
7- A classical sequent calculus with de-
pendent types

Side-e�ects and dependent types

In Chapter 5, we introduced dependent types from the point of view of logic, in the realm of Martin-Löf
type theory, but actually, as a programming features, restricted form of dependent types were anterior
to this. For instance, in the 60s the programming language FORTRAN IV already allowed programmers
to de�ne arrays of a given dimension, and in this sense, (restricted form of) dependent types are as old
as high-level programming languages.

From the point of view of programming, dependent types allow us to assign more precise types—and
thus more precise speci�cations—to existing programs. Dependent types are provided by Coq or Agda,
two of the most actively developed proof assistants, which both rely on a constructive type theory:
Coquand and Paulin-Mohring’s calculus of inductive constructions for Coq [29], and Martin-Löf’s type
theory [114] for Agda. Yet, both systems lack of classical logic and more generally of side-e�ects, which
make them impractical as programming languages.

In practice, e�ectful languages give to the programmer a more explicit access to low-level control
(that is: to the way the program is executed on the available hardware), and make some algorithms
easier to implement. Common e�ects, such as the explicit manipulation of the memory, the generation
of random numbers and input/output facilities are available in all practical programming languages
(e.g. OCaml, C++, Python, Java,…).

As we saw in Section 5.1.2.2,dependent types misbehave in the presence of control operators, and
lead to logical inconsistencies. Since the same problem arises with a wider class of e�ects, it seems that
we are facing the following dilemma: either we choose an e�ectful language (allowing us to write more
programs) while accepting the lack of dependent types, or we choose a dependently typed language
(allowing us to write �ner speci�cations) and give up e�ects.

Many works have tried to �ll the gap between real programming languages and logic, by acco-
modating weaker forms of dependent types with computational e�ects (e.g. divergence, I/O, local
references, exceptions). Amongst other works, we can cite the recent works by Ahman et al [1], by
Vákár [156] or by Pédrot and Tabareau who proposed a systematical way to add e�ects to type the-
ory [141]. Side-e�ects—that are impure computations in functional programming—are interpreted by
means of monads. Interestingly, control operators can be interpreted in a similar way through the
continuation monad, but the continuation monads generally lacks the properties necessary to �t the
picture.

Although dependent types and classical logic have been deeply studied separately, the problem of
accomodating both features in one and the same system has not found a completely satisfying answer
yet. Recent works from Herbelin [70] and Lepigre [108] proposed some restrictions on dependent types
to make them compatible with a classical proof system, while Blot [17] designed a hybrid realizability
model where dependent types are restricted to an intuitionistic fragment.

157

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

Call-by-value and value restriction

In languages enjoying the Church-Rosser property (like the λ-calculus or Coq), the order of evaluation is
irrelevant, and any reduction path will ultimately lead to the same value. In particular, the call-by-name
and call-by-value evaluation strategies will always give the same result. However, this is no longer
the case in presence of side-e�ects. Indeed, consider the simple case of a function applied to a term
producing some side-e�ects (for instance increasing a reference). In call-by-name, the computation of
the argument is delayed to the time of its e�ective use, while in call-by-value the argument is reduced
to a value before performing the application. If, for instance, the function never uses its argument,
the call-by-name evaluation will not generate any side-e�ect, and if it uses it twice, the side-e�ect will
occur twice (and the reference will have its value increased by two). On the contrary, in both cases the
call-by-value evaluation generates the side-e�ect exactly once (and the reference has its value increased
by one).

In this chapter, we present a language following the call-by-value reduction strategy. While this de-
sign choice is strongly related with our long term perspective of giving a sequent calculus presentation
of dPAω (following the call-by-value strategy but for the lazy parts), this also constitutes a goal in itself.
Indeed, when considering a language with control operators (or other kinds of side-e�ects), soundness
o�en turns out to be subtle to preserve in call-by-value. �e �rst issues in call-by-value in the presence
of side-e�ects were related to references [162] and polymorphism [67]. In both cases, a simple and ele-
gant solution (but unnecessarily restrictive in practice [55, 108]) to solve the inconsistencies consists to
introduce a value restriction for the problematic cases, restoring then a sound type system. Recently,
Lepigre presented a proof system providing dependent types and a control operator [108], whose con-
sistency is preserved by means of a semantical value restriction de�ned for terms that behave as values
up to observational equivalence. In the present work, we will rather use a syntactic restriction to a frag-
ment of proofs that allows slightly more than values. As will see, the restriction that arises naturally
coincides with the negative-elimination-free fragment of Herbelin’s dPAω system [70].

A sequent calculus presentation

�e main achievement of this chapter is to give a sequent calculus presentation of a call-by-value lan-
guage with classical control and dependent types, and to justify its soundness through a continuation-
passing style translation. Our calculus is an extension of the λµµ̃-calculus [32] with dependent types.
Amongst other motivations, such a calculus is close to an abstract machine, which makes it particularly
suitable to de�ne CPS translations or to be an intermediate language for compilation [39].

Additionally, while we consider in this chapter the speci�c case of a calculus with classical logic,
the sequent calculus presentation itself is responsible for another di�culty. As we will see, the usual
call-by-value strategy of the λµµ̃-calculus causes subject reduction to fail, which would happen already
in an intuitionistic type theory. We claim that the solutions we give in this chapter also provide us with
solutions in the intuitionistic case. In particular, the system we develop might be a �rst step to allow
the adaption of the well-understood continuation-passing style translations for ML in order to design
a (dependently) typed compilation of a system with dependent types such as Coq.

Delimited continuations and CPS translation

�e main challenge in designing a sequent calculus with dependent types resides in the fact that the
natural relation of reduction one would expect in such a framework is not safe with respect to types.
As we will discuss in Section 7.1.4, the problem can be understood as a desynchronization of the type
system with respect to the reduction. A simple solution to resolve this, presented in Section 7.1, consists
to add an explicit list of dependencies in the typing derivations. �is has the advantage of giving a
calculus that is very close to the original. However, it is not suitable for obtaining a continuation-
passing style translation.

158

7.1. A MINIMAL CLASSICAL LANGUAGE WITH DEPENDENT TYPES

We thus present a second way to solve this issue by introducing delimited continuations [5], which
are used to force the purity needed for dependent types in an otherwise non purely functional lan-
guage. It also justi�es the relaxation of the value restriction and leads to the de�nition of the negative-
elimination-free fragment (Section 7.2). Additionally, it allows for the design, in Section 8.3, of a
continuation-passing style translation that preserves dependent types and allows for proving the sound-
ness of our system. Finally, it also provides us with a way to embed our calculus into Lepigre’s calcu-
lus [108], as we shall see in Section 7.4, and in particular it furnishes us a realizability interpretation.

7.1 A minimal classical language with dependent types

�e easiest and usual approach to prevent inconsistencies to arise from the simultaneous presence
of classical logic is to impose a restriction to values for proofs appearing inside dependent types and
operators. In particular, this would prevent us from writing wit p0 and prf p0 in Herbelin’s example.

In this section we will focus on value restriction in the framework of the λµµ̃-calculus, and show
how it allows us to keep the proof system is consistent. We shall then see, in Section 7.2, how to relax
this constraint.

7.1.1 A minimal language with value restriction

We follow here the strati�ed presentation1 of dependent types from the previous section. We place
ourselves in the framework of the λµµ̃-calculus to which we add:

• a language of terms which contain an encoding2 of the natural numbers,

• proof terms (t ,p) to inhabit the strong existential ∃x�.A together with the �rst and second pro-
jections, called respectively wit (for terms) and prf (for proofs),

• a proof term refl for the equality of terms and a proof term subst for the convertibility of types
over equal terms.

For simplicity reasons, we will only consider terms of type � throughout this chapter. We address the
question of extending the domain of terms in Section 7.5.2. �e syntax of the corresponding system,
that we call dL, is given by:

Terms t ::= x | n | wit V
Proof terms p ::= V | µα .c | (t ,p) | prf V | subst p q
Proof values V ::= a | λa.p | λx .p | (t ,V) | refl
Contexts e ::= α | p · e | t · e | µ̃a.c
Commands c ::= 〈p ||e〉

(n ∈ �)

�e formulas are de�ned by:

Formulas A,B ::= > | ⊥ | t = u | ∀x�.A | ∃x�.A | Πa : A.B .

Note that as in dPAω we included a dependent product Πa : A.B at the level of proof terms, but that in
the case where a < FV (B) this amounts to the usual implication A→ B.

1�is design choice is usually a ma�er of taste and convenient for us in the perspective of adapting dPAω . However, it also
has the advantage of clearly enlightening the di�erent treatments for term and proofs through the CPS in the next sections.

2�e nature of the representation is irrelevant here as we will not compute over it. We can for instance add one constant
for each natural number.

159

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

〈µα .c ||e〉 c[e/α]
〈V ||µ̃a.c〉 c[V /a]

〈λa.p ||q · e〉 〈q ||µ̃a.〈p ||e〉〉
〈λx .p ||t · e〉 〈p[t/x]||e〉

〈(t ,p) ||e〉 〈p ||µ̃a.〈(t ,a) ||e〉〉 (p < V)
〈prf (t ,V) ||e〉 〈V ||e〉
〈subst p q ||e〉 〈p ||µ̃a.〈subst a q ||e〉〉 (p < V)

〈subst refl q ||e〉 〈q ||e〉

wit (t ,V) → t t → t ′ ⇒ c[t] c[t ′]

Figure 7.1: Reduction rules of dL

7.1.2 Reduction rules

As explained in Section 5.1.2.2, a backtracking proof might give place to di�erent witnesses and proofs
according to the context of reduction, leading to inconsistencies [69]. �e substitution at di�erent
places of a proof which can backtrack, as the call-by-name evaluation strategy does, is thus an unsafe
operation. On the contrary, the call-by-value evaluation strategy forces a proof to reduce �rst to a
value (thus furnishing a witness) and to share this value amongst all the commands. In particular, this
maintains the value restriction along reduction, since only values are substituted.

�e reduction rules, de�ned in Figure 7.1 (where t → t ′ denotes the reduction of terms and c c ′

the reduction of commands), follow the call-by-value evaluation principle. In particular one can see
that whenever the command is of the shape 〈C[p]||e〉 where C[p] is a proof built on top of p which is
not a value, it reduces to 〈p ||µ̃a.〈C[a]||e〉〉, opening the construction to evaluate p3.

Additionally, we denote by A ≡ B the transitive-symmetric closure of the relation A B B, de�ned
as a congruence over term reduction (i.e. if t → t ′ then A[t] B A[t ′]) and by the rules:

0 = 0 B > 0 = S (u) B ⊥
S (t) = 0 B ⊥ S (t) = S (u) B t = u

7.1.3 Typing rules

As we explained before, in this section we limit ourselves to the simple case where dependent types
are restricted to values, to make them compatible with classical logic. But even with this restriction,
de�ning the type system in the most naive way leads to a system in which subject reduction will fail.
Having a look at the β-reduction rule gives us an insight of what happens. Let us imagine that the type
system of the λµµ̃-calculus has been extended to allow dependent products instead of implications. and
consider a proof λa.p : Πa : A.B and a context q ·e : Πa : A.B. A typing derivation of the corresponding
command would be of the form:

Πp

Γ,a : A ` p : B | ∆
Γ ` λa.p : Πa : A.B | ∆

(→r)

Πq

Γ ` q : A | ∆
Πe

Γ | e : B[q/a] ` ∆
Γ | q · e : Πa : A.B ` ∆ (→l)

〈λa.p ||q · e〉 : Γ ` ∆
(Cut)

while this command would reduce as follows:

〈λa.p ||q · e〉 〈q ||µ̃a.〈p ||e〉〉.

3�e reader might recognize the rule (ς) of Wadler’s sequent calculus [161].

160

7.1. A MINIMAL CLASSICAL LANGUAGE WITH DEPENDENT TYPES

On the right-hand side, we see that p, whose type is B[a], is now cut with e whose type is B[q]. Con-
sequently, we are not able to derive a typing judgment4 for this command anymore:

Πq

Γ ` q : A | ∆

Γ,a : A ` p : ���B[a] | ∆ Γ,a : A | e : ���B[q] ` ∆
〈p ||e〉 : Γ,a : A ` ∆ Mismatch

Γ | µ̃a.〈p ||e〉 : A ` ∆
(µ̃)

〈q ||µ̃a.〈p ||e〉〉 : Γ ` ∆ (Cut)

�e intuition is that in the full command, a has been linked to q at a previous level of the typing
judgment. However, the command is still safe, since the head-reduction imposes that the command
〈p ||e〉 will not be executed before the substitution of a by q5 is performed and by then the problem
would have been solved. Roughly speaking, this phenomenon can be seen as a desynchronization of
the typing process with respect to computation. �e synchronization can be re-established by making
explicit a dependencies list in the typing rules, which links µ̃ variables (here a) to the associate proof term
on the le�-hand side of the command (here q). We can now obtain the following typing derivation:

Πq

Γ ` q : A | ∆

Πp

Γ,a : A ` p : B[a] | ∆
Πe

Γ,a : A | e : B[q] ` ∆; {·|p}{a |q}
〈p ||e〉 : Γ,a : A ` ∆; {a |q} (Cut)

Γ | µ̃a.〈p ||e〉 : A ` ∆; {.|q}
(µ̃)

〈q ||µ̃a.〈p ||e〉〉 : Γ ` ∆; ε (Cut)

Formally, we denote by D the set of proofs we authorize in dependent types, and de�ne it for the
moment as the set of values:

D , V .

We de�ne a list of dependencies σ as a list binding pairs of proof terms6:

σ ::= ε | σ {p |q},

and we de�ne Aσ as the set of types that can be obtained from A by replacing none or all occurrences
of p by q for each binding {p |q} in σ such that q ∈ D:

Aε , {A} Aσ {p |q } ,

Aσ ∪ (A[q/p])σ if q ∈ D
Aσ otherwise.

�e list of dependencies is �lled while going up in the typing tree, and it can be used when typing a
command 〈p ||e〉 to resolve a potential inconsistency between their types:

Γ ` p : A | ∆;σ Γ | e : B ` ∆;σ {·|p} B ∈ Aσ
〈p ||e〉 : Γ ` ∆;σ (Cut)

Remark 7.1. �e reader familiar with explicit substitutions [52] can think of the list of dependencies
as a fragment of the substitution that is available when a command c is reduced. Another remark is

4Observe that the problem here arises independently of the value restriction or not (that is whether we consider that q is
a value or not), and is peculiar to the sequent calculus presentation).

5Note that even if we were not restricting ourselves to values, this would still hold: if at some point the command 〈p ||e〉 is
executed, it is necessarily a�er that q has produced a value to substitute for a.

6In practice we will only bind a variable with a proof term, but it is convenient for proofs to consider this slightly more
general de�nition.

161

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

Γ ` p : A | ∆;σ Γ | e : A′ ` ∆;σ {·|p} A′ ∈ Aσ
〈p ||e〉 : Γ ` ∆;σ (Cut)

(a : A) ∈ Γ
Γ ` a : A | ∆;σ (Axr)

(α : A) ∈ ∆
Γ | α : A ` ∆;σ {·|p} (Axl)

c : (Γ ` ∆,α : A;σ)
Γ ` µα .c : A | ∆;σ

(µ)

c : (Γ,a : A ` ∆;σ {a |p})
Γ | µ̃a.c : A ` ∆;σ {·|p}

(µ̃)
Γ,a : A ` p : B | ∆;σ

Γ ` λa.p : Πa : A.B | ∆;σ
(→r)

Γ ` q : A | ∆;σ Γ | e : B[q/a] ` ∆;σ {·|†} q < D → a < FV (B)

Γ | q · e : Πa : A.B ` ∆;σ {·|p} (→l)

Γ,x : � ` p : A | ∆;σ
Γ ` λx .p : ∀x�.A | ∆;σ

(∀l)
Γ ` t : � ` ∆;σ Γ | e : A[t/x] ` ∆;σ {·|†}

Γ | t · e : ∀x�.A ` ∆;σ {·|p}
(∀r)

Γ ` t : � | ∆;σ Γ ` p : A(t) | ∆;σ
Γ ` (t ,p) : ∃x�.A(x) | ∆;σ

(∃r)
Γ ` p : ∃x�.A(x) | ∆;σ p ∈ D

Γ ` prf p : A(wit p) | ∆;σ prf

Γ ` p : A | ∆;σ A ≡ B

Γ ` p : B | ∆;σ (≡r)
Γ | e : A ` ∆;σ A ≡ B

Γ | e : B ` ∆;σ (≡l)

Γ ` p : t = u | ∆;σ Γ ` q : B[t/x] | ∆;σ
Γ ` subst p q : B[u/x] | ∆;σ

(subst)
Γ ` t : � | ∆;σ

Γ ` refl : t = t | ∆;σ (refl)

Γ,x : � ` x : � | ∆;σ (Axt)
n ∈ �

Γ ` n : � | ∆;σ
(Axn)

Γ ` p : ∃xA(x) | ∆;σ p ∈ D

Γ ` wit p : � | ∆;σ (wit)

Figure 7.2: Typing rules of dL

that the design choice for the (Cut) rule is arbitrary, in the sense that we chose to check whether B
is in Aσ . We could equivalently have checked whether the condition σ (A) = σ (B) holds, where σ (A)
refers to the type A where for each binding {p |q} ∈ σ with q ∈ D, all the occurences of p have been
replaced by q. y

Furthermore, when typing a stack with the (→l) rule, we need to drop the open binding in the list
of dependencies7. We introduce the notation Γ | e : A ` ∆;σ {·|†} to denote that the dependency to be
produced is irrelevant and can be dropped. �is trick spares us from de�ning a second type of sequent
Γ | e : A ` ∆;σ to type contexts when dropping the (open) binding {·|p}. Alternatively, one can think of
† as any proof term not in D, which is the same with respect to the list of dependencies. �e resulting
set of typing rules is given in Figure 7.2, where we assume that every variable bound in the typing
context is bound only once (proofs and contexts are considered up to α-conversion).

Note that we work with two-sided sequents here to stay as close as possible to the original presen-
tation of the λµµ̃-calculus [32]. In particular this means that a type in ∆ might depend on a variable
previously introduced in Γ and vice versa, so that the split into two contexts makes us lose track of
the order of introduction of the hypotheses. In the sequel, to be able to properly de�ne a typed CPS

7It is easy to convince ourself that when typing a command 〈p ||q · µ̃a.c〉 with {·|p}, the “correct” dependency within c
should be {a |µαα〈p ||q · α〉}, where the right proof is not a value. Furthermore, this dependency is irrelevant since there is no
way to produce such a command where a type adjustment with respect to a needs to be made in c .

162

7.1. A MINIMAL CLASSICAL LANGUAGE WITH DEPENDENT TYPES

translation, we consider that we can unify both contexts into a single one that is coherent with respect
to the order in which the hypothesis have been introduced8. We denote this context by Γ ∪ ∆, where
the assumptions of Γ remain unchanged, while the former assumptions (α : A) in ∆ are denoted by
(α : A⊥⊥).

Example 7.2. �e proof p1 , subst (prf p0) refl which was of type 1 = 0 in Section 5.1.2.2 is now
incorrect since the backtracking proof p0, de�ned by µα .(0,µ .〈(1,refl) ||α〉) in our framework, is not
a value in D. �e proof p1 should rather be de�ned by9 µα .〈p0 ||µ̃a.〈subst (prf a) refl||α〉〉 which can
only be given the type 1 = 1. y

7.1.4 Subject reduction

We start by giving a few technical lemmas that will be used for proving subject reduction. First, we
will show that typing derivations allow weakening on the lists of dependencies. For this purpose,
we introduce the notation σ V σ ′ to denote that whenever a judgment is derivable with σ as list of
dependencies, then it is derivable using σ ′:

σ V σ ′ , ∀c ∀Γ ∀∆.(c : (Γ ` ∆;σ) ⇒ c : (Γ ` ∆;σ ′)).

�is clearly implies that the same property holds when typing evaluation contexts, i.e. if σ V σ ′ then
σ can be replaced by σ ′ in any typing derivation for any context e .

Lemma 7.3 (Dependencies weakening). For any list of dependencies σ we have:

1. ∀V ..(σ {V |V } V σ) 2. ∀σ ′.(σ V σσ ′)

Proof. �e �rst statement is obvious. �e proof of the second is straightforward from the fact that for
any p and q, by de�nition Aσ ⊂ Aσ {p |q }. �

As a corollary, we get that † can indeed be replaced by any proof term when typing a context.

Corollary 7.4. If σ V σ ′, then for any p,e,Γ,∆:

Γ | e : A ` ∆;σ {·|†} ⇒ Γ | e : A ` ∆;σ ′{·|p}.

We �rst state the usual lemmas that guarantee the safety of terms (resp. values, contexts) substitu-
tion.

Lemma 7.5 (Safe term substitution). If Γ ` t : � | ∆; ε then:

1. c : (Γ,x : �,Γ′ ` ∆;σ) ⇒ c[t/x] : (Γ,Γ′[t/x] ` ∆[t/x];σ [t/x]),
2. Γ,x : �,Γ′ ` q : B | ∆;σ ⇒ Γ,Γ′[t/x] ` q[t/x] : B[t/x] | ∆[t/x];σ [t/x],
3. Γ,x : �,Γ′ | e : B ` ∆;σ ⇒ Γ,Γ′[t/x] | e[t/x] : B[t/x] ` ∆[t/x];σ [t/x],
4. Γ,x : �,Γ′ ` u : � | ∆;σ ⇒ Γ,Γ′[t/x] ` u[t/x] : � | ∆[t/x];σ [t/x].

Lemma 7.6 (Safe value substitution). If Γ ` V : A | ∆; ε then:

1. c : (Γ,a : A,Γ′ ` ∆;σ) ⇒ c[V /a] : (Γ,Γ′[V /a] ` ∆[V /a];σ [V /a]),
2. Γ,a : A,Γ′ ` q : B | ∆;σ ⇒ Γ,Γ′[V /a] ` q[V /a] : B[V /a] | ∆[V /a];σ [t/x],
3. Γ,a : A,Γ′ | e : B ` ∆;σ ⇒ Γ,Γ′[V /a] | e[V /a] : B[V /a] ` ∆[V /a];σ [V /a],

8See Section 4.2.3.2 for further details on this point.
9�at is to say leta = p0 in subst a refl in natural deduction.

163

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

4. Γ,a : A,Γ′ ` u : � | ∆;σ ⇒ Γ,Γ′[V /a] ` u[V /a] : � | ∆[V /a];σ [V /a].

Lemma 7.7 (Safe context substitution). If Γ | e : A ` ∆; ε then:

1. c : (Γ ` ∆,α : A,∆′;σ) ⇒ c[e/α] : (Γ ` ∆,∆′;σ),
2. Γ ` q : B | ∆,α : A,∆′;σ ⇒ Γ ` q[e/α] : B | ∆,∆′;σ ,

3. Γ | e : B ` ∆,α : A,∆′;σ ⇒ Γ | e[e/α] : B ` ∆,∆′;σ .

Proof. �e proofs are done by induction on the typing derivation. �

We can now prove the type preservation, using the previous lemmas for rules which perform a
substitution, and the list of dependencies to resolve local inconsistencies for dependent types.

�eorem 7.8 (Subject reduction). If c,c ′ are two commands of dL such that c : (Γ ` ∆; ε) and c c ′,
then c ′ : (Γ ` ∆; ε).

Proof. �e proof is done by induction on the typing derivation of c : (Γ ` ∆; ε), assuming that for each
typing proof, the conversion rules are always pushed down and right as much as possible. To save some
space, we sometimes omit the list of dependencies when empty, writing c : Γ ` ∆ instead of c : Γ ` ∆; ε ,
and we denote the composition of the consecutive (≡l) rules as:

Γ | e : B ` ∆;σ
Γ | e : A ` ∆;σ (≡l)

where the hypothesis A ≡ B is implicit.

• Case 〈λx .p ||t · e〉 〈p[t/x]||e〉.
A typing proof for the command on the le�-hand side is of the form:

Πp

Γ,x : � ` p : A | ∆
Γ ` λx .p : ∀x�.A | ∆

(∀r)

Πt

Γ ` t : � | ∆
Πe

Γ | e : B[t/x] ` ∆; {·|†}
Γ | t · e : ∀x�.B ` ∆; {·|λx .p}

(∀l)

Γ | t · e : ∀x�.A ` ∆; {·|λx .p}
(≡l)

〈λx .p ||t · e〉 : Γ ` ∆; ε
(Cut)

We �rst deduce A[t/x] ≡ B[t/x] from the hypothesis ∀x�.A ≡ ∀x�.B. �en using that Γ,x : � `
p : A | ∆ and Γ ` t : � | ∆, by Lemma 8.4 and the fact that ∆[t/x] = ∆ we get a proof Π′p of
Γ ` p[t/x] : A[t/x] | ∆. We can thus build the following derivation:

Π′p

Γ ` p[t/x] : A[t/x] | ∆

Πe

Γ | e : B[t/x] ` ∆; {·|p[t/x]}
Γ | e : A[t/x] ` ∆; {·|p[t/x]}

(≡l)

〈p[t/x]||e〉 : Γ ` ∆
(Cut)

using Corollary 7.4 to weaken the binding to p[t/x] in Πe .

• Case 〈λa.p ||q · e〉 〈q ||µ̃a.〈p ||e〉〉.
A typing proof for the command on the le�-hand side is of the form:

Πp

Γ,a : A ` p : B | ∆
Γ ` λa.p : Πa : A.B | ∆

(→r)

Πq

Γ ` q : A′ | ∆
Πe

Γ | e : B′[q/a] ` ∆; {·|†}
Γ | q · e : Πa : A′.B′ ` ∆; {·|λa.p}
Γ | q · e : Πa : A.B ` ∆; {·|λa.p}

(≡l)

〈λa.p ||q · e〉 : Γ ` ∆
(Cut)

164

7.1. A MINIMAL CLASSICAL LANGUAGE WITH DEPENDENT TYPES

If q < D, we de�ne B′q , B′ which is the only type in B′
{a |q }. Otherwise, we de�ne B′q , B′[q/a] which

is a type in B′
{a |q }. In both cases, we can build the following derivation:

Πq

Γ ` q : A′ | ∆
Γ ` q : A | ∆

(≡l)

Πp

Γ,a : A ` p : B | ∆
Γ,a : A ` p : B′ | ∆

(≡r)
Πe

Γ,a : A | e : B′q ` ∆; {a |q}{·|p}
〈p ||e〉 : Γ,a : A ` ∆; {a |q}

(Cut)

Γ | µ̃a.〈p ||e〉 : A ` ∆; {.|q}
(µ̃)

〈q ||µ̃a.〈p ||e〉〉 : Γ ` ∆
(Cut)

using Corollary 7.4 to weaken the dependencies in Πe .

• Case 〈µα .c ||e〉 c[e/α].
A typing proof for the command on the le�-hand side is of the form:

Πc

c : Γ ` ∆,α : A
Γ ` µα .c : A | ∆

(µ)
Πe

Γ | e : A ` ∆; {·|µα .c}
〈µα .c ||e〉 : Γ ` ∆

(Cut)

We get a proof that c[e/α] : Γ ` ∆; ε is valid by Lemma 7.7.

• Case 〈V ||µ̃a.c〉 c[V /a].
A typing proof for the command on the le�-hand side is of the form:

ΠV

Γ ` V : A | ∆

Πc

c : Γ,a : A′ ` ∆; {a |V }
Γ | µ̃a.c : A′ ` ∆; {·|V }

(µ̃)

Γ | µ̃a.c : A ` ∆; {·|V }
(≡l)

〈V ||µ̃a.c〉 : Γ ` ∆
(Cut)

We �rst observe that we can derive the following proof:
ΠV

Γ ` V : A | ∆
Γ ` V : A′ | ∆

(≡l)

and get a proof for c[V /a] : Γ ` ∆; {V |V } by Lemma 7.6. We �nally get a proof for c[V /a] : Γ ` ∆; ε by
Lemma 7.3.

• Case 〈(t ,p) ||e〉 〈p ||µ̃a.〈(t ,a) ||e〉〉, with p < V .
A proof of the command on the le�-hand side is of the form:

Πt

Γ ` t : � | ∆
Πp

Γ ` p : A[t/x] | ∆
Γ ` (t ,p) : ∃x�.A | ∆

(∃r)
Πe

Γ | e : ∃x�.A ` ∆; {·|(t ,p)}
〈(t ,p) ||e〉 : Γ ` ∆

(Cut)

We can build the following derivation:

Πp

Γ ` p : A[t/x] | ∆

Π(t,a)

Γ ` (t ,a) : ∃x�.A | ∆
(∃I)

Πe

Γ | e : ∃x�.A ` ∆; {a |p}{·|(t ,a)}
〈(t ,a) ||e〉 : Γ,a : A[t/x] ` ∆; {a |p}

(Cut)

Γ | µ̃a.〈(t ,a) ||e〉 : A[t/x] ` ∆; {·|p}
(µ̃)

〈p ||µ̃a.〈(t ,a) ||e〉〉 : Γ ` ∆
(Cut)

165

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

where Π(t,a) is as expected, observing that since p < D, the binding {·|(t ,p)} is the same as {·|†}, and
we can apply Corollary 7.4 to weaken dependencies in Πe .

• Case 〈prf (t ,V) ||e〉 〈V ||e〉.
�is case is easy, observing that a derivation of the command on the le�-hand side is of the form:

Πt

ΠV

Γ ` V : A(t) | ∆
Γ ` (t ,V) : ∃x�.A(x) | ∆

(∃r)

Γ ` prf (t ,V) : A(wit (t ,V)) | ∆
(prf)

Πe

Γ | e : A(wit (t ,V)) ` ∆; {·|†}
〈prf (t ,V) ||e〉 : Γ ` ∆

(Cut)

Since by de�nition we have A(wit (t ,V)) ≡ A(t), we can derive:

ΠV

Γ ` V : A(t) | ∆

Πe

Γ | e : A(wit (t ,V)) ` ∆; {·|V }
Γ | e : A(V) ` ∆; {·|V }

(≡l)

〈prf (t ,V) ||e〉 : Γ ` ∆
(Cut)

• Case 〈subst refl q ||e〉 〈q ||e〉.

�is case is straightforward, observing that for any terms t ,u, if we have refl : t = u, then A[t] ≡ A[u]
for any A.

• Case 〈subst p q ||e〉 〈p ||µ̃a.〈subst a q ||e〉〉.

�is case is exactly the same as the case 〈(t ,p) ||e〉.

• Case c[t] c[t ′] with t → t ′..

Immediate by observing that by de�nition of the relation ≡, we have A[t] ≡ A[t ′] for any A.
�

7.1.5 Soundness

We give here a proof of the soundness of dL with a value restriction. �e proof is based on an embedding
into the λµµ̃-calculus extended with pairs, whose syntax and rules are given in Figure 7.3. A more
interesting proof through a continuation-passing translation is presented in Section 8.3.

We �rst show that typed commands of dL normalize by translating them into the simply-typed
λµµ̃-calculus with pairs, that is to say the λµµ̃-calculus extended10 with proofs of the form (p1,p2) and
contexts of the form µ̃ (a1,a2).c . We do not consider here a particular reduction strategy, and take�
to be the contextual closure of the rules given in Figure 7.3.

�e translation essentially consists of erasing the dependencies in types11, turning the dependent
products into arrows and the dependent sum into a pair. �e erasure procedure is de�ned by:

(∀x�.A)∗ , �→ A∗ >∗ , �→ �

(∃x�.A)∗ , � ∧A∗ ⊥∗ , �→ �

(Πa : A.B)∗ , A∗ → B∗ (t = u)∗ , �→ �

and the corresponding translation for terms, proofs, contexts and commands:
10�is corresponds to the addition of pairs and projections in the λ-calculus to obtain the λ×-calculus in Section 2.4.1.
11�e use of erasure functions is a very standard technique in the systems of the λ-cube, see for instance [132] or [157].

166

7.1. A MINIMAL CLASSICAL LANGUAGE WITH DEPENDENT TYPES

Proofs p ::= V | µα .c | (p1,p2)
Values V ::= a | λa.p | (V1,V2)
Contexts e ::= α | p · e | µ̃a.c | µ̃ (a1,a2).c
Commands c ::= 〈p ||e〉

Γ ` p1 : A1 | ∆ Γ ` p2 : A2 | ∆

Γ ` (p1,p2) : A1 ∧A2 | ∆
(∧r)

c : Γ,a1 : A1,a2 : A2 ` ∆
Γ | µ̃ (a1,a2).c : A1 ∧A2 ` ∆

(∧l)

(a) Syntax (b) Typing rules

〈µα .c ||e〉 � c[e/α]
〈λa.p ||q · e〉 � 〈q ||µ̃a.〈p ||e〉〉
〈p ||µ̃a.c〉 � c[p/a]

〈(p1,p2) ||µ̃ (a1,a2).c〉 � c[p1/a1][p2/a2]
µα .〈p ||α〉 � p
µ̃a.〈a ||e〉 � e

(c) Reduction rules

Figure 7.3: λµµ̃-calculus with pairs

〈p ||e〉∗ , 〈p∗ ||e∗〉

α∗ , α

(t · e)∗ , t∗ · e∗

(q · e)∗ , q∗ · e∗

(µ̃a.c)∗ , µ̃a.c∗

x∗ , x

n∗ , n̄

(wit p)∗ , π1 (p
∗)

a∗ , a

refl∗ , λx .x

(λa.p)∗ , λa.p∗

(λx .p)∗ , λx .p∗

(µα .c)∗ , µα .c∗

(prf p)∗ , π2 (p
∗)

(t ,p)∗ , µα .〈p∗ ||µ̃a.〈(t∗,a) ||α〉〉

(subst V q)∗ , µα .〈q∗ ||α〉

(subst p q)∗ , µα .〈p∗ ||µ̃ .〈µα .〈q∗ ||α〉||α〉〉 (p < V)

where πi (p) , µα .〈p ||µ̃ (a1,a2).〈a1 ||α〉〉. �e term n̄ is de�ned as any encoding of the natural number n
with its type�∗, the encoding being irrelevant here as long as n̄ ∈ V . Note that we translate di�erently
subst V q and subst p q to simplify the proof of Proposition 7.11.

We �rst show that the erasure procedure is adequate with respect to the previous translation.

Lemma 7.9. �e following holds for any types A and B:

1. For any terms t and u, (A[t/u])∗ = A∗.

2. For any proofs p and q, (A[p/q])∗ = A∗.

3. If A ≡ B then A∗ = B∗.

4. For any list of dependencies σ , if A ∈ Bσ , then A∗ = B∗.

Proof. Straightforward: 1 and 2 are direct consequences of the erasure of terms (and thus proofs) from
types. 3 follows from 1,2 and the fact that (t = u)∗ = >∗ = ⊥∗. 4 follows from 2. �

We can extend the erasure procedure to typing contexts, and show that it is adequate with respect
to the translation of proofs.

Proposition 7.10. �e following holds for any contexts Γ,∆ and any type A:

1. For any command c , if c : Γ ` ∆;σ , then c∗ : Γ∗ ` ∆∗.

2. For any proof p, if Γ ` p : A | ∆;σ , then Γ∗ ` p∗ : A∗ | ∆∗.

3. For any context e , if Γ | e : A ` ∆;σ , then Γ∗ | e∗ : A∗ ` ∆∗.

167

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

Proof. By induction on typing derivations. �e fourth item of the previous lemma shows that the list of
dependencies becomes useless: since A ∈ Bσ implies A∗ = B∗ , it is no longer needed for the (cut)-rule.
Consequently, it can also be dropped for all the other cases. �e case of the conversion rule is a direct
consequence of the third case. For refl, we have by de�nition, refl∗ = λx .x : �∗ → �∗.

�e only non-direct cases are subst p q, with p not a value, and (t ,p). To prove the former with
p < V , we have to show that if:

Γ ` p : t = u | ∆;σ Γ ` q : B[t/x] | ∆;σ
Γ ` subst p q : B[u/x] | ∆;σ

(subst)

then subst p q∗ = µα .〈p∗ ||µ̃ .〈µα .〈q∗ ||α〉||α〉〉 : B[u/x]∗. According to Lemma 7.9, we have B[u/x]∗ =
B[t/x]∗ = B∗. By induction hypothesis, we have proofs of Γ∗ ` p∗ : �∗ → �∗ | ∆∗ and Γ∗ ` q∗ : B | ∆∗.
Using the notation ηq∗ , µα .〈q∗ ||α〉, we can derive:

Γ∗ ` p∗ : �∗ → �∗ | ∆∗

Γ∗ ` q∗ : B∗ | ∆∗

Γ∗ ` ηq∗ : B∗ | ∆∗ α : B∗ ` α : B∗

〈ηq∗ ||α〉 : Γ ` ∆∗,α : B∗ (Cut)

Γ∗ | µ̃ .〈ηq∗ ||α〉 : B∗ ` ∆∗,α : B∗
(µ̃)

〈p∗ ||µ̃ .〈ηq∗ ||α〉〉 : Γ∗ ` ∆∗,α : B∗ (Cut)

Γ∗ ` µα .〈p∗ ||µ̃ .〈ηq∗ ||α〉〉 : B∗ | ∆∗
(µ)

�e case subst V q is easy since (subst V q)∗ = ~q�p has type B∗ by induction. Similarly, the proof
for the case (t ,p) corresponds to the following derivation:

Γ∗ ` p∗ :A∗|∆∗

Γ∗ ` t∗ : � |∆∗ a : A∗ ` a : A∗
Γ∗,a : A∗ ` (t∗,a) : �∧A∗ |∆∗

(∧r)
α : �∧A∗ ` α : �∧A∗

〈(t∗,a) ||α〉 : Γ,a : A∗ ` ∆∗,α : �∧A∗
(Cut)

Γ∗ | µ̃a.〈(t∗,a) ||α〉 : A∗ ` ∆∗,α : �∧A∗
(µ̃)

〈p∗ ||µ̃a.〈(t∗,a) ||α〉〉 : Γ∗ ` ∆∗,α : �∧A∗
(Cut)

Γ∗ ` µα .〈p∗ ||µ̃a.〈(t∗,a) ||α〉〉 : � ∧A∗ | ∆∗
(µ)

�

We can then deduce the normalization of dL from the normalization of the λµµ̃-calculus [140], by
showing that the translation preserves the normalization in the sense that if c does not normalize, then
neither does c∗.

Proposition 7.11. If c is a command such that c∗ normalizes, then c normalizes.

Proof. We will actually prove a slightly more precise statement:

∀c1,c2, (c1
1
 c2 ⇒ ∃n ≥ 1, (c1)

∗
n
� (c2)

∗).

Assuming it holds, we get from any in�nite reduction path (for) starting from c another in�nite
reduction path (for�) from c∗. �us, the normalization of c∗ implies the one of c .

It remains to prove the previous statement, that is an easy induction on the reduction rule .

• Case wit (t ,V) → t :.

(wit (t ,V))∗ = π1 (µα .〈V
∗ ||µ̃a.〈(t∗,a) ||α〉〉)

� π1 (µα .〈(t
∗,V ∗) ||α〉)

� π1 (t
∗,V ∗)

= µα .〈(t∗,t∗) ||µ̃ (a1,a2).〈a1 ||α〉〉
� µα .〈t∗ ||α〉� t∗

168

7.1. A MINIMAL CLASSICAL LANGUAGE WITH DEPENDENT TYPES

• Case 〈µα .c ||e〉 c[e/α]:.

(〈µα .c ||e〉)∗ = 〈µα .c∗ ||e∗〉� c∗[e∗/α] = c[e/α]∗

• Case 〈V ||µ̃a.c〉 c[V /a]:
.

(〈V ||µ̃a.c〉)∗ = 〈V ∗ ||µ̃a.c∗〉� c∗[V ∗/a] = c[V /a]∗

• Case 〈λa.p ||q · e〉 〈q ||µ̃a.〈p ||e〉〉:.

(〈λa.p ||q · e〉)∗ = 〈λa.p∗ ||q∗ · e∗〉
� 〈q∗ ||µ̃a.〈p∗ ||e∗〉〉
= (〈q ||µ̃a.〈p ||e〉〉)∗

• Case 〈λx .p ||t · e〉 〈p[t/x]||e〉:.

〈λx .p ||t · e〉∗ = 〈λx .p∗ ||t∗ · e∗〉
� 〈t∗ ||µ̃x .〈p∗ ||e∗〉〉
� 〈p∗[t∗/x]||e∗〉 = (〈p[t/x]||e〉)∗

• Case 〈(t ,p) ||e〉 〈p ||µ̃a.〈(t ,a) ||e〉〉:.

(〈(t ,p) ||e〉)∗ = 〈µα .〈p∗ ||µ̃a.〈(t∗,a) ||α〉〉||e∗〉
� 〈p∗ ||µ̃a.〈(t∗,a) ||e∗〉〉
= (〈p ||µ̃a.〈(t ,a) ||e〉〉)∗.

• Case 〈prf (t ,V) ||e〉 〈V ||e〉:.

(〈prf (t ,V) ||e〉)∗ = 〈π2 (µα .〈V
∗ ||µ̃a.〈(t∗,a) ||α〉〉) ||e∗〉

� 〈π2 (µα .〈(t
∗,V ∗) ||α〉) ||e∗〉

� 〈π2 (t
∗,V ∗) ||e∗〉

= 〈µα .〈(t∗,V ∗) ||µ̃ (a1,a2).〈a2 ||α〉〉||e
∗〉

= 〈(t∗,V ∗) ||µ̃ (a1,a2).〈a2 ||e
∗〉〉

� 〈V ∗ ||e∗〉 = (〈V ||e〉)∗

• Case 〈subst refl q ||e〉 〈q ||e〉:.

(〈subst refl q ||e〉)∗ = 〈µα .〈q∗ ||α〉||e∗〉
� 〈q∗ ||e∗〉 = (〈q ||e〉)∗

• Case 〈subst p q ||e〉 〈p ||µ̃a.〈subst a q ||e〉〉 (with p < V):.

(〈subst p q ||e〉)∗ = 〈µα .〈p∗ ||µ̃ .〈µα .〈q∗ ||α〉||α〉〉||e∗〉
� 〈p∗ ||µ̃ .〈µα .〈q∗ ||α〉||e∗〉〉
� 〈µα .〈q∗ ||α〉||e∗〉 = (〈subst a q ||e〉)∗

�

�eorem 7.12. If c : (Γ ` ∆; ε), then c normalizes.

Proof. Proof by contradiction: if c does not normalize, then by Proposition 7.11 neither does c∗. How-
ever, by Proposition 7.10 we have that c∗ : Γ∗ ` ∆∗. �is is absurd since any well-typed command of
the λµµ̃-calculus normalizes [140]. �

169

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

Using the normalization, we can �nally prove the soundness of the system.

�eorem 7.13 (Soundness). For any p ∈ dL, we have 0 p : ⊥ .

Proof. We actually start by proving by contradiction that a command c ∈ dL cannot be well-typed with
empty contexts. Indeed, let us assume that there is such a command c : (`). By normalization, we can
reduce it to c ′ = 〈p ′ ||e ′〉 in normal form and for which we have c ′ : (`) by subject reduction. Since c ′
cannot reduce and is well-typed, p ′ is necessarily a value and cannot be a free variable. �us, e ′ cannot
be of the shape µ̃a.c ′′ and every other possibility is either ill-typed or admits a reduction, which are
both absurd.

We can now prove the soundness by contradiction. Assuming that there is a proof p such that
` p : ⊥, we can form the well-typed command 〈p ||?〉 : (` ? : ⊥) where ? is any fresh α-variable.
�e previous result shows that p cannot drop the context ? when reducing, since it would give rise
to command c : (`). We can still reduce 〈p ||?〉 to a command c in normal form, and see that c it has
to be of the shape 〈V ||?〉 (by the same kind of reasoning, using the fact that c cannot reduce and that
c : (` ? : ⊥) by subject reduction). �erefore, V is a value of type ⊥. Since there is no typing rule that
can give the type ⊥ to a value, this is absurd. �

7.1.6 Toward a continuation-passing style translation

�e di�culty we encountered while de�ning our system mostly came from the interaction between
classical control and dependent types. Removing one of these two ingredients leaves us with a sound
system in both cases. Without dependent types, our calculus amounts to the usual λµµ̃-calculus. And
without classical control, we would obtain an intuitionistic dependent type theory that we could easily
prove sound.

To prove the correctness of our system, we might be tempted to de�ne a translation to a subsystem
without dependent types, or classical control. We will discuss later in Section 7.4 a solution to handle
the dependencies. We will focus here on the possibility of removing the classical part from dL, that
is to de�ne a translation that gets rid of the classical control. �e use of continuation-passing style
translations to address this issue is very common, and it was already studied for the simply-typed
λµµ̃-calculus [32]. However, as it is de�ned to this point, dL is not suitable for the design of a CPS
translation.

Indeed, in order to �x the problem of desynchronization of typing with respect to the execution,
we have added an explicit list of dependencies to the type system of dL. Interestingly, if this solved
the problem inside the type system, the very same phenomenon happens when trying to de�ne a CPS-
translation carrying the type dependencies.

Let us consider, as discussed in Section 7.1.3, the case of a command 〈q ||µ̃a.〈p ||e〉〉 with p : B[a] and
e : B[q]. Its translation is very likely to look like:

~q� ~µ̃a.〈p ||e〉� = ~q� (λa.(~p� ~e�)),

where ~p� has type (B[a] → ⊥) → ⊥ and ~e� type B[q] → ⊥, hence the sub-term ~p� ~e� will be
ill-typed. �erefore, the �x at the level of typing rules is not satisfactory, and we need to tackle the
problem already within the reduction rules.

We follow the idea that the correctness is guaranteed by the head-reduction strategy, preventing
〈p ||e〉 from reducing before the substitution of a was made. We would like to ensure the same thing
happens in the target language (that will also be equipped with a head-reduction strategy), namely
that ~p� cannot be applied to ~e� before ~q� has furnished a value to substitute for a. �is would
correspond informally to the term12:

(~q�(λa.~p�))~e�.

12We will see in Section 7.3.4 that such a term could be typed by turning the type A → ⊥ of the continuation that ~q� is

170

7.2. EXTENSION OF THE SYSTEM

Assuming that q eventually produces a value V , the previous term would indeed reduce as follows:

(~q�(λa.~p�))~e� → ((λa.~p�) ~V �) ~e� → ~p�[~V �/a] ~e�

Since ~p�[~V �/a] now has a type convertible to (B[q] → ⊥) → ⊥, the term that is produced in the
end is well-typed.

�e �rst observation is that if q, instead of producing a value, was a classical proof throwing the
current continuation away (for instance µα .c where α < FV (c)), this would lead to the unsafe reduction:

(λα .~c�(λa.~p�))~e� → ~c� ~e�.

Indeed, through such a translation, µα would only be able to catch the local continuation, and the term
ends in ~c�~e� instead of ~c�. We thus need to restrict ourselves at least to proof terms that could not
throw the current continuation.

�e second observation is that such a term suggests the use of delimited continuations13 to tem-
porarily encapsulate the evaluation of q when reducing such a command:

〈λa.p ||q · e〉 〈µt̂p.〈q ||µ̃a.〈p ||t̂p〉〉||e〉.

�is command is safe under the guarantee that q will not throw away the continuation µ̃a.〈p ||t̂p〉, and
will mimic the aforedescribed reduction:

〈µt̂p.〈q ||µ̃a.〈p ||t̂p〉〉||e〉 〈µt̂p.〈V ||µ̃a.〈p ||t̂p〉〉||e〉 〈µt̂p.〈p[V /a]||t̂p〉||e〉 〈p[V /a]||e〉.

�is will also allow us to restrict the use of the list of dependencies to the derivation of judgments in-
volving a delimited continuation, and to fully absorb the potential inconsistency in the type of t̂p. In Sec-
tion 7.2, we will extend the language according to this intuition, and see how to design a continuation-
passing style translation in Section 8.3.

7.2 Extension of the system

7.2.1 Limits of the value restriction

In the previous section, we strictly restricted the use of dependent types to proof terms that are val-
ues. In particular, even though a proof term might be computationally equivalent to some value (say
µα .〈V ||α〉 and V for instance), we cannot use it to eliminate a dependent product, which is unsatisfac-
tory. We will thus relax this restriction to allow more proof terms within dependent types.

We can follow several intuitions. First, we saw in the previous section that we could actually allow
any proof terms as long as its CPS translation uses its continuation and uses it only once. We do not
have such a translation yet, but syntactically, these are the proof terms that can be expressed (up to
α-conversion) in the λµµ̃-calculus with only one continuation variable (that we call? in Figure 7.4), and
which do not contain application14. We insist on the fact that this de�nes a syntactic subset of proofs.
Indeed,? is only a notation and any proof de�ned with only one continuation variable is α-convertible
to denote this continuation variable with ?. For instance, µα .〈µβ〈V ||β〉||α〉 belongs to this category
since:

µα .〈µβ〈V ||β〉||α〉 =α µ?.〈µ?.〈V ||?〉||?〉

waiting for into a (dependent) type Πa : A.R[a] parameterized by R. �is way we could have ~q� : ∀R.(Πa : A.R[a] → R[q])
instead of ~q� : ((A→ ⊥) → ⊥). For R[a] := (B (a) → ⊥) → ⊥, the whole term is well-typed. Readers should now be familiar
with realizability and also note that such a term is realizable, since it eventually terminates on a correct term ~p[q/a]� ~e�.

13We stick here to the presentations of delimited continuations in [71, 5], where t̂p is used to denote the top-level delimiter.
14Indeed, λa.p is a value for any p, hence proofs like µα .〈λa.p ||q · α〉 can drop the continuation in the end once p becomes

the proof in active position.

171

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

Proofs p ::= · · · | µt̂p.ct̂p
Delimited ct̂p ::= 〈pN ||et̂p〉 | 〈p ||t̂p〉

continuations et̂p ::= µ̃a.ct̂p

nef pN ::= V | (t ,pN) | µ?.cN
fragment | prf pN | subst pN qN

cN ::= 〈pN ||eN 〉
eN ::= ? | µ̃a.cN

(a) Language

〈µα .c ||e〉 c[e/α]
〈λa.p ||q · e〉

q∈nef
 〈µt̂p.〈q ||µ̃a.〈p ||t̂p〉〉||e〉

〈λa.p ||q · e〉 〈q ||µ̃a.〈p ||e〉〉
〈λx .p ||Vt · e〉 〈p[Vt/x]||e〉
〈Vp ||µ̃a.c〉 c[Vp/a]
〈(Vt ,p) ||e〉

p<V
 〈p ||µ̃a.〈(Vt ,a) ||e〉〉

〈prf (Vt ,Vp) ||e〉 〈Vp ||e〉

〈prf p ||e〉 〈µt̂p.〈p ||µ̃a.〈prf a ||t̂p〉〉||e〉

〈subst p q ||e〉
p<V
 〈p ||µ̃a.〈subst a q ||e〉〉

〈subst refl q ||e〉 〈q ||e〉

〈µt̂p.〈p ||t̂p〉||e〉 〈p ||e〉
c → c ′ ⇒ 〈µt̂p.c ||e〉 〈µt̂p.c ′ ||e〉

wit p → t ⇐ ∀α ,〈p ||α〉 〈(t ,p ′) ||α〉
t → t ′ ⇒ c[t] c[t ′]

where:

Vt ::= x | n Vp ::= a | λa.p | λx .p | (Vt ,Vp) | refl c[t] ::= 〈(t ,p) ||e〉 | 〈λx .p ||t · e〉

(b) Reduction rules

Figure 7.4: dLt̂p: extension of dL with delimited continuations

Interestingly, this corresponds exactly to the so-called negative-elimination-free (nef) proofs of Herbe-
lin [70]. To interpret the axiom of dependent choice, he designed a classical proof system with depen-
dent types in natural deduction, in which the dependent types allow the use of nef proofs.

Second, Lepigre de�ned in a recent work [108] a classical proof system with dependent types, where
the dependencies are restricted to values. However, the type system allows derivations of judgments
up to an observational equivalence, and thus any proof computationally equivalent to a value can be
used. In particular, any proof in the nef fragment is observationally equivalent to a value, and hence
is compatible with the dependencies of Lepigre’s calculus.

From now on, we consider dLt̂p the system dL of Section 7.1 extended with delimited continuations,
and de�ne the fragment of negative-elimination-free proof terms (nef). �e syntax of both categories is
given by Figure 7.4, the proofs in the nef fragment are considered up to α-conversion for the context
variables15. �e reduction rules, given in Figure 7.4, are slightly di�erent from the rules in Section 7.1.
In the case 〈λa.p ||q · e〉with q ∈ nef (resp. 〈prf p ||e〉), a delimited continuation is now produced during
the reduction of the proof term q (resp. p) that is involved in the list of dependencies. As terms can now
contain proofs which are not values, we enforce the call-by-value reduction by requiring that proof
values only contain term values. We elude the problem of reducing terms, by de�ning meta-rules for
them16. We add standard rules for delimited continuations [71, 5], expressing the fact that when a proof
µt̂p.c is in active position, the current context is temporarily frozen until c is fully reduced.

15We actually even consider α-conversion for delimited continuations t̂p, to be able to insert such terms inside a type, even
though it might seem strange it will make sense when proving subject reduction.

16 Everything works as if when reaching a state where the reduction of a term is needed, we had an extra abstract machine
to reduce it. Note that this abstract machine could possibly need another machine itself, etc… We could actually solve this
by making the reduction of terms explicit, introducing for instance commands and contexts for terms with the appropriate
typing rules. However, this is not necessary from a logical point of view and it would signi�cantly increase the complexity
of the proofs, therefore we rather chose to stick to the actual presentation.

172

7.2. EXTENSION OF THE SYSTEM

Regular mode:

Γ ` p : A | ∆ Γ | e : A′ ` ∆{·|p}
〈p ||e〉 : Γ ` ∆ (Cut)

(a : A) ∈ Γ
Γ ` a : A | ∆ (Axr)

(α : A) ∈ ∆
Γ | α : A ` ∆ (Axl)

c : (Γ ` ∆,α : A)
Γ ` µα .c : A | ∆

(µ)
c : (Γ,a : A ` ∆)
Γ | µ̃a.c : A ` ∆

(µ̃)

Γ,a : A ` p : B | ∆
Γ ` λa.p : Πa : A.B | ∆

(→r)
Γ ` q : A | ∆ Γ | e : B[q/a] ` ∆ q < D ⇒ a < FV (B)

Γ | q · e : Πa : A.B ` ∆ (→l)

Γ,x : � ` p : A | ∆
Γ ` λx .p : ∀x�.A | ∆

(∀l)
Γ ` t : � ` ∆ Γ | e : A[t/x] ` ∆

Γ | t · e : ∀x�.A ` ∆
(∀r)

Γ ` t : � | ∆ Γ ` p : A(t) | ∆
Γ ` (t ,p) : ∃x�.A(x) | ∆

(∃r)
Γ ` p : ∃x�.A(x) | ∆ p ∈ D

Γ ` prf p : A(wit p) | ∆
prf

Γ ` p : A | ∆ A ≡ B

Γ ` p : B | ∆ (≡r)
Γ | e : A ` ∆ A ≡ B

Γ | e : B ` ∆ (≡l)

Γ ` p : t = u | ∆ Γ ` q : B[t/x] | ∆
Γ ` subst p q : B[u/x] | ∆

(subst)
Γ ` t : � | ∆

Γ ` refl : t = t | ∆
(refl)

Γ,x : � ` x : � | ∆ (Axt)
n ∈ �

Γ ` n : � | ∆
(Axn)

Γ ` p : ∃xA(x) | ∆ p ∈ D

Γ ` wit p : � | ∆ (wit)

Dependent mode:

c : (Γ `d ∆, t̂p : A; ε)
Γ ` µt̂p.c : A | ∆

(µ t̂p)
Γ ` p : A | ∆ Γ | e : A `d ∆, t̂p : B;σ {·|p}

〈p ||e〉 : Γ `d ∆, t̂p : B;σ
(Cutd)

B ∈ Aσ
Γ | t̂p : A `d ∆, t̂p : B;σ {·|p}

(t̂p)
c : (Γ,a : A `d ∆, t̂p : B;σ {a |p})
Γ | µ̃a.c : A `d ∆, t̂p : B;σ {·|p}

(µ̃d)

Figure 7.5: Type system for dLt̂p

173

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

7.2.2 Delimiting the scope of dependencies

For the typing rules, we can extend the set D to be the nef fragment:

D , nef

and we now distinguish two modes. �e regular mode corresponds to a derivation without dependency
issues whose typing rules are the same as in Figure 7.2 without the list of dependencies; plus the new
rule of introduction of a delimited continuation t̂pI . �e dependent mode is used to type commands
and contexts involving t̂p, and we use the symbol `d to denote the sequents. �ere are three rules: one
to type t̂p, which is the only one where we use the dependencies to unify dependencies; one to type
context of the form µ̃a.c (the rule is the same as the former rule for µ̃a.c in Section 7.1); and a last one
to type commands 〈p ||e〉, where we observe that the premise for p is typed in regular mode.

Additionally, we need to extend the congruence to make it compatible with the reduction of nef
proof terms (that can now appear in types), thus we add the rules:

A[p] . A[q] if ∀α (〈p ||α〉 〈q ||α〉)
A[〈q ||µ̃a.〈p ||?〉〉] . A[〈p[q/a]||?〉] with p,q ∈ nef

Due to the presence of nef proof terms (which contain a delimited form of control) within types
and list of dependenciess, we need the following technical lemma to prove subject reduction.

Lemma 7.14. For any context Γ,∆, any type A and any e,µ?.c :

〈µ?.c ||e〉 : Γ `d ∆, t̂p : B; ε ⇒ c[e/?] : Γ `d ∆, t̂p : B; ε .

Proof. By de�nition of the nef proof terms, µ?.c is of the general form
µ?.c = µ?.〈p1 ||µ̃a1.〈p2 ||µ̃a2.〈. . .||µ̃an−1.〈pn ||?〉〉〉〉. For simplicity reasons, we will only give the
proof for the case n = 2, so that a derivation for the hypothesis is of the form (we assume the
conv-rules have been pushed to the le� of cuts):

Π1
Γ ` p1 : A1 | ∆,? : A

Π2
Γ,a1 : A1 ` p2 : A | ∆,? : A · · · | ? : A ` ∆,? : A

〈p2 ||?〉 : Γ,a1 : A1 ` ∆,? : A (Cut)

Γ | µ̃a1.〈p2 ||?〉 : A1 ` ∆,? : A
(µ̃)

〈p1 ||µ̃a1.〈p2 ||?〉〉 : Γ ` ∆,? : A (Cut)

Γ ` µ?.〈p1 ||µ̃a1.〈p2 ||?〉〉 : A | ∆
(µ)

Γ ` µ?.c : A | ∆
Πe

Γ | e : A `d ∆, t̂p : B; {·|µ?.c}
〈µ?.c ||e〉 : Γ `d ∆, t̂p : B; ε

(Cut)

�us, we have to show that we can turn Πe into a derivation Π′e of Γ | e : A `d ∆t̂p; {a1 |p1}{·|p2}

with ∆t̂p , ∆, t̂p : B, since this would allow us to build the following derivation:

Π1
Γ ` p1 : A1 | ∆

Π2
Γ,a1 : A1 ` p2 : A | ∆

Π′e
· · · | e : A `d ∆t̂p; {a1 |p1}{·|p2}

〈p2 ||?〉 : Γ,a1 : A1 ` ∆t̂p; {a1 |p1}
(Cut)

Γ | µ̃a1.〈p2 ||e〉 : A1 `d ∆t̂p; {·|p1}
(µ̃)

〈p1 ||µ̃a1.〈p2 ||e〉〉 : Γ `d ∆t̂p; ε (Cut)

It su�ces to prove that if the list of dependencies was used in Πe to type t̂p, we can still give a derivation
with the new one. In practice, it corresponds to showing that for any variable a and any σ :

{a |µ?.c}σ V {a1 |p1}{a |p2}σ .

174

7.2. EXTENSION OF THE SYSTEM

For any A ∈ Bσ , by de�nition we have:

A[µ?.〈p1 ||µ̃a1.〈p2 ||?〉〉/b] ≡ A[µ?.〈p2[p1/a1]||?〉/b]
≡ A[p2[p1/a1]/b] = A[p2/b][p1/a1].

Hence for any A ∈ B {a |µ?.c }σ , there exists A′ ∈ B {a1 |p1 } {a |p2 }σ such that A ≡ A′, and we can derive:

A′ ∈ B {a1 |p1 } {a |p2 }σ

Γ | t̂p : A′ `d ∆, t̂p : B; {a1 |p1}{b |p2}σ A ≡ A′

Γ | t̂p : A `d ∆, t̂p : B; {a1 |p1}{b |p2}σ
(≡l)

�

We can now prove subject reduction for dLt̂p.

�eorem 7.15 (Subject reduction). If c,c ′ are two commands of dLt̂p such that c : (Γ ` ∆) and c c ′,
then c ′ : (Γ ` ∆).

Proof. Actually, the proof is slightly easier than for �eorem 7.8, because most of the rules do not
involve dependencies. We only give some key cases.

• Case 〈λa.p ||q · e〉 〈µt̂p.〈q ||µ̃a.〈p ||t̂p〉〉||e〉 with q ∈ nef.
A typing derivation for the command on the le� is of the form:

Πp

Γ,a : A ` p : B | ∆
Γ ` λa.p : Πa : A.B | ∆

(→l)

Πq

Γ ` q : A | ∆
Πe

Γ | e : B[q/a] ` ∆
Γ | q · e : Πa : A.B ` ∆

(→l)

〈λa.p ||q · e〉 : Γ ` ∆
(Cut)

We can thus build the following derivation for the command on the right:
Πq

Γ ` q : A | ∆ Πp

〈q ||µ̃a.〈p ||t̂p〉〉 : Γ `d ∆, t̂p : B[q]; ε
(Cut)

Γ ` µt̂p.〈q ||µ̃a.〈p ||t̂p〉〉 | ∆
(µ t̂p)

Πe

Γ | e : B[q/a] ` ∆
〈µt̂p.〈q ||µ̃a.〈p ||t̂p〉〉||e〉 : Γ ` ∆

(Cut)

Πp =

Πp

Γ,a : A ` p : B[a] | ∆
B[q] ∈ (B[a]){a |q }

Γ | t̂p : B[a] `d ∆, t̂p : B[q]; {a |q}{·|†}
(t̂p)

〈p ||t̂p〉 : Γ,a : A `d ∆, t̂p : B[q]; {a |q}
(Cut)

Γ | µ̃a.〈p ||t̂p〉 : A `d ∆, t̂p : B[q]; {·|q}
(µ̃)

• Case 〈prf p ||e〉 〈µt̂p.〈p ||µ̃a.〈prf a ||t̂p〉〉||e〉.
We prove it in the most general case, that is when this reduction occurs under a delimited con-
tinuation. A typing derivation for the command on the le� has to be of the form:

Πp

Γ ` p : ∃x .A(x) | ∆
Γ ` prf p : A(wit p) | ∆

(prf)
Πe

Γ | e : A(wit p) `d ∆, t̂p : B;σ {·| prf p}

〈prf p ||e〉 : Γ `d ∆, t̂p : B;σ
(Cut)

�e proof p being nef, so is µt̂p.〈p ||µ̃a.〈prf a ||t̂p〉〉, and by de�nition of the reduction for types,
we have for any type A that:

A[prf p] .A[µt̂p.〈p ||µ̃a.〈prf a ||t̂p〉〉],

175

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

so that we can prove that for any b:

σ {b | prf p} V σ {b |µt̂p.〈p ||µ̃a.〈prf a ||t̂p〉〉}.

�us, we can turn Πe into Π′e a derivation of the same sequent except for the list of dependenciess
that is changed to σ {·|µt̂p.〈p ||µ̃a.〈prf a ||t̂p〉〉}. We conclude the proof of this case by giving the
following derivation:

Πp

Γ ` p : ∃x .A(x) | ∆
〈p ||µ̃a.〈prf a ||t̂p〉〉Γ `d | ∆, t̂p : A(wit p); ε

(Cut)
Πt̂p

Γ ` µt̂p.〈p ||µ̃a.〈prf a ||t̂p〉〉 : A(wit p) | ∆
(µ t̂p)

with Πt̂p the following derivation where we removed Γ and ∆ when irrelevant:

a : ∃x .A ` a : ∃x .A
a : ∃x .A ` prf a : A(wit a)

(prf)
A(wit p) ∈ (A(wit a)){a |p }

t̂p : A(wit a) `d t̂p : A(wit p); {a |p}
(t̂p)

〈prf a ||t̂p〉 : Γ,a : ∃x .A(x) `d ∆, t̂p : A(wit p); {a |p}
(Cut)

Γ | µ̃a.〈prf a ||t̂p〉 : ∃x .A(x) `d ∆, t̂p : A(wit p); {·|p}
(µ̃)

• Case 〈µt̂p.〈p ||t̂p〉||e〉 〈p ||e〉.
�is case is trivial, because in a typing derivation for the command on the le�, t̂p is typed with
an empty list of dependencies, thus the type of p,e and t̂p coincides.

• Case 〈µt̂p.c ||e〉 〈µt̂p.c ′ ||e〉 with c c ′.
�is case corresponds exactly to �eorem 7.8, except for the rule 〈µα .c ||e〉 c[e/α], since µα .c
is a nef proof term (remember we are inside a delimited continuation), but this corresponds
precisely to Lemma 7.14.

�

Remark 7.16. Interestingly, we could have already takenD , nef in dL and still be able to prove the
subject reduction property. �e only di�erence would have been for the case 〈µα .c ||e〉 c[e/α] when
µα .c is nef. Indeed, we would have had to prove that such a reduction step is compatible with the list
of dependencies, as in the proof for dLt̂p, which essentially amounts to Lemma 7.14. �is shows that
the relaxation to the nef fragment is valid even without delimited continuations.

To sum up, the restriction to nef is su�cient to obtain a sound type system, but is not enough to
obtain a calculus suitable for a continuation-passing style translation. As we will now see, delimited
continuations are crucial for the soundness of the CPS translation. Observe that they also provide us
with a type system in which the scope of dependencies is more delimited. y

7.3 A continuation-passing style translation

We shall now see how to de�ne a continuation-passing style translation from dLt̂p to an intuitionis-
tic type theory, and use this translation to prove the soundness of dLt̂p. Continuation-passing style
translations are indeed very useful to embed languages with classical control into purely functional
ones [62, 32]. From a logical point of view, they generally amount to negative translations that allow
to embed classical logic into intuitionistic logic [42]. Yet, we know that removing classical control (i.e.
classical logic) of our language leaves us with a sound intuitionistic type theory. We will now see how
to design a CPS translation for our language which will allow us to prove its soundness.

176

7.3. A CONTINUATION-PASSING STYLE TRANSLATION

t ::= x | n̄ | wit p (n ∈ �)
p ::= a | λa.p | λx .p | p q | p t

| (t ,p) | prf p | refl | subst p q

A,B ::= > | ⊥ | t = u | Πa : A.B
| ∀x�A | ∃x�A | ∀X .A

(λx .p) t →β p[t/x]
(λa.p) q →β p[q/a]

p q →β p ′q (if p →β p
′)

k (wit (t ,p)) →β k t
prf (t ,p) →β p

subst refl q →β q

(a) Language and formulas (b) Reduction rules

Γ ` n̄ : � (Axn)
(x : �) ∈ Γ
Γ ` x : � (Axt)

(a : A) ∈ Γ
Γ ` a : A

(Axp)

Γ,a : A ` p : B
Γ ` λa.p : Πa : A.B

(→I)
Γ ` p : Πa : A.B Γ ` q : A

Γ ` p q : B[q/a]
(→E)

Γ,x : � ` p : A
Γ ` λx .p : ∀x�A

(∀1
I)

Γ ` p : ∀x�A Γ ` t : �
Γ ` p t : A[t/x]

(∀1
E)

Γ ` p : A X < FV (Γ)

Γ ` p : ∀X .A (∀2
I)

Γ ` p : ∀X .A
Γ ` p : A[P/X]

(∀2
E)

Γ ` t : � Γ ` p : A[u/x]
Γ ` (t ,p) : ∃x�A

(∃I)
Γ ` p : ∃x�A

Γ ` prf p : A(wit p)
(prf)

Γ ` p : ∃x�A
Γ ` wit p : � (wit)

Γ ` refl : x = x
(refl)

Γ ` q : t = u Γ ` q : A[t]
Γ ` subst p q : A[u]

(subst)
Γ ` p : A A ≡ B

Γ ` p : B (CONV)

(c) Type system

Figure 7.6: Target language

7.3.1 Target language

We choose the target language to be an intuitionistic theory in natural deduction that has exactly the
same elements as dLt̂p, except the classical control. �e language distinguishes between terms (of type
�) and proofs, it also includes dependent sums and products for types referring to terms as well as a
dependent product at the level of proofs. As it is common for CPS translations, the evaluation follows
a head-reduction strategy. �e syntax of the language and its reduction rules are given by Figure 7.6.

�e type system, also presented in Figure 7.6, is de�ned as expected, with the addition of a second-
order quanti�cation that we will use in the sequel to re�ne the type of translations of terms and nef
proofs. As for dLt̂p the type system has a conversion rule, where the relation A ≡ B is the symmetric-
transitive closure of A . B, de�ned once again as the congruence over the reduction −→ and by the
rules:

0 = 0 B > 0 = S (u) B ⊥
S (t) = 0 B ⊥ S (t) = S (u) B t = u .

7.3.2 Translation of proofs and terms

We can now de�ne the continuation-passing style translation of terms, proofs, contexts and commands.
�e translation is given in Figure 7.7, in which we tag some lambdas with a bullet λ• for technical
reasons. �e translation for delimited continuation follows the intuition we presented in Section 7.1.6,
and the de�nition for stacks t · e and q · e (with q nef) inlines the reduction producing a command with

177

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

~wit p�t , λk .~p�p (λ
•q.k (wit q))

~x�t , λk .k x

~a�V , a

~λa.p�V , λ•a.~p�p
~(Vt ,Vp)�V , (~Vt �V ,~V �V)

~V �p , λk .k ~V �V
~µα .c�p , λ•α .~c�c
~prf p�p , λ•k .(~p�p (λ

•qλk ′.k ′ (prf q))) k

~(t ,p)�p , λ•k .~p�p (~t�t (λxλ
•a.k (x ,a)))

~subst V q�p , λk .~q�p (λ
•q′.k (subst ~V �V q′)))

~subst p q�p , λk .~p�p (λ
•p ′.~q�p (λ

•q′.k (subst p ′q′))) (p < V)

~α�e , α

~t · e�e , λp.(~t�t (λ
•v .pv)) ~e�e

~qN · e�e , λp.(~qN �p (λ
•v .pv)) ~e�e (qN ∈ nef)

~q · e�e , λ•p.~q�p (λ
•v .pv ~e�e) (q < nef)

~〈p ||e〉�c , ~e�e ~p�p

~〈p ||e〉�t̂p , ~p�p ~e�et̂p (e , t̂p)

~n�Vt , n̄

~refl�V , refl

~λx .p�V , λ•x .~p�p

~µt̂p.c�p , λk .~c�t̂pk

~µ̃a.c�e , λ•a.~c�c

~〈p ||t̂p〉�t̂p , ~p�p

~µ̃a.c�et̂p , λ•a.~c�t̂p

Figure 7.7: Continuation-passing style translation

a delimited continuation. All the other rules are natural17 in the sense that they re�ect the reduction
rule , except for the translation of pairs (t ,p):

~(t ,p)�p , λk .~p�p (~t�t (λxa.k (x ,a)))

�e natural de�nition would have been λk .~t�t (λu .~p�p λq.k (u,q)), however such a term would have
been ill-typed (while this de�nition is correct, as we will see in the proof of Lemma 7.25). Indeed, the
type of ~p�p depends on t , while the continuation (λq.k (u,q)) depends on u, but both become compat-
ible once u is substituted by the value return by ~t�t . �is somewhat strange de�nition corresponds to
the intuition that we reduce ~t�t within a delimited continuation18, in order to guarantee that we will
not reduce ~p�p before ~t�t has returned a value to substitute for u. �e complete translation is given
in Figure 7.7.

Before de�ning the translation of types, we �rst state a lemma expressing the fact that the transla-
tions of terms and nef proof terms use the continuation they are given once and only once. In particular,
it makes them compatible with delimited continuations and a parametric return type. �is will allow
us to re�ne the type of their translation.

Lemma 7.17. �e translation satis�es the following properties:

1. For any term t in dLt̂p, there exists a. term t+ such that for any k we have ~t�t k →∗β k t+.

2. For any nef proof pN , there exists a. proof p+N such that for any k we have ~pN �p k →∗β k p+N .

17As usual, we actually obtained the translation from an intermediate step consisting in the de�nition of an context-free
abstract machine. �e reader will recognize the usual descent (in call-by-value) through the levels of p,e,V .

18In fact, we will see in the next chapter that this requires a kind of co-delimited continuation.

178

7.3. A CONTINUATION-PASSING STYLE TRANSLATION

x+ , x

n+ , n̄

(wit p)+ , wit p+

a+ , a

refl+ , refl

(λa.p)+ , λa.~p�p
(λx .p)+ , λx .~p�p
(t ,p)+ , (t+,p+)

(prf p)+ , prf p+

(subst p q)+ , subst p+ q+

(µ?.c)+ , c+

(µt̂p.c)
+

, c+

(〈p ||?〉)+ , p+

(〈p ||t̂p〉)
+

, p+

(〈p ||µ̃a.ct̂p〉)
+ , c+[p+/a]

Figure 7.8: Linearity of the translation for nef proofs

In particular, we have :

~t�t λx .x →
∗
β t+ and ~pN �p λa.a →

∗
β p
+
N

Proof. Straightforward mutual induction on the structure of terms and nef proofs, adding similar in-
duction hypothesis for nef contexts and commands. �e terms t+ and proofs p+ are given in Figure 7.8.
We detail the case (t ,p) with p ∈ nef to give an insight of the proof.

~(t ,p)�p k→β ~p�p (~t�t (λxa.k (x ,a)))
→β (~t�t (λxa.k (x ,a))) p+

→β (λxa.k (x ,a)) t+ p+

→β (λa.k (t+,a)) p+

→β k (t+,p+)

(by de�nition)
(by induction)
(by induction)

�

Moreover, we can verify by that the translation preserves the reduction:

Proposition 7.18. If c,c ′ be two commands of dLt̂p such that c c ′, then ~c�c =β ~c ′�c

Proof. By induction on the reduction rules for , using Lemma 7.17 for cases involving a term t . �

We can in fact prove a �ner result to show that any in�nite reduction sequence in dLt̂p is responsible
for an in�nite reduction sequence through the translation. Using the preservation of typing (Propo-
sition 7.26) together with the normalization of the target language, this will give us a proof of the
normalization of dLt̂p for typed proof terms.

7.3.3 Normalization of dLt̂p

We will now prove that the translation is well-behaved with respect to the reduction. In practice, we
are mainly interested in the preservation of normalization through the translation. Namely, we want to
prove that if the image ~c�c of a command c is normalizing in the target language, then the command
c is already normalizing in dLt̂p. To this purpose, we roughly proceed as follows:

1. we identify a set of reduction steps in dLt̂p which are directly re�ected into a strictly positive
number of reduction steps through the CPS;

2. we show that the other steps alone can not form an in�nite sequence of reduction;

3. we deduce that every in�nite sequence of reduction in dLt̂p give rise to an in�nite sequence
through the translation.

179

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

�e �rst point corresponds therea�er to Proposition 7.21, the second one to the Proposition 7.22.
As a ma�er of fact, the most di�cult part is somehow anterior to these points. It consists in under-
standing how a reduction step can be re�ected through the translation and why it is enough to ensure
the preservation of normalization (that is the third point). Instead of stating the result directly and give
a long and tedious proof of its correctness, we will rather sketch its main steps.

First of all, we split the reduction rule→β into two di�erent kinds of reduction steps:

• administrative reductions, that we denote by −→a, which correspond to continuation-passing and
computationally irrelevant (w.r.t. to dLt̂p) reduction steps. �ese are de�ned as the β-reduction
steps of non-annotated λs.

• distinguished reductions, that we denote by −→•, which correspond to the image of a reduction
step through the translation. �ese are de�ned as every other rules, that is to say the β-reduction
steps of annotated λ•’s plus the rules corresponding to redexes formed with wit, prf and subst .

In other words, we de�ne two deterministic reductions −→• and −→a, such that the usual weak-
head reduction →β is equal to the union −→• ∪ −→a. Our goal will be to prove that every in�nite
reduction sequence in dLt̂p will be re�ected in the existence of an in�nite reduction sequence for −→•.

Second, let us assume for a while that we can show for any reduction c c ′ we obtain:

~c�c

t0 t1 t2

~c ′�c

β
*

a
*

•

1
β

*

through the translation. �en by induction, it implies that if a command c0 produces an in�nite reduc-
tion sequence c0 c1 c2 . . ., it is re�ected through the translation by the following reduction
scheme:

~c0�c

t00 t01 t02 t10 t11 t12 t20 t21

~c1�c ~c2�c

β
*

β
*

β
*

a
*

a
*

•

1
β

*
•

1
β

*
•

1

Using the fact that all reductions are deterministic, and that the arrow from ~c1�c to t02 (and ~c2�c to
t12 and so on) can only contain steps of the reduction −→a, the previous scheme in fact ensures us that
we have:

~c0�c

t00 t01 t02 t10 t11 t12 t20 t21

~c1�c ~c2�c

β
* a *

a *

•
1

β* β* •
1

β* β* •
1

�is directly implies that ~c0�c produces an in�nite reduction sequence and thus is not normalizing.
�is would be the ideal situation, and if the aforementioned steps were provable as such, the proof
would be over. Yet, our situation is more subtle, and we need to re�ne our analysis to tackle the problem.
We shall brie�y explain now why we can actually consider a slightly more general reduction scheme,
while trying to remain concise on the justi�cation. Keep in mind that it is our goal to preserve the
existence of an in�nite sequence of distinguished steps.

�e �rst generalization consists to allow distinguished reductions for redexes that are not in head
positions. �e safety of this generalization follows from this proposition:

Proposition 7.19. If u −→• u ′ and t[u ′] does not normalize, then neither does t[u].

180

7.3. A CONTINUATION-PASSING STYLE TRANSLATION

Proof. By induction on the structure of t , a very similar proof can be found in [84]. �

Following this idea, we de�ne a new arrow ?−→• by:

u −→• u
′ ⇒ t[u] ?−→• t[u ′]

where t[] ::= [] | t ′(t[]) | λx .t[], expressing the fact that a distinguished step can be performed
somewhere in the term. We denote by −→β+ the reduction relation de�ned as the union −→β ∪

?−→•,
which is no longer deterministic. Coming back to the thread scheme we described above, we can now
generalize it with this arrow. Indeed, as we are only interested in ge�ing an in�nite reduction sequence
from ~c0�c , the previous proposition ensures us that if t02 (t12, etc.) does not normalize, it is enough
to have an arrow t01 *−→β+ t02 (t11 *−→β+ t12, etc.) to deduce that t01 does not normalize either. Hence
it is enough to prove that we have the following thread scheme, where we took advantage of this
observation:

~c0�c

t00 t01 t02 t10 t11 t12 t20 t21

~c1�c ~c2�c

β
*

β
*

β
*

a
*

a
*

•
1

β+
* •

1
β+

* •
1

In the same spirit, if we de�ne =a to be the congruence over terms induced by the reduction −→a,
we can show that if a term has a redex for the distinguished relation in head position, then so does any
(administratively) congruent term.

Proposition 7.20. If t 1−→• u and t =a t
′, then there exists u ′ such that t ′ 1−→• u

′ and u =a u ′.

Proof. By induction on t , observing that an administrative reduction can neither delete nor create re-
dexes for −→•. �

In other words, as we are only interested in the distinguished reduction steps, we can take the
liberty to reason modulo the congruence =a. Notably, we can generalize one last time our reduction
scheme, replacing the le� (administrative) arrow from ~ci �c by this congruence:

~c0�c

t00 t01 t02 t10 t11 t12 t20 t21

~c1�c ~c2�c

β
*

β
*

β
*aa

•
1

β+
* •

1
β+

* •
1

For all the reasons explained above, such a reduction scheme ensures that there is an in�nite reduc-
tion sequence from ~c0�c . Because of this guarantee, by induction, it is enough to show that for any
reduction step c0 c1, we have:

~c0�c

t0 t1 t2

~c1�c

β
*

•
1

β+
*

a (1)

In fact, as explained in the preamble of this section, not all reduction steps can be re�ected this way
through the translation. �ere are indeed 4 reduction rules, that we identify herea�er, that might only
be re�ected into administrative reductions, and produce a scheme of this shape (which subsumes the
former):

~c0�c *−→β+ t =a ~c1�c (2)

�is allows us to give a more precise statement about the preservation of reduction through the CPS
translation.

181

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

Proposition 7.21 (Preservation of reduction). Let c be two commands of dLt̂p. If c0 c1, then it is
re�ected through the translation into a reduction scheme (1), except for the rules:

〈subst p q ||e〉
p<V
 〈p ||µ̃a.〈subst a q ||e〉〉

〈subst refl q ||e〉 〈q ||e〉

〈µt̂p.〈p ||t̂p〉||e〉 〈p ||e〉
c[t] c[t ′]

which are re�ected in the reduction scheme (2).

Proof. �e proof is done by induction on the reduction (see Figure 7.4). To ease the notations, we will
o�en write λ•v .(λ•x .~p�p)v −→• λ•x .~p�p where we performα-conversion to identify λ•v .~p�p[v/x] and
λ•x .~p�p . Additionally, to facilitate the comprehension of the steps corresponding to the congruence
=a, we use an arrow ?−→a to denote the possibility of performing an administrative reduction not in
head position, de�ned by:

u −→a u
′ ⇒ t[u] ?−→a t[u ′]

We write −→a+ the union −→a ∪
?−→a.

• Case 〈µα .c ||e〉 c[e/α]:
We have:

~〈µα .c ||e〉�c = (λ•α .~c�c)~e�e
−→• ~c�c [~e�e/α] = ~c[e/α]�c

• Case 〈λa.p ||q · e〉 〈q ||µ̃a.〈p ||e〉〉:
We have:

~〈λa.p ||q · e〉�c = (λk .k (λ•a.~p�p)) λ
•p.~q�p (λ

•v .pv ~e�e)
−→a (λ•p.~q�p (λ

•v .pv ~e�e)) λ
•a.~p�p

−→• ~q�p (λ
•v .(λ•a.~p�p)v ~e�e)

?−→• ~q�p (λ
•a.~p�p ~e�e) = ~〈q ||µ̃a.〈p ||e〉〉�c

• Case 〈λa.p ||qN · e〉
qN ∈nef
 〈µt̂p.〈qN ||µ̃a.〈p ||t̂p〉〉||e〉:

We know by Lemma 7.17 that qN being nef, it will use, and use only once, the continuation it is
applied to. �us, we know that if k −→• k ′, we have that:

~qN �p k *−→β k q+N −→• k
′q+N β←− ~qN �p k

′

and we can legitimately write ~qN �p k −→• ~qN �p k ′ in the sense that it corresponds to per-
forming now a reduction that would have been performed in the future. Using this remark, we
have:

~〈λa.p ||qN · e〉�c = (λk .k (λ•a.~p�p)) λp.(~qN �p (λ
•v .pv)) ~e�e

2−→a (~qN �p (λ
•v .(λ•a.~p�p)v)) ~e�e

−→• (~qN �p (λ
•a.~p�p))~e�e

a←− (λk .(~qN �p (λ
•a.~p�p)) k) ~e�e = ~〈µt̂p.〈qN ||µ̃a.〈p ||t̂p〉〉||e〉�c

• Case 〈λx .p ||Vt · e〉 〈p[Vt/x]||e〉:
Since Vt is a value (i.e. x or n), we have ~Vt �t = λk .k ~Vt �Vt . In particular, it is easy to deduce
that ~p[Vt/x]�p = ~p�p[~Vt �Vt /x], and then we have:

~〈λx .p ||Vt · e〉�c = (λk .k (λ•x .~p�p))λp.(~Vt �t (λ
•v .pv)) ~e�e

2−→a (~Vt �t (λ
•v .(λ•x .~p�p)v)) ~e�e

−→a ((λ•v .(λ•x .~p�p)v) ~Vt �Vt) ~e�e
−→• ((λ•x .~p�p) ~Vt �Vt) ~e�e
−→• (~p�p[~Vt �Vt /x]) ~e�e = ~p[Vt/x]�p ~e�e = 〈p[Vt/x]||e〉

182

7.3. A CONTINUATION-PASSING STYLE TRANSLATION

• Case 〈V ||µ̃a.c〉 c[Vp/a]:
Similarly to the previous case, we have ~V �p = λk .k ~V �V and thus ~c[V /x]�c = ~p�p[~V �V /a].

~〈Vp ||µ̃a.c〉�c = (λk .k ~V �V)λ
•a.~c�c

−→a (λ•a.~c�c) ~V �V
−→• ~c�c [~V �V /a] = ~c[V /a]�c

• Case 〈(Vt ,p) ||e〉
p<V
 〈p ||µ̃a.〈(Vt ,a) ||e〉〉:

We have :

~〈(Vt ,p) ||e〉�c = (λ•k .~p�p (~Vt �t (λxλ
•a.k (x ,a))) ~e�e

−→• ~p�p (~Vt �t (λxλ
•a.~e�e (x ,a)))

−→a+ ~p�p ((λxλ
•a.~e�e (x ,a)) ~Vt �Vt)

−→a+ ~p�p (λ
•a.~e�e (~Vt �Vt ,a))

a+←− ~p�p (λ
•a.~(Vt ,a)�p ~e�e)

a+←− (λk ~p�p (λ
•a.~(Vt ,a)�p k)) ~e�e = ~〈p ||µ̃a.〈(Vt ,a) ||e〉〉�c

• Case 〈prf p ||e〉 〈µt̂p.〈p ||µ̃a.〈prf a ||t̂p〉〉||e〉:
We have:

~〈prf p) ||e〉�c = λ•k .(~p�p (λ
•aλk ′.k ′ (prf a))) k) ~e�e

−→• (~p�p (λ
•a.λk ′.k ′ (prf a))) ~e�e

a←− (λk .(~p�p (λ
•a.λk ′.k ′ (prf a))) k) ~e�e = ~〈µt̂p.〈p ||µ̃a.〈prf a ||t̂p〉〉||e〉�c

• Case 〈prf (Vt ,Vp) ||e〉 〈Vp ||e〉:
We have:

~〈prf (Vt ,Vp) ||e〉�c = λ•k .((λk .k (~Vt �V ,~Vp�V)) (λ
•qλk ′.k ′ (prf q))) k) ~e�e

−→• ((λk .k (~Vt �V ,~Vp�V)) (λ
•qλk ′.k ′ (prf q))) ~e�e

−→a ((λ•qλk ′.k ′ (prf q)) (~Vt �V ,~Vp�V)) ~e�e
−→• (λk ′.k ′ (prf (~Vt �V ,~Vp�V))) ~e�e
−→a ~e�e (prf (~Vt �V ,~Vp�V)))

?−→• ~e�e ~Vp�V a←− ~〈Vp ||e〉�c

• Case 〈subst p q ||e〉
p<V
 〈p ||µ̃a.〈subst a q ||e〉〉:

We have:

~〈subst p q ||e〉�c = (λk .~p�p (λ
•a.~q�p (λ

•q′.k (subst a q′)))) ~e�e
−→a ~p�p (λ

•a.~q�p (λ
•q′.~e�e (subst a q′)))

?
a←− ~p�p (λ

•a.(λk .~q�p (λ
•q′.k (subst a q′))) ~e�e)

= ~〈p ||µ̃a.〈subst a q ||e〉〉�c

• Case 〈subst refl q ||e〉 〈q ||e〉:
We have:

~〈subst refl q ||e〉�c = (λk .~q�p (λ
•q′.k (subst refl q′))) ~e�e

−→a ~q�p (λ
•q′.~e�e (subst refl q′))

?−→• ~q�p (λ
•q′.~e�e q

′)
?−→• ~q�p ~e�e = ~〈q ||e〉�c

183

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

• Case 〈µt̂p.〈p ||t̂p〉||e〉 〈p ||e〉:
We have:

~〈µt̂p.〈p ||t̂p〉||e〉�c = (λk .~p�pk) ~e�e
−→a ~p�p ~e�e = ~〈p ||e〉�c

• Case c c ′ ⇒ 〈µt̂p.c ||e〉 〈µt̂p.c ′ ||e〉:
By induction hypothesis, we get that ~c�c *−→β+ t =a ~c

′�c for some term t . �erefore we have:

〈µt̂p.c ||e〉 = (λk .~c�c k) ~e�e
−→a ~c�c ~e�e

*−→β+ t ~e�e
=a ~c ′�c ~e�e

a←− (λk .~c ′�c k) ~e�e = 〈µt̂p.c
′ ||e〉

• Case t → t ′ ⇒ c[t] c[t ′]:
As such, the translation does not allow an analysis of this case, mainly because we did not give an
explicit small-step semantics for terms, and de�ned terms reduction through a big-step semantics:

∀α ,〈p ||α〉 * 〈(t ,q) ||α〉 ⇒ wit p → t

However, we claim that we could have extended the language of dLt̂p with commands for terms:

ct ::= 〈t ||et 〉 et ::= µ̃x .c[t] c[] ::= 〈([],p) ||e〉 | 〈λx .p ||[] · e〉

and adding dual operators for (co-)delimited continuations to allow for a small-step de�nition of
terms reduction:

〈λx .p ||t · e〉 〈µt̂p.〈t ||µ̃x .〈p ||t̂p〉〉||e〉
〈wit p ||et 〉 〈p ||µ̃a.〈wit a ||et 〉〉
〈(t ,p) ||e〉 〈p ||µ̃t̂p.〈t ||µ̃x .〈t̂p||µ̃a.〈(x ,a) ||e〉〉〉〉

〈Vt ||µ̃x .ct 〉 ct [Vt/x]
〈wit (Vt ,Vp) ||et 〉 〈Vt ||et 〉
〈Vp ||µ̃t̂p.〈t̂p||e〉〉 〈Vp ||e〉

c c ′ ⇒ 〈p ||µ̃t̂p.c〉 〈p ||µ̃t̂p.c ′〉

It is worth noting that these rules simulate the big-step de�nitions we had before while preserving
the global call-by-value strategy. De�ning the translation for terms in the extended syntax:

~wit Vt �t , λk .k (wit ~Vt �Vt)

~wit p�t , λk .~p�p (λ
•q.k (wit q))

~µ̃t̂p.ct �t , ~ct �t

~µ̃x .c�t , λ•x .~c�c
~〈t ||et 〉�t , ~t�t ~et �t
~t̂p�p , λ•k .k

We can then prove that each reduction rule satis�es the expected scheme.
Case 〈λx .p ||t · e〉 〈µt̂p.〈t ||µ̃x .〈p ||t̂p〉〉||e〉:
We have:

〈λx .p ||t · e〉 = (λ•k .k λ•x .~p�p) (λp.(~t�t (λ
•v .pv)) ~e�e)

−→• (λp.(~t�t (λ
•v .pv)) ~e�e) λ

•x .~p�p
−→a (~t�t (λ

•v .(λ•x .~p�p)v)) ~e�e
?−→• (~t�t (λ

•x .~p�)) ~e�e
a+←− λk .((~t�t (λ

•x .~p�)) k) ~e�e = ~〈µt̂p.〈t ||µ̃x .〈p ||t̂p〉〉||e〉�c

Case 〈(t ,p) ||e〉 〈p ||µ̃t̂p.〈t ||µ̃x .〈t̂p||µ̃a.〈(x ,a) ||e〉〉〉〉:
We have:

〈(t ,p) ||e〉 = (λ•k .~p�p (~t�t (λx .λ
•a.k (x ,a)))) ~e�e

−→• ~p�p (~t�t (λx .λ
•a.~e�e (x ,a)))

a+←− ~p�p (~t�t (λx .(λk .k)λ
•a.~e�e (x ,a)))

a+←− ~p�p (~t�t (λx .(λk .k)λ
•a.(λk .k (x ,a)) ~e�e))

= ~〈p ||µ̃t̂p.〈t ||µ̃x .〈t̂p||µ̃a.〈(x ,a) ||e〉〉〉〉�c

184

7.3. A CONTINUATION-PASSING STYLE TRANSLATION

Case 〈wit p ||et 〉 〈p ||µ̃a.〈wit a ||et 〉〉:
We have:

~wit p�t ~et �t = (λk .~p�p (λ
•a.k (wit a))) ~et �t

−→a ~p�p (λ
•a.~et �t (wit a)))

a+←− ~p�p (λ
•a.(λk .k (wit a)) ~et �t) = ~〈p ||µ̃a.〈wit a ||et 〉〉�c

Case 〈Vt ||µ̃x .ct 〉 ct [Vt/x]:
We have:

~wit (Vt ,Vp)�t ~et �t = (λk .k (wit (~Vt �Vt ,~Vp�V))) ~et �t
−→a ~et �t (wit (~Vt �Vt ,~Vp�V))
−→• ~et �t ~Vt �Vt
a←− (λk .k ~Vt �Vt) ~et �t = ~Vt �tet

Case 〈wit (Vt ,Vp) ||et 〉 〈Vt ||et 〉:
We have:

~Vt �t ~µ̃x .c�t = (λk .k ~Vt �Vt) λ
•x .~c�c

−→a (λ•x .~c�c) ~Vt �Vt
−→• ~c�c [~Vt �Vt /x] = ~c[Vt/x]�c

Case 〈V ||µ̃t̂p.〈t̂p||e〉〉 〈V ||e〉:
We have:

~V �p~µ̃t̂p.〈t̂p||e〉�e = (λk .k ~V �V) ((λk .k)~e�e)
−→a ((λk .k)~e�e) ~V �V
−→a ~e�e ~V �V

a←− (λk .k ~V �V) ~e�e = ~〈V ||e〉�c

Case c c ′ ⇒ 〈V ||µ̃t̂p.c〉 〈V ||µ̃t̂p.c ′〉:
�is case is similar to the case for delimited continuations proved before, we only need to use the
induction hypothesis for ~c�c to get:

~V �p~µ̃t̂p.c�e = (λk .k ~V �V) ~c�c
−→a ~c�c ~V �V

*−→β+ t ~V �V
=a ~c ′�c ~V �V

a+←− (λk .k ~V �V) ~c
′�c = ~V �p~µ̃t̂p.c

′�e

�

Proposition 7.22. �ere is no in�nite sequence only made of reductions:

(1) 〈subst p q ||e〉
p<V
 〈p ||µ̃a.〈subst a q ||e〉〉

(2) 〈subst refl q ||e〉 〈q ||e〉

(3) 〈µt̂p.〈p ||t̂p〉||e〉 〈p ||e〉
(4) c[t] c[t ′]

Proof. It is su�cient to observe that if we de�ne the following quantities:

1. the quantity of subst p q with p not a value within a command,
2. the quantity of subst within a command,
3. the quantity of t̂p within a command,
4. the quantity of wit terms within a command.

then the rule (1) makes the quantity (1) decrease while preserving the others, (2) makes the quantity
(2) decrease and preserves the other, and so on. All in all, we have a bound on the maximal number of
steps for the reduction restricted to these four rules. �

185

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

Proposition 7.23 (Preservation of normalization). If ~c�c normalizes, then c is also normalizing

Proof. Reasoning by contraposition, let us assume that c is not normalizing. �en in any in�nite re-
duction sequence from c , according to the previous proposition, there are in�nitely many steps that
are re�ected through the CPS into at least one distinguished step (Proposition 7.21). �us, there is an
in�nite reduction sequence from ~c�c too. �

�eorem 7.24 (Normalization). If c : Γ ` ∆, then c normalizes.

Proof. Using the preservation of typing (Proposition 7.26), we know that if c is typed in dLt̂p, then its
image ~c�c is also typed. Using the fact that typed terms of the target language are normalizing, we
can �nally apply the previous proposition to deduce that c normalizes. �

7.3.4 Translation of types

We can now de�ne the translation of types in order to show further that the translation ~p�p of a proof
p of type A is of type 19~A�∗. �e type ~A�∗ is the double-negation of a type ~A�+ that depends on
the structure of A. �anks to the restriction of dependent types to nef proof terms, we can interpret a
dependency in p (resp. t) in dLt̂p by a dependency in p+ (resp. t+) in the target language. Lemma 7.17
indeed guarantees that the translation of a nef proof p will eventually return p+ to the continuation it
is applied to. �e translation is de�ned by:

~A�∗ , (~A�+ → ⊥) → ⊥ ~t = u�+ , t+ = u+

~∀x�.A�+ , ∀x�.~A�∗ ~>�+ , >
~∃x�.A�+ , ∃x�.~A�+ ~⊥�+ , ⊥
~Πa : A.B�+ , Πa : ~A�+.~B�∗ �+ , �

Observe that types depending on a term of type T are translated to types depending on a term of the
same type T , because terms can only be of type �. As we shall discuss in Section 7.5.2, this will no
longer be the case when extending the domain of terms. We naturally extend the translation for types
to the translation of contexts, where we consider uni�ed contexts of the form Γ ∪ ∆:

~Γ,a : A� , ~Γ�+,a : ~A�+
~Γ,x : �� , ~Γ�+,x : �
~Γ,α : A⊥⊥� , ~Γ�+,α : ~A�+ → ⊥.

As explained informally in Section 7.1.6 and stated by Lemma 7.17, the translation of a nef proof
term p of type A uses its continuation linearly. In particular, this allows us to re�ne its type to make it
parametric in the return type of the continuation. From a logical point of view, it amounts to replace
the double-negation (A → ⊥) → ⊥ by Friedman’s translation [53]: ∀R.(A → R) → R. It is worth
noticing the correspondences with the continuation monad [46] and the codensity monad. Also, we
make plain use here of the fact that the nef fragment is intuitionistic, so to speak. Indeed, it would be
impossible to a�ribute this type to the translation of a (really) classical proof.

Moreover, we can even make the return type of the continuation dependent on its argument (that
is a type of the shape Πa : A.R (a)), so that the type of ~p�p will correspond to the elimination rule:

∀R.(Πa : A.R (a) → R (p+)).

�is re�nement will make the translation of nef proofs compatible with the translation of delimited
continuations.

19To follow the notations in the previous chapters, we could have wri�en ~A�p and ~A�V instead of ~A�∗ and ~A�+. To
avoid confusion, we preferred to stick with the notation p+ for the translation of nef proofs, which are of type ~A�+ and not
necessarily values.

186

7.3. A CONTINUATION-PASSING STYLE TRANSLATION

Lemma 7.25 (Typing translation for nef proofs). �e following holds:

1. For any term t , if Γ ` t : � | ∆ then ~Γ ∪ ∆� ` ~t�t : ∀X .(∀x�.X (x) → X (t+)).

2. For any nef proof p, if Γ ` p : A | ∆ then ~Γ ∪ ∆� ` ~p�p : ∀X .(Πa : ~A�+.X (a) → X (p+))).

3. For any nef command c , if c : (Γ ` ∆,? : B) then ~Γ ∪ ∆�,? : Πb : B+.X (b) ` ~c�c : X (c+)).

Proof. �e proof is done by induction on the typing derivation. We only give the key cases of the proof.

• Case (wit). In dLt̂p the typing rule for wit p is the following:

Γ ` p : ∃x�.A(x) | ∆ p ∈ D

Γ ` wit p : � | ∆ (wit)

We want to show that:

~Γ ∪ ∆� ` λk .~p�p (λa.k (wit a)) : ∀X .(∀x�.X (x) → X (wit p+))

By induction hypothesis, we have:

~Γ ∪ ∆� ` ~p�p : ∀Z .(Πa : ∃x�~A�+.Z (a) → Z (p+)),

hence it amounts to showing that for any X we can build the following derivation, where we write Γk
for the context ~Γ ∪ ∆�,k : ∀x�X (x):

Γk ` k : ∀x�X (x)
(Axp)

Γk ,a : ∃x�.~A�+ ` a : ∃x�.~A�+
(Axp)

Γk ,a : ∃x�.~A�+ ` wit a : �
(wit)

Γk ,a : ∃x�.~A�+ ` k (wit a) : X (wit a)
(∀1
E)

Γk ` λa.k (wit a) : Πa : ∃x�~A�+.X (wit a)
(→I)

• Case (∃I). In dLt̂p the typing rule for (t ,p) is the following:

Γ ` t : � | ∆ Γ ` p : A(t) | ∆
Γ ` (t ,p) : ∃x�.A(x) | ∆

∃i

Hence we obtain by induction:

~Γ ∪ ∆� ` ~t�t : ∀X .(∀x�X (x) → X (t+))
~Γ ∪ ∆� ` ~p�p : ∀Y .(Πa : A(t+).Y (a) → Y (p+))

(IHt)
(IHp)

and we want to show that for any Z :

~Γ ∪ ∆� ` λk .~p�p (~t�t (λxa.k (x ,a))) : Πa : ∃x�.A.Z (a) → Z (t+,p+).

So we need to prove that:

~Γ ∪ ∆�,k : Πq : ∃x�.A.Z (q) ` ~p�p (~t�t (λxa.k (x ,a))) : Z (t+,p+)

We let the reader check that such a type is derivable by using X (x) , Πa : A(x).Z (x ,a) in the type of
~t�p , and using Y (a) , Z (t+,a) in the type of ~p�p :

187

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

Γ′ ` ~p�p : . . .
Γ′ ` ~t�t : . . .

k : Πq : ∃x�.A.Z (q) ` k : Πq : ∃x�A.Z (q)
(Axp)

x : �,a : A(x) ` (x ,a) : ∃x�.A
(∃I)

k : Πq : ∃x�.A.Z (),x : �,a : A(x) ` k (x ,a) : Z (x ,a)
(→E)

k : Πq : ∃x�.A.Z (q) ` λxa.k (x ,a) : ∀x .Πa : A(x).Z (x ,a)
(∀I)

Γ′,k : Πa : ∃x�.A.Z (a) ` ~t�t (λxa.k (x ,a)) : Πa : A(t+).Z (t+,a)
(→E)

Γ′,k : Πq : ∃x�.A.Z (q) ` ~p�p (~t�t (λxa.k (x ,a))) : Z (t+,p+)
(→E)

• Case (µ). For this case, we could actually conclude directly using the induction hypothesis for c .
Rather than that, we do the full proof for the particular case µ?.〈p ||µ̃a.〈q ||?〉〉, which condensates the
proofs for µ?.c and the two possible cases 〈pN ||eN 〉 and 〈pN ||?〉 of nef commands. �is case corresponds
to the following typing derivation in dLt̂p:

Πp

Γ ` p : A | ∆

Πq

Γ,a : A ` q : B | ∆ · · · | ? : B ` ∆,? : B
〈q ||?〉 : Γ,a : A ` ∆,? : B (Cut)

Γ | µ̃a.〈q ||?〉 : A ` ∆,? : B
(µ̃)

〈p ||µ̃a.〈q ||?〉〉 : Γ | ∆,? : B (Cut)

Γ ` µ?.〈p ||µ̃a.〈q ||?〉 | ∆〉 : B
(µ)

We want to show that for any X we can derive:

Γ′ ` λk .~p�p (λa.~q�p k) : Πb : B.X (b) → X (q+[p+/a]).

By induction, we have:

Γ′ ` ~p�p : ∀Y .(Πa : A+.Y (a) → Y (p+))
Γ′,a : A+ ` ~q�t : ∀Z .(Πb : B+.Z (b) → Z (q+)),

so that by choosing Z (b) , X (b) and Y (a) , X (q+), we get the expected derivation:

Γ′ ` ~p�p : . . .

Γ′,a : A+ ` ~q�p : . . . k : Πb : B.X (b) ` k : k : Πb : B.X (b)

Γ′,k : Πb : B.X (b),a : A+ ` ~q�p k : X (q+)
(→E)

Γ′,k : Πb : B.X (b) ` λa.~q�p k : Πa : A+.X (q+)
(→I)

Γ′,k : Πb : B.X (b) ` ~p�p (λa.~q�p k) : X (q+[p+/a])
(→E)

�

Using the previous Lemma, we can now prove that the CPS translation is well-typed in the general
case.

Proposition 7.26 (Preservation of typing). �e translation is well-typed, i.e. the following holds:

1. if Γ ` p : A | ∆ then ~Γ ∪ ∆� ` ~p�p : ~A�∗,
2. if Γ | e : A ` ∆ then ~Γ ∪ ∆� ` ~e�e : ~A�+ → ⊥,

3. if c : Γ ` ∆ then ~Γ ∪ ∆� ` ~c�c : ⊥.

188

7.4. EMBEDDING INTO LEPIGRE’S CALCULUS

Proof. �e proof is done by induction on the typing derivation, distinguishing cases according to the
typing rule used in the conclusion. It is clear that for the nef cases, Lemma 7.25 implies the result
by taking X (a) = ⊥. �e rest of the cases are straightforward, except for the delimited continua-
tions that we detail herea�er. We consider a command 〈µt̂p.〈q ||µ̃a.〈p ||t̂p〉〉||e〉 produced by the reduction
of the command 〈λa.p ||q · e〉 with q ∈ nef. Both commands are translated by a proof reducing to
(~q�p (λa.~p�p)) ~e�e . �e corresponding typing derivation in dLt̂p is of the form:

Πp

Γ,a : A ` p : B | ∆
Γ ` λa.p : Πa : A.B | ∆

(→I)

Πq

Γ ` q : A | ∆
Πe

Γ | e : B[q/a] ` ∆
Γ | q · e : Πa : A.B ` ∆ (→E)

〈λa.p ||q · e〉 : Γ ` ∆
(Cut)

By induction hypothesis for e and p we obtain:

Γ′ ` ~e�e : ~B[q+]�+ → ⊥
Γ′,a : A+ ` ~p�p : ~B[a]�∗

Γ′ ` λa.~p�p : Πa : A+.~B[a]�∗,

where Γ′ = ~Γ ∪ ∆�. Applying Lemma 7.25 for q ∈ nef we can derive:

Γ′ ` ~q�p : ∀X .(Πa : A+.X (a) → X (q+))

Γ′ ` ~q�p : (Πa : A+.~B[a]�∗ → ~B[q+]�∗
(∀2
E)

We can thus derive that:
Γ′ ` ~q�p (λa.~p�p) : ~B[q+]�∗,

and �nally conclude that:
Γ′ ` (~q�p (λa.~p�p)) ~e�e : ⊥ .

�
We can �nally deduce the correctness of dLt̂p through the translation:

�eorem 7.27 (Soundness). For any p ∈ dLt̂p, we have: 0 p : ⊥.

Proof. Any closed proof term of type ⊥ would be translated in a closed proof of (⊥ → ⊥) → ⊥. �e
correctness of the target language guarantees that such a proof cannot exist. �

7.4 Embedding into Lepigre’s calculus

In a recent paper [108], Lepigre presented a classical system allowing the use of dependent types with
a semantic value restriction. In practice, the type system of his calculus does not contain a dependent
product Πa : A.B strictly speaking, but it contains a predicate a ∈ A allowing the decomposition of the
dependent product into

∀a.((a ∈ A) → B)

as it is usual in Krivine’s classical realizability [97]. In his system, the relativization a ∈ A is restricted
to values, so that we can only type V : V ∈ A:

Γ `val V : A
Γ `val V : V ∈ A ∃i

However typing judgments are de�ned up to observational equivalence, so that if t is observationally
equivalent to V , one can derive the judgment t : t ∈ A.

189

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

Interestingly, as highlighted through the CPS translation by Lemma 7.17, any nef proof p : A is
observationally equivalent to some value p+, so that we could derive p : (p ∈ A) from p+ : (p+ ∈ A).
�e nef fragment is thus compatible with the semantical value restriction. �e converse is obviously
false, observational equivalence allowing us to type realizers that would be untyped otherwise20.

We shall now detail an embedding of dLt̂p into Lepigre’s calculus, and explain how to transfer nor-
malization and correctness properties along this translation. Actually, his language is more expressive
than ours, since it contains records and pa�ern-matching (we will only use pairs, i.e. records with two
�elds), but it is not strati�ed: no distinction is made between a language of terms and a language of
proofs. We only recall here the syntax for the fragment of Lepigre’s calculus we use, for the reduction
rules and the type system the reader should refer to [108]:

v,w ::= x | λx .t | {l1 = v1,l2 = v2}
t ,u ::= a | v | t u | µα .t | p | v .li
π ,ρ ::= α | v · π | [t]π
p,q ::= t ∗ π
A,B ::= Xn (t1, . . . ,tn) | A→ B | ∀a.A | ∃a.A

| ∀Xn .A | {l1 : A1,l2 : A2} | t ∈ A

Even though records are only de�ned for values, we can de�ne pairs and projections as syntactic sugar:

(t1,t2) , (λv1v2.{l1 = v1,l2 = v2}) t1 t2
fst(t) , (λx .(x .l1)) t

snd(t) , (λx .(x .l2)) t

A1 ∧A2 , {l1 : A1,l2 : A2}

Similarly, only values can be pushed on stacks, but we can de�ne processes21 with stacks of the shape
t · π as syntactic sugar:

t ∗ u · π , tu ∗ π

We �rst de�ne the translation for types (extended for typing contexts) where the predicate Nat(x)
is de�ned as usual in second-order logic:

Nat(x) , ∀X .(X (0) → ∀y.(X (y) → X (S (y))) → X (x))

and ~t�t is the translation of the term t given in Figure 7.9:

(∀x�.A)
∗
, ∀x .(Nat(x) → A∗)

(∃x�.A)
∗
, ∃x .(Nat(x) ∧A∗)

(t = u)∗ , ∀X .(X (~t�t) → X (~u�t))

>∗ , ∀X .(X → X)

⊥∗ , ∀X .Y (X → Y)

(Πa : A.B)∗ , ∀a.((a ∈ A∗) → B∗)

(Γ,x : �)∗ , Γ∗,x : Nat(x)
(Γ,a : A)∗ , Γ∗,a : A∗
(Γ,α : A⊥⊥)∗ , Γ∗,α : ¬A∗

Note that the equality is mapped to Leibniz equality, and that the de�nitions of⊥∗ and>∗ are completely
ad hoc, in order to make the conversion rule admissible through the translation.

�e translation for terms, proofs, contexts and commands of dLt̂p, given in Figure 7.9 is almost
straightforward. We only want to draw the reader’s a�ention on a few points:

• the equality being translated as Leibniz equality, refl is translated as the identity λa.a, which
also matches with >∗,

20In particular, Lepigre’s semantical restriction is so permissive that it is not decidable, while it is easy to decide whether
a proof term of dLt̂p is in nef.

21�is will allows to ease the de�nition of the translation to translate separately proofs and contexts. Otherwise, we would
need formally to de�ne ~〈p ||q · e〉�c all together by ~p�p ~q�p ∗ ~e�e .

190

7.4. EMBEDDING INTO LEPIGRE’S CALCULUS

~x�t , x

~n�t , λzs .sn (z)

~wit p�t , π1 (~p�p)

~a�p , a

~λa.p�p , λa.~p�p
~λx .p�p , λx .~p�p

~(t ,p)�p , (~t�t ,~p�p)

~µα .c�p , µα .~c�c
~prf p�p , π2 (~p�p)

~refl�p , λa.a

~subst p q�p , ~p�p ~q�p

~α�e , α

~q · e�e , ~q�p · ~e�e
~t · e�e , ~t�t · ~e�e
~µ̃a.c�e , [λa.~c�c]•
~〈p ||e〉�c , ~p�p ∗ ~e�e
~µt̂p.c�p , µα .~c�t̂p
~〈p ||t̂p〉�t̂p , ~p�p

~〈p ||µ̃a.c〉�t̂p , (µα .~p�p ∗ [λa.~c�t̂p]α) ∗ α

Figure 7.9: Translation of proof terms into Lepigre’s calculus

Γ ` t : A Γ ` π : A⊥⊥
Γ ` t ∗ π : B ∗

Γ ` • : ⊥⊥⊥
•

Γ,α : A⊥⊥ ` α : A⊥⊥
α Γ,α : A⊥⊥ ` t : A

Γ ` µα .t : A
µ

Γ ` π : (A[x := t])⊥⊥

Γ ` π : (∀xA)⊥⊥
∀l

Γ ` t : A Γ ` π : B⊥⊥
Γ ` t · π : (A⇒ B)⊥⊥

⇒l
Γ ` t : A⇒ B Γ ` π : B⊥⊥

Γ ` [t]π : A⊥⊥ let

Figure 7.10: Extension of Lepigre’s typing rules for stacks

• the strong existential is encoded as a pair, hence wit (resp. prf) is mapped to the projection π1
(resp. π2).

In [108], the coherence of the system is justi�ed by a realizability model, and the type system does
not allow us to type stacks. �us, we cannot formally prove that the translation preserves typing, unless
we extend the type system in which case this would imply the adequacy. We might also directly prove
the adequacy of the realizability model (through the translation) with respect to the typing rules of
dLt̂p. We will detail here a proof of adequacy using the former method in the following. We then need
to extend Lepigre’s system to be able to type stacks. In fact, the proof of adequacy [108, �eorem 6]
suggests a way to do so, since any typing rule for typing stacks is valid as long as it is adequate with
the realizability model.

We denote by A⊥⊥ the type A when typing a stack, in the same fashion we use to go from a type
A in a le� rule of two-sided sequent to the type A⊥⊥ in a one-sided sequent (see the remark at the end
of Section 7.1.3). We also add a distinguished bo�om stack • to the syntax, which is given the most
general type ⊥⊥⊥. We change the rules (∗) and (µ) of the original type system in [108] and add rules for
stacks, whose de�nitions are guided by the proof of the adequacy [108, �eorem 6] in particular by the
(⇒e)-case. �ese rules are given in Figure 7.10.

We shall now show that these rules are adequate with respect to the realizability model de�ned
in [108, Section 2].

Proposition 7.28 (Adequacy). Let Γ be a (valid) context, A be a formula with FV (A) ⊂ dom(Γ) and σ
be a substitution realizing Γ. �e following statements hold:

• if Γ v̀al v : A then vσ ∈ ~A�σ ;

• if Γ ` π : A⊥⊥ then πσ ∈ ~A�⊥σ ;

• if Γ ` t : A then tσ ∈ ~A�⊥⊥σ .

Proof. �e proof is done by induction on the typing derivation, we only need to do the proof for the
rules we de�ne above (all the other cases correspond to the proof of [108, �eorem 6]).

191

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

(•) By de�nition, we have ~⊥�σ = ~∀X .X �σ = ∅, thus for any stack π , we have π ∈ ~⊥�⊥σ = Π. In
particular, • ∈ ~⊥�⊥σ .

(α) By hypothesis, σ realizes Γ,α : A⊥⊥ from which we obtain ασ = σ (α) ∈ ~A�⊥σ .

(∗) We need to show that tσ ∗ πσ ∈ ~B�⊥⊥σ , so we take ρ ∈ ~B�⊥σ and show that (tσ ∗ πσ) ∗ ρ ∈ ⊥⊥.
By anti-reduction, it is enough to show that (tσ ∗ πσ) ∈ ⊥⊥. �is is true by induction hypothesis, since
tσ ∈ ~A�⊥⊥σ and πσ ∈ ~A�⊥σ .

(µ) �e proof is the very same as in [108, �eorem 6].

(∀l) By induction hypothesis, we have that πσ ∈ ~A[x := t]�⊥σ . We need to show that ~A[x := t]�⊥σ ⊆
~∀x .A�⊥σ , which follows from the fact ~∀x .A�σ =

⋂
t ∈Λ~A[x := t]�σ ⊆ ~A[x := t]�σ .

(⇒l) If t is a value v , by induction hypothesis, we have that vσ ∈ ~A�σ and πσ ∈ ~B�⊥σ and we need
to show that vσ · πσ ∈ ~A⇒ B�⊥σ . �e proof is already done in the case (⇒e) (see [108, �eorem 6]).
Otherwise, by induction hypothesis, we have that tσ ∈ ~A�⊥⊥σ and πσ ∈ ~B�⊥σ and we need to show
that tσ · πσ ∈ ~A ⇒ B�⊥σ . So we consider λx .u ∈ ~A ⇒ B�σ , and show that λx .u ∗ tσ · πσ ∈ ⊥⊥. We
can take a reduction step, and prove instead that tσ ∗ [λx .u]πσ ∈ ⊥⊥. �is amounts to showing that
[λx .u]π ∈ ~A�⊥σ , which is already proven in the case (⇒e).

(let) We need to show that for allv ∈ ~A�σ ,v ∗ [tσ]πσ ∈ ⊥⊥. Taking a step of reduction, it is enough
to have tσ ∗ v · πσ ∈ ⊥⊥. �is is true since by induction hypothesis, we have tσ ∈ ~A ⇒ B�⊥⊥σ and
πσ ∈ ~B�⊥σ , thus v · πσ ∈ ~A⇒ B�⊥σ .

�

It only remains to show that the translation we de�ned in Figure 7.9 preserves typing to conclude
the proof of Proposition 7.30.

Lemma 7.29. If Γ ` p : A | ∆ (in dLt̂p), then (Γ ∪ ∆)∗ ` ~p�p : A∗ (in Lepigre’s extended system). �e
same holds for contexts, and if c : Γ ` ∆ then (Γ ∪ ∆)∗ ` ~c�c : ⊥.

Proof. �e proof is an induction on the typing derivation Γ ` p : A | ∆. Note that in a way, the transla-
tion of a delimited continuation decompiles it to simulate in a natural deduction fashion the reduction
of the applications of functions to stacks (that could have generated the same delimited continuations
in dLt̂p), while maintaining the frozen context (at top-level) outside of the active command (just like a
delimited continuation would do). �is trick allows us to avoid the problem of dependencies con�ict in
the typing derivation. For instance, assuming that ~q1�p (resp. ~q2�p) reduces to a value V1 (resp. V2)

192

7.5. TOWARD dLPAω : FURTHER EXTENSIONS

we have:

~〈µt̂p.〈q1 ||µ̃a1.〈q2 ||µ̃a2.〈p ||t̂p〉〉〉||e〉�c

= µα .(µα .(~q1�p ∗ [λa1.~〈q2 ||µ̃a2.〈p ||t̂p〉〉�t̂p]α) ∗ α) ∗ ~e�e
� µα .(~q1�p ∗ [λa1.~〈q2 ||µ̃a2.〈p ||t̂p〉〉�t̂p]α) ∗ ~e�e
� ~q1�p ∗ [λa1.~〈q2 ||µ̃a2.〈p ||t̂p〉〉�t̂p]~e�e
�∗ ~q2�p ∗ [λa2.~p�p[V1/a1]]~e�e
�∗ ~p�p[~V1�p/a1][~V2�p/a2] ∗ ~e�e
∗≺ ~q2�p ∗ [λa2.~p�p[V1/a1]]~e�e
∗≺ ~q1�p ∗ [λa1a2.~p�p)]~q2�p · ~e�e
∗≺ (λa1a2.~p�p) ∗ ~q1�p · ~q2�p · ~e�e = ~〈λa1λa2.p ||q1 · q2 · e〉�c

where we observe that ~e�e is always kept outside of the computations, and where each command
〈qi ||µ̃ai .ct̂p〉 is decompiled into (µα .~qi �p ∗ [λai .~ct̂p�t̂p].α) ∗ ~e�e , simulating the (natural deduction
style) reduction of λai .~ct̂p�t̂p ∗ ~qi �p · ~e�e . �ese terms correspond somehow to the translations of
former commands typable without types dependencies.

�

As a corollary we get a proof of the adequacy of dLt̂p typing rules with respect to Lepigre’s realiz-
ability model.

Proposition 7.30 (Adequacy). If Γ ` p : A | ∆ and σ is a substitution realizing (Γ ∪ ∆)∗, then ~p�pσ ∈
~A∗�⊥⊥σ .

�is immediately implies the soundness of dLt̂p, since a closed proofp of type⊥would be translated
as a realizer of> → ⊥, so that ~p�p λx .x would be a realizer of⊥, which is impossible. Furthermore, the
translation clearly preserves normalization (that is that for any c , if c does not normalize then neither
does ~c�c), and thus the normalization of dLt̂p is a consequence of adequacy.

�eorem 7.31 (Soundness). For any proof p in dLt̂p, we have: 0 p : ⊥.

It is worth noting that without delimited continuations, we would not have been able to de�ne an
adequate translation, since we would have encountered the same problem as for the CPS translation
(see Section 7.1.6).

7.5 Toward dLPAω : further extensions

As we explained in the preamble of Section 7.1, we de�ned dL and dLt̂p as minimal languages containing
all the potential sources of inconsistency we wanted to mix: classical control, dependent types, and a
sequent calculus presentation. It had the bene�t to focus our a�ention on the di�culties inherent to
the issue, but on the other hand, the language we obtain is far from being as expressive as other usual
proof systems. We claimed our system to be extensible, thus we shall now discuss this ma�er. We will
then be ready to de�ne dLPAω in the next chapter, which is the sequent calculus presentation of dPAω

using the techniques developed in this chapter.

7.5.1 Intuitionistic sequent calculus

�ere is not much to say on this topic, but it is worth mentioning that dL and dLt̂p could be easily
restricted to obtain an intuitionistic framework. Indeed, just like for the passage from LK to LJ, we

193

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

pretend that it is enough to restrict the syntax of proofs to allow only one continuation variable (that
is one conclusion on the right-hand side of sequent) to obtain an intuitionistic calculus. In particular,
in such a se�ing, all proofs will be nef, and every result we obtained will still hold.

7.5.2 Extending the domain of terms

�roughout the chapter, we only worked with terms of a unique type �, hence it is natural to wonder
whether it is possible to extend the domain of terms in dLt̂p, for instance with terms in the simply-
typed λ-calculus. A good way to understand the situation is to observe what happens through the CPS
translation. We saw that a term t of type T = � is translated into a proof t∗ which is roughly of type
T ∗ = ¬¬T + = ¬¬�, from which we can extract a term t+ of type �.

However, if T was for instance the function type � → � (resp. T → U), we would only be able
to extract a proof of type T + = � → ¬¬� (resp. T + → U ∗). �ere is no hope in general to extract a
function f : � → � from such a term, since such a proof could be of the form λx .p, where p might
backtrack to a former position, for instance before it was extracted, and furnish another proof. Such
a proof is no longer a witness in the usual sense, but rather a realizer of f ∈ � → � in the sense
of Krivine classical realizability. �is accounts for a well-know phenomenon in classical logic, where
witness extraction is limited to formulas in the Σ1

0-fragment [119]. It also corresponds to the type we
obtain for the image of a dependent product Πa : A.B, that is translated to a type ¬¬Πa : A+.B∗ where
the dependence is in a proof of type A+. �is phenomenon is not surprising and was already observed
for other CPS translations for type theories with dependent types [13].

Nevertheless, if the extraction is not possible in the general case, our situation is more speci�c.
Indeed, we only need to consider proofs that are obtained as translation of terms, which can only
contains nef proofs in dLt̂p. In particular, the obtained proofs cannot drop continuations, which was
the whole point of the restriction to the nef fragment. Hence we could again re�ne the translation of
types, similarly to what we did in Lemma 7.25. Once more, this re�nement would also coincide with
a computational property similar to Lemma 7.17, expressing the fact that the extraction can be done
simply by passing the identity as a continuation22. �is witnesses the fact that for any function t in
the source language, there exists a term t+ in the target language which represents the same function,
even tough the translation of t is a proof ~t�.

To sum up, this means that we can extend the domain of terms in dLt̂p (in particular, it should a�ect
neither the subject reduction nor the soundness), but the strati�cation between terms and proofs is to
be lost through a CPS translation. If the target language is a non-strati�ed type theory (most of the
presentation of type theories are in this case), then it becomes possible to force the extraction of terms
of the same type through the translation.

Another solution would consist to de�ne a separate translation for terms. Indeed, as it was re�ected
by Lemma 7.17, since neither terms nor the nefproofs they may contain need continuations, they can
be directly translated. �e corresponding translation is actually an embedding which maps every pure
term (without wit p) to itself, and which performs the reduction of nef proofs p to proofs p+ so as to
eliminate every µ binder. Such a translation would intuitively re�ect an abstract machine where the
reduction of terms (and the nef proofs inside) is performed in an external machine. If this solution
is arguably a bit ad hoc, it is nonetheless correct and is maybe a good way to take advantage of the
strati�ed presentation.

22To be precise, for each arrow in the type, a double-negation (or its re�nement) would be inserted. For instance, to recover
a function of type�→ � from a term t : ¬¬(�→ ¬¬�) (where ¬¬A is in fact more precise, at least ∀R.(A→ R) → R), the
continuation need to be forced at each level: λx .t I x I : � → �. We do not want to enter into to much details on this here,
as it would lead us to much more than a paragraph to de�ne the objects formally, but we claim that we could reproduce the
results obtained for terms of type � in a language with terms representing arithmetic functions in �nite types.

194

7.5. TOWARD dLPAω : FURTHER EXTENSIONS

7.5.3 Adding expressiveness

From the point of view of the proof language (that is of the tools we have to build proofs), dLt̂p only
enjoys the presence of a dependent sum and a dependent product over terms, as well as a dependent
product at the level of proofs (which subsume the non-dependent implication). If this is obviously
enough to encode the usual constructors for pairs (p1,p2) (of type A1 ∧ A2), injections ιi (p) (of type
A1 ∨ A2), etc…, it seems reasonable to wonder whether such constructors can be directly de�ned in
the language of proofs. In fact, this is the case, and we claim that is possible to de�ne the constructors
for proofs (for instance (p1,p2)) together with their destructors in the contexts (in that case µ̃ (a1,a2).c),
with the appropriate typing rules. In practice, it is enough to:

• extend the de�nitions of the nef fragment according to the chosen extension,

• extend the call-by-value reduction system, opening if needed the constructors to reduce it to a
value,

• in the dependent typing mode, make some pa�ern-matching within the list of dependencies for
the destructors.

�e soundness of such extensions can be justi�ed either by extending the CPS translation, or by de�ning
a translation to Lepigre’s calculus (which already allows records and pa�ern-matching over general
constructors) and proving the adequacy of the translation with respect to the realizability model.

For instance, for the case of the pairs, we can extend the syntax with:

p ::= · · · | (p1,p2) e ::= · · · | µ̃ (a1,a2).c

We then need to add the corresponding typing rules (plus a third rule to type µ̃ (a1,a2).c in regular
mode:

Γ ` p1A1 | ∆ Γ ` p2 : A2) | ∆

Γ ` (p1,p2) : (A1 ∧A2) | ∆
∧r

c : Γ,a1 : A1,a2 : A2 `d ∆, t̂p : B;σ {(a1,a2) |p}

Γ | µ̃ (a1,a2).c : (A1 ∧A2) `d ∆, t̂p : B;σ {·|p}
∧l

and the reduction rules:

〈(p1,p2) ||e〉 〈p1 ||µ̃a1.〈p2 ||µ̃a2.〈(a1,a2) ||e〉〉〉 〈(V1,V2) ||µ̃ (a1,a2).c〉 c[V1/a1,V2/a2]

We let the reader check that these rules preserve subject reduction, and suggest the following CPS
translations:

~(p1,p2)�p , λ•k .~p1�p (λ
•a1.~p2�p (λ

•a2.k (a1,a2)))

~(V1,V2)�V , λ•k .k (~V1�V ,~V2�V)

~µ̃ (a1,a2).c�e , λp. split p as (a1,a2) in ~c�c

which allows us to prove that the calculus remains correct with these extensions.
We claim that this methodology furnishes in �rst approximation an approach to the question “Can

I extend this with … ?”. In particular, it should be enough to get closer to a realistic programming
language and extend the language with inductive �x-point operators. We make plain use of these ideas
in the next chapter.

7.5.4 A fully sequent-style dependent calculus

While the aim of this chapter was to design a sequent-style calculus embedding dependent types, we
only presented the Π-type in sequent-style. Indeed, we wanted to be sure above all else that it was
possible to de�ne a sound sequent-calculus with the key ingredients of dependent types, even if these

195

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

were presented in a natural deduction spirit. Rather than having le�-rules, we presented the existential
type and the equality type with the following elimination rules:

Γ ` p : ∃x�.A(x) | ∆;σ p ∈ D

Γ ` prf p : A(wit p) | ∆;σ prf
Γ ` p : t = u | ∆;σ Γ ` q : B[t/x] | ∆;σ

Γ ` subst p q : B[u/x] | ∆;σ subst

However, it is now easy to have both rules in a sequent calculus fashion, for instance we could rather
have contexts of the shape µ̃ (x ,a).c (to be dual to proofs (t ,p)) and µ̃=.c (dual to refl). We could then
de�ne the following typing rules (where we add another list of dependencies δ for terms, to compensate
the conversion from A[t] to A[u] in the former (subst)-rule):

c : Γ,x : �,a : A(x) `d ∆;σ {(x ,a) |p}
Γ | µ̃ (x ,a).c : ∃x�.A(x) `d ∆;σ {·|p}

∃l
c : Γ ` ∆;δ {t |u}

Γ | µ̃=.c : t = u ` ∆;δ
(=l)

and de�ne prf p and subst p q as syntactic sugar:

prf p , µt̂p.〈p ||µ̃ (x ,a).〈a ||t̂p〉〉 subst p q , µα .〈p ||µ̃=.〈q ||α〉〉.

Observe that prf p is now only de�nable if p is a nef proof term. For any p ∈ nef and any vari-
ables a,α , A(wit p) is in A(wit (x ,a)){(x,a) |p } which allows us to derive (using this in the (Cut)-rule) the
admissibility of the former (prf)-rule:

Γ ` p : ∃x�.A | ∆;σ

a : A(x) ` a : A(x)
a : A(x) ` a : A(wit (x ,a)) ≡

A(wit p) ∈ A(wit (x ,a)){(x,a) |p }

Γ | t̂p : A(wit (x ,a)) `d t̂p : A(wit p) | ∆

〈a ||α〉 : Γ,x : �,a : A(x) `d ∆, t̂p : A(wit p);σ {(x ,a) |p}
cut

Γ | µ̃ (x ,a).〈a ||t̂p〉 : ∃x�.A `d ∆, t̂p : A(wit p);σ {·|p}
〈p ||µ̃ (x ,a).〈a ||α〉〉 : Γ `d ∆, t̂p : A(wit p);σ {·|p}

(Cut)

Γ ` µt̂p.〈p ||µ̃ (x ,a).〈a ||t̂p〉〉 : A(wit p) | ∆

Using the fact that δ (B[u]) = δ (B[t]), we get that the former (subst)-rule is admissible:

Γ ` p : t = u | ∆;

Γ ` q : B[t] | ∆;σ Γ | α : B[u] ` α : B[u] | ∆
(Axl)

〈q ||α〉 : Γ ` ∆,α : B[u];δ {t |u}
(Cut)

Γ | µ̃=.〈q ||α〉 : t = u ` ∆,α : B[u];δ
(=l)

〈p ||µ̃=.〈q ||α〉〉 : Γ ` ∆,α : B[u];δ
(Cut)

Γ ` µα .〈p ||µ̃=.〈q ||α〉〉 : B[u] | ∆;δ
(µ)

.

As for the reduction rules, we can de�ne the following (call-by-value) reductions:

〈(Vt ,V) ||µ̃ (x ,a).c〉 c[Vt/x][V /a] 〈refl||µ̃=.c〉 c

and check that they advantageously simulate the previous rules (the expansion rules become useless):

〈subst refl q ||e〉 〈q ||e〉
〈prf (Vt ,Vp) ||e〉 〈V ||e〉

〈subst p q ||e〉
p<V
 〈p ||µ̃a.〈subst a q ||e〉〉

〈prf p ||e〉 〈µt̂p.〈p ||µ̃a.〈prf a ||t̂p〉〉||e〉.

196

7.6. CONCLUSION

7.6 Conclusion

In this chapter, we presented dL, a sequent calculus that combines dependent types and classical control
by means of a syntactic restriction to values. We proved in Section 7.1 the normalization of dL for
typed terms, as well as its soundness. �is calculus can be extended with delimited continuations,
which permits us to extend the syntactic restriction for dependent types to the fragment of negative-
elimination-free proofs. �e resulting calculus dLt̂p, that we presented in Section 7.2, is suitable for the
de�nition of a dependently typed translation to an intuitionistic type theory. As shown in Section 8.3,
this translation guarantees both the normalization and the soundness of dLt̂p. Furthermore, a similar
translation can be designed to embedded dLt̂p into Lepigre’s calculus. As explained in Section 7.4, this
provides an alternative way of proving the soundness of dLt̂p.

Several directions remain to be explored. We plan to investigate possible extensions of the syntactic
restriction we de�ned, and its connections with notions such as with Fürhmann’s thunkability [54] or
Munch-Maccagnoni’s linearity [127]. Furthermore, it might be of interest to check whether this restric-
tion could make dependent types compatible with other side-e�ects, in presence of classical logic or
not. More generally, we would like to be�er understand the possible connections between our calculus
and the categorical models for dependently typed theory.

On a di�erent perspective, the continuation-passing style translation we de�ned is at the best of
our knowledge a novel contribution, even without considering the classical part. In particular, our
translation allows us to use computations (as in the call-by-push value terminology) within dependent
types with a call-by-value evaluation strategy, and without any thunking construction. It might be the
case that this translation could be adapted to justify extensions of other dependently typed calculi, or
provide typed translations between them.

197

CHAPTER 7. A CLASSICAL SEQUENT CALCULUS WITH DEPENDENT TYPES

198

