈x ||F 〉τ0[x := t]τ1 → 〈t ||µ̃[x].〈x ||F 〉τ1〉τ0

and it su�ces by anti-reduction to show that the last closure is in the pole ⊥⊥. By induction hypothesis,
we know that (t |τ0) ∈ |A|t thus we only need to show that it is in front of a catchable context in ‖A‖E .
�is corresponds exactly to the next case that we shall prove now.

• Case (µ̃[]). Assume that

Γ,x : A,Γ′ `F F : A Γ,x : A ` τ ′ : Γ′
Γ `E µ̃[x].〈x ||F 〉τ ′ : A (µ̃ [])

and let ⊥⊥ be a pole and τ a store such that τ Γ. Let (V |τ0) be a closed term in |A|V such that τ0 � τ .
We have that :

〈V ||µ̃[x].〈x ||F 〉τ ′〉τ0τ → 〈V ||F 〉τ0τ [x := V]τ ′

126

6.2. REALIZABILITY INTERPRETATION OF THE SIMPLY-TYPED λ[LV τ?]-CALCULUS

By induction hypothesis, we obtain τ [x := V]τ ′ Γ,x : A,Γ′. Up to α-conversion in F and τ ′, so
that the variables in τ ′ are disjoint from those in τ0, we have that τ0τ Γ (by Lemma 6.16) and then
τ ′′ , τ0τ [x := V]τ ′ Γ,x : A,Γ′. By induction hypothesis again, we obtain that (F |τ ′′) ∈ ‖A‖F (this
was an assumption in the previous case) and as (V |τ0) ∈ |A|V , we �nally get that (V |τ0)⊥⊥(F |τ

′′) and
conclude again by anti-reduction.

• Cases (α). �is case is obvious from the de�nition of τ Γ.

• Case (µ). Assume that
Γ,α : A⊥⊥ `c c
Γ `t µα .c : A (µ)

and let ⊥⊥ be a pole and τ a store such that τ Γ. Let (E |τ ′) be a closed context in ‖A‖E such that τ �τ ′.
We have that :

〈µα .c ||E〉ττ ′ → cττ ′[α := E]

Using the induction hypothesis, we only need to show that ττ ′[α := E] Γ,α : A⊥⊥,Γ′ and conclude
by anti-reduction. �is obviously holds, since (E |τ ′) ∈ ‖A‖E and ττ ′ Γ by Lemma 8.16.

• Case (µ̃). �is case is identical to the previous one.

• Case (c). Assume that
Γ `t t : A Γ `e e : A⊥⊥

Γ `c 〈t ||e〉
(c)

and let ⊥⊥ be a pole and τ a store such that τ Γ. �en by induction hypothesis (t |τ) ∈ |A|t and
(e |τ) ∈ ‖A‖e , so that 〈t ||e〉τ ∈ ⊥⊥.

• Case (τt). �is case directly stems from the induction hypothesis which exactly matches the de�-
nition of ττ ′[x := t] Γ,Γ′,x : A. �e case for the rule (τE) is identical, and the case for the rule (ε) is
trivial.

• Case (l). �is case is a direct consequence of induction hypotheses for τ and c . Assume indeed that:

Γ,Γ′ `c c Γ `τ τ
′ : Γ′

Γ `l cτ
′

(l)

�en by induction hypotheses ττ ′ Γ,Γ′ and thus cττ ′ ∈ ⊥⊥.
�

�e previous result required to consider the λ[lvτ?]-calculus without co-constants. Indeed, we con-
sider co-constants as coming with their typing rules, potentially giving them any type (whereas con-
stants can only be given an atomic type). �us, there is a priori no reason10 why their types should be
adequate with any pole.

However, as observed in the previous remark, given a �xed pole it su�ces to check whether the
typing rules for a given co-constant are adequate with this pole. If they are, any judgment that is
derivable using these rules will be adequate.

Corollary 6.20. If cτ is a closure such that `l cτ is derivable, then for any pole ⊥⊥ such that the typing
rules for co-constants used in the derivation are adequate with ⊥⊥, cτ ∈ ⊥⊥.

10�ink for instance of a co-constant of type (A→ B)⊥⊥, there is no reason why it should be orthogonal to any function in
|A→ B |v .

127

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

We can now put our focus back on the normalization of typed closures. As we already saw in
Proposition 6.9, the set ⊥⊥⇓ of normalizing closure is a valid pole, so that it only remains to prove that
any typing rule for co-constants is adequate with ⊥⊥⇓.

Lemma 6.21. Any typing rule for co-constants is adequate with the pole ⊥⊥⇓, i.e. if Γ is a typing context,
and τ is a store such that τ Γ, if κ is a co-constant such that Γ `F κ : A⊥⊥, then (κ |τ) ∈ ‖A‖F .

Proof. �is lemma directly stems from the observation that for any store τ and any closed strong value
(v |τ ′) ∈ |A|v , 〈v ||κ〉ττ ′ does not reduce and thus belongs to the pole ⊥⊥⇓. �

As a consequence, we obtain the normalization of typed closures of the full calculus.

�eorem 6.22. If cτ is a closure of the λ[lvτ?]-calculus such that `l cτ is derivable, then cτ normalizes.

Besides, the translations11 from λlv to λ[lvτ?] de�ned by Ariola et al. both preserve normalization
of commands [4, �eorem 2,4]. As it is clear that they also preserve typing, the previous result also
implies the normalization of the λlv -calculus:

Corollary 6.23. If c is a closure of the λlv -calculus such that c : (`) is derivable, then c normalizes.

�is is to be contrasted with Okasaki, Lee and Tarditi’s semantics for the call-by-need λ-calculus,
which is not normalizing in the simply-typed case, as shown in Ariola et al [4].

6.3 A typed store-and-continuation-passing style translation

Guided by the normalization proof of the previous section, we shall now present a type system adapted
to the continuation-passing style translation de�ned in [4]. �e computational part is almost the same,
except for the fact that we explicitly handle renaming through a substitution σ that replaces names of
the source language by names of the target.

6.3.1 Guidelines of the translation

�e transformation is actually not only a continuation-passing style translation. Because of the sharing
of the evaluation of arguments, the store associating terms to variables has to be passed around. Passing
the store amounts to combining the continuation-passing style translation with a store-passing style
translation. Additionally, the store is extensible, so, to anticipate extension of the store, Kripke style
forcing has to be used too, in a way comparable to what is done in step-indexing translations. Before
presenting in detail the target system of the translation, let us explain step by step the rationale guiding
the de�nition of the translation. To facilitate the comprehension of the di�erent steps, we illustrate each
of them with the translation of the sequent a : A,α : A⊥⊥,b : B `e e : C .

Step 1 - Continuation-passing style. In a �rst approximation, let us look only at the continuation-
passing style part of the translation of a λ[lvτ?] sequent.

As shown in [4] and as emphasized by the de�nition of realizers (see De�nition 6.12) re�ecting the 6
nested syntactic categories used to de�ne λ[lvτ?], there are 6 di�erent levels of control in call-by-need,
leading to 6 mutually de�ned levels of interpretation. We de�ne ~A→ B�v for strong values as ~A�t →
~B�E , we de�ne ~A�F for forcing contexts as ¬ ~A�v , ~A�V for weak values as ¬ ~A�F = 2¬ ~A�v , and
so on until ~A�e de�ned as 5¬ ~A�v (where 0¬ A , A and n+1¬ A , ¬ n¬ A).

As we already observed in the previous section (see De�nition 8.18), hypotheses from a context Γ
of the form α : A⊥⊥ are to be translated as ~A�E = 3¬ ~A�v while hypotheses of the form x : A are to be

11�ere is actually an intermediate step to a calculus named λ̄[lτv].

128

6.3. A TYPED STORE-AND-CONTINUATION-PASSING STYLE TRANSLATION

translated as ~A�t = 4¬ ~A�v . Up to this point, if we denote this translation of Γ by [[Γ]], in the particular
case of Γ `t A the translation is [[Γ]] ` [[A]]t and similarly for other levels, e.g. Γ `e A translates to
[[Γ]] ` [[A]]e .

Example 6.24 (Translation, step 1). Up to now, the translation taking into account the continuation-
passing style of a : A,α : A⊥⊥,b : B `e e : C is simply:

~a : A,α : A⊥⊥,b : B `e e : C� = a : ~A�t ,α : ~A�E ,b : ~B�t ` ~e�e : ~C�e
= a : 4¬ ~A�v ,α : 3¬ ~A�v ,b : 4¬ ~B�v ` ~e�e : 5¬ ~C�v y

Step 2 - Store-passing style. �e continuation-passing style part being se�led, the store-passing
style part should be considered. In particular, the translation of Γ `t A is not anymore a sequent
~Γ� ` [[A]]t but instead a sequent roughly of the form ` ~Γ� → [[A]]t , with actually ~Γ� being passed
around not only at the top-level of [[A]]t but also every time a negation is used. We write this sequent
` ~Γ� .t A where .tA is de�ned by induction on t and A, with

~Γ� .t A = ~Γ� → (~Γ� .E A) → ⊥

= ~Γ� → (~Γ� → (~Γ� .V A) → ⊥) → ⊥ = . . .

Moreover, the translation of each type in Γ should itself be abstracted over the store at each use of a
negation.

Example 6.25 (Translation, step 2). Up to now, the continuation-and-store passing style translation
of a : A,α : A⊥⊥,b : B `e e : C is:

~a : A,α : A⊥⊥,b : B `e e : C� = ` ~e�e : ~a : A,α : A⊥⊥,b : B� .e C
= ` ~e�e : ~a : A,α : A⊥⊥,b : B� → (~a : A,α : A⊥⊥,b : B� .t C) → ⊥ = ...

where:
~a : A,α : A⊥⊥,b : B� = ~a : A,α : A⊥⊥�, b : ~a : A,α : A⊥⊥� .t B

= ~a : A,α : A⊥⊥�, b : ~a : A,α : A⊥⊥� → (~a : A,α : A⊥⊥� .E B) → ⊥ = ...
~a : A,α : A⊥⊥� = ~a : A�, α : ~a : A� .E A

= ~a : A�, α : ~a : A� → (~a : A� → .EA) → ⊥ = ...
~a : A� = a : ε .t A = a : 4¬ ~A�v y

Step 3 - Extension of the store. �e store-passing style part being se�led, it remains to anticipate
that the store is extensible. �is is done by supporting arbitrary insertions of any term at any place in
the store. �e extensibility is obtained by quantifying over all possible extensions of the store at each
level of the negation. �is corresponds to the intuition that in the realizability interpretation, given
a sequent Γ `t t : A we showed that for any store τ such that τ Γ, we had (t |τ) in |A|t . But the
de�nition of τ Γ is such that for any Γ′ ⊇ Γ, if τ Γ′ then τ Γ, so that actually (t |τ ′) is also |A|t .
�e term t was thus compatible with any extension of the store.

For this purpose, we use as a type system an adaptation of System F <: [22] extended with stores,
de�ned as lists of assignations [x := t]. Store types, denoted by ϒ, are de�ned as list of types of the form
(x : A) where x is a name and A is a type properly speaking and admit a subtyping notion ϒ′ <: ϒ to
express that ϒ′ is an extension of ϒ. �is corresponds to the following re�nement of the de�nition of
~Γ� .t A:

~Γ� .t A = ∀ϒ <: ~Γ�.ϒ → (ϒ .E A) → ⊥
= ∀ϒ <: ~Γ�.ϒ → (∀ϒ′ <: ϒ.ϒ′ → ϒ′ .V A→ ⊥) → ⊥ = ...

�e reader can think of subtyping as a sort of Kripke forcing [89], where worlds are store types ϒ and
accessible worlds from ϒ are precisely all the possible ϒ′ <: ϒ.

129

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

Example 6.26 (Translation, step 3). �e translation, now taking into account store extensions, of a :
A,α : A⊥⊥,b : B `e e : C becomes:

~a : A,α : A⊥⊥,b : B `e e : C� = ` ~e�e : ~a : A,α : A⊥⊥,b : B� .e C
= ` ~e�e : ∀ϒ <: ~a : A,α : A⊥⊥,b : B�.ϒ → (ϒ .t C) → ⊥ = ...

where:

~a : A,α : A⊥⊥,b : B� = ~a : A,α : A⊥⊥�, b : ~a : A,α : A⊥⊥� .t B
= ~a : A,α : A⊥⊥�, b : ∀ϒ <: ~a : A,α : A⊥⊥�.ϒ → (ϒ .E B) → ⊥ = ...

~a : A,α : A⊥⊥� = ~a : A�, α : ~a : A� .E A
= ~a : A�, α : ∀ϒ <: ~a : A�.ϒ → (ϒ → .EA) → ⊥ = ...

~a : A� = a : ε .t A = a : ∀ϒ.ϒ → (ϒ .E A) → ⊥
y

Step 4 - Explicit renaming As we will explain in details in the next section (see Section 6.4.1), we
need to handle the problem of renaming the variables during the translation. We assume that we dispose
of a generator of fresh names (in the target language). In practice, this means that the implementation
of the CPS requires for instance to have a list keeping tracks of the variables already used. In the case
where variable names can be reduced to natural numbers, this can be easily done with a reference that
is incremented each time a fresh variable is needed. �e translation is thus annotated by a substitution
σ which binds names from the source language with names in the target language. For instance, the
translation of a typing context a : A,α : A⊥⊥,b : B is now:

~a : A,α : A⊥⊥,b : B�σ = σ (a) : ε .t A, σ (α) : ~a : A�σ .E A, σ (b) : ~a : A,α : A⊥⊥�σ .t B

6.3.2 �e target language: System Fϒ

�e target language is thus the usual λ-calculus, which is extended with stores (de�ned lists of pairs
of a name and a term) and second-order quanti�cation over store types. We refer to this language
as System Fϒ. We assume that types contain at least a constant for each atomic type X of the original
system, and we still denote this constant byX . �is allows us to de�ne an embedding ι from the original
type system to this one by:

ι (X) = X ι (A→ B) = ι (A) → ι (B).

�e syntax for terms and types is given by:

t ,u ::= k | x | λx .t | tu | τ
| letxτ0 ,x ,xτ1 = split τ ′′y in t

τ ,τ ′ ::= ε | τ [x := t]

A,B ::= X | ⊥ | ϒ .τ ϒ
′ | A→ B | ∀Y � ϒ.A

ϒ,ϒ′ ::= ε | (x : A) | (x : A⊥⊥) | Y | ϒ,ϒ′
Γ,Γ′ ::= ε | Γ,x : A | Γ,Y <: ϒ

We introduce a new symbol ϒ.τ ϒ′ to denote the fact that a store has a type conditioned by ϒ (which
should be the type of the head of the list). In order to ease the notations, we will denote ϒ instead of
ε .τ ϒ in the sequel. On the contrary, ϒ .t A is a shorthand (de�ned in Figure 6.6). �e type system is
given in Figure 6.5 where we assume that a name can only occur once both in typing contexts Γ and
stores types ϒ.

Remark 6.27. We shall make a few remarks about our choice of rules for typing stores. First, observe
that we force elements of the store to have types of the form ϒ .t A, that is having the structure of
types obtained through the CPS translation. Even though this could appear as a strong requirement, it
appears naturally when giving a computational contents to the inclusion ϒ <: ′ϒ with De Bruijn levels
(see Section 6.4.4). Indeed, a De Bruijn level (just as a name) can be understood as a pointer to a

130

6.3. A TYPED STORE-AND-CONTINUATION-PASSING STYLE TRANSLATION

(k : X) ∈ S

Γ ` k : X
(c)

(x : A) ∈ Γ
Γ ` x : A (Ax)

Γ,x : A ` t : B
Γ ` λx .t : A→ B

(λ) Γ ` t : A→ B Γ ` u : A
Γ ` t u : B (@)

Γ,Y <: ϒ ` t : A Y < FV (Γ)

Γ ` t : ∀Y <: ϒ.A (∀I)
Γ ` t : ∀Y <: ϒ.A Γ ` ϒ′ <: ϒ

Γ ` t : A{Y := ϒ′}
(∀E)

Γ,xτ0 : ϒ0,x : ϒ0 .t A,xτ1 : (ϒ0,y : A) .τ ϒ1 ` t : B Γ ` τ : ϒ0,y : A,ϒ1
Γ; Σ ` letxτ0 ,x ,xτ1 = split as (τ) in y in t : B

(split)

Γ ` ε : ε .τ ε
(ε)

Γ ` t : ϒ0 .t A
Γ ` [x := t] : ϒ0 .τ x : A

(τt)
Γ ` t : ϒ0 .E A

Γ ` [x := t] : ϒ0 .τ x : A⊥⊥
(τE)

Γ ` τ : ϒ0 .τ ϒ Γ ` τ ′ : (ϒ0,ϒ) .τ ϒ
′

Γ ` ττ ′ : ϒ0 .τ ϒ,ϒ
′

(τ τ ′)
(ϒ′ <: ϒ) ∈ Γ
Γ ` ϒ′ <: ϒ

(<:ax)
Γ ` Y <:Y (<:Y)

Γ ` ϒ <: ε (<:ε)
Γ ` ϒ′ <: ϒ

Γ ` (ϒ′,x : A) <: (ϒ,x : A)
(<:1)

Γ ` ϒ′ <: ϒ
Γ ` ϒ′,ϒ′′ <: ϒ

(<:2)

Γ ` ϒ′′ <: ϒ′ Γ ` ϒ′ <: ϒ
Γ ` ϒ′′ <: ϒ

(<:3)
Γ ` τ : ϒ′0 .τ ϒ′ Γ ` ϒ′ <: ϒ Γ ` ϒ0 <: ϒ′0

Γ ` τ : ϒ0 .τ ϒ
(τ <:)

Γ[(Y0,x : A,Y1)/Y] ` t : B[(Y0,x : A,Y1)/Y] Γ ` Y <: (ϒ0,x : A,ϒ1)
Γ ` t : B (<:split)

Figure 6.5: Typing rules of System Fϒ

particular cell of the store. �erefore, we need to update pointers when inserting a new element (as in
Proposition 6.32). Such an operation would not have any sense (and in particular would be ill-typed)
for an element that is not of type ϒ .t A. One could circumvent this by tagging each cell of the store
with a �ag (using a sum type) indicating whether the corresponding elements have a type of this form
or not. Second, note that each element of the store has a type depending on the type of the head of the
store. Once again, this is natural and only re�ects what was already happening in the source language
or within the realizability interpretation. y

�e translation of judgments and types is given in Figure 6.6, where we made explicit the renaming
procedure from the λ[lvτ?]-calculus to the target language. We denote by σ s Γ the fact that σ is a
substitution suitable to rename every names present in Γ.

As for the reduction rules of the language, there is only two of them, namely the usual β-reduction
and the split of a store with respect to a name:

λx .t u → t[u/x]
letx0,x ,x1 = split τ y in t → t[τ0/x0,u/x ,τ1/x1] (where τ = τ0[y := u]τ1)

6.3.3 �e typed translation

We consider in this section that we dispose of a generator of fresh names (for instance a global counter)
and use names explicitly both in the language (for stores) and in the type system (for their types). �e

131

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

~Γ `e e : A⊥⊥� , ∀σ , σ s Γ ⇒ (` ~e�σe : ~Γ�σΓ .e ι (A))
~Γ `t t : A� , ∀σ , σ s Γ ⇒ (` ~t�σt : ~Γ�σΓ .t ι (A))
~Γ `E E : A⊥⊥� , ∀σ , σ s Γ ⇒ (` ~E�σE : ~Γ�σΓ .E ι (A))
~Γ `V V : A� , ∀σ , σ s Γ ⇒ (` ~V �σV : ~Γ�σΓ .V ι (A))

~Γ `F F : A⊥⊥� , ∀σ , σ s Γ ⇒ (` ~F �σF : ~Γ�σΓ .F ι (A))
~Γ `v v : A� , ∀σ , σ s Γ ⇒ (` ~v�σv : ~Γ�σΓ .v ι (A))
~Γ `c c� , ∀σ , σ s Γ ⇒ (` ~c�σc : ~Γ�σΓ .c ⊥)
~Γ `l l� , ∀σ , σ s Γ ⇒ (` ~l�σl : ~Γ�σΓ .c ⊥)
~Γ `τ τ : Γ′� , ∀σ , σ s Γ ⇒ (` τ ′ : ~Γ�σ ′Γ .τ ~Γ

′�σ
′

Γ) (where τ ′,σ ′ = ~τ �στ)

σ s Γ , σ injective ∧ dom(Γ) ⊆ dom(σ)

~Γ,a : A�σΓ , ~Γ�σΓ ,σ (a) : ι (A) ~Γ,α : A⊥⊥�σΓ , ~Γ�σΓ ,σ (α) : ι (A)⊥⊥ ~ε�σΓ , ε

ϒ .c A , ∀Y <: ϒ.Y → ⊥
ϒ .e A , ∀Y <: ϒ.Y → (Y .t A) → ⊥

ϒ .t A , ∀Y <: ϒ.Y → (Y .E A) → ⊥

ϒ .E A , ∀Y <: ϒ.Y → (Y .V A) → ⊥

ϒ .V A , ∀Y <: ϒ.Y → (Y .F A) → ⊥

ϒ .F A , ∀Y <: ϒ.Y → (Y .v A) → ⊥

ϒ .v A→ B , ∀Y <: ϒ.Y → (Y .t A) → (Y .E B) → ⊥

ϒ .v X , X

Figure 6.6: Translation of judgments and types

next section will be devoted to the presentation of the translation using De Bruijn levels instead of
names.

�e translation of terms is given in Figure 6.7 where we assume that for each constant k of type X
(resp. co-constant κ of type A⊥⊥) of the source system, we have a constant of type X in the signature S
of target language, constant that we also denote by k (resp. κ of type A → ⊥). Except for the explicit
renaming, the translation is the very same as in Ariola et al., hence their results are preserved with
our translation. In particular, if two closures l ,l ′ are such that l → l ′, then12 ~l�σl =β,η ~l

′�σl (see [4,
�eorem 6]).

We �rst prove a few technical results that we will use a�erwards in the proof of the main theorem.

Lemma 6.28 (Suitable substitution). For all σ and Γ such that σ is suitable for Γ, if τ is a store such that
Γ `τ τ : Γ′ for some Γ′, if τ ′,σ ′ = ~τ �στ then σ ′ is suitable for Γ,Γ′ and ~Γ�σΓ = ~Γ�

σ ′
Γ .

Proof. Obvious from the de�nition. �

Lemma 6.29 (Subtyping identity). �e following rule is admissible: Σ ` ϒ <: ϒ

Proof. Straightforward induction on the structure of ϒ, applying repeatedly the (<:1)-rule (or the (<:Y)-
rule). �

12Such a statement could be re�ned to prove that that the translation preserves the reduction. As in the call-by-name and
call-by-value cases (see Proposition 4.18), it would require to de�ne a translation at each level (e,t , ...) for commands, to �nally
prove that if cιτ

1
→ coτ

′, then ~cτ �σι
+
→ ~cτ ′�σ

′

o . We claim that this would not present any speci�c di�culty, but that it is no
longer worth bothering ourself with such a proof since we already proved the normalization.

132

6.3. A TYPED STORE-AND-CONTINUATION-PASSING STYLE TRANSLATION

~k�σv , k

~λx .t�σv τ u E , ~t�σ [x :=n]
t τ [n := u] E (n fresh)

~κ�σF , κ

~t · E�σF τ v , v τ ~t�σt ~E�σE

~v�σV τ F , F τ ~v�σv
~x�σV τ [σ (x) := t]τ ′ F , t τ (λτλV .V τ [σ (x) :=↑t V]τ ′ F) (with ↑t V = λτE.E τ V)

~α�σE τ [σ (α) := E]τ ′ V , E τ [σ (α) := E]τ ′ V
~µ̃[x].〈x ||F 〉τ ′�σE τ V , V τ [n :=↑t V]τ ′′ ~F �σ ′F (where n fresh,τ ′′,σ ′ = ~τ �σ [x :=n]

τ)

~V �σt τ E , E τ ~V �σV
~µα .c�σt τ E , ~c�σ [α :=n]

c τ [n := E] (n fresh)

~E�σe τ t , t τ ~E�σE
~µ̃x .c�σe τ t , ~c�σ [x :=n]

c τ [n := t] (n fresh)

~〈t ||e〉�σc τ , ~e�σe τ ~t�σt
~c τ �σl τ0 , ~c�σ

′

c τ0τ
′ (where τ ′,σ ′ = ~τ �στ)

~ε�στ , ε,σ

~τ ′[x := t]�στ , τ ′[n := ~t�σ ′t],σ [x := n] (where τ ′,σ ′ = ~τ �στ , n fresh)
~τ ′[α := E]�στ , τ ′[n := ~E�σ ′E],σ [α := n] (where τ ′,σ ′ = ~τ �στ , n fresh)

Figure 6.7: Translation of terms

Lemma 6.30 (Weakening). �e following rule is admissible:

Γ ` t : A Γ ⊆ Γ′

Γ′ ` t : A
(w)

Proof. Straightforward induction on typing derivations. �

Lemma 6.31 (Terms subtyping). �e following rule is admissible:

Γ ` t : ∀Y <: ϒ0.A Γ ` ϒ1 <: ϒ0
Γ ` t : ∀Y <: ϒ1.A

<:∀

Proof. We can derive:

Γ,X <: ϒ1 ` t : ∀Y <: ϒ0.A
Γ,Y <: ϒ1 ` Y <: ϒ1

(<:ax)
Γ ` ϒ1 <: ϒ0

Γ,Y <: ϒ1 ` Y <: ϒ0
(<:3)

Γ,Y <: ϒ1 ` t : A (∀E)
Y < FV (Γ)

Γ ` t : ∀Y <: ϒ1.A
(∀I)

where we use Lemma 6.30 to weaken Γ,X <: ϒ1 to Γ.
�

Corollary 6.32. For any level o of the hierarchy e,t ,E,V ,F ,v , the following rule is admissible:

Γ ` t : ϒ0 .o A Γ ` ϒ1 <: ϒ0
Γ ` t : ϒ1 .o A

<:.

133

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

�eorem 6.33 (Preservation of typing). �e translation is well-typed, i.e.
1. if Γ `v v : A then ~Γ `v v : A�
2. if Γ `F F : A⊥⊥ then ~Γ `F F : A⊥⊥�
3. if Γ `V V : A then ~Γ `V V : A�
4. if Γ `E E : A⊥⊥ then ~Γ `E E : A⊥⊥�
5. if Γ `t t : A then ~Γ `t t : A�

6. if Γ `e e : A⊥⊥ then ~Γ `e e : A⊥⊥�
7. if Γ `c c then ~Γ `c c�
8. if Γ `l l then ~Γ `l l�
9. if Γ `τ τ : Γ′ then ~Γ `τ τ : Γ′�

Proof. By induction over the typing rules. Let Γ be a typing context and σ be a suitable translation of
names of Γ. We (ab)use of Lemma 6.30 to make the derivations more compact by systematically weak-
ening contexts as soon as possible. We also compact the �rst ∀- and λ-introductions in one rule.

1. Strong values

• Case ~k�σv . ~k�σv = k , which has the desired type by hypothesis.

• Case ~λxi .t�σv . In the source language, we have:

Γ,x : A `t t : B
Γ `v λx : A→ B

Hence, if n is fresh (w.r.t. σ), σ [x := n] is suitable for Γ,x : A, and we get by induction a proof Πt of
~t�σ [x :=n]

t : ~Γ,x : A�σ [x :=n]
Γ .t ι (B). Observing that ~Γ,x : A�σ [x :=n]

Γ = ~Γ�σΓ ,n : ι (A) we can derive:

Πt

` ~t�σ [x :=n]
t : ~Γ,x : A�[σ ,x :=n]

Γ .t ι (B)

Y <: ~Γ�σΓ ` Y <: ~Γ�σΓ
(<:ax)

Y <: ~Γ�σΓ ` Y ,n : A<: ~Γ�σΓ ,n : A
(<:2)

Y <: ~Γ�σΓ ` ~t�
σ [x :=n]
t : Y ,n : A→ Y ,n : A .E ι (B) → ⊥

(∀E)

Πτ

Y <: ~Γ�σΓ ,τ : Y ,u : Y .t ι (A); ` ~t�t τ [u] : Y ,n : A .E ι (B) → ⊥
(@)

ΠE

Y <: ~Γ�σΓ ,τ : Y ,u : Y .t ι (A),E : Y .E ι (B) ` ~t�σ [x :=n]
t τ [u] E : ⊥

(@)

` λτuE.~t�σ [x :=n]
t τ [u] E : ∀Y <: ~Γ�σΓ .Y → Y .t ι (A) → Y .E ι (B) → ⊥

(λ)

where:

• Πτ is the following subproof:

τ : Y ` τ : Y (Ax)
u : Y .t ι (A) ` u : Y .t ι (A)

(Ax)

Y .t ι (A) ` [n := u] : Y .τ ι (A)
(τt)

τ : Y ,u : Y .t ι (A); ` τ [n := u] : Y ,n : A
(τ τ ′)

• ΠE is the following proof (derivable using Corollary 6.32):

E : Y .E ι (B) ` E : (Y ,n : ι (A)) .E ι (B)
(Ax) ` Y <:Y (<:ax)

` (Y ,n : ι (A)) <:Y
(<:2)

E : Y .E ι (B) ` E : (Y ,n : ι (A)) .E ι (B)
<:.

2. Forcing contexts

• Case ~κ�σF . ~κ�σF = κ , which has the desired type by hypothesis.

134

6.3. A TYPED STORE-AND-CONTINUATION-PASSING STYLE TRANSLATION

• Case ~t .E�σF . In the source language, we have:

Γ `t t : A Γ `E E : B⊥⊥
Γ `F t · E : (A→ B)⊥⊥

�erefore, we obtain by induction a proof of ` ~t�t : ~Γ�σΓ .t ι (A) (and a proof of ` ~E�t : ~Γ�σΓ .E ι (B))
that can be turned (using Corollary 6.32) into a proof Πt of Y <: ~Γ�σΓ ` ~t�t : Y .t ι (A) for any Y (resp.
ΠE of Y <: ~Γ�σΓ ` ~E�t : Y .E ι (B)). �us, we can derive:

v : Y .v (ι (A) → ι (B)) ` v : Y .v ι (A) → ι (B)
(Ax)

` Y <:Y (<:ax)

v : Y .v (ι (A) → ι (B)) ` v : Y → Y .t ι (A) → Y .E B → ⊥
(∀E)

τ : Y ` τ : Y (Ax)

τ : Y ,v : Y .v (ι (A) → ι (B)) ` v τ : Y .t ι (A) → Y .E ι (B) → ⊥
(@)

Πt

Y <: ~Γ�σΓ ,τ : Y ,v : Y .v (ι (A) → ι (B)) ` v τ ~t�t : Y .E ι (B) → ⊥
(@)

ΠE

Y <: ~Γ�σΓ ,τ : Y ,v : Y .v (ι (A) → ι (B)) (` v τ ~t�t ~E�
σ
E : ⊥

(@)

` λτv .v τ ~t�t ~E�
σ
E : ∀Y <: ~Γ�σΓ .Y → Y .v (ι (A) → ι (B)) → ⊥

(λ)

3. Weak values
• Case ~v�V . In the source language, we have:

Γ `v v : A
Γ `V v : A

�en we have by induction hypothesis a proof Πv of ` ~v�σv : ~Γ�σΓ .v ι (A) and we can derive:

F : Y .F ι (A) ` F : Y .F ι (A)
(Ax)

` Y <:Y (<:ax)

F : Y .F ι (A) ` F : Y → Y .v ι (A) → ⊥
(∀E)

τ : Y ` τ : Y (Ax)

Y <: ~Γ�σΓ ,τ : Y ,F : Y .F ι (A) ` F τ : Y .v ι (A) → ⊥
(@)

Πv Y <: ~Γ�σΓ ` Y <: ~Γ�σΓ
(Ax)

Y <: ~Γ�σΓ ` ~v�
σ
v : Y .v ι (A)

<:.

Y <: ~Γ�σΓ ,τ : Y ,F : Y .F ι (A) ` F τ ~v�σv : ⊥
(@)

` λτF .F τ ~v�σv : ∀Y <: ~Γ�σΓ .Y → Y .F ι (A) → ⊥
(λ)

where we used Corollary 6.32 on the right part of the proof. Observe that ↑t V is in fact independent
of the level t and that we could as well have wri�en ~v�V =↑ ~v�σv . We thus proved the admissibility
of the following rule:

Γ ` V : ϒ .V A

Γ `↑t V : ϒ .t A
(↑)

• Case ~x�V . In the source language, we have:

(x : A) ∈ Γ
Γ `V x : A

so that Γ is of the form Γ0,x : A,Γ1. By de�nition, we have:

~x�V = λτF . letτ0,t ,τ1 = split τ n in t τ0 (λτ ′0V .V τ ′0[n :=↑t V]τ1 F) where n = σ (x)

t : Y0 .t ι (A) ` t : Y0 .t ι (A)
(Ax)

` Y0 <:Y0
(<:ax)

t : Y0 .t ι (A) ` t : Y0 → Y0 .E ι (A) → ⊥
(∀E)

τ0 : Y0 ` τ0 : Y0
(Ax)

τ0 : Y0,t : Y0 .t A ` t τ0 : Y0 .E ι (A) → ⊥
(@)

ΠE

τ0 : Y0,t : Y0 .t ι (A),τ1 : (Y0,n : ι (A)) .τ Y1,F : (Y0,n : ι (A),Y1) .F ι (A) ` t τ0 E : ⊥
(@)

τ : (Y0,n : ι (A),Y1),F : (Y0,n : ι (A),Y1) .F ι (A) ` letτ0,t ,τ1 = split τ n in t τ0 E : ⊥
(split)

ΠY

Y <: ~Γ�σΓ ,τ : Y ,F : Y .F ι (A) ` letτ0,t ,τ1 = split τ n in t τ0 E : ⊥
(<:split)

` λτF . letτ0,t ,τ1 = split τ n in t τ0 E : ∀Y <: ~Γ�σΓ .Y → Y .F ι (A) → ⊥
(λ)

where:

135

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

• ΠY is simply the axiom rule:

Y <: (~Γ0�
σ
Γ ,n : ι (A),~Γ1�

σ
Γ) ` Y <: (~Γ0�

σ
Γ ,n : ι (A),~Γ1�

σ
Γ)

(<:ax)

• E = (λτ ′0V .V τ ′0[n := V]τ1 F) and ΠE is the following derivation:

V : Y ′0 .V ι (A) `↑t V : Y ′0 .t ι (A)
(Ax)

` Y ′0 ,n : A,Y1 <:Y ′0 ,n : A
(Ax)

V : Y ′0 .V ι (A) ` V : (Y ′0 ,n : A,Y1) → (Y ′0 ,n : A,Y1) .E ι (A) → ⊥
(∀E)

Πτ

τ1 : (Y0,n : A) .τ Y1,Y
′
0 <:Y0,τ

′
0 : Y ′0 ,V : Y ′0 .V ι (A) ` V τ ′0[n :=↑t V]τ1 : (Y ′0 ,n : ι (A),Y1) .F ι (A) → ⊥

(@)
ΠF

τ1 : (Y0,n : A) .τ Y1,F : (Y0,n : ι (A),Y1) .F ι (A),Y
′
0 <:Y0,τ

′
0 : Y ′0 ,V : Y ′0 .V ι (A) ` V τ ′0[n :=↑t V]τ1 F : ⊥

(@)

τ1 : (Y0,n : A) .τ Y1,F : (Y0,n : ι (A),Y1) .F ι (A) ` λτ
′
0V .V τ ′0[n :=↑t V]τ1 F : Y0 .E ι (A)

(λ)

• ΠF is the following proof, obtained by Corollary 6.32:

F : (Y0,n : ι (A),Y1) .F ι (A) ` F : (Y0,n : ι (A),Y1) .F ι (A)
(Ax)

Y ′0 <:Y0 ` Y
′
0 <:Y0

(<:ax)

...

(<:1)

Y ′0 <:Y0 ` (Y
′
0 ,n : ι (A),Y1) <: (Y0,n : ι (A),Y1)

(<:1)

Y ′0 <:Y0,F : (Y0,n : ι (A),Y1) .F ι (A) ` F : (Y ′0 ,n : ι (A),Y1) .F ι (A)
<:.

• Πτ is the following derivation

τ ′0 : Y ′0 ` τ ′0 : Y ′0
(Ax)

V : Y ′0 .V ι (A) ` V : Y ′0 .V A
(Ax)

V : Y ′0 .V ι (A) `↑t V : Y ′0 .t A
(↑)

V : Y ′0 .V ι (A) ` [n :=↑t V] : Y ′0 .τ n : ι (A)
(τt)

Y ′0 <:Y0,τ
′
0 : Y ′0 ,V : Y ′0 .V ι (A) ` τ ′0[n := V] : Y ′0 ,n : ι (A)

(τ τ ′)
Πτ1

τ1 : (Y0,n : ι (A)) .τ Y1,Y
′
0 <:Y0,τ

′
0 : Y ′0 ,V : Y ′0 .V ι (A) ` τ ′0[n := V]τ1 : Y ′0 ,n : A,Y1

(τ <:)

• Πτ1 is the following derivation:

τ1 : (Y0,n : ι (A)) .τ Y1 ` τ1 : (Y0,n : ι (A)) .τ Y1
(Ax)

Y ′0 <:Y0 ` Y
′
0 <:Y0

(<:ax)

Y ′0 <:Y0 ` Y
′
0 ,n : ι (A) <:Y0,n : ι (A)

(<:1)

τ1 : (Y0,n : ι (A)) .τ Y1,Y
′
0 <:Y0 ` τ1 : (Y ′0 ,n : ι (A)) .τ Y1

(τ <:)

4. Catchable contexts
• Case ~F �σE . �is case is similar to the case ~v�V .

• Case ~µ̃[x].〈x ||F 〉τ ′�σE . In the source language, we have:
Γ,x : A,Γ′ `F F : A⊥⊥ Γ `τ τ : Γ′

Γ `E µ̃[x].〈x ||F 〉τ : A⊥⊥

If n is fresh (w.r.t σ), σ [x := n] is suitable for Γ,x : A, and we then have by induction hypothesis a proof
of ` τ ′′ : ~Γ,x : A�σ ′.τ ~Γ′�σ

′ and a proofΠF of ` ~F �σ ′F : ~Γ,x : A�σ ′.F ι (A) where τ ′′,σ ′ = ~τ ′�σ ,[x :=n]

for some fresh n. We can thus derive:

V : Y .V ι (A) ` Y .V ι (A)
(Ax)

` Y <:Y (<:ax)

` Y ,n : ι (A),~Γ′�σ ′Γ <:Y
(<:2)

V : Y .V ι (A) ` V : (Y ,n : ι (A),~Γ′�σ ′Γ) → (Y ,n : ι (A),~Γ′�σ ′Γ) .F ι (A) → ⊥
(∀E)

Πτ

τ : Y ,V : Y .V ι (A) ` V τ [n :=↑t V]τ ′′ : (Y ,n : ι (A),~Γ′�σ ′Γ ι (A).F → ⊥
(@)

ΠF

Y <: ~Γ�σ ′Γ ,τ : Y ,V : Y .V ι (A) ` V τ [n :=↑t V]τ ′′ ~F �σ ′F : ⊥
(@)

` λτV .V τ [n :=↑t V]τ ′′ ~F �σ ′F : ∀Y <: ~Γ�σ ′Γ .Y → Y .V ι (A) → ⊥
(λ)

136

6.3. A TYPED STORE-AND-CONTINUATION-PASSING STYLE TRANSLATION

where:

• ΠF is the following proof, derived using Corollary 6.32 and Lemma 6.28:

` ~F �σ
′

F : ~Γ,n : ι (A),Γ′�σ ′Γ .F ι (A)
Y <: ~Γ�σ ′Γ ` Y <: ~Γ�σ ′Γ

(Ax)

Y <: ~Γ�σ ′Γ ` Y ,n : ι (A),~Γ′�σ ′Γ <: ~Γ,n : ι (A),Γ′�σ ′Γ
(<:1)

Y <: ~Γ�σ ′Γ ` ~F �
σ ′
F : Y ,n : ι (A),~Γ′�σ ′Γ .F ι (A)

(∀E)

• Πτ is the following proof:

τ : Y ` τ : Y (Ax)

V : Y .V ι (A) ` V : Y .V ι (A)
(Ax)

V : Y .V ι (A) `↑t V : Y .t ι (A)
(↑)

V : Y .V ι (A) ` [n := V] : Y .τ n : ι (A)
(τt)

τ : Y ,V : Y .V ι (A) ` τ [n :=↑t V] : Y ,n : ι (A)
(τ τ ′)

Πτ ′

Y <: ~Γ�σ ′Γ ,τ : Y ,V : Y ′ .V ι (A) ` τ [n :=↑t V]~τ ′�σ [x :=n]
τ : (Y ,n : ι (A),~Γ′�σ [x :=n])

(τ τ ′)

• Πτ ′ is the following proof, obtained from the induction hypothesis for τ ′:

` ~τ ′�σ [x :=n]
τ : ~Γ�σΓ ,n : ι (A) .τ ~Γ′�σ [x :=n]

Y <: ~Γ�σΓ ` Y <: ~Γ�σΓ
Y <: ~Γ�σΓ ` Y ,n : ι (A) <: ~Γ�σΓ ,n : ι (A)

Y <: ~Γ�σΓ ` ~τ
′�
σ [x :=n]
τ : Y ,n : ι (A) .τ ~Γ′�σ [x :=n]

5. Terms
• Case ~V �t . �is case is similar to the case ~v�V .

• Case ~µα .c�t . In the λ[lvτ?]-calculus, we have:

Γ,α : A⊥⊥ `c c
Γ `t µα .c : A

If n is fresh (w.r.t σ), σ [α := n] is suitable for Γ,α : A⊥⊥, and we then have by induction hypothesis a
proof Πc of ` ~c�[σ ,x :=n]

c : ~Γ,α : A⊥⊥�σ [α :=n]
Γ .c ⊥. We can thus derive, using Lemma 6.28 to identify

~Γ�σΓ and ~Γ�σ ,[α :=n]
Γ :

` ~c�σ [α :=n]
c : ~Γ,α : A⊥⊥�σ [α :=n]

Γ .c ⊥

Y <: ~Γ�σΓ ` Y <: ~Γ�σ [α :=n]
Γ

(<:ax)

Y <: ~Γ�σΓ ` (Y ,n : ι (A)⊥⊥) <: ~Γ,α : A⊥⊥�σ [α :=n]
(<:1)

Y <: ~Γ�σΓ ` ~c�
σ [α :=n]
c : (Y ,n : ι (A)⊥⊥) → ⊥

(∀E)

Πτ

Y <: ~Γ�σΓ ,τ : Y ,E : Y .E ι (A) ` ~c�σ [α :=n]
c τ [n := E] : ⊥

(@)

` λτE.~c�σ [α :=n]
c τ [n := E] : ∀Y <: ~Γ�σΓ .Y → Y .E ι (A) → ⊥

(λ)

where Πτ is the following derivation:

τ : Y ` τ : Y (Ax)
E : Y .E ι (A) ` E : Y .E ι (A)

(Ax)

E : Y .E ι (A) ` [n := E] : (Y .τ n : ι (A)⊥⊥)
(τt)

τ : Y ,E : Y .E ι (A) ` τ [n := E] : (Y ,n : ι (A)⊥⊥)
(τ τ ′)

6. Contexts

137

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

• Case ~E�e . �is case is similar to the case ~v�V .

• Case ~µ̃x .c�e . �is case is similar to the case ~µα .c�t .

7. Commands
• Case ~〈t ||e〉�c . In the λ[lvτ?]-calculus, we have:

Γ `t t : A Γ `e e : A⊥⊥
Γ `c 〈t ||e〉

We thus get by induction two proofs ` ~e�e : ~Γ�σΓ .e ι (A) and ` ~t�t : ~Γ�σΓ .t ι (A) We can derive:

` ~e�e : ~Γ�σΓ .e ι (A) ΠY

Y <: ~Γ�σΓ ` ~e�e : Y → Y .t ι (A) → ⊥
(∀E)

τ : Y ` τ : Y (Ax)

Y <: ~Γ�σΓ ,τ : Y ` ~e�e τ : Y .t ι (A) → ⊥
(@)

` ~t�t : ~Γ�σΓ .t ι (A) ΠY

Y <: ~Γ�σΓ ` ~t�t : Y .t ι (A)
(∀E)

Y <: ~Γ�σΓ ,τ : Y ` ~e�e τ ~t�t : ⊥
(@)

` λτ .~e�t τ ~t�t : ∀Y <: ~Γ�σΓ .Y → ⊥
(λ)

where ΠY is simply the axiom rule:

Y <: ~Γ�σΓ ` Y <: ~Γ�σΓ
(<:ax)

8. Closures
• Case ~〈t ||e〉τ �σl . In the λ[lvτ?]-calculus, we have:

Γ,Γ′ `c c Γ `τ τ : Γ′
Γ `l cτ

We thus get by induction two proofs ` τ ′ : ~Γ�σ ′Γ .τ ~Γ
′�σ

′

Γ and ` ~c�σ
′

c : ~Γ,Γ′�σ ′Γ .c ⊥ where
τ ′,σ ′ = ~τ �στ . We can derive:

` ~c�σ
′

c : ~Γ,Γ′�σ ′Γ .c ⊥
Y <: ~Γ�σ ′Γ ` Y <: ~Γ�σ ′Γ

(<:ax)

Y <: ~Γ�σ ′Γ ` Y ,~Γ
′�σ

′

Γ <: ~Γ,Γ′�σ ′Γ
(<:1)

Y <: ~Γ�σ ′Γ ` ~c�
σ ′
c : Y ,~Γ′�σ ′Γ → ⊥

(∀E)
Πτ

Y <: ~Γ�σ ′Γ ,τ0 : Y ` ~c�σ ′c τ0τ
′ : ⊥

(@)

` λτ0.~c�
σ ′
c τ0τ

′ : ∀Y <: ~Γ�σ ′Γ .Y → ⊥
(λ)

where Πτ is the following subderivation:

τ0 : Y ` τ0 : Y (Ax)
` τ ′ : ~Γ�σ ′Γ .τ ~Γ

′�σ
′

Γ Y <: ~Γ�σ ′Γ ` Y <: ~Γ�σ ′Γ
(<:ax)

Y <: ~Γ�σ ′Γ ` τ
′ : Y .τ ~Γ′�σ

′

Γ

(τ <:)

Y <: ~Γ�σ ′Γ ,τ0 : Y ` τ0τ
′ : Y ,~Γ′�σ ′Γ

(τ τ ′)

9. Stores
• Case τ [x := t]. We only consider the case τ [x := t], the proof for the case τ [α := E] is identical.
�is corresponds to the typing rule:

Γ `τ τ : Γ′ Γ,Γ′ `t t : A
Γ `τ τ [x := t] : Γ′,x : A

138

6.4. INTRODUCING DE BRUIJN LEVELS

By induction, we obtain two proofs of ` τ ′ : ~Γ�σ ′Γ .τ ~Γ
′�σ

′

Γ and ` ~t�σ ′t : ~Γ,Γ′�σ ′Γ .t ι (A) where
τ ′,σ ′ = ~τ �στ We can thus derive:

` τ ′ : ~Γ�σ ′Γ .τ ~Γ
′�σ

′

Γ

` ~t�σ
′

t : ~Γ,Γ′�σ ′Γ .t n : ι (A)
` [n := ~t�σ ′t] : ~Γ,Γ′�σ ′Γ .τ n : ι (A)

(τt)

` τ ′[n := ~t�σ ′t] : ~Γ�σ ′Γ .τ ~Γ
′�σ

′

Γ ,n : ι (A)
(τ τ ′)

�

Combining the preservation of reduction through the CPS and a proof of normalization of our target
language (that one could obtain for instance using realizability techniques again), the former theorem
would provide us with an alternative proof of normalization of the λlv - and λ[lvτ?]-calculi.

6.4 Introducing De Bruijn levels

One standard way to handle issues related to α-conversion is to use De Bruijn indices [38]. In a nutshell,
the De Bruijn notation is a nameless representation for λ-terms which replaces a bounded variable x
by the number of λ that are crossed between the variable and its binder. For instance, the term λx .x
is wri�en λ.0, λxy.x is wri�en λ.λ.1 and λx .x (λy.xy) is wri�en λ.0(λ.1 0). On the contrary, De Bruijn
levels a�ributes a �xed number to λ binders (according to their “levels”, that is how many former binders
are crossed to reach them) and number variables in function of their binder’s number. For instance, in
the term λx .x (λy.xy), the �rst binder λx is at top-level (level 0), while λy is at level 1. Using De Bruijn
levels, this term is thus wri�en λ.1(λ.0 1). �ese well-known techniques are very useful when it comes
to implementation to prevent problem of α-conversion.

As we shall now see, the problemα-conversion needs to be handled carefully for the λ[lvτ?]-calculus
and its continuation-passing-style translation, leading otherwise to non-terminating computations.
�is is why we needed to add explicit renaming to the translation of the previous section, since this
problem was not tackled in the original translation. Another way of solving this di�culty consists in an
adaptation of De Bruijn levels. Interestingly, it turns out that through the CPS, De Bruijn levels unveil
some computational content related with store extensions.

6.4.1 �e need for α-conversion

As for the proof of normalization, we observe in Figure 6.7 that the translation relies on names which
implicitly suggests ability to perform α-conversion at run-time. Let us take a closer look at an example
to be�er understand this phenomenon.

Example 6.34 (Lack of α-conversion). Let us consider a typed closure 〈t ||e〉τ such that:

πt
Γ `t t : A

πe
Γ `e e : A⊥⊥

Γ `c 〈t ||e〉
πτ

`τ τ : Γ
`l 〈t ||e〉τ

Assume that both t and e introduce a new variable x in their sub-derivations πt and πe , which will
be the case for instance if t = µα .〈u ||µ̃x .〈x ||α〉〉 and e = µ̃x .〈x ||F 〉. �is is compatible with previous

139

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

typing derivation, however, this command would reduce (without α-conversion) as follows:

〈µα .〈u ||µ̃x .〈x ||α〉〉||µ̃x .〈x ||F 〉〉 → 〈x ||F 〉[x := µα .〈u ||µ̃x .〈x ||α〉〉]
→ 〈µα .〈u ||µ̃x .〈x ||α〉〉||µ̃[x].〈x ||F 〉〉
→ 〈u ||µ̃x .〈x ||α〉〉[α := µ̃[x].〈x ||F 〉]
→ 〈x ||α〉[α := µ̃[x].〈x ||F 〉,x := u]
→ 〈x ||µ̃[x].〈x ||F 〉〉[α := µ̃[x].〈x ||F 〉,x := u]
→ 〈x ||F 〉[α := µ̃[x].〈x ||F 〉,x := u,x := x]
→ 〈x ||µ̃[x].〈x ||F 〉〉[α := µ̃[x].〈x ||F 〉,x := u]
→ . . .

�is command will then loop forever because of the auto-reference [x := x] in the store. y

�is problem is reproduced through a naive CPS translation without renaming (as it was originally
de�ned in [4]). In fact, the translation is somewhat even more problematic. Since “di�erent” variables
named x (that is variables which are bound by di�erent binders) are translated independently (e.g.
~〈t ||e〉� is de�ned from ~e� and ~t�), there is no hope to perform α-conversion on the �y during the
translation. Moreover, our translation (as well as the original CPS in [4]) is de�ned modulo administra-
tive translation (observe for instance that the translation of ~λx .v�σv τ V makes the λx binder vanish).
�us, the problem becomes unsolvable a�er the translation, as illustrated in the following example.

Example 6.35 (Lack of α-conversion in the CPS). �e naive translation (i.e. without renaming) of the
same closure is again a program that will loop forever:

~cε� = ~e�e ε ~t�t = ~µ̃x .〈x ||F 〉�e ε ~t�t

= ~〈x ||F 〉�c [x := ~t�t]
= ~x�x [x := ~t�t] ~F �F
= ~µα .〈u ||µ̃x .〈x ||α〉〉�t ε (λτλV .V τ [x :=↑t V] ~F �F)
= ~〈u ||µ̃x .〈x ||α〉〉�t [α := λτλV .V τ [x :=↑t V] ~F �F]
= ~µ̃x .〈x ||α〉�e [α := λτλV .V τ [x :=↑t V] ~F �F] ~u�t
= ~〈x ||α〉�c [α := λτλV .V τ [x :=↑t V] ~F �F ,x := ~u�t]
= ~α�E [α := λτλV .V τ [x :=↑t V] ~F �F ,x := ~u�t] ~x�V
= (λτλV .V τ [x :=↑t V]) [α := λτλV .V τ [x :=↑t V] ~F �F ,x := ~u�t] ~x�V
→ ~x�V [α := λτλV .V τ [x :=↑t V] ~F �F ,x := ~u�t ,x := ~x�t]

Observe that as the translation is de�ned modulo administrative reduction, the �rst equations indeed
are equalities, and that when the reduction is performed, the two “di�erent” x are not bound any-
more. �us, there is no way to achieve any kind of α-conversion to prevent the formation of the cyclic
reference [x := ~x�V]. y

�is is why we would need either to be able to performα-conversion while executing the translation
of a command, assuming that we can �nd a smooth way to do it, or to explicitly handle the renaming
as we did in Section 8.3. As highlighted by the next example, this problem does not occur with the
translation we de�ned, since two di�erent fresh names are a�ributed to the ”di�erent” variables x .

Example 6.36 (Explicit renaming). To compact the notations, we will write [xm |αγ |...] for the renaming
substitution [x := m,α := γ , ...], where we adopt the convention that the most recent binding is on

140

6.4. INTRODUCING DE BRUIJN LEVELS

wri�en on the right. As a binding [x := n] overwrites any former binding [x := m], we write [αγ |xn]
instead of [xm |αγ |xn].

~cε�ε = ~e�εe ε ~t�
ε
t = ~µ̃x .〈x ||F 〉�

ε
e ε ~t�

ε
t

= ~〈x ||F 〉�
[xm]
c [m := ~t�t]

= ~x�
[xm]
t [m := ~t�εt] ~F �[xm]

F

= ~µα .〈u ||µ̃x .〈x ||α〉〉�
[xm]
t ε (λτλV .V τ [m :=↑t V] ~F �[xm]

F)

= ~〈u ||µ̃x .〈x ||α〉〉�
[xm |αγ]
t [γ := λτλV .V τ [m :=↑t V] ~F �[xm]

F]

= ~µ̃x .〈x ||α〉�
[xm |αγ]
e [γ := λτλV .V τ [m :=↑t V] ~F �[xm]

F] ~u�[xm |αγ]
t

= ~〈x ||α〉�
[x :=m,α :=γ ,x :=n]
c [γ := λτλV .V τ [m :=↑t V] ~F �[xm]

F ,n := ~u�[xm |αγ]
t]

= ~α�
[xm |αγ |xn]
E [γ := λτλV .V τ [m :=↑t V] ~F �[xm]

F ,n := ~u�[xm |αγ]
t]~x�[xm |αγ |xn]

V

= (λτλV .V τ [m :=↑t V]) [γ := λτλV .V τ [m :=↑t V] ~F �[xm]
F ,n := ~u�[xm |αγ]

t] ~x�[αγ |xn]
V

→ ~x�
[αγ |xn]
V [γ := λτλV .V τ [m :=↑t V] ~F �[xm]

F ,n := ~u�[xm |αγ]
t ,m := ~x�[αγ |xn]

t]

= ~x�
[αγ |xn]
V [γ := λτλV .V τ [m :=↑t V] ~F �[xm]

F ,n := ~u�[xm |αγ]
t ,m := ~x�[αγ |xn]

t]

We observe that in the end, the variablem is bound to the variable n, which is now correct. y

Another way of ensuring the correctness of our translation is to correct the problem already in the
λ[lvτ?], using what we call De Bruijn levels. As we observed in the �rst example of this section, the
issue arises when adding a binding [x := ...] in a store that already contained a variable x . We thus
need to ensure the uniqueness of names within the store. An easy way to do this consists in changing
the names of variable bounded in the store by the position at which they occur in the store, which
is obviously unique. Just as De Bruijn indices are pointers to the correct binder, De Bruijn levels are
pointers to the correct cell of the environment. Before presenting formally the corresponding system
and the adapted translation, let us take a look at the same example that we reduce using this idea. We
use a mixed notation for names, writing x when a variable is bounded by a λ or a µ̃, and xi (where i is
the relevant information) when it refers to a position in the store.

Example 6.37 (Reduction with De-Bruijn levels). �e same reduction is now safe if we replace stored
variables by their De Bruijn level:

〈µα .〈u ||µ̃x .〈x ||α〉〉||µ̃x .〈x ||F 〉〉 → 〈x0 ||F 〉[0µα .〈u ||µ̃x .〈x ||α〉〉]
→ 〈µα .〈u ||µ̃x .〈x ||α〉〉||µ̃[x].〈x ||F 〉〉
→ 〈u ||µ̃x .〈x ||α0〉〉[0µ̃[x].〈x ||F 〉]
→ 〈x1 ||α0〉[0µ̃[x].〈x ||F 〉, 1u]
→ 〈x1 ||µ̃[x].〈x ||F 〉〉[µ̃[x].〈x ||F 〉, 1u]
→ 〈x2 ||F 〉[0µ̃[x].〈x ||F 〉, 1u, 2x1]
→ 〈x1 ||µ̃[x].〈x ||F 〉〉[0µ̃[x].〈x ||F 〉, 1u]
→ 〈u ||F 〉[0µ̃[x].〈x ||F 〉, 1u, 2u]

where xi is a convenient notation to design the variable named with De Bruijn level i (i.e. pointers to
the ith cell). �e exponents 0, 1, ... to number the cells are only there to ease the readability. y

141

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

6.4.2 �e λ[lvτ?]-calculus with De Bruijn levels

We now use De Bruijn levels for variables (and co-variables) that are bounded in the store. We use the
mixed notation13 xi where the relevant information is x when the variable is bounded within a proof
(that is by a λ or µ̃ binder), and where the relevant information is the number i once the variable has
been bounded in the store (at position i). For binders of evaluation contexts, we similarly use De Bruijn
levels, but with variables of the form αi , where, again, α is a �xed name indicating that the variable is
binding evaluation contexts, and the relevant information is the index i .

�e corresponding syntax is now given by:

Strong values v ::= k | λxi .t
Weak values V ::= v | xi
Terms t ,u ::= V | µαi .c

Forcing contexts F ::= κ | t · E
Catchable contexts E ::= F | αi | µ̃[xi].〈xi ||F 〉τ
Evaluation contexts e ::= E | µ̃xi .c

Closures l ::= cτ
Commands c ::= 〈t ||e〉
Stores τ ::= ε | τ [xi := t] | τ [αi := E]

�e presence of names in the stores is absolutely useless14 and only there for readability. As the store can
be dynamically extended during the execution, the location of a term in the store and the corresponding
pointer are likely to evolve (monotonically). �erefore, we need to be able to update De Bruijn levels
within terms (contexts, etc…). To this end, we de�ne the li�ed term ↑+in t as the term t where all the free
variables x j with j > n (resp. α j) have been replaced by x j+i . Formally, they are de�ned as follows:

↑+in (cτ) , (↑+in c) (↑+in τ)

↑+in (〈t ||e〉) , 〈↑+in t ||↑+in e〉

↑+in ε , ε

↑+in (τ [x j := t]) , ↑+in (τ) ([↑+in x j :=↑+in t]
↑+in (τ [α j := E]) , ↑+in (τ [↑+in α j :=↑+in E]

↑+in (k) , k

↑+in (λx j .t) , λ(↑+in x j).(↑
+i
n t)

↑+in (x j) , x j (if j < n)

↑+in (x j) , x j+i (if j ≥ n)

↑+in (µα j .c) , µ (↑+in αi).(↑
+i
n c)

↑+in (κ) , κ

↑+in (t · E) , (↑+in t) · (↑+in E)

↑+in (α j) , α j (if j < n)

↑+in (α j) , α j+i (if j ≥ n)

↑+in (µ̃[x j].〈x j ||F 〉τ) , µ̃[↑+in xi].(↑+in 〈xi ||F 〉τ)
↑+in (µ̃x j .c) , µ̃ (↑+in xi).(↑

+i
n c)

�e corresponding reduction rules are given in Figure 6.8. Note that we choose to perform indices
substitutions as soon as they come (maintaining the property that xn is a variable referring to the
(n+ 1)th element of the store), while it would also have been possible to store and compose them along

13Observe that we could also use usual De Bruijn indices for bounded variables within the terms
14In fact, it could even leads to inconsistencies if cell j was of the shape [xi := ...]. �e reduction rules will ensure that this

never happens but if it was the case, the only relevant information would be the number of the cell (j).

142

6.4. INTRODUCING DE BRUIJN LEVELS

〈t ||µ̃xi .c〉τ → c[xn/xi]τ [xn := t] with |τ | = n
〈µαi .c ||E〉τ → c[αn/αi]τ [αn := E] with |τ | = n
〈V ||αn〉τ → 〈V ||τ (n)〉τ

〈xn ||F 〉τ [xn := t]τ ′ → 〈t ||µ̃[xn].〈xn ||F 〉τ ′〉τ
〈V ||µ̃[xi].〈xi ||F 〉τ ′〉τ → 〈V ||↑+in F 〉τ [xn := V](↑+in τ ′) with |τ | = n
〈λxi .t ||u · E〉τ → 〈u ||µ̃xn .〈t[xn/xi]||E〉〉τ with |τ | = n

Figure 6.8: Reduction rules of the λ[lvτ?]-calculus with De Bruijn indices

the execution (so that xn is a variable referring to the (σ (n) + 1)th element of the store where σ is the
current substitution). �is could have seemed more natural for the reader familiar with compilation
procedures that do not modify at run time but rather maintain the location of variables through this
kind of substitution.

�e typing rules are unchanged except for the one where indices should now match the length of
the typing context. �e resulting type system is given in Figure 6.9.

6.4.3 System Fϒ with De Bruijn levels

�e translation for judgments and types, given in Figure 6.11, is almost the same than in the previous
section, except that we avoid using names and rather use De Bruijn levels.

As for the target language, it is again an adaptation of System F with stores (lists), in which store
subtyping is now witnessed by explicit coercions.

De�nition 6.38 (Coercion). We de�ned coercions to witness store subtyping ϒ′ <: ϒ as �nite mono-
tonic functions σ such that dom(σ) = ~0, |ϒ| − 1�, codom(σ) ⊆ ~0, |ϒ′ | − 1� and such that for all i < |ϒ|,
ϒi = ϒ′σ (i) . y

In other words, σ indicates where to �nd each type of the list ϒ in the list ϒ′. We denote by σ |n the
restriction of σ to [0,n− 1] and idn the identity on [0,n− 1]. We also de�ne σ+p the canonical extension
of a function σ whose domain is ~0,n − 1� for some n and whose co-domain is included in ~0,p − 1�
for some p by:

σ+p :

[0,n] → [0,p]
i < n 7→ σ (i)
n 7→ p

Lemma 6.39. If σ witnesses ϒ′ <: ϒ for some ϒ,ϒ′, then σ+
|ϒ′ | witnesses ϒ′,A<: ϒ,A for any type A.

As we now got rid of names, we will now split stores with respect to an index. So that if we
consider for instance a store of type ϒ′ <: (ϒ0,A,ϒ1), the knowledge of the position where to �nd the
expected element of type A becomes crucial. In practice, it will be guided by the coercion witnessing
ϒ′ <: (ϒ0,A,ϒ1). But to ensure the correctness of our typing rules, we now need to consider second-order
variables (which are in fact vectors of second-order variables) with their arities. �at is to say that we
should denote by Yp the vector of variables Y0, . . . ,Yp−1 and that ∀Y <: ϒ.A is equivalent

∀p0∀Y
p0 . . .∀pn∀Y

pn .(Yp0ϒ(0)Yp1ϒ(1) . . .Ypn) <: ϒ → A

where we have in fact p0 = σ (0), p1 = σ (1) − p0 − 1, etc… In particular, a careful manipulation of
variables with their arities allows us to prove the following lemma:

Lemma 6.40. �e typing rules given for coercions in Figure 6.10 are equivalent to De�nition 6.38, i.e. for
all ϒ,ϒ′, for all i < |ϒ |, ϒi = ϒ′σ (i) .

143

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

(k : A) ∈ S
Γ `v k : A

Γ,xn : A `t t : B |Γ | = n

Γ `v λxn .t : A→ B
Γ(n) = (xn : A)
Γ `V xn : A

Γ `v v : A
Γ `V v : A

(κ : A) ∈ S
Γ `F κ : A⊥⊥

Γ `t t : A Γ `E E : B⊥⊥
Γ `F t · E : (A→ B)⊥⊥

Γ,αn : A⊥⊥ `c c |Γ | = n
Γ `t µαn .c : A

Γ `F F : A⊥⊥
Γ `E F : A⊥⊥

Γ `V V : A
Γ `t V : A

Γ,αn : A⊥⊥ `c c |Γ | = n
Γ `t µαn .c : A

Γ `E E : A⊥⊥
Γ `e E : A⊥⊥

Γ,xn : A `c c |Γ | = n

Γ `e µ̃xn .c : A⊥⊥

Γ,xi : A,Γ′ `F F : A⊥⊥ Γ,xi : A `τ τ : Γ′ |Γ | = i
Γ `E µ̃[xi].〈xi ||F 〉τ : A⊥⊥ Γ `τ ε : ε

Γ `τ τ : Γ′ Γ,Γ′ `t t : A |Γ,Γ′ | = n

Γ `τ τ [xn := t] : Γ′,xn : A
Γ `τ τ : Γ′ Γ,Γ′ `E E : A⊥⊥ |Γ,Γ′ | = n

Γ `τ τ [αn := E] : Γ′,αn : A⊥⊥

Γ `t t : A Γ `e e : A⊥⊥
Γ `c 〈t ||e〉

Γ,Γ′ `c c Γ `τ τ : Γ′
Γ `l cτ

Figure 6.9: Typing rules for the λ[lvτ?]-calculus with De Bruijn

(x : A) ∈ Γ
Γ; Σ ` x : A (Ax)

Γ,x : A; Σ ` t : B |Γ | = n

Γ; Σ ` λx .t : A→ B
(λ)

Γ; Σ ` t : A→ B Γ ` u : A
Γ; Σ ` t u : B (@)

Γ; Σ,σ : X <: ϒ ` t : A X < FV (Γ,Σ)

Γ; Σ ` λσ .t : ∀X <: ϒ.A
(∀I)

Γ; Σ ` t : ∀X <: ϒ.A Σ ` σ : ϒ′ <: ϒ
Γ; Σ ` t σ : A{X := ϒ′}

(∀E)

(c : A) ∈ S
Γ; Σ ` k : A

(c)
Γ,xτ0 : ϒ0,x : A,xτ1 : ϒ1; Σ ` t : A Γ ` τ : ϒ0,B,ϒ1 |ϒ0 | = n

Γ; Σ ` letxτ0 ,x ,xτ1 = split as (τ) in n in t : A
(split)

Γ; Σ ` ε : ε .τ ε
(ε)

Γ; Σ ` t : ϒ .t A
Γ; Σ ` [t] : ϒ .τ A

(τt)
Γ; Σ ` t : ϒ .E A

Γ; Σ ` [t] : ϒ .τ A⊥⊥
(τE)

Γ ` τ : ϒ0 .τ ϒ Γ ` τ ′ : (ϒ0,ϒ) .τ ϒ
′

Γ ` ττ ′ : ϒ0 .τ ϒ,ϒ
′

(τ τ ′)
Σ ` σ : ϒ′ <: ε

(<:ε)

(σ : ϒ′ <: ϒ) ∈ Σ
Σ ` σ : ϒ′ <: ϒ

(<:ax)
Σ ` σ : ϒ′ <: ϒ σ (|ϒ |) = |ϒ′ |

Σ ` σ : (ϒ′,A) <: (ϒ,A)
(<:1)

Σ ` σ : ϒ′ <: ϒ
Σ ` σ : (ϒ′,A) <: ϒ

(<:2)

Figure 6.10: Typing rules of System Fϒ with De Bruijn levels

144

6.4. INTRODUCING DE BRUIJN LEVELS

~Γ `e e : A⊥⊥� , ` ~e�e : ~Γ�Γ .e ι (A)
~Γ `t t : A� , ` ~t�t : ~Γ�Γ .t ι (A)
~Γ `E E : A⊥⊥� , ` ~E�E : ~Γ�Γ .E ι (A)
~Γ `V V : A� , ` ~V �V : ~Γ�Γ .V ι (A)

~Γ `F F : A⊥⊥� , ` ~F �F : ~Γ�Γ .F ι (A)

~Γ `v v : A� , ` ~v�v : ~Γ�Γ .v ι (A)
~Γ `c c� , ` ~c�c : ~Γ�Γ .c ⊥
~Γ `l l� , ` ~l� |Γ |l : ~Γ�Γ .c ⊥
~Γ `τ τ : Γ′� , ` ~τ �τ : ~Γ�Γ .τ ~Γ′�Γ

~ε�Γ , ε ~Γ,xi : A�Γ , ~Γ�Γ,ι (A) ~Γ,αi : A⊥⊥�Γ , ~Γ�Γ,ι (A)
⊥⊥

ϒ .c A , ∀Y <: ϒ.Y → ⊥
ϒ .e A , ∀Y <: ϒ.Y → (Y .t A) → ⊥

ϒ .t A , ∀Y <: ϒ.Y → (Y .E A) → ⊥

ϒ .E A , ∀Y <: ϒ.Y → (Y .V A) → ⊥

ϒ .V A , ∀Y <: ϒ.Y → (Y .F A) → ⊥

ϒ .F A , ∀Y <: ϒ.Y → (Y .v A) → ⊥

ϒ .v A→ B , ∀Y <: ϒ.Y → (Y .t A) → (Y .E B) → ⊥

ϒ .v X , X

Figure 6.11: Translation of judgments and types

Even though arities are crucial to ensure the correctness of the de�nition in Figure 6.10 (in particular
to de�ne the relation σ : ϒ′ <: ϒ by means of inference rules), to ease the notation we will omit the arity
most of the time. We will use the notation ∀Yn <: ϒ.A only when necessary.

�e syntax of terms and types is given by:

t ,u ::= x | λx .t | t u | τ | λσ .t | t σ
| letτ ,x ,τ ′ = split τ ′′n in t

τ ,τ ′ ::= ε | τ [t]

A,B ::= X | ⊥ | ϒ .τ ϒ
′ | A→ B | ∀Y <: ϒ.A

ϒ,ϒ′ ::= ε | ϒ,A | ϒ,A⊥⊥ | Y

Once again, we will use ϒ as a shorthand for typing stores of type ε .τ A. �e typing rules are given
in Figure 6.10 where the typing contexts are divided in two parts, Γ containing typing hypotheses and
Σ the subtyping hypotheses, that are de�ned by:

Γ,Γ′ ::= ε | Γ,x : A Σ,Σ′ ::= ε | Σ,σ : (ϒ′ <: ϒ)

Now that we gave a computational content to the subtyping relation, some properties that were
de�ned axiomatically in Section 8.3 are now deducible from the characteristics of the coercions σ .

Proposition 6.41. �e subtyping relation <: is an order relation on store types.

1. For any ϒ, Σ ` id |ϒ | : ϒ <: ϒ
2. If Σ ` σ : ϒ <: ϒ′ and Σ ` σ ′ : ϒ′ <: ϒ′′, then Σ ` σ ′ ◦ σ : ϒ <: ϒ′′.
3. If Σ ` σ : ϒ <: ϒ′ and Σ ` σ ′ : ϒ′ <: ϒ, then σ ′ ◦ σ = σ ′ ◦ σ = id |ϒ | and ϒ = ϒ′.

Proof. Straightforward from the de�nition of σ : ϒ′ <: ϒ:

1. Obvious.
2. For all i < |ϒ|, we have ϒ′′σ ′(σ (i) = ϒ′σ (i)) = ϒi .
3. Using the second item, we deduce that σ ′ ◦ σ witnesses ϒ <: ϒ. Both σ and σ ′ being monotonic

functions, we deduce that σ ′ = σ = id |ϒ | and that for all i < |ϒ |, ϒi = ϒ′i . �

145

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

Proposition 6.42. For any functionσ and any types ϒ,ϒ′, if ` σ : ϒ′ <: ϒ and ϒ is of the form ϒ = ϒ0,A,ϒ1,
then ϒ′ is of the form ϒ′ = ϒ′0,A,ϒ

′
1 such that |ϒ′0 | = σ (|ϒ0 |) and |ϒ′1 | = σ (|ϒ|) − |ϒ

′
0 | − 1.

Proof. Straightforward from the de�nitions. �

�e former propositions shows that the following subtyping rules (where we use a compact version
of the second-order variable) are admissible:

Σ ` σ : ϒ <: ϒ′ Σ ` σ ′ : ϒ′ <: ϒ′′
Σ ` σ ′ ◦ σ : ϒ <: ϒ′′

(<:3)
Γ′; Σ′ ` t : B Σ ` σ : Y <: ϒ0,A,ϒ1

Γ; Σ ` t : B (<:split)

where Γ′ = Γ[(Y σ (n)0 ,A,Y1)/Y], Σ′ = Σ[(Y σ (n)0 ,A,Y1)/X], and Y σ (n)0 ,Y1 are fresh variables. Observe that
the second one is a tautology that we only used to avoid the heavy syntactical manipulation of vectors
of variables within proof trees.

Lemma 6.43 (Weakening). �e following rules are admissible:

Γ; Σ ` t : A Σ ⊆ Σ′

Γ; Σ′ ` t : A
(Γw)

Γ; Σ ` t : A Γ ⊆ Γ′

Γ′; Σ ` t : A
(Σw)

Proof. Easy induction on typing derivations. In the case of second-order quanti�cation, we might need
to rename the second-order variable X if it occurs in Σ′ (resp.Γ′) and not in Σ (resp. Γ). �

6.4.4 A typed CPS translation with De Bruijn levels

We shall now present the translation of terms and prove its correctness with respect to types. �e
translation, which is given in Figure 6.12, is similar to the translation with names in Section 8.3 plus
the manipulation of coercions. Once again, we assume that for each constant k of type A (resp. co-
constant κ of type A⊥⊥) of the source system, we have a constant of type A in the signature of the target
language that we also denote by k (resp. κ of type A→ ⊥). We will now prove a bunch of lemmas that
will be useful in the proof of the main theorem.

First, we show that the type of the store expected through the translation can be weakened. �is is
a sanity-check re�ecting the usual weakening in the source language.

Lemma 6.44. �e following rule is admissible for any level o of the hierarchy e,t ,E,V ,F ,v :

Γ; Σ ` t : ϒ .o A
Γ; Σ ` t : ϒ,B .o A

Proof. Directly follows from the observation that we can always derive:

Σ ` σ : ϒ′ <: ϒ,B
Σ ` σ : ϒ′ <: ϒ

�

�en we show that the bounded quanti�cation can be composed with subtyping relation witnessed
by a coercion, by means of a li�ing on the term accordingly with the coercion.

Lemma 6.45. �e following rules is admissible:

Γ; Σ ` t : ∀Y <: ϒ0.A Σ ` σ : ϒ1 <: ϒ0
Γ; Σ ` (↑σt) : ∀Y <: ϒ1.A

146

6.4. INTRODUCING DE BRUIJN LEVELS

(↑σt) σ ′ , t (σ ′ ◦ σ)

(↑στ [t]) , (↑στ)[↑σt]

~k�v , k

~λxi .t�v σ τ u E , ~t�t σ
+
|τ | τ [u] E

~κ�F , κ

~t · E�F σ τ v , v id |τ | τ (↑σ~t�t) (↑
σ~E�E)

~v�V σ τ F , F id |τ | τ (↑σ~v�v)

~xi �V σ τ [t]τ ′ F , t id |τ | τ (λσ ′τ ′′λV .V τ ′′[↑t V](↑σ
′′

τ ′) (↑σ
′′

F))
where n = |τ | = σ (i), k = |τ ′′ | − n, p = n + |τ ′ |, σ ′′ = σ ′ ◦ δ +k[n,p]
and ↑t V = λστE.E id |τ | τ (↑

σV)

~αi �E σ τ V , letτ ′,x ,τ ′′ = split as (σ) in (i) τ inx id |τ | τ V

~µ̃[xi].〈xi ||F 〉τ ′�E σ τ V , V id |τ | τ [↑t V](↑σ
′

~τ ′�τ) (↑
σ ′~F �F)

where n = |τ |, k = n − i, p = n + |τ ′ |, σ ′ = σ ◦ δ +k[i,p]

~V �t σ τ E , E id |τ | τ (↑σ~V �V)

~µαi .c�t σ τ E , ~c�c σ
+
|τ | τ [E]

~E�e σ τ t , t id |τ | τ (↑σ~E�E)

~µ̃xi .c�e σ τ t , ~c�c σ
+
|τ | τ [t]

~〈t ||e〉�c σ τ , ~e�e σ τ (↑σ~t�t)

~cτ �nl σ τ
′ , ~c�c σ

′ τ ′(↑σ
′

~τ �τ)

where k = |τ ′ | − n, p = n + |τ |, σ ′ = σ ◦ δ +k[n,p]

~ε�τ , ε

~τ0[xi := t]�τ , ~τ0�τ [~t�t]
~τ0[αi := E]�τ , ~τ0�τ [~E�E]

δ +i[n,p] ,

j 7→ j + i if n ≤ j < p

j 7→ j if j < n

Figure 6.12: Translation of terms

147

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

Proof. We assume that the variable X is not FV (Γ,Σ), otherwise it su�ces to rename it. Unfolding the
de�nition of ↑σt , we can derive:

Γ; Σ ` t : ∀X <: ϒ0.A

Γ; Σ,σ ′ : X <: ϒ1 ` t : ∀X <: ϒ0.A
Σ ` σ : ϒ′ <: ϒ1 Σ,σ ′ : X <: ϒ1 ` σ

′ : X <: ϒ1
Σ,σ ′ : X <: ϒ1 ` σ

′ ◦ σ : X <: ϒ0
Γ; Σ,σ ′ : X <: ϒ1 ` t (σ

′ ◦ σ) : A X < FV (Γ,Σ)

Γ; Σ ` λσ ′.t (σ ′ ◦ σ) : ∀X <: ϒ1.A

where we use Lemma 6.43 to weaken Σ,σ : X <: ϒ1. �

We deduce from the former lemma the following corollary that will be crucial when typing the
translation of terms.

Corollary 6.46. For any level o of the hierarchy e,t ,E,V ,F ,v , the following rule are admissible:

Γ; Σ ` t : ϒ0 .o A Σ ` σ : ϒ1 <: ϒ0
Γ; Σ ` (↑σt) : ϒ1 .o A

Γ; Σ ` τ : ϒ0 .τ ϒ Σ ` σ : ϒ1ϒ <: ϒ0ϒ

Γ; Σ ` (↑στ) : ϒ1 .τ ϒ

�e following lemma shows that the operation of li�ing values to terms is sound with respect to
the translation of types.

Lemma 6.47 (Li�ing values). �e following rule is admissible:

Γ; Σ ` V : ϒ .V A

Γ; Σ `↑t V : ϒ .t A
(↑)

Proof.

ΠE

Γ; Σ ` V : ϒ .V A σ : Y <: ϒ ` σ : Y <: ϒ (<:ax)

Γ; Σ,σ : Y <: ϒ `↑σV : Y .V A

Γ,τ : Y ,E : ϒ .E A; Σ;σ : Y <: ϒ ` E id |τ | τ (↑σV) : ⊥
(@)

Γ; Σ ` λστE.E id |τ | τ (↑σV) : ϒ .t A
(λ)

where we used Corollary 6.46 and ΠE is the following derivation:

E : ϒ .E A; ` E : Y .E A→ ⊥
(Ax)

` id |τ | : Y <:Y (<:ax)

E : ϒ .E A; ` E id |τ | : Y → Y .V A→ ⊥
(∀E)

τ : Y ; ` τ : Y (Ax)

τ : Y ,E : ϒ .E A; ` E id |τ | τ : Y .V A→ ⊥
(@)

�

We now prove the soundness of the rules for forming stores through the translation.

Lemma 6.48 (Store formation). �e following rules are admissible:

Γ; Σ ` τ : ϒ Γ; Σ ` t : ϒ .t A
Γ; Σ ` τ [t] : ϒ,A

Σ ` σ : ϒ <: ~Γ0�

Σ ` σ+
|ϒ | : (ϒ,A) <: ~Γ0,A�

�e same holds for Γ ` E : ϒ .E ι (A) and Γ ` τ [E] : ϒ,A⊥⊥.

Proof. �e le� rule is a straightforward application of (τ τ ′)- and (τt)-rules:

Γ; Σ ` τ [t] : Y ,A
Γ; Σ ` t : Y .t ι (A)

Γ; Σ ` [t] : Y .τ ι (A)⊥⊥
(τt)

Γ; Σ ` τ [t] : Y ,A
(τ τ ′)

�e right one is a reformulation of Lemma 6.39. �

148

6.4. INTRODUCING DE BRUIJN LEVELS

Similarly, we can prove that the shi�s accordingly to a coercion are sound with respect to types:

Lemma 6.49 (Shi�s). For any ϒ0,ϒ
′
0,ϒ1, if σ : ϒ′0 <: ϒ0 and n = |ϒ0 |,p = n + |ϒ1 |, k = [ϒ′0 | − |ϒ0 |, if we

de�ne σ ′ = σ ◦ δ +k[n,p] then σ ′ : (ϒ′0ϒ1) <: (ϒ0ϒ1).
In particular, the following rules are admissible for any level o:

Γ; Σ ` t : ϒ0ϒ1 .o A Σ ` σ : ϒ′0 <: ϒ0

Γ; Σ ` (↑σ
′

t) : ϒ′0ϒ1 .o A

Γ; Σ ` τ : ϒ0 .τ ϒ1 Σ ` σ : ϒ′0 <: ϒ0

Γ; Σ ` (↑σ
′

τ) : ϒ′0 .τ ϒ1

Proof. We denote by ϒ(i) the ith-element of the list ϒ. By de�nition, we have:

σ ′(i) =

i + k if n ≤ i < p

σ ′(i) if j < n

We have:

(ϒ′0ϒ1) (σ
′(i)) = ϒ′0 (σ

′(i)) = ϒ′0 (σ (i)) = ϒ0 (i)
(ϒ′0ϒ1) (σ

′(i)) = (ϒ′0ϒ1) (i + k) = ϒ1 (i + k − |ϒ
′
0 |) = ϒ1 (i − |ϒ0 |) = (ϒ0ϒ1) (i)

(if i < n)
(otherwise)

�us we can conlude σ ′ : (ϒ′0ϒ1) <: (ϒ0ϒ1). �

We are �nally equipped to prove the main theorem of this section, that is the correctness of the
translation with respect to types.

�eorem 6.50. �e translation is well-typed, i.e.
1. if Γ `v v : A then ~Γ `v v : A�
2. if Γ `F F : A⊥⊥ then ~Γ `F F : A⊥⊥�
3. if Γ `V V : A then ~Γ `V V : A�
4. if Γ `E E : A⊥⊥ then ~Γ `E E : A⊥⊥�
5. if Γ `t t : A then ~Γ `t t : A�

6. if Γ `e e : A⊥⊥ then ~Γ `e e : A⊥⊥�
7. if Γ `c c then ~Γ `c c�
8. if Γ `l l then ~Γ `l l�
9. if Γ `τ τ then ~Γ `τ τ : Γ′�

Proof. �e proof is almost the same as the proof of �eorem 6.33, using the previous lemmas. We reason
by induction over the typing rules of Figure 6.9. We (ab)use of Lemma 6.43 to make the derivations
more compact by systematically weakening contexts as soon as possible, and compact the �rst (∀I)
and (λ) rules in one rule.
1. Strong values
• Case ~k�v . ~k�v = k , which has the desired type by hypothesis.

• Case λxi .t . In the source language, we have:

Γ,xi : A `t t : B |Γ | = i

Γ `v λxi : A→ B

Hence, we get by induction a proof Πt of ~t�t : ~Γ,xi : A� .t ι (B) and we can derive:

Πt

` ~t�t : ∀Y ′ <: ~Γ,xi : A�.Y ′ → Y ′ .E ι (B) → ⊥ Πσ

;σ : Y <: ~Γ� ` ~t�t σ+|τ | : (Y ,ι (A)) → (Y ,ι (A)) .E ι (B) → ⊥
(∀E)

Πτ

τ : Y ,u : Y .t ι (A);σ : Y <: ~Γ� ` ~t�t σ+|τ | τ [u] : (Y ,ι (A)) .E ι (B) → ⊥
(@)

ΠE

τ : Y ,u : Y .t ι (A),E : Y .E ι (B);σ : Y <: ~Γ� ` ~t�t σ+|τ | τ [u] E+ : ⊥
(@)

` λστuE.~t�t σ
+
|τ | τ [u] E : ∀Y <: ~Γ�.Y → Y .t ι (A) → Y .E ι (B) → ⊥

(λ)

where:

149

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

• ΠE is a proof of E : Y .E ι (B) ` E : (Y ,ι (A)) .E ι (B) (derivable according to Lemma 6.44);
• Πτ is a proof of τ : Y ,u : Y .t ι (A); ` τ [u] : Y ,ι (A) (derivable according to Lemma 6.48);
• Πσ is obtained by Lemma 6.48:

σ : Y <: ~Γ� ` σ : Y <: ~Γ� (<:ax)

σ : Y <: ~Γ� ` σ+
|τ | : (Y ,ι (A)) <: ~Γ,xi : A�

2. Forcing contexts
• Case ~κ�F . ~κ�F = κ , which has the desired type by hypothesis.

• Case ~t .E�F . In the source language, we have:

Γ `t t : A Γ `E E : B⊥⊥
Γ `F t · E : (A→ B)⊥⊥

�erefore we have by induction hypothesis that ` ~t�t : ~Γ�Γ .t ι (A) and ` ~E�t : ~Γ�Γ .E ι (B), so that
we can derive:

v : Y .v ι (A) → ι (B); ` v : ∀Y ′ <:Y : Y ′ → Y ′ .t ι (A) → Y ′ .E ι (B) → ⊥
(Ax)

Πσ

τ : Y ,v : Y .v ι (A) → ι (B); ` v id |τ | : Y → Y .t ι (A) → Y .E B → ⊥
(∀I)

Πτ

τ : Y ,v : Y .v ι (A) → ι (B); ` v id |τ | τ : Y .t ι (A) → Y .E ι (B) → ⊥
(@)

Πt

τ : Y ,v : Y .v ι (A) → ι (B);σ : Y <: ~Γ� ` v id |τ | τ (↑σ~t�t) : Y .E ι (B) → ⊥
(@)

ΠE

τ : Y ,v : Y .v ι (A) → ι (B);σ : Y <: ~Γ� ` v id |τ | τ (↑σ~t�t) (↑
σ~E�E) : ⊥

(@)

` λστv .v id |τ | τ (↑σ~t�t) (↑
σ~E�E) : ∀Y <: ~Γ�Γ .Y → Y .v ι (A) → ι (B) → ⊥

(λ)

where:

• ΠE is a proof of ε ;σ : Y <: ~Γ� ` (↑σ~E�E) : Y .E ι (B), derived from the induction hypothesis for
t and Corollary 6.46;

• Πt is a proof of ε ;σ : Y <: ~Γ� ` (↑σ ~t�t) : Y .t ι (A), derived from the induction hypothesis for
E and Corollary 6.46;

• Πτ is the axiom rule τ : Y ; ` τ : Y ;
• Πσ is a proof of id |τ | : Y <:Y (Proposition 6.41).

150

6.4. INTRODUCING DE BRUIJN LEVELS

3. Weak values
• Case ~v�V . In the source language, we have:

Γ `v v : A
Γ `V v : A

Hence we have by induction hypothesis that ` ~v�v : ~Γ�Γ .v ι (A) and we can derive:
F : Y .F ι (A) ` F : ∀Y ′ <:Y .Y ′ → Y ′ .v ι (A) → ⊥ ΠY

F : Y .F ι (A);σ : Y <: ~Γ� ` F id |τ | : Y → Y .v ι (A) → ⊥
(@)

τ : Y ; ` τ : Y
τ : Y ,F : Y .F ι (A) ` F id |τ | τ : Y .v ι (A) → ⊥

(@)
Πv

τ : Y ,F : Y .F ι (A);σ : Y <: ~Γ� ` F id |τ | τ (↑σ~v�v) : ⊥
(@)

` λστF .F id |τ | τ (↑σ~v�v) : ∀Y <: ~Γ�.Y → Y .F ι (A) → ⊥
(λ)

where:

• Πv is a proof of ε ;σ : Y <: ~Γ� ` (↑σ ~v�v) : Y .v ι (A), derivable from the induction hypothesis
and Corollary 6.46.

• Πτ is the axiom rule τ : Y ; ` τ : Y
• ΠY is a proof of id |τ | : Y <:Y (Proposition 6.41)

• Case ~xi �V . In the source language, we have:
Γ(i) = (xi : A)
Γ `V xi : A

so that Γ is of the form Γ′,xi : A,Γ′′. By de�nition, we have:

~xi �V = λστF . letτ0,t ,τ1 = split n τ in t idn τ0 (λσ ′τ ′0λV .V τ ′′[↑t V](↑σ
′′

τ1) (↑
σ ′′
F))

where n = σ (i) ,k = |τ0 | − n, p = n + |τ1 |, σ
′′ = σ ′ ◦ δ +k[n,p].

t : Yn
0 .t ι (A) ` t : Yn

0 .t ι (A)
(Ax)

` idn : Yn
0 <:Yn

0
(<:ax)

t : Yn
0 .t ι (A); ` t idn : Yn

0 → Yn
0 .E ι (A) → ⊥

(∀E)
τ0 : Yn

0 ` τ0 : Yn
0

(Ax)

τ0 : Yn
0 ,t : Yn

0 .t A; ` t idn τ0 : Yn
0 .E ι (A) → ⊥

(@)
ΠE

τ0 : Yn
0 ,t : Yn

0 .t ι (A),τ1 : (Yn
0 ,n : ι (A)) .τ Y1,F : (Yn

0 ,n : ι (A),Y1) .F ι (A); ` t idn τ0 E : ⊥
(@)

|Yn
0 | = n

τ : (Yn
0 ,n : ι (A),Y1),F : (Yn

0 ,n : ι (A),Y1) .F ι (A); ` letτ0,t ,τ1 = split τ n in t idn τ0 E : ⊥
(split)

Πσ

τ : Y ,F : Y .F ι (A);σ : Y <: ~Γ�Γ ` letτ0,t ,τ1 = split τ n in t idn τ0 E : ⊥
(<:split)

` λστF . letτ0,t ,τ1 = split τ n in t idn τ0 E : ∀Y <: ~Γ�Γ .Y → Y .F ι (A) → ⊥
(λ)

where:
• Πσ is simply the axiom rule:

σ : Y <: (~Γ0�Γ ,n : ι (A),~Γ1�Γ) ` σ : Y <: (~Γ0�Γ ,n : ι (A),~Γ1�Γ)
(<:ax)

• E = λσ ′τ ′′λV .V τ ′0[↑t V](↑σ
′′

τ1) (↑
σ ′′F)) and ΠE is the following derivation:

V : Y ′0 .V ι (A); `↑t V : Y ′0 .t ι (A)
(Ax)

` idp : Y ′0 ,A,Y1 <:Y ′0 ,A,Y1

V : Y ′0 .V ι (A); ` V idp : (Y ′0 ,ι (A),Y1) → (Y ′0 ,ι (A),Y1) .F ι (A) → ⊥
(∀E)

Πτ

τ1 : (Yn
0 ,ι (A)) .τ Y1,τ

′
0 : Y ′0 ,V : Y ′0 .V ι (A); ` V idp τ

′
0[↑t V](↑σ

′

τ1) : (Y ′0 ,ι (A),Y1) .F ι (A) → ⊥
(@)

ΠF

Γ,τ ′0 : Y ′0 ,V : Y ′0 .V ι (A);σ ′ : Y ′0 <:Yn
0 ` V idp τ

′
0[↑t V](↑σ

′′

τ ′) (↑σ
′′

F) : ⊥
(@)

Γ ` λσ ′τ ′0V .V idp τ
′
0[↑t V](↑σ

′′

τ1) (↑
σ ′′F) : Yn

0 .F ι (A)
(λ)

where Γ = τ1 : (Yn
0 ,ι (A)) .τ Y1,F : (Yn

0 ,ι (A),Y1) .F ι (A).

151

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

• ΠF is the following proof, obtained by Lemma 6.49:

F : (Yn
0 ,ι (A),Y1) .F ι (A); ` F : (Yn

0 ,ι (A),Y1) .F ι (A)
(Ax)

σ ′ : Y ′0 <:Yn
0 ` σ

′ : Y ′0 <:Yn
0

(Ax)

F : (Yn
0 ,ι (A),Y1) .F ι (A);σ1 : Y ′0 <:Yn

0 ` (↑
σ ′′F) : (Y ′0 ,ι (A),Y1) .F ι (A)

• Πτ is the following derivation

τ ′0 : Y ′0 ` τ ′0 : Y ′0
(Ax)

V : Y ′0 .V ι (A) ` V : Y ′0 .V A
(Ax)

V : Y ′0 .V ι (A) `↑t V : Y ′0 .t A
(↑)

V : Y ′0 .V ι (A) ` [↑t V] : Y ′0 .τ ι (A)
(τt)

Y ′0 <:Yn
0 ,τ

′
0 : Y ′0 ,V : Y ′0 .V ι (A) ` τ ′0[↑t V] : Y ′0 ,n : ι (A)

(τ τ ′)
Πτ1

τ1 : (Yn
0 ,ι (A)) .τ Y1,Y

′
0 <:Yn

0 ,τ
′
0 : Y ′0 ,V : Y ′0 .V ι (A) ` τ ′0[V](↑σ

′′

τ1) : Y ′0 ,ι (A),Y1
(τ <:)

• Πτ1 is obtained by Lemma 6.49:

τ1 : (Y0,n : ι (A)) .τ Y1 ` τ1 : (Y0,ι (A)) .τ Y1
(Ax)

σ ′ : Y ′0 <:Yn
0 ` σ

′ : Y ′0 <:Yn
0

(<:ax)

τ1 : (Yn
0 ,ι (A)) .τ Y1;σ ′ : Y ′0 <:Y0 ` (↑

σ ′′τ1) : Y ′0 ,n : ι (A) .τ Y1

4. Catchable contexts

• Case ~F �E . �is case is similar to the case ~v�V .

• Case ~µ̃[xi].〈xi ||F 〉τ ′�E . In the source language, we have:

Γ,xi : A,Γ′ `F F : A⊥⊥ Γ,xi : A `τ τ ′ : Γ′ |Γ | = i
Γ `E µ̃[xi].〈xi ||F 〉τ ′ : A⊥⊥

We have by induction hypothesis a proof of ` ~τ ′�τ : ~Γ,xi : A�Γ .τ ~Γ′�Γ and a proof ΠF of ` ~F �F :
~Γ,xi : A,Γ′�Γ .F ι (A). We can thus derive:

V : Y .V ι (A); ` V : Y .t ι (A)
(Ax)

` idp : (Y ,ι (A),~Γ′�Γ) <:Y
V : Y .V ι (A); ` V idp : (Y ,ι (A),~Γ′�Γ) → (Y ,ι (A),~Γ′�Γ) .F ι (A) → ⊥

(∀E)
Πτ

τ : Y ,V : Y .V ι (A);σ : Y <: ~Γ�Γ ` V idp τ [↑t V](↑σ
′

~τ ′�τ) : (Y ,ι (A),~Γ′�Γ) .F ι (A) → ⊥
(@)

ΠF

Γ,τ : Y ,V : Y .V ι (A);σ : Y <: ~Γ�Γ ` V idp τ [↑t V](↑σ
′

~τ ′�τ) (↑
σ ′~F �F) : ⊥

(@)

Γ ` λστV .V idp τ [↑t V](↑σ
′

~τ ′�τ) (↑
σ ′~F �F) : ~Γ�Γ .F ι (A)

(λ)

where:

• n = |τ |, k = n − i, p = n + |τ ′ |, σ ′ = σ ◦ δ +k[i,p]

• ΠF is the following proof, obtained by Lemma 6.49:

; ` F : (~Γ�Γ ,ι (A),~Γ′�Γ) .F ι (A) σ : Y <: ~Γ�Γ ` σ : Y <: ~Γ�Γ
(Ax)

;σ : Y <: ~Γ′�Γ ` (↑σ
′

F) : (Y ,ι (A),~Γ′�Γ) .F ι (A)

152

6.4. INTRODUCING DE BRUIJN LEVELS

• Πτ is the following proof:

τ : Y ` τ : Y (Ax)

V : Y .V ι (A) ` V : Y .V ι (A)
(Ax)

V : Y .V ι (A) `↑t V : Y .t ι (A)
(↑)

V : Y .V ι (A) ` [V] : Y .τ ι (A)
(τt)

τ : Y ,V : Y .V ι (A) ` τ [↑t V] : Y ,ι (A)
(τ τ ′)

Πτ ′

τ : Y ,V : Y ′ .V ι (A);σ : Y <: ~Γ�Γ ` τ [↑t V]~τ ′�τ : (Y ,ι (A),~Γ′�σ [x :=n])
(τ τ ′)

• Πτ ′ is the following proof, obtained from the induction hypothesis for τ ′ and Lemma 6.49:

` ~τ ′�τ : ~Γ�Γ ,ι (A) .τ ~Γ′�Γ σ : Y <: ~Γ�Γ ` σ : Y <: ~Γ�Γ
(<:ax)

;σ : Y <: ~Γ�Γ `↑σ
′

~τ ′�τ : Y ,ι (A) .τ ~Γ′�Γ

5. Terms
• Case ~V �t . �is case is similar to the case ~v�V .

• Case ~µαi .c�t . In the λ[lvτ?]-calculus, we have:

Γ,αi : A⊥⊥ `c c |Γ | = i
Γ `t µαi .c : A

Hence we have by induction a proof of ; ` ~c�c : ~Γ,xi : A⊥⊥�Γ .c ⊥ and we can derive:

; ` ~c�c : ~Γ,xi : A⊥⊥�Γ .c ⊥ Πσ

τ : Y ;σ : Y <: ~Γ�Γ ` ~c�c σ+|τ | : (Y ,ι (A)⊥⊥) → ⊥
(∀E)

Πτ

τ : Y ,E : Y .E ι (A);σ : Y <: ~Γ�Γ ` ~c�c σ+|τ | τ [E] : ⊥
(@)

; ` λστE.~c�c σ+|τ | τ [E] : ~Γ�Γ .t ι (A)
(λ)

where

• Πσ is the following derivation, obtained by Lemma 6.48 (since |τ | matches |Y |):

σ : Y <: ~Γ�Γ ` σ : Y <: ~Γ�Γ
(<:ax)

σ : Y <: ~Γ�Γ ` σ+|τ | : (Y ,ι (A)⊥⊥) <: ~Γ,xi : ι (A)⊥⊥�Γ

• ΠE is also obtained by Lemma 6.48:

τ : Y ,E : Y .E ι (A); ` τ [E] : Y ,ι (A)⊥⊥
(Ax)

E : Y .E ι (A); ` E : Y .E ι (A)
(Ax)

τ : Y ,E : Y .E ι (A); ` τ [E] : Y ,ι (A)⊥⊥

6. Contexts
• Case ~E�e . �is case is similar to the case ~v�V .

• Case ~µ̃xi .c�e . �is case is similar to the case ~µαi .c�t .

153

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

7. Commands
• Case ~〈t ||e〉�c . In the λ[lvτ?]-calculus we have:

Γ `t t : A Γ `e e : A⊥⊥
Γ `c 〈t ||e〉

thus we get by induction two proofs of ; ` ~t�t : ~Γ�Γ .t ι (A) and ; ` ~e�c : ~Γ�Γ .e ι (A). We can then
derive:

; ` ~e�e : ~Γ�Γ .e ι (A)
τ : Y ;σ : Y <: ~Γ�Γ ` ~e�e σ : Y → Y .t ι (A) → ⊥

(∀E)
Πσ

τ : Y ;σ : Y <: ~Γ�Γ ` ~e�e σ τ : Y .t ι (A) → ⊥
(@)

τ : Y ; ` τ : Y (Ax)

τ : Y ;σ : Y <: ~Γ�Γ ` ~e�e σ τ (↑σ~t�t) : ⊥
(@)

Πt

; ` λστ .~e�e σ τ (↑σ~t�t) : ~Γ�Γ .c ⊥
(λ)

where:
• Πσ is the axiom rule: σ : Y <: ~Γ�Γ ` σ : Y <: ~Γ�Γ

(<:ax)

• Πt is obtained using Lemma 6.45:

; ` ~t�t : ~Γ�Γ .t ι (A) ;σ : Y <: ~Γ�Γ ` σ : Y <: ~Γ�Γ
(<:ax)

;σ : Y <: ~Γ�Γ `↑σ~t�t : Y .t ι (A)
8. Closures
• Case ~cτ ′�nl . In the λ[lvτ?]-calculus, we have:

Γ,Γ′ `c c Γ `τ τ
′ : Γ′

Γ `l cτ
′

where n matches |Γ |. We thus get by induction two proofs ; ` ~τ ′�τ : ~Γ�Γ .τ ~Γ′�Γ and ` ~c�c :
~Γ,Γ′�Γ .c ⊥. We can derive:

` ~c�c : ~Γ,Γ′�Γ .c ⊥ Πσ
;σ : Y <: ~Γ�Γ ` ~c�c σ ′ : (Y ,~Γ′�Γ) → ⊥

(∀E)
τ : Y ; ` τ : Y (Ax)

Πτ

τ : Y ;σ : Y <: ~Γ�Γ ` τ (↑σ
′

~τ ′�τ) : Y ~Γ′�Γ
(τ τ ′)

τ : Y ;σ : Y <: ~Γ�Γ ` ~c�c σ ′ τ ′(↑σ
′

~τ ′�τ : ⊥
(@)

; ` λστ .~c�c σ ′ τ ′(↑σ
′

~τ ′�τ)
(λ)

where k = |τ ′ | − n, p = n + |τ |, σ ′ = σ ◦ δ +k[n,p] and:

• Πσ is a proof of σ : Y <: ~Γ�Γ ` σ ′ : (Y ,~Γ′�Γ) <: ~Γ,Γ′�Γ obtained by Lemma 6.49;
• Πτ ′ is the following proof also obtained by Lemma 6.49:

; ` ~τ ′�τ : ~Γ�Γ .τ ~Γ′�Γ ` σ : Y <: ~Γ�Γ
(<:ax)

` (↑σ
′

~τ ′�τ) : Y .τ ~Γ′�Γ

9. Stores

• Case ~τ [xi := t]�τ . We only consider the case τ [xi := t], the proof for the case τ [αi := E] is
identical. �is corresponds to the typing rules:

Γ `τ τ : Γ′ Γ,Γ′ `t t : A |Γ,Γ′ | = i

Γ `τ τ [xi := t] : Γ′,xi : A
By induction, we obtain two proofs of ` ~τ �τ : ~Γ�Γ .τ ~Γ′�Γ and ` ~t�t : ~Γ,Γ′�Γ .t ι (A). We can thus
derive:

` ~τ �τ : ~Γ�Γ .τ ~Γ′�Γ
` ~t�t : ~Γ,Γ′�Γ .t ι (A)
` [~t�t] : ~Γ,Γ′�Γ .τ ι (A)

(τt)

` ~τ �τ [~t�t] : ~Γ�Γ .τ ~Γ′�Γ,ι (A)
(τ τ ′)

�

154

6.5. CONCLUSION AND PERSPECTIVES

6.5 Conclusion and perspectives

6.5.1 Conclusion

In this chapter, we presented a system of simple types for a call-by-need calculus with control. We
proved that this type system is safe, in the sense that it satis�es the subject reduction property (�eo-
rem 6.2) and the (weak) normalization property (�eorem 6.22). We proved the normalization by means
of realizability-inspired interpretation of the λ[lvτ?]-calculus. Incidentally, this opens the doors to the
computational analysis (in the spirit of Krivine classical realizability) of classical proofs using control,
laziness and shared memory.

Besides, we introduced system Fϒ as a type system for the target of a continuation-and-store-passing
style translation for the λ[lvτ?]-calculus, and we proved that the translation was well-typed (�eo-
rem 6.33). Furthermore, we also re�ned our presentation to de�ne both source and target languages
with explicit De Bruijn levels, making them both more compatible with an implementation.

Last, we believe that the principles guiding the typing of the translation emphasized its computa-
tional content, whose three main ingredients are the following:

1. a continuation-passing style translation,

2. a store-passing style translation,

3. a Kripke forcing-like manner of typing the extensibility of the store.

�e la�er is particularly highlighted in the translation with De Bruijn levels, where levels need to be
shi�ed when extending the store and coercions give a computational content to the subtyping relation
(i.e. to store extension).

6.5.2 About stores and forcing

Actually, the connection between (Kripke) forcing and the store-passing style translation does not come
as a surprise. Indeed, the translation on types logically accounts for the compilation of the calculus with
stores to a calculus without store. In the realm of functional programming, memory states are given a
meaning through the state monad. For instance, the monadic translation of an arrow enriches it with
a state S :

~A→ B� , S ×A→ S × B

In particular, the result of a function may depend on the current state. If one observes precisely our
realizability interpretation, it is very similar to our de�nition of truth and falsity values: for a type A,
its interpretation is roughly of the shape A × τ . It is folklore that the state monad can be categorically
interpreted by means of presheaves construction [138, 116]. Interestingly, Kripke models are a par-
ticular case of presheaves semantics [123]. Cohen forcing construction is also interpreted in terms of
presheaves [111], and this interpretation scales to type theory [82, 81]. �erefore, the state monad and
the forcing translation were already known to be connected. Last but not least, the analysis of Cohen
forcing in the framework of Krivine classical realizability [98, 120] relies on an extension of Krivine
abstract machine with a cell (which contains the forcing condition). In short, our typed store-passing
style translation is just another observation of the connection between forcing translations and explicit
stores as a side-e�ect.

6.5.3 Extension to 2nd-order type systems

We focused in this chapter on simply-typed versions of the λlv and λ[lvτ?] calculi. But as it is common
in Krivine classical realizability, �rst and second-order quanti�cations (in Curry style) come for free

155

CHAPTER 6. NORMALIZATION OF CLASSICAL CALL-BY-NEED

through the interpretation. �is means that we can for instance extend the language of types to second-
order arithmetic:

e1,e2 ::= x | f (e1, . . . ,ek)
A,B ::= X (e1, . . . ,ek) | A→ B | ∀x .A | ∀X .A

We can then de�ne the following rules to introduce the universal quanti�cation:

Γ `v v : A x < FV (Γ)

Γ `v v : ∀x .A (∀1
r)

Γ `v v : A X < FV (Γ)

Γ `v v : ∀X .A (∀2
r)

Observe that these rules need to be restricted at the level of strong values, just as they are restricted to
values in the case of call-by-value (see Section 4.5.4). As for the le� rules, they can be de�ned at any
levels, let say the more general e:

Γ `e e : (A[n/x])⊥⊥

Γ `e e : (∀x .A)⊥⊥
(∀1
l)

Γ `e e : (A[B/X])⊥⊥

Γ `e e : (∀X .A)⊥⊥
(∀2
l)

where n is any natural number and B any formula. �e usual (call-by-value) interpretation of the
quanti�cation is de�ned as an intersection over all the possible instantiations of the variables within
the model. First-order variables are to be instantiated by integers, while second-order variables are to
be instantiated by sets of terms at the lowest level, i.e. closed strong-values in store (which we write
V0):

|∀x .A|v =
⋂
n∈�

|A[n/x]|v |∀X .A|v =
⋂

S ∈P (V0)

|A[S/X]|v

It is then routine to check that the typing rules are adequate with the realizability interpretation.

6.5.4 Related work & further work

In a recent paper, Kesner uses an intersection type system to characterize normalizing by-need terms [86].
Even though her calculus is not classical, it might be interesting to adapt her approach to our frame-
work. Speci�cally, we have the intuition that intersection types could be an alternative to our subtyping
relation in the target language of the CPS.

As for call-by need with control, recent work by Pédrot and Saurin [134] relates (classical) call-by-
need with linear head-reduction from a computational point of view. If they do not provide any type
system or normalization results, they connect their framework with a variant of the λlv -calculus (in
natural deduction style). Our techniques should then be adaptable to their framework in order to equip
their calculi with type systems and prove similar results.

�is chapter naturally raises the question of studying the system Fϒ that we used as target language
of our translation. In particular, it might be interesting to understand the logical strength of such a
system. It seems to be stronger than systems F or F <: in that is allows a restricted form of dependent
types: the second-order quanti�cation range over vectors of arbitrary size. It is probably weaker than a
higher order calculus with unrestricted dependencies in types, like the calculus of constructions (which
is logically as strong as Fω). Yet, it might also be the case that a clever analysis of the translation could
lead to a bound on the size of the store extension at each step. �is would o�er a way to remove this
dependency and to embed the target language into system F.

156

