
8- dLPAω: a sequent calculus with depen-
dent types for classical arithmetic

Drawing on the calculi we studied in the last chapters, we shall now present dLPAω , a sequent calcu-
lus version of Herbelin’s dPAω . �is calculus provides us with dependent types restricted to the nef
fragment, for which dLPAω is an extension of dLt̂p. Indeed, in addition to the language of dLt̂p, dLPAω

has terms for classical arithmetic in �nite types (PAω). More importantly, it includes a lazily evaluated
co-�xpoint operator. To this end, the calculus uses a shared store, as in the λ[lvτ?]-calculus.

We �rst present the language of dLPAω with its type system and its reduction rules. We prove that
the calculus veri�es the property of subject reduction and that it is as expressive as dPAω . In particular,
the proof terms for AC� and DC of dPAω can be directly de�ned in dLPAω . We then apply once again
the methodology of Danvy’s semantic artifacts to derive a small-step calculus, from which we deduce
a continuation-passing-style translation and a realizability interpretation. Both artifacts are somehow
a combination of the corresponding ones that we developed for the λ[lvτ?]-calculus and dLt̂p.

In some sense, there will not be any real novelties in this chapter. In particular, most of the proofs
resemble a lot to the corresponding ones in the previous chapters. Yet, as dLPAω gathers all the ex-
pressive power and features of the λ[lvτ?]-calculus and dLt̂p, the di�erent proofs also combined all the
tools and tricks used in each case. �ey are therefore very technical and long, in particular proofs by
induction require the tedious veri�cation of multiple cases which are very similar to cases of proofs we
already did. We will hence sketch them most of the time, trying to highlight the most interesting parts.

Normalization of dLPAω

�e main result of this chapter consists in the normalization of dLPAω , from which it is easy to convince
ourself that dPAω normalizes too1. We sketch a proof of normalization through a continuation-passing-
style translation, which would rely on the normalization of System Fϒ. We then give a detailed proof
through the realizability interpretation.

Nonetheless, we should say before starting this chapter that we already have a guardrail for the nor-
malization. Indeed, we already proved the normalization of a simply-typed classical call-by-need calcu-
lus and we explained that the proof was scalable to the same calculus with a second-order type system.
Yet, co-�xpoints are de�nable in a second-order calculus2, for instance a stream for the in�nite conjunc-
tionA(0)∧A(1)∧ . . . can be obtained through the formula ∃X .[X (0)∧∀x�.(X (x) → A(x)∧X (S (x)))].
Besides, the presence of dependent types does not bring any risk of loosing the normalization, since
erasing the dependencies in types yield a system with the exact same computational behavior. Hence
the normalization of dLt̂p and the one of the second-order λ[lvτ?]-calculus should be enough, a priori,
to guarantee the normalization of dLPAω .

1As explained in Chapter 5, we will not bother with a formal proof of this statement, neither will we prove any properties
on the preservation of dPAω reduction rules through the embedding in dLPAω . Indeed, we are already satis�ed with the
normalization of dLPAω , which is as expressive as dPAω and which allows for the same proof terms for dependent and
countable choice.

2A de�nition in the framework of dPAω is given in [70].

199

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

Another handwavy explanation could consist in arguing that we could authorize in�nite stores
in the λ[lvτ?]-calculus without altering its normalization. Indeed, from the point of view of existing
programs (which are �nite and typed in �nite contexts), they are computing with a �nite knowledge
of the memory (and we proved that all the terms were suitable for a store extension3). Note that in the
store, we could theoretically replace any co-�xpoint that produces a stream by the (fully developped)
stream in question. Due to the presence of backtracks in co-�xpoints, the store would contain all the
possible streams (possibly an in�nite number of it) produced when reducing co-�xpoints. In this se�ing,
if a term were to perform an in�nite number of reductions steps, it would necessarily have to explore an
in�nite number of cells in the pre-computed memory, independently from its production. �is should
not be possible either.

�e la�er argument is actually quite close from Herbelin’s original proof sketch, which this thesis
is precisely trying to replace with a more formal proof. So that these unprecise explanations should be
taken more as spoilers of the �nal result than as proof sketches. We shall now present formally dLPAω

and prove its normalization, which will then not come as a surprise.

8.1 dLPAω : a sequent calculus with dependent types for classical arith-
metic

8.1.1 Syntax

�e language of dLPAω should not be a surprise either. It is based on the syntax of dLt̂p, extended
with the expressive power of dPAω and with explicit stores as in the λ[lvτ?]-calculus. We stick to a
strati�ed presentation of dependent types, which we �nd very convenient to separate terms and proof
terms which are handled di�erently.

�e syntax of terms is extended as in dPAω to include functions λx .t and applications tu, as well as
a recursion operator rectxy[t0 | tS], so that terms represent objects in arithmetic of �nite types.

As for proof terms (and contexts, commands), they are now de�ned with all the expressiveness of
dPAω (see Chapter 5). Each constructor in the syntax of formulas is re�ected by a constructor in the
syntax of proofs and by the dual co-proof (i.e. destructor) in the syntax of evaluation contexts. Namely,
the syntax is an extension of dLt̂p’s syntax which now includes:

• the usual proofs µα .c and contexts µ̃a.c of the λµµ̃-calculus;
• pairs (p1,p2), which inhabit the conjunction type A1 ∧A2;
• co-pairs µ̃ (a1,a2).c , which bind the variables a1 and a2 in the command c;
• injections ιi (p) for the logical disjunction;
• co-injections or pa�ern-matching µ̃[a1.c1 |a2.c2] which bind the variables a1 in c1 and a2 in c2;
• pairs (t ,p) where t is a term and p a proof, which inhabit the dependent sum type ∃xT .A;
• dual co-pairs µ̃ (x ,a).c which bind the (term and proof) variables x and a in the command c;
• functions λx .p, which inhabit the dependent product type ∀xT .A;
• dual stacks t · e , where t is a term and e a context whose type might be dependent in t ;
• functions λa.p, which inhabit the dependent product type Πa : A.B;
• dual stacks q ·e , where q is a term and e a context whose type might be dependent in q if q is nef;
• a proof term refl which is the proof of atomic equalities t = t ;
• the dual destructor µ̃=.c which allows to type the command c modulo an equality of terms;

3See Lemma 6.16 for the realizability interpretation and Lemma 6.31 for the CPS translation of the λ[lvτ?]-calculus.

200

8.1. dLPAω : A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

Closures
Commands

Proof terms

Proof values

Contexts
Forcing contexts

Stores
Storables

Terms
Terms values

Delimited
continuations

nef

l ::= cτ
c ::= 〈p ||e〉

p,q ::= a | ιi (p) | (p,q) | (t ,p) | λx .p | λa.p | refl
| indtax [p0 | pS] | cofixtbx [p] | µα .c | µt̂p.ct̂p

V ::= a | ιi (V) | (V ,V) | (Vt ,V) | λx .p | λa.p | refl

e ::= f | α | µ̃a.cτ
f ::= [] | µ̃[a1.c1 | a2.c2] | µ̃ (a1,a2).c | µ̃ (x ,a).c

| t · e | p · e | µ̃=.c

τ ::= ε | τ [a := pτ] | τ [α := e]
pτ ::= V | indVtax [p0 | pS] | cofixVtbx [p]

t ,u ::= x | 0 | S (t) | rectxy[t0 | tS] | λx .t | t u | wit p

Vt ::= x | Sn (0) | λx .t

ct̂p ::= 〈pN ||et̂p〉 | 〈p ||t̂p〉
et̂p ::= µ̃a.ct̂pτ | µ̃[a1.ct̂p | a2.c

′

t̂p
] | µ̃ (a1,a2).ct̂p | µ̃ (x ,a).ct̂p

cN ::= 〈pN ||eN 〉
pN ,qN ::= a | ιi (pN) | (pN ,qN) | (t ,pN) | λx .p | λa.p | refl

| indtax [pN | qN] | cofixtbx [pN] | µ?.cN | µt̂p.ct̂p
eN ::= ? | µ̃[a1.cN | a2.c

′
N] | µ̃a.cNτ | µ̃ (a1,a2).cN | µ̃ (x ,a).cN

Figure 8.1: �e language of dLPAω

• operators indtax [p0 | pS] and cofixtbx [p], as in dPAω , for inductive and coinductive reasoning;

• delimited continuations through proofs µt̂p..ctp and the context t̂p;

• a distinguished context [] of type ⊥, which allows us to reason ex-falso.

As in dLt̂p, the syntax of nef proofs, contexts and commands is de�ned as a restriction of the previous
syntax. Here again, they are de�ned (modulo α-conversion) with only one distinguished context vari-
able ? (and consequently only one binder µ?.c) and without stacks of the shape t · e or q · e (to avoid
applications). �e commands ct̂p within delimited continuations are again de�ned as commands of the
shape 〈p ||tp〉 or formed by a nef proof and a context of the shape µ̃a.ct̂pτ , µ̃[a1.ct̂p |a2.c

′

t̂p
], µ̃ (a1,a2).ct̂p

or µ̃ (x ,a).ct̂p.
We adopt a call-by-value evaluation strategy except for �xpoint operators4 which are evaluated in

a lazy way. To this purpose, we use stores in the spirit of the λ[lvτ?]-calculus, which are thus de�ned
as lists of bindings of the shape [a := p] where p is a value or a (co-)�xpoint, and of bindings of the
shape [α := e] where e is any context. We assume that each variable occurs at most once in a store τ ,
therefore we reason up to α-reduction and we assume the capability of generating fresh names. Apart
from evaluation contexts of the shape µ̃a.c and co-variables α , all the contexts are forcing contexts since
they eagerly require a value to be reduced. �e resulting language is given in Figure 8.1.

4To highlight the duality between inductive and coinductive �xpoints, we evaluate both in a lazy way. Even though this
is not indispensable for inductive �xpoints, we �nd this approach more natural in that we can treat both in a similar way in
the small-step reduction system and thus through the CPS translation or the realizability interpretation.

201

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

Basic rules
〈λx .p ||Vt · e〉τ → 〈p[Vt/x]||e〉τ

(q ∈ nef) 〈λa.p ||q · e〉τ → 〈µt̂p.〈q ||µ̃a.〈p ||t̂p〉〉||e〉τ
(q < nef) 〈λa.p ||q · e〉τ → 〈q ||µ̃a.〈p ||e〉〉τ
(e , et̂p) 〈µα .c ||e〉τ → cτ [α := e]

〈V ||µ̃a.cτ ′〉τ → cτ [a := V]τ ′

Elimination rules
〈ιi (V) ||µ̃[a1.c1 | a2.c2]〉τ → ciτ [ai := V]
〈(V1,V2) ||µ̃ (a1,a2).c〉τ → cτ [a1 := V1][a2 := V2]
〈(Vt ,V) ||µ̃ (x ,a).c〉τ → (c[t/x])τ [a := V]

〈refl||µ̃=.c〉τ → cτ

Delimited continuations
(if cτ → cτ ′) 〈µt̂p.c ||e〉τ → 〈µt̂p.c ||e〉τ ′

〈µα .c ||et̂p〉τ → c[et̂p/α]τ
〈µt̂p.〈p ||t̂p〉||e〉τ → 〈p ||e〉τ

Call-by-value
(a fresh) 〈ιi (p) ||e〉τ → 〈p ||µ̃a.〈ιi (a) ||e〉〉τ
(a1,a2 fresh) 〈(p1,p2) ||e〉τ → 〈p1 ||µ̃a1.〈p2 ||µ̃a2.〈(a1,a2) ||e〉〉〉τ
(a fresh) 〈(Vt ,p) ||e〉τ → 〈p ||µ̃a.〈(Vt ,a) ||e〉〉τ

Laziness
(a fresh) 〈cofixVtbx [p]||e〉τ → 〈a ||e〉τ [a := cofixVtbx [p]]
(a fresh) 〈indVtbx [p0 | pS]||e〉τ → 〈a ||e〉τ [a := indVtbx [p0 | pS]]

Lookup
〈V ||α〉τ [α := e]τ ′ → 〈V ||e〉τ [α := e]τ ′
〈a || f 〉τ [a := V]τ ′ → 〈V ||a〉τ [a := V]τ ′

(b ′ fresh) 〈a || f 〉τ [a := cofixVtbx [p]]τ ′ → 〈p[Vt/x][b ′/b]||µ̃a.〈a || f 〉τ ′〉τ [b ′ := λy.cofixybx [p]]
〈a || f 〉τ [a := ind0

bx [p0 | pS]]τ ′ → 〈p0 ||µ̃a.〈a || f 〉τ
′〉τ

(b ′ fresh) 〈a || f 〉τ [a := indS (t)bx [p0 | pS]]τ ′ → 〈pS [t/x][b ′/b]||µ̃a.〈a || f 〉τ ′〉τ [b ′ := indtbx [p0 | pS]]

Terms
(if t −→β t ′) T [t]τ → T [t ′]τ
(∀α ,〈p ||α〉τ → 〈(t ,p ′) ||α〉τ) T [wit p]τ −→β T [t]

(λx .t)Vt −→β t[Vt/x]
rec0

xy[t0 | tS] −→β t0

recS (u)xy [t0 | tS] −→β tS [u/x][recuxy[t0 | tS]/y]
where:
Ct [] ::= 〈([],p) ||e〉 | 〈ind[]

ax [p0 | pS]||e〉 | 〈cofix[]
bx [p]||e〉 | 〈λx .p ||[] · e〉

T [] ::= Ct [] | T [[]u] | T [rec[]
xy[t0 | tS]]

Figure 8.2: Reduction rules of dLPAω

202

8.1. dLPAω : A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

8.1.2 Reduction rules

Concerning the reduction system of dLPAω , which is given in Figure 8.2, there is not much to say. �e
basic rules are those of the call-by-value λµµ̃-calculus and of dLt̂p. �e rules for delimited continuations
are exactly the same as in dLt̂p, except that we have to prevent t̂p from being caught and stored by a
proof µα .c . We thus distinguish two rules for commands of the shape 〈µα .c ||e〉, depending on whether
e is of the shape et̂p or not. In the former case, we perform the substitution [et̂p/α], which is linear since
µα .c is necessarily nef. We should also mention in passing that we abuse the syntax in every other rules,
since e should actually refer to e or etp (or the reduction of delimited continuations would be stuck).
Elimination rules correspond to commands where the proof is a constructor (say of pairs) applied to
values, and where the context is the matching destructor. Call-by-value rules correspond to (ς) rule of
Wadler’s sequent calculus [161]. �e next rules express the fact that (co-)�xpoints are lazily stored, and
reduced only if their value is eagerly demanded by a forcing context. Lastly, terms are reduced according
to the usual β-reduction, with the operator rec computing with the usual recursion rules. It is worth
noting that the strati�ed presentation allows to de�ne the reduction of terms as external: within proofs
and contexts, terms are reduced in place. Consequently, as in dLt̂p the very same happen for nef proofs
embedded within terms. Computationally speaking, this corresponds indeed to the intuition that terms
are reduced on an external device.

8.1.3 Typing rules

�e language of types and formulas is the same as for dPAω . As explained, terms are simply typed,
with the set of natural numbers as the sole ground type. �e formulas are inductively built on atomic
equalities of terms, by means of conjunctions, disjunctions, �rst-order quanti�cations, dependent prod-
ucts and co-inductive formulas. As in dLt̂p, the dependent product Πa : A.B corresponds to the usual
implication if a does not occur in the conclusion B. Formulas and types are formally de�ned by:

Types
Formulas

T ,U ::= � | T → U
A,B ::= > | ⊥ | t = u | A ∧ B | A ∨ B | ∀xT.A | ∃xT.A | Πa : A.B | ν tx,f A.

Formulas are considered up to equational theory on terms, as o�en in Martin-Löf’s intensional type
theory. We denote by A ≡ B the re�exive-transitive-symmetric closure of the relation . induced by the
reduction of terms and nef proofs as follows:

A[t] . A[t ′] whenever t →β t ′

A[p] . A[q] whenever ∀α (〈p ||α〉 → 〈q ||α〉)

in addition to the reduction rules for equality and for coinductive formulas:

0 = S (t) . ⊥
S (t) = 0 . ⊥

S (t) = S (u) . t = u
ν tf xA . A[t/x][νyf xA/f (y) = 0]

We work with one-sided sequents5 where typing contexts are de�ned by:

Typing contexts Γ,Γ′ ::= ε | Γ,x : T | Γ,a : A | Γ,α : A⊥⊥ | Γ, t̂p : A⊥⊥.

using the notation α : A⊥⊥ for an assumption of the refutation of A. �is allows us to mix hypotheses
over terms, proofs and contexts while keeping track of the order in which they are added (which is
necessary because of the dependencies). We assume that a variable occurs at most once in a typing
context.

5�is is essentially an aesthetic choice, which we hope to ease the readability of sequents. On top of that, it avoids us to
deal with uni�ed contexts Γ ∪ ∆ (see Section 4.2.3.2) as we would have done with two-sided sequents.

203

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

We de�ne nine syntactic kinds of typing judgments:

• six in regular mode, that we write Γ `σ J :
1. Γ `σ t : T for typing terms,
2. Γ `σ p : A for typing proofs,
3. Γ `σ e : A⊥⊥ for typing contexts,

4. Γ `σ c for typing commands,
5. Γ `σ cτ for typing closures,
6. Γ `σ τ ′ : (Γ′;σ ′) for typing stores;

• three more for the dependent mode, that we write Γ `d J ;σ :
7. Γ `d e : A⊥⊥;σ for typing contexts,
8. Γ `d c;σ for typing commands,

9. Γ `d cτ ;σ for typing closures.

In each case, σ is a list of dependencies—we explain the presence of a list of dependencies in each case
therea�er—, which are still de�ned from the following grammar:

σ ::= ε | σ {p |q}

�e substitution on formulas according to a list of dependencies σ is de�ned by:

ε (A) , {A} σ {p |q}(A) ,



σ (A[q/p]) if q ∈ nef
σ (A) otherwise

Because the language of proof terms now include constructors for pairs, injections, etc, the notation
A[q/p] does not refer to usual substitutions properly speaking: p can be a pa�ern (for instance (a1,a2))
and not only a variable.

We shall a�ract the reader’s a�ention to the fact that all typing judgments include a list of depen-
dencies. As in the λ[lvτ?]-calculus, when a proof or a context is caught by a binder, say V and µ̃a, the
substitution [V /a] is not performed but rather put in the store: τ [a := V]. �is forces us to slightly
change the rules from dLt̂p. Indeed, consider for instance the reduction of a dependent function λa.p
(of type Πa : A.B) applied to a stack V · e:

〈λa.p ||V · e〉τ → 〈µt̂p.〈V ||µ̃a.〈p ||t̂p〉〉||e〉τ → 〈µt̂p.〈p ||t̂p〉||e〉τ [a := V]→ 〈p ||e〉τ [a := V]

which we examined in details in the previous chapter (see Section 7.1.3). In dLt̂p, the reduced command
was 〈p[V /a]||e〉, which was typed with the (Cut) rule over the formula B[V /a]. In the present case, p
still contains the variable a, whence his type is still B[a], whereas the type of e is B[V]. We thus need
to compensate the missing substitution.

We are mostly le� with two choices. Either we mimic the substitution in the type system, which
would amount to the following typing rule:

Γ,Γ′ ` τ (c) Γ ` τ : Γ′
Γ ` cτ

where:
τ [α := e](c) , τ (c)

τ [a := pN](c) , τ (c[pN /a]) (p ∈ nef)
τ [a := p](c) , τ (c) (p < nef)

Or we type stores in the spirit of the λ[lvτ?]-calculus, and we carry along the derivations all the bindings
susceptible to be used in types, which constitutes again a list of dependencies.

�e former solution has the advantage of solving the problem before typing the command, but it
has the �aw of performing computations which would not occur in the reduction system. For instance,
the substitution τ (c) could duplicate co-�xpoints (and their typing derivations), which would never
happen in the calculus. �at is the reason why we privilege the other solution, which is closer to the
calculus in our opinion. Yet, it has the inconvenient that if forces us to carry a dependencies list even
in regular mode. Since this list is �xed (it does not evolve in the derivation except when stores occur),
we di�erentiate the denotation of regular typing judgments, wri�en Γ `σ J , from the one judgments
in dependent mode, which we write Γ `d J ;σ to highlight that σ grows along derivations. �e type
system we obtain is given in Figure 8.3.

204

8.1. dLPAω : A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

Regular types
Γ `σ τ : (Γ′;σ ′) Γ,Γ′ `σσ

′

p : A
Γ `σ τ [a := p] : (Γ′,a : A;σ ′{a |p})

(τp)
Γ `σ τ : (Γ′;σ ′) Γ,Γ′ `σσ

′

α : A⊥⊥

Γ `σ τ [α := e] : (Γ′,α : A⊥⊥;σ ′)
(τe)

Γ `σ p : A Γ `σ e : B⊥⊥ σ (A) = σ (B)

Γ `σ 〈p ||e〉
(Cut)

Γ,Γ′ `σσ
′

c Γ `σ τ : (Γ′;σ ′)
Γ ` cτ

(l)

(a : A) ∈ Γ
Γ `σ a : A (Axr)

(α : A⊥⊥) ∈ Γ
Γ `σ α : A⊥⊥

(Axl)
Γ,α : A⊥⊥ `σ c
Γ `σ µα .c : A

(µ)

Γ,a : A `σ cτ

Γ `σ µ̃a.cτ : A⊥⊥
(µ̃)

Γ `σ p1 : A Γ `σ p2 : B
Γ `σ (p1,p2) : A ∧ B

(∧r)
Γ,a1 : A1,a2 : A2 `

σ c

Γ `σ µ̃ (a1,a2).c : (A1 ∧A2)
⊥⊥

(∧l)

Γ `σ p : Ai

Γ `σ ιi (p) : A1 ∨A2
(∨r)

Γ,a1 : A1 `
σ c1 Γ,a2 : A2 `

σ c2
Γ `σ µ̃[a1.c1 | a2.c2] : (A1 ∨A2)

⊥⊥
(∨l)

Γ `σ p : A[t/x] Γ `σ t : T
Γ `σ (t ,p) : ∃xT .A

(∃r)
Γ,x : T ,a : A `σ c

Γ `σ µ̃ (x ,a).c : (∃xT .A)⊥⊥
(∃l)

Γ,x : T `σ p : A
Γ `σ λx .p : ∀xT .A

(∀r)
Γ `σ t : T Γ `σ e : A[t/x]⊥⊥

Γ `σ t · e : (∀xT .A)⊥⊥
(∀l)

Γ `σ t : �
Γ `σ refl : t = t

refl

Γ `σ p : A Γ `σ e : A[u/t]
Γ `σ µ̃=.〈p ||e〉 : (t = u)⊥⊥

(=l)
Γ `σ p : A A ≡ B

Γ `σ p : B (≡r)
Γ `σ e : A⊥⊥ A ≡ B

Γ `σ e : B⊥⊥
(≡l)

Γ,a : A `σ p : B
Γ `σ λa.p : Πa : A.B

(→r)
Γ `σ q : A Γ `σ e : B[q/a]⊥⊥ if q < nef then a < A

Γ `σ q · e : (Πa : A.B)⊥⊥
(→l)

Γ `σ [] : ⊥⊥⊥ ⊥
Γ `σ t : � Γ `σ p0 : A[0/x] Γ,x : T ,a : A `σ pS : A[S (x)/x]

Γ `σ indtax [p0 | pS] : A[t/x]
(ind)

Γ `σ t : T Γ, f : T → �,x : T ,b : ∀yT. f (y) = 0 `σ p : A f positive in A

Γ `σ cofixtbx [p] : ν tf xA
(cofix)

Dependent mode
Γ, t̂p : A⊥⊥ `d ct̂p;σ
Γ `σ µt̂p.ct̂p : A

(µ t̂p)
σ (A) = σ (B)

Γ, t̂p : A⊥⊥,Γ′ `d t̂p : B⊥⊥;σ {·|p}
(t̂p)

Γ,Γ′ `d ct̂p;σσ ′ Γ `σ τ : (Γ′;σ ′)
Γ `d ct̂pτ ;σ (ld)

Γ,Γ′ `σ p : A Γ, t̂p : B⊥⊥,Γ′ `d e : A⊥⊥;σ {·|p}
Γ, t̂p : B⊥⊥,Γ′ `d 〈p ||e〉;σ

(Cutd)

Γ,a : A `d ct̂pτ
′;σ {a |pN }

Γ `d µ̃a.ct̂pτ
′ : A⊥⊥;σ {·|pN }

(µ̃d)
Γ,x : T ,a : A `d ct̂p;σ {(x ,a) |pN }

Γ `d µ̃ (x ,a).ct̂p : (∃xTA)⊥⊥;σ {·|pN }
(∃dl)

Γ,a1 : A1,a2 : A2 `d ct̂p;σ {(a1,a2) |pN }

Γ `d µ̃ (a1,a2).ct̂p : (A1 ∧A2)
⊥⊥;σ {·|pN }

(∧dl)

Γ,ai : Ai `d ci
t̂p

;σ {ιi (ai) |pN }) ∀i ∈ {1,2}

Γ `d µ̃[a1.c
1
t̂p
| a2.c

2
t̂p

] : (A1 ∨A2)
⊥⊥;σ {·|pN }

(∨dl)

Terms

Γ `σ 0 : � (0) Γ `σ t : �
Γ `σ S (t) : �

(S)
Γ,x : U `σ t : T

Γ `σ λx .t : U → T
(λ) Γ `σ t : U → T Γ `σ u : U

Γ `σ t u : T (@)

(x : T) ∈ Γ
Γ `σ x : T (Axt)

Γ `σ t : � Γ `σ t0 : U Γ,x : �,y : U `σ tS : U
Γ `σ rectxy[t0 | tS] : U

(rec)
Γ `σ p : ∃xT.A p nef

Γ `σ wit p : T (wit)

Figure 8.3: Type system for dLPAω

205

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

8.1.4 Subject reduction

It only remains to prove that typing is preserved along reduction. As for the λ[lvτ?]-calculus, the
proof is simpli�ed by the fact that substitutions are not performed (except for terms), which keeps us
from proving the safety of the corresponding substitutions. Yet, we �rst need to prove some technical
lemmas about dependencies. As in the previous chapter, we de�ne a relation σ V σ ′ between lists of
dependencies, which expresses the fact that any typing derivation obtained with σ could be obtained
as well as with σ ′:

σ V σ ′ , σ (A) = σ (B) ⇒ σ ′(A) = σ ′(B) (for any A,B)

We �rst show that the cases which we encounter in the proof of subject reduction satisfy this relation:

Lemma 8.1 (Dependencies implication). �e following holds for any σ ,σ ′,σ ′′:

1. σσ ′′ V σσ ′σ ′

2. σ {(a1,a2) |(V1,V2)} V σ {a1 |V1}{a2 |V2}

3. σ {ιi (a) |ιi (V)} V σ {a |V }

4. σ {(x ,a) |(t ,V)} V σ {a |V }{x |t }

5. σ {·|(p1,p2)} V σ {a1 |p1}{a2 |p2}{·|(a1,a2)}

6. σ {·|ιi (p)} V σ {a |p}{·|ιi (a)}

7. σ {·|(t ,p)} V σ {a |p}{·|(t ,a)}

where the fourth item abuse the de�nition of list of dependencies to include a substitution of terms.

Proof. All the properties are trivial from the de�nition of the substitution σ (A). �

Proposition 8.2 (Dependencies weakening). If σ ,σ ′ are two dependencies list such that σ V σ ′, then
any derivation using σ can be one using σ ′ instead. In other words, the following rules are admissible:

Γ `σ J

Γ `σ
′

J
(w)

Γ `d J ;σ
Γ `d J ;σ ′

(wd)

Proof. Simple induction on the typing derivations. �e rules (t̂p) and (Cut) where the list of depen-
dencies is used exactly match the de�nition of V. Every other case is direct using the �rst item of
Lemma 8.1. �

We also need a simple lemma about stores to simplify the proof of subject reduction:

Lemma 8.3. �e following rule is admissible:

Γ `σ τ0 : (Γ0;σ0) Γ,Γ0 `
σσ0 τ1 : (Γ1;σ1)

Γ `σ τ0τ1 : (Γ0,Γ1;σ0,σ1)
(τ τ ′)

Proof. By induction on the structure of τ1. �

Lemma 8.4 (Safe term substitution). If Γ `σ t : T then for any conclusion J for typing proofs, contexts,
terms, etc; the following holds:

1. If Γ,x : T ,Γ′ `σ J then Γ,Γ′[t/x] `σ [t/x] J [t/x].
2. If Γ,x : T ,Γ′ `d J ;σ then Γ,Γ′[t/x] `d J [t/x];σ [t/x].

Proof. By induction on typing rules. �

�eorem 8.5 (Subject reduction). For any context Γ and any closures cτ and c ′τ ′ such that cτ → c ′τ ′,
we have:

206

8.1. dLPAω : A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

1. If Γ ` cτ then Γ ` c ′τ ′. 2. If Γ `d cτ ; ε then Γ `d c ′τ ′; ε .

Proof. �e proof follows the usual proof of subject reduction, by induction on the typing derivation
and the reduction cτ → c ′τ ′. Since there is no substitution but for terms (proof terms and contexts
being stored), there is no need for auxiliary lemmas about the safety of substitution. We sketch it by
examining all the rules from Figure 8.3 from top to bo�om.
• �e cases for reductions of λ are identical to the cases proven in the previous chapter for dLt̂p.
• �e rules for reducing µ and µ̃ are almost the same except that elements are stored, which makes it
even easier. For instance in the case of µ̃, the reduction rule is:

〈V ||µ̃a.cτ1〉τ0 → cτ0[a := V]τ1

A typing derivation in regular mode for the command on the le�-hand side is of the shape:

ΠV
Γ,Γ0 `

σσ0 V : A

Πc
Γ,Γ0,a : A,Γ1 `

σσ0σ1 c

Πτ1

Γ,Γ0,a : A `σσ0 τ1 : (Γ1;σ1)

Γ,Γ0,a : A `σσ0 cτ1
(l)

Γ,Γ0 `
σσ0 µ̃a.cτ1 : A⊥⊥

(µ̃)

Γ,Γ0 `
σσ0 〈V ||µ̃a.cτ1〉

(Cut)
Πτ0

Γ `σ τ0 : (Γ0;σ0)

Γ `σ 〈V ||µ̃a.cτ1〉τ0
(l)

�us we can type the command on the right-hand side:

Πc

Γ,Γ0,a : A,Γ1 `
σσ0 {a |V }σ1 c

Γ,Γ0,a : A,Γ1 `
σσ0 {a |V }σ1 c

(w)

Πτ0

Γ `σ τ0 : (Γ0;σ0)

ΠV

Γ,Γ0 `
σσ0 V : A

Γ `σ τ0[a := V] : (Γ0,a : A;σ0, {a |V })
(τp)

Πτ1

Γ,Γ0,a : A `σσ0 τ1 : (Γ1;σ1)

Γ `σ τ0[a := V]τ1 : (Γ0,a : A,Γ1;σ0{a |V }σ1)
(τ τ ′)

Γ `σ cτ0[a := V]τ1
(l)

As for the dependent mode, the binding {a |p} within the list of dependencies is compensated when
typing the store as shown in the last derivation.

• Similarly, elimination rules for contexts µ̃[a1.c1 |a2.c2], µ̃ (a1,a2).c , µ̃ (x ,a).c or µ̃=.c are easy to check,
using Lemma 8.1 and the rule (τp) in dependent mode to prove the safety with respect to dependencies.

• �e cases for delimited continuations are identical to the corresponding cases for dLt̂p.

• �e cases for the so-called “call-by-value” rules opening constructors are straightforward, using
again Lemma 8.1 in dependent mode to prove the consistency with respect to the list of dependencies.

• �e cases for the lazy rules are trivial.

• �e �rst case in the “lookup” section is trivial. �e three le�s correspond to the usual unfolding of
inductive and co-inductive �xpoints. We only sketch the la�er in regular mode. �e reduction rule is:

〈a || f 〉τ0[a := cofixtbx [p]]τ1 → 〈p[t/x][b ′/b]||µ̃a.〈a || f 〉τ1〉τ0[b ′ := λy.cofixybx [p]]

�e crucial part of the derivation for the le�-hand side command is the derivation for the co�x in the
store:

Πτ0

Γ `σ τ0 : (Γ0;σ0)

Πt
Γ `σσ0 t : T

Πp

Γ,Γ0, f : T → �,x : T ,b : ∀yT . f (y) = 0 `σσ0 p : A
Γ,Γ0 `

σσ0 cofixtbx [p] : ν tf xA
(cofix)

Γ `σ τ0[a := cofixtbx [p]] : (Γ0,a : ν tf xA;σ0)
(τp)

207

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

�en, using this derivation, we can type the store of the right-hand side command:

Πτ0

Γ `σ τ0 : (Γ0;σ0)

Γ,Γ0,y : T `σσ0 y : T
Πp

Γ,Γ0, f : T → �,x : T ,b : ∀yT . f (y) = 0 `σσ0 p : A
Γ,Γ0,y : T `σσ0 cofix

y
bx [p] : νyf xA

(cofix)

Γ,Γ0 `
σσ0 λy.cofix

y
bx [p] : ∀y.ν tf xA

(∀r)

Γ `σ τ0[b ′ := λy.cofixybx [p]] : Γ0,b
′ : −∀y.νyf xA

(τp)

It only remains to type (we avoid the rest of the derivation, which is less interesting) the proof p[t/x]
with this new store to ensure us that the reduction is safe (since the variable a will still be of type ν tf xA
when typing the rest of the command):

Πp

Γ,Γ0,b : ∀y.νyf xA `
σ p[t/x] : A[t/x][νyf xA/f (y) = 0] ν tf xA ≡ A[t/x][νyf xA/f (y) = 0]

Γ,Γ0,b : ∀y.νyf xA `
σ p[t/x] : ν tf xA

(≡r)

• �e cases for reductions of terms are easy. Since terms are reduced in place within proofs, the only
things to check is that the reduction of wit preserves types (which is trivial) and that the β-reduction
veri�es the subject reduction (which is a well-known fact).

�

8.1.5 Natural deduction as macros

We can recover the usual proof terms for elimination rules in natural deduction systems, and in partic-
ular the ones from dPAω , by de�ning them as macros in our language. �e de�nitions are straightfor-
ward, using delimited continuations for let . . . in and the constructors over nef proofs which might
be dependently typed:

leta = p inq , µαp .〈p ||µ̃a.〈q ||αp〉〉

split p as (a1,a2) in q , µαp .〈p ||µ̃ (a1,a2).〈q ||αp〉〉

case p of [a1.p1 | a2.p2] , µαp .〈p ||µ̃[a1.〈p1 ||αp〉|a2.〈p2 ||αp〉]〉
dest p as (a,x) in q , µαp .〈p ||µ̃ (x ,a).〈q ||αp〉〉

prf p , µt̂p.〈p ||µ̃ (x ,a).〈a ||t̂p〉〉

subst p q , µα .〈p ||µ̃=.〈q ||α〉〉
exfalso p , µα .〈p ||[]〉
catchα p , µα .〈p ||α〉

throw αp , µ .〈p ||α〉

where αp = t̂p if p is nef and αp = α otherwise.

Proposition 8.6 (Natural deduction). �e typing rules from dPAω , given in Section 8.1.5), are admissible

Proof. Straightforward derivations, the cases for prf p q and subst p q are given in Section 7.5.4. �

One can even check that the reduction rules in dLPAω for these proofs almost mimic the ones of
dPAω . To be more precise, the rules of dLPAω do not allow to simulate each rule of dPAω , due to
the head-reduction strategy, amongst other things. Nonetheless, up to a few details the reduction of a
command in dLPAω follows one particular reduction path of the corresponding proof in dPAω , or in
other word, one reduction strategy.

�e main result is that using the macros, the same proof terms are suitable for countable and de-
pendent choice [70]. We do not state it here, but following the approach of [70], we could also extend
dLPAω to obtain a proof for the axiom of bar induction.

208

8.2. SMALL-STEP CALCULUS

Γ ` p : ∃xT .A Γ,x : T ,a : A ` q : B[(x ,a)/•] p < nef⇒ • < B

Γ ` dest p as (x ,a) in q : B[p/•]
(dest)

Γ ` p : ∃xT .A(x)
Γ ` prf p : A(wit p)

(prf)

Γ ` p : A1 ∧A2 Γ,a1 : A1,a2 : A2 ` q : B[(a1,a2)/•] p < nef⇒ • < B

Γ ` split p as (a1,a2) in q : B[p/•]
(split)

Γ ` p : A1 ∧A2
Γ ` πi (p) : Ai

(∧iE)

Γ ` p : A1 ∨A2 Γ,ai : Ai ` q : B[ιi (a)i/•] for i = 1,2 p < nef⇒ • < B

Γ ` case p of [a1.p1 | a2.p2] : B[p/•]
(case)

Γ ` p : ⊥
Γ ` exfalso p : B (⊥)

Γ,a : A ` q : B[a/•] p < nef⇒ • < B

Γ ` leta = p inq : B[p/•]
(let)

Γ,α : A⊥⊥ ` p : A
Γ ` catchα p : A

Γ,α : A⊥⊥ ` p : A
Γ,α : A⊥⊥ ` throw α p : B

Figure 8.4: Typing rules of dPAω

�eorem 8.7 (Countable choice [70]). We have:

AC� := λH .leta = cofix0
bn[(Hn,b (S (n))] in (λn. wit (nthn a),λn. prf (nthn a)

: ∀x�∃yT P (x ,y) → ∃f �→T∀x�P (x , f (x))

where nthn a := π1 (ind
n
x,c [a | π2 (c)]).

Proof. See Figure 8.5. �

�eorem 8.8 (Dependent choice [70]). We have:

DC := λH .λx0. let a = (x0,cofix
0
bn[dest Hn as (y,c) in (y, (c,b y)))]

in (λn. wit (nthn a), (refl,λn.π1 (prf (prf (nthn a)))))
: ∀xT.∃yT.P (x ,y) → ∀xT0 .∃f ∈ T

�.(f (0) = x0 ∧ ∀n
�.P (f (n), f (s (n))))

where nthn a := indnx,d [a | (wit (prf d),π2 (prf (prf (d))))].

Proof. Le� to the reader. �

8.2 Small-step calculus

Once more, we follow Danvy’s methodology of semantic artifacts to obtain a continuation-passing style
translation and a realizability interpretation. We �rst decompose the reduction system of dLPAω into
small-step reduction rules, that we denote by s . �is requires a re�nement and an extension of the
syntax, that we shall now present. To keep us from boring the reader sti� with new (huge) tables for
the syntax, typing rules and so forth, we will introduce them step by step. We hope it will help the
reader to convince herself of the necessity and of the somewhat naturality of these extensions.

First of all, we need to re�ne the syntax to distinguish between strong and weak values in the syntax
of proof terms. As in the λ[lvτ?]-calculus, this re�nement is induced by the computational behavior
of the calculus: weak values are the ones which are stored by µ̃ binders, but which are not values
enough to be eliminated in front of a forcing context, that is to say variables. Indeed, if we observe the
reduction system, we see that in front of a forcing context f , a variable leads a search through the store
for a “stronger” value, which could incidentally provoke the evaluation of some �xpoints. On the other

209

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

Notations:

• ntht p , π1 (ind
t
sx [p | π2 (s)])

• An
∞ , νnf x [A(x) ∧ f (S (x)) = 0]

• strt∞H , cofixtbn[(Hn,b (S (n))]

• A(x) , ∃yT .P (x ,y)

Typing derivation for nth (Πnth):

n : � ` n : � (Axn)
a : A0

∞ ` a : A0
∞

(Axr)

s : Am
∞ ` s : AS (m)

∞

(Axr)
Am
∞ ≡ A(m) ∧AS (m)

∞

m : �,s : Am
∞ ` s : A(m) ∧AS (m)

∞

(≡r)

m : �,s : Am
∞ ` π2 (s) : AS (m)

∞

(∧2
E)

a : A0
∞,n : � ` indtsx [a | π2 (s)] : An

∞

(ind)
An
∞ ≡ A(n) ∧AS (n)

∞

a : A0
∞,n : � ` indtsx [a | π2 (s)] : A(n) ∧AS (n)

∞

(≡r)

a : A0
∞,n : � ` π1 (ind

t
sx [a | π2 (s)]) : A(n)

(∧1
E)

a : A0
∞,n : � ` nthn a : A(n)

(def)

Typing derivation for str0
∞ (Πstr∞):

` 0 : �

H : ∀x�∃yT P (x ,y) ` H : ∀x�∃yT P (x ,y)
(Axr)

n : � ` n : � (Axr)

H : ∀x�∃yT P (x ,y),n : � ` Hn : ∃yT .P (n,y)
(∀r)

H : ∀x�∃yT P (x ,y),n : �,b : ∀zN . f (z) = 0 ` (Hn,b (S (n)) : ∃yT .P (n,y) ∧ f (S (n)) = 0
H : ∀x�∃yT P (x ,y) ` cofix0

bn[(Hn,b (S (n))] : ν0
f x∃y

T .P (x ,y) ∧ f (S (x)) = 0

H : ∀x�∃yT P (x ,y) ` str0
∞H : A0

∞

(def)

Typing derivation for AC�:

Πnth

a : A0
∞,n : � ` nthn a : A(n)

a : A0
∞,n : � ` nthn a : ∃yT.P (n,y)

(def)

a : A0
∞,n : � ` wit (nthn a) : T

(wit)

a : A0
∞ ` λn. wit (nthn a) : �→ T

Πnth

a : A0
∞,n : � ` nthn a : A(n)

a : A0
∞,n : � ` nthn a : ∃yT.P (n,y)

(def)

a : A0
∞,x : � ` prf (nthn a) : P (x ,wit (nthx a))

(≡r)

a : A0
∞,x : � ` prf (nthn a) : P (x ,λn. wit (nthn a)x)

(≡r)

a : A0
∞ ` λn. prf (nthn a) : ∀x�.P (x , (λn. wit (nthn a))x)

(∀r)

a : A0
∞ ` (λn. wit (nthn a),λn. prf (nthn a) : ∃f �→T.∀x�.P (x , f (x))

(∃r)

H : ∀x�∃yT P (x ,y) ` leta = str0
∞H in (λn. wit (nthn a),λn. prf (nthn a) : ∃f �→T.∀x�.P (x , f (x))

(let)

` λH . leta = str0
∞H in (λn. wit (nthn a),λn. prf (nthn a) : ∀x�.∃yT.P (x ,y) → ∃f �→T.∀x�.P (x , f (x))

(→r)

where we omit the conversion P (x , (λn. wit (nthn a))x) ≡ P (x ,wit (nthx a)) on the right-hand side
derivation.

Figure 8.5: Proof of the axiom of countable choice in dLPAω

210

8.2. SMALL-STEP CALCULUS

hand, strong values are the ones which can be reduced in front of the matching forcing context, that is
to say functions, refl, pairs of (weak) values, injections or dependent pairs:

Weak values
Strong values

V ::= a | v
v ::= ιi (V) | (V ,V) | (Vt ,V) | λx .p | λa.p | refl

�is allows to distinguish commands of the shape 〈v || f 〉τ , where the forcing context (and next the
strong value) are examined to determine whether the command reduces or not; from commands of the
shape 〈a || f 〉τ where the focus is put on the variable a, which leads to a lookup for the associated proof
in the store.

Next, we need to explicit the reduction of terms. To this purpose, we include a machinery to evaluate
terms in a way which resemble the evaluation of proofs. In particular, we de�ne new commands which
we write 〈t ||π 〉 where t is a term and π is a context for terms (or co-term). Co-terms are either of the
shape µ̃x .c or stacks ot the shapeu ·π . �ese constructions are the usual ones of the λµµ̃-calculus (which
are also the ones for proofs). We also extend the de�nitions of commands with delimited continuations
to include the corresponding commands for terms:

Commands
Co-terms

c ::= 〈p ||e〉 | 〈t ||π 〉
π ::= t · π | µ̃x .c

Delimited
continuations

ct̂p ::= · · · | 〈t ||πt̂p〉
πt̂p ::= t · πt̂p | µ̃x .ct̂p

We give typing rules for these new constructions, which are the usual rules for typing contexts in the
λµµ̃-calculus:

Γ ` t : T Γ ` π : U ⊥⊥
Γ ` t · π : (T → U)⊥⊥

(→l)
c : (Γ,x : T)
Γ ` µ̃x .c : T⊥⊥

(µ̃x) Γ `σ t : T Γ `σ π : T⊥⊥
Γ `σ 〈t ||π 〉

(cutt)

It is worth noting that the syntax as well as the typing and reduction rules for terms now match exactly
the ones for proofs6. In other words, with these de�nitions, we could abandon the strati�ed presentation
without any trouble, since reduction rules for terms will naturally collapse to the ones for proofs.

Finally, in order to maintain typability when reducing dependent pairs of the strong existential
type, we need to add what we call co-delimited continuations. We saw in the previous chapter that the
CPS translation of pairs (t ,p) was not the expected one, and we mentioned the fact that it re�ected
the need for a special reduction rule. Indeed, consider such a pair of type ∃xT.A, the standard way of
reducing it would be a rule like:

〈(t ,p) ||e〉τ s 〈t ||µ̃x .〈p ||µ̃a.〈(x ,a) ||e〉〉〉τ

but such a rule does not satisfy subject reduction. Indeed, consider a typing derivation for the le�-hand
side command, when typing the pair (t ,p), p is of type A[t]. On the command on the right-hand side,
the variable a will then also be of type A[t], while it should be of type A[x] for the pair (x ,a) to be
typed. We thus need to compensate this mismatching of types, by reducing t within a context where a
is not linked to p but to a co-reset ťp (dually to reset t̂p), whose type can be changed from A[x] to A[t]
thanks to a list of dependencies:

〈(t ,p) ||e〉pτ s 〈p ||µ̃ťp.〈t ||µ̃x .〈ťp||µ̃a.〈(x ,a) ||e〉〉〉〉pτ

We thus equip the language with new contexts µ̃ťp.cťp, which we call co-shi�s, and where cťp is a
command whose last cut is of the shape 〈ťp||e〉. �is corresponds formally to the following syntactic

6Except for substitutions of terms, which we could store as well

211

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

sets, which are dual to the ones introduced for delimited continuations:

Contexts

Co-delimited
continuations

nef

e ::= · · · | µ̃ťp.cťp

cťp ::= 〈pN ||eťp〉 | 〈t ||πťp〉 | 〈ťp||e〉
eťp ::= µ̃a.cťp | µ̃[a1.cťp | a2.c

′

ťp
] | µ̃ (a1,a2).cťp | µ̃ (x ,a).cťp

πťp ::= t · πťp | µ̃x .cťp

eN ::= · · · | µ̃ťp.cťp

�is might seem to be a heavy addition to the language, but we insist on the fact that these artifacts
are merely the dual constructions of delimited continuations that we introduced in dLt̂p, with a very
similar intuition. In particular, it might be helpful for the reader to think of the fact that we introduced
delimited continuations for type safety of the evaluation of dependent products in Πa : A.B (which
naturally extends to the case ∀xT.A). �erefore, to maintain type safety of dependent sums in ∃xT.A,
we need to introduce the dual constructions of co-delimited continuations. We also give typing rules
to these constructions, which are dual to the typing rules for delimited-continuations:

Γ, ťp : A `d cťp;σ
Γ `σ µ̃ťp.cťp : A⊥⊥

(µ̃ ťp)
Γ,Γ′ `σ e : A⊥⊥ σ (A) = σ (B)

Γ, ťp : B,Γ′ `d 〈ťp||e〉;σ
(ťp)

Note that we also need to extend the de�nition of list of dependencies so as to include bindings of the
shape {x |t } for terms, and that we have to give the corresponding typing rules to type commands of
terms in dependent mode:

c : (Γ,x : T ;σ {x |t })
Γ `d µ̃x .c : T⊥⊥;σ {·|t }

(µ̃)
Γ,Γ′ `σ t : T Γ, ťp : B,Γ′ `d π : A⊥⊥;σ {·|t }

Γ, ťp : B,Γ′ `d 〈t ||π 〉;σ
(Cut)

�e small-step reduction system is given in Figure 8.6. �e rules are wri�en cιτ s c
′
oτ
′ where the

annotation ι,p on commands are indices (i.e. c,p,e,V , f ,t ,π ,Vt) indicating which part of the command
is in control. As in the λ[lvτ?]-calculus, we observe an alternation of steps descending from p to f for
proofs and from t to Vt for terms. �e descent for proofs can be divided in two main phases. During
the �rst phase, from p to e we observe the call-by-value process, which extracts values from proofs,
opening recursively the constructors and computing values. In the second phase, the core computation
takes place from V to f , with the destruction of constructors and the application of function to their
arguments. �e laziness corresponds precisely to a skip of the �rst phase, waiting to possibly reach the
second phase before actually going through the �rst one.

We brie�y state the important properties of this system.

Proposition 8.9 (Subject reduction). �e small-step reduction rules satisfy subject reduction.

Proof. �e proof is again a tedious induction on the reduction s . �ere is almost nothing new in
comparison with the cases for the big-step reduction rules: the cases for reduction of terms are straight-
forward, as well as the administrative reductions changing the focus on a command. We only give the
case for the reduction of pairs (t ,p). �e reduction rule is:

〈(t ,p) ||e〉pτ s 〈p ||µ̃ťp.〈t ||µ̃x .〈ťp||µ̃a.〈(x ,a) ||e〉〉〉〉pτ

Consider a typing derivation for the command on the le�-hand side, which is of the shape (we omit the
rule (l) and the store for conciseness):

Πt
Γ `σ t : T

Πp

Γ `σ p : A[t/x]
Γ `σ (t ,p) : ∃xT.A

(∃r)
Πe

Γ `σ e : (∃xT.A)⊥⊥
Γ `σ 〈(t ,p) ||e〉

(Cut)

212

8.2. SMALL-STEP CALCULUS

Commands
〈p ||e〉cτ s 〈p ||e〉p
〈t ||π 〉cτ s 〈t ||π 〉t

Delimited continuations
(for any ι,o) 〈µt̂p.cτ ′′ ||e〉pτ s 〈µt̂p.c

′τ ′′ ||e〉pτ
′ (if cιτ s c

′
oτ
′)

〈µt̂p.〈p ||t̂p〉||e〉pτ s 〈p ||e〉pτ
(for any ι,o) 〈V ||µ̃ťp.c〉eτ s 〈V ||µ̃ťp.c

′〉eτ
′ (if cιτ s c

′
oτ
′)

〈V ||µ̃ťp.〈ťp||e〉〉eτ s 〈V ||e〉eτ

Proofs
(e , et̂p) 〈µα .c ||e〉pτ s cc τ [α := e]

〈µα .c ||et̂p〉pτ s cc [et̂p/α]τ
(a fresh) 〈(p1,p2) ||e〉pτ s 〈p1 ||µ̃a1.〈p2 ||µ̃a2.〈(a1,a2) ||e〉〉〉pτ
(a fresh) 〈ιi (p) ||e〉pτ s 〈p ||µ̃a.〈ιi (a) ||e〉〉pτ
(a fresh) 〈(t ,p) ||e〉pτ s 〈p ||µ̃ťp.〈t ||µ̃x .〈ťp||µ̃a.〈(x ,a) ||e〉〉〉〉pτ

(y,a fresh) 〈indtbx [p | q]||e〉pτ s 〈µt̂p.〈t ||µ̃y.〈a ||t̂p〉[a := ind
y
bx [p | q]]〉||e〉pτ

(y,a fresh) 〈cofixtbx [p]||e〉pτ s 〈µt̂p.〈t ||µ̃y.〈a ||t̂p〉〉[a := cofix
y
bx [p]]||e〉pτ

〈V ||e〉pτ s 〈V ||e〉e

Contexts
〈V ||α〉eτ [α := e]τ ′ s 〈V ||e〉eτ [α := e]τ ′

〈V ||µ̃a.cτ ′〉eτ s ccτ [a := V]τ ′
〈V || f 〉eτ s 〈V || f 〉V τ

Values
〈a || f 〉V τ [a := V]τ ′ s 〈V || f 〉V τ [a := V]τ ′

〈v || f 〉V τ s 〈v || f 〉f τ

(b ′ fresh) 〈a || f 〉V τ [a = cofixtbx [p]]τ ′ s 〈p[t/x][b ′/b]||µ̃a.〈a || f 〉τ ′〉pτ [b ′ := λy.cofixybx [p]]
〈a || f 〉V τ [a = ind0

bx [p0 | pS]]τ ′ s 〈p0 ||µ̃a.〈a || f 〉τ
′〉pτ

(b ′ fresh) 〈a || f 〉vτ [a = indS (t)bx [p0 | pS]]τ ′ s 〈pS [t/x][b ′/b]||µ̃a.〈a || f 〉τ ′〉pτ [b ′ := indtbx [p0 | pS]]]

Forcing contexts
〈λx .p ||t · e〉f τ s 〈µt̂p.〈t ||µ̃x .〈p ||t̂p〉〉||e〉pτ

(q ∈ nef) 〈λa.p ||q · e〉f τ s 〈µt̂p.〈q ||µ̃a.〈p ||t̂p〉〉||e〉pτ
(q < nef) 〈λa.p ||q · e〉f τ s 〈q ||µ̃a.〈p ||e〉〉pτ

〈ιi (V) ||µ̃[a1.c
1 | a2.c

2]〉f τ s c
i
cτ [ai := V]

〈(V1,V2) ||µ̃ (a1,a2).c〉f τ s ccτ [a1 := V1][a2 := V2]
〈(Vt ,V) ||µ̃ (x ,a).c〉f τ s (c[Vt/x])cτ [a := V]

〈refl||µ̃=.c〉f τ s ccτ

Terms
〈tu ||π 〉tτ s 〈t ||u · π 〉tτ

(x fresh) 〈S (t) ||π 〉tτ s 〈t ||µ̃x .〈S (x) ||π 〉〉t
(x ,a fresh) 〈wit p ||π 〉tτ s 〈p ||µ̃ (x ,a).〈x ||π 〉〉pτ
(t < Vt) 〈rectxy[t0 | tS]||π 〉tτ s 〈t ||µ̃z.〈rec

z
xy[t0 | tS]||π 〉〉tτ

〈rec0
xy[t0 | tS]||π 〉tτ s 〈t0 ||π 〉tτ

〈recS (Vt)xy [t0 | tS]||π 〉tτ s 〈tS [Vt/x][recVtxy[t0 | tS]/y]||π 〉tτ
〈Vt ||π 〉tτ s 〈Vt ||π 〉πτ

〈λx .t ||u · π 〉πτ s 〈u ||µ̃x .〈t ||π 〉〉tτ
〈Vt ||µ̃x .ct 〉πτ s (ctτ)[Vt/x]
〈Vt ||µ̃x .c〉πτ s (cpτ)[Vt/x]

Figure 8.6: Small-step reduction rules
213

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

�en we can type the command on the right-hand side with the following derivation:

Πp

Γ `σ p : A[t]

Πt

Γ, ťp : A[t] ` t : T

Π(x,a) Πe

Γ,x : T ,a : A[x] `σ 〈(x ,a) ||e〉 : A[x]⊥⊥
(Cut)

Γ,x : T `σ µ̃a.〈(x ,a) ||e〉 : A[x]⊥⊥
(µ̃)

A[t] = ({x |t }) (A[x])
Γ, ťp : A[t],x : T `d 〈ťp||µ̃a.〈(x ,a) ||e〉〉;σ {x |t }

(Cutd)

Γ, ťp : A[t/x] `d µ̃x .〈ťp||µ̃a.〈(x ,a) ||e〉〉 : T ;σ {·|t }
(µ̃x)

Γ, ťp : A[t] ` 〈t ||µ̃x .〈ťp||µ̃a.〈(x ,a) ||e〉〉〉;σ
(Cutd)

Γ `σ µ̃ťp.〈t ||µ̃x .〈ťp||µ̃a.〈(x ,a) ||e〉〉〉 : A[t]⊥⊥
(µ̃ ťp)

Γ `σ 〈p ||µ̃ťp.〈t ||µ̃x .〈ťp||µ̃a.〈(x ,a) ||e〉〉〉〉p
(Cut)

where Π(x,a) is as expected. �

It is direct to check that the small-step reduction system simulates the big-step one, and in particular
that it preserves the normalization :

Proposition 8.10. If a closure cτ normalizes for the reduction s , then it normalizes for→.

Proof. By contraposition, one proves that if a command cτ produces an in�nite number of steps for
the reduction→, then it does not normalize for s either. �is is proved by showing by induction on
the reduction→ that each step, except for the contextual reduction of terms, is re�ected in at least on
for the reduction s . �e rules for term reductions require a separate treatment, which is really not
interesting at this point. We claim that the reduction of terms, which are usual simply-typed λ-terms,
is known to be normalizing anyway and does not deserve that we spend another page proving it in this
particular se�ing. �

8.3 A continuation-passing style translation

We present in this section the continuation-passing style translation7 which arises from the small-
step reduction system we de�ned. In practice, we will not give here a formal proof of normalization
for dLPAω (we will give one using a realizability interpretation in the next section), so that we will
deliberately omit some proofs and details. In particular, we have a priori two choices for the target
language of this translation.

Either our interest in the translation is only to prove the normalization of dLPAω , in which case we
can erase the dependencies and use a non-dependently typed target language. Starting from dLPAω ,
embedding terms and proofs in a single syntactic set then removing dependent types would roughly
leave us with a �rst-order language similar to the λ[lvτ?]-calculus (but more expressive). A good can-
didate as a target language for a CPS translation erasing dependencies is hence System Fϒ, possibly
enriched8 with conjunction, disjunction, etc… to recover the same expressiveness as dLPAω . In this
case, the typability of the translation would be greatly simpli�ed and it would mostly amount to the
typability of the CPS translation for the λ[lvτ?]-calculus in Chapter 6.

On the other hand, we could be interested in a translation carrying the dependencies, and choose
a target language compatible with that. In which case, the proof of typability would concentrate both
the di�culties for typing the store-passing part of the translation, and the di�culties related to type

7As in for the λ[lvτ?]-calculus, it is in fact a continuation-and-store passing style translation, but we refer to it as
continuation-passing style for conciseness.

8It is folklore that conjunctions, disjunctions and even co-inductive types can be encoded in System F, and thus in System
Fϒ . Adding primitive constructions both in the syntax of types and programs is thus just a ma�er of convenience to sim-
plify the translation. We can thus consider without lost of generality that the language includes these constructions, since
alternatively, one could combine the CPS translation with the encoding to obtain a translation to “pure” System Fϒ .

214

8.3. A CONTINUATION-PASSING STYLE TRANSLATION

dependencies as for the translation of dLt̂p. For instance, we could pick the calculus of constructions [28]
as a very general target language, in which we would dispose of dependent types and of the expressive
power to encode the type of second-order vectors from Fϒ.

We choose to leave the choice of our target language ambiguous, and give the most general transla-
tion possible. We thus assume that the proof terms of the target language contain at least constructors
for pairs, injections, equality and the same destructors as in dPAω (i.e. split, case, dest, subst,
exfalso), as well as a way to encode vectors. We do not add substitutions to rename variables, but
a thorough de�nition of the translation should also include an explicit renaming procedure, for the
reasons invoked in Section 6.4.1.

�is being said, the translation is derived directly from the small-step reduction rules. As for the
λ[lvτ?]-calculus, the di�erent levels p,e,V , f ,v and t ,π ,Vt are re�ected in a translation ~·�ι for each
level ι. �e main subtlety concerns the way we handle inductive and co-inductive �xpoints, and more
generally the store. Observe that in dLPAω we managed to delimit the unfolding of �xpoints to the store,
everything happening as if they were special cells producing computations. In other words, we could
have been one step further to remove �xpoints from the syntax of proofs, limiting their occurrences
strictly to the store. �is is actually what is done through the translation, where we mark some cells
with IND and COFIX. �e computational content of the �xpoint is thus decomposed step by step, each
step being produced by the lookup function, that is de�ned (in pseudo-code) as follows:

lookupκ τ1[κ := p]τ2 k := match (κ,p) with
| α ,e 7→ e τ1[a := V]τ2 k

| a,V 7→ V τ1[a := V]τ2 k

| a,COFIXtbxp 7→ (p[t/x][b ′/b]) τ1[b ′ := ~λy.cofixybx [p]�v] (λτq.q τ [a := q]τ2 k)

| a,IND0
bx [p0 | pS] 7→ p0 τ1 (λτq.q τ [a := q]τ2 k)

| a,INDS (t)bx [p0 | pS] 7→ (pS [t/x][b ′/b]) τ1[b ′ := INDtbx [p0 | pS]] (λτq.q τ [a := q]τ2 k)

where in each case b ′ is fresh. In practice, this simply corresponds to a store where cells include a
�ag so that the lookup function given above could be implemented in the target language by means of
pa�ern-matching using injections and case. �e lookup function is now the only piece of the whole
translation which actually has the computational content of a �xpoint.

�e full translation is given by Figure 8.7, and is by construction correct with respect to reduction.
In particular, we could again prove by a tedious induction on the reduction s that the normalization
is preserved:

Proposition 8.11. If ~cτ �l normalizes, then so does cτ for s .

In what concerns the typing of the translation, in the case where we erase the dependencies, it
would simply amount to the typing of the translation for the λ[lvτ?]-calculus, that is to say that the
translation of typing judgments for proofs (resp. contexts, etc) will be of the shape:

~Γ `σ p : A� , (` ~p�p : ~Γ�Γ .p ι (A))

where again:
ϒ .p A , ∀Y <: ϒ.Y → (Y .e A) → ⊥ .

�e only novelty with respect to the CPS translation for the λ[lvτ?]-calculus sites in the lookup function
in the cases of IND and COFIX. However, it is easy to check that in both cases, through the translation
(and already in the small-step reduction system) these elements take a continuation at level f and put
in active position a proof at level p in front of a continuation which is built to be at level e . In particular,
types are respected in the sense that lookupa (τ [a := COFIXtbx ~p�p]) kf is indeed of type ⊥. We claim

215

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

Commands
~〈p ||e〉�c τ = ~p�p τ ~e�e
~〈p ||t̂p〉�c τ = ~p�p τ
~〈ťp||e〉�c τ = ~e�e τ

~〈t ||π 〉�c τ = ~t�t τ π

Proofs
~µt̂p.c�p τ k = (~c�c τ) k
~µα .c�p τ k = ~c�c τ [α := k]

~(p1,p2)�p τ k = ~p1�p τ (λτ1q1.~p2�p τ1[a1 := q1] (λτ2q2.k τ2[a2 := q2] ~(a1,a2)�V))
~ιi (p)�p τ k = ~p�p τ (λτq.k τ [a := q] ~ιi (a)�V)
~(t ,p)�p τ k = ~p�p τ (λτ .~t�t τ (λτxa.k τ ~(x ,a)�V))

(a fresh) ~cofixtbx [p]�p τ k = (~t�t τ (λτy.~a�p τ [a := COFIX
y
bx ~p�p])) k

(a fresh) ~indtbx [p | ps]�p τ k = (~t�t τ (λτy.~a�p τ [a := IND
y
bx [~p�p | ~q�p])]) k

~V �p τ k = k τ ~V �V

Contexts
~µ̃a.cτ ′�e τ V = ~c�c (τ [a := V]~τ ′�τ)
~µ̃ťp.c�e τ V = (~c�c τ)V

~α�e τ V = lookup α τ V
~ f �e τ V = V τ ~ f �f

Weak values
~a�V τ kv = lookup a τ kv ~v�V τ kv = kv τ ~V �v

Forcing contexts
~t · e�f τ v = (~t�t τ (λτx .v τ x)) ~e�e

(qN ∈ nef) ~qN · e�f τ v = (~qN �p τ (λτq
′.v τ q′)) ~e�e

(q < nef) ~q · e�f τ v = ~q�p τ (λτq
′.v τ q′ ~e�e)

(bi fresh) ~µ̃ (a1,a2).c�f τ v = split v as (b1,b2) in (~c�c τ [a1 := b1][a2 := b2])
(bi fresh) ~µ̃[a1.c1 | a2.c2]�f τ v = case v of [b1.~c1�c τ [a1 := b1] | b2.~c2�c τ [a2 := b2,]]
(b fresh) ~µ̃ (x ,a).c�f τ v = dest v as (y,b) in (λx .~c�c)y τ [a := b]

~µ̃=.c�f τ v = subst v ~c�c τ
~[]�f τ v = exfalso v

Strong values
~λx .p�v τ Vt e = ~p�p[Vt/x]τ e
~λa.p�v τ V e = ~p�p τ [a := V] e

~refl�v = refl

~(a1,a2)�v = (~a1�V ,~a2�V)
~ιi (a)�v = ιi (~a�V)

~(Vt ,a)�v = (~Vt �Vt ,~a�V)

Environments
~τ [a := cofixVtbx [p]]�τ = ~τ �τ [a := COFIX

~Vt �Vt
bx ~p�p]

~τ [a := indVtbx [p | q]]�τ = ~τ �τ [a := IND
~Vt �Vt
bx [~p�p | ~q�p]]

~ε�τ = ε
~τ [a := V]�τ = ~τ �τ [a := ~V �v]
~τ [α := e]�τ = ~τ �τ [α := ~e�e]

Terms
~Vt �t τ kt = kt τ ~Vt �Vt

~S (u)�t τ kt = ~u�t τ (λτx .kt τ ~S (x)�Vt))
~t u�t τ kt = ~t�t τ λτv .~u�t τ (λτw .v w τ kt))

~wit (p)�t τ kt = ~p�p τ (λτq.q τ (λα .(~µ̃ (x ,a).〈x ||α〉�f) kt))
~rectxy[u0 |uS]�t τ kt = ~t�t τ (λτz.rec

z
xy[~u0�t | ~uS �t]τ kt)

~u · π �π τ v = ~u�t τ (λτw .v τ w ~π �π)
~µ̃x .c�π τ v = (~c�c τ)[v/x]

~0�Vt = 0

~x�Vt = x
~S (Vt)�Vt = S (~Vt �Vt)
~λx .t�Vt = λτxk .~t�t τ k

Figure 8.7: Continuation-and-store-passing style translation

216

8.4. NORMALIZATION OF dLPAω

than once we understood how the translation of the λ[lvτ?]-calculus was typed, this se�ing is more or
less the same and should not give us a hard time.

However, in the case where we would like to obtain a translation compatible with dependent types,
we know that we need to re�ne the typing of terms and nef proof terms, as we did in dLt̂p. �is is
certainly possible, in particular given a nef proof term p, it is still possible to pass the continuation
λτa.a to ~pN �p to force the extraction of a proof p+N . �is should allow us to re�ne the type of ~pN �p
to obtain something like:

ϒ .p A , ∀Y <: ϒ.Y → ∀R.′Πa : (Y .e A).R (a) → R (p+N)) .

However, due to the laziness and the two layers of alternation between proof and contexts, we should
probably process to a second extraction to obtain a strong value, and cleverly handle the store while
doing so. In the absence of a real motivation for such a translation, we did not take the time to study
the question more in depth. However we are con�dent in the fact that the main di�culties has been
studied in the previous chapters, so that if it was worthwhile, with time and rigor, it should be possible
to methodically obtain a translation of types compatible with the dependencies.

8.4 Normalization of dLPAω

8.4.1 A realizability interpretation of dLPAω

We shall now present the realizability interpretation of dLPAω , which will �nally give us a proof of
its normalization. Here again, the interpretation combines ideas of the interpretations for the λ[lvτ?]-
calculus (Chapter 6) and for dLt̂p through the embedding in Lepigre’s calculus (Chapter 7). Namely, as
for the λ[lvτ?]-calulus, formulas will be interpreted by sets of proofs-in-store of the shape (p |τ), and
the orthogonality will be de�ned between proofs-in-store (p |τ) and contexts-in-store (e |τ ′) such that
the stores τ an τ ′ are compatible.

We recall the main de�nition necessary to the realizability interpretation:

De�nition 8.12 (Proofs-in-store). We call closed proof-in-store (resp. closed context-in-store, closed term-
in-store, etc) the combination of a proof p (resp. context e , term t , etc) with a closed store τ such that
FV (p) ⊆ dom(τ). We use the notation (p |τ) to denote such a pair. In addition, we denote by Λp (resp.
Λe , etc.) the set of all proofs and by Λτp (resp. Λτe , etc.) the set of all proofs-in-store. y

We denote the sets of closed closures by C0, and we identify again (c |τ) with the closure cτ when c
is closed in τ . We can now de�ne the notion of pole, which has to satisfy an extra condition due to the
presence of delimited continuations

De�nition 8.13 (Pole). A subset ⊥⊥ ∈ C0 is said to be saturated or closed by anti-reduction whenever
for all (c |τ), (c ′ |τ ′) ∈ C0, we have

(c ′τ ′ ∈ ⊥⊥) ∧ (cτ → c ′τ ′) ⇒ (cτ ∈ ⊥⊥)

It is said to be closed by store extension if whenever cτ is in ⊥⊥, for any store τ ′ extending τ , cτ ′ is also
in ⊥⊥:

(cτ ∈ ⊥⊥) ∧ (τ C τ ′) ⇒ (cτ ′ ∈ ⊥⊥)

It is said to be closed under delimited continuations if whenever c[e/t̂p]τ (resp. c[V /ťp]τ) is in ⊥⊥, then
〈µt̂p.c ||e〉τ (resp .〈V ||µ̃ťp.c〉τ) belongs to ⊥⊥:

(c[e/t̂p]τ ∈ ⊥⊥) ⇒ (〈µt̂p.c ||e〉τ ∈ ⊥⊥) (c[V /ťp]τ ∈ ⊥⊥) ⇒ (〈V ||µ̃ťp.c〉τ ∈ ⊥⊥)

A pole is de�ned as any subset of C0 that is closed by anti-reduction, by store extension and under
delimited continuations. y

217

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

We can verify that the set of normalizing command is indeed a pole:

Proposition 8.14. �e set ⊥⊥⇓ = {cτ ∈ C0 : cτ normalizes } is a pole.

Proof. �e �rst two conditions have already been veri�ed for the λ[lvτ?]-calculus. �e third one is
straightforward, since if a closure 〈µt̂p.c ||e〉τ is not normalizing, it is easy to verify that c[e/t̂p] is not
normalizing either. Roughly, there is only two possible reduction steps for a command 〈µt̂p.c ||e〉τ : either
it reduces to 〈µt̂p.c ′ ||e〉τ ′, in which case c[e/t̂p]τ also reduces to a closure which is almost (c ′τ ′)[e/t̂p];
or c is of the shape 〈p ||t̂p〉 and it reduces to c[e/t̂p]τ . In both cases, if 〈µt̂p.c ||e〉τ can reduce, so can
c[e/t̂p]τ . �e same reasoning allows us to show that if c[V /ťp]τ normalizes, then so does 〈V ||µ̃ťp.c〉τ
for any value sV . �

We now recall the notion of compatible stores, which allows us to de�ne an orthogonality relation
between proofs- and contexts-in-store.

De�nition 8.15 (Compatible stores and union). Let τ and τ ′ be stores, we say that:

• they are independent and note τ#τ ′ when dom(τ) ∩ dom(τ ′) = ∅.
• they are compatible and note τ � τ ′ whenever for all variables a (resp. co-variables α) present in

both stores: a ∈ dom(τ) ∩ dom(τ ′); the corresponding proofs (resp. contexts) in τ and τ ′ coincide.
• τ ′ is an extension of τ and we write τ C τ ′ whenever dom(τ) ⊆ dom(τ ′) and τ � τ ′.
• the compatible union ττ ′ of compatible closed stores τ and τ ′, is de�ned as join(τ ,τ ′), which

itself given by:
join(τ0[a := p]τ1,τ

′
0[a := p]τ ′1) , τ0τ

′
0[a := p]join(τ1,τ

′
1)

join(τ0[α := e]τ1,τ
′
0[α := e]τ ′1) , τ0τ

′
0[α := e]join(τ1,τ

′
1)

join(τ ,τ ′) , ττ ′

(if τ0#τ ′0)
(if τ0#τ ′0)
(if τ#τ ′)y

�e next lemma (which follows from the previous de�nition) states the main property we will use
about union of compatible stores.

Lemma 8.16. If τ and τ ′ are two compatible stores, then τ C ττ ′ and τ ′ C ττ ′. Besides, if τ is of the form
τ0[x := t]τ1, then ττ ′ is of the form τ0[x := t]τ1 with τ0 C τ0 and τ1 C τ1.

We recall the de�nition of the orthogonality relation with respect to a pole, which is identical to
the one for the λ[lvτ?]-calculus:

De�nition 8.17 (Orthogonality). Given a pole ⊥⊥, we say that a proof-in-store (p |τ) is orthogonal to
a context-in-store (e |τ ′) and write (p |τ)⊥⊥(e |τ ′) if τ and τ ′ are compatible and 〈p ||e〉ττ ′ ∈ ⊥⊥. �e
orthogonality between terms and coterms is de�ned identically. y

We are now equipped to de�ne the realizability interpretation of dLPAω . Firstly, in order to simplify
the treatment of coinductive formulas, we extend the language of formulas with second-order variables
X ,Y , . . . and we replace ν tf xA by ν tXxA[X (y)/f (y) = 0]. �e typing rule for co-�xpoint operators then
becomes:

Γ `σ t : T Γ,x : T ,b : ∀yT.X (y) `σ p : A X positive in A X < FV (Γ)

Γ `σ cofixtbx [p] : ν tXxA
(cofix)

Secondly, as in the interpretation of dLt̂p through Lepigre’s calculus, we introduce two new predi-
cates, p ∈ A for nef proofs and t ∈ T for terms. �is allows us to decompose the dependent products
and sums into:

∀xT.A , ∀x .(x ∈ T → A)

∃xT.A , ∃x .(x ∈ T → A)

Πa : A.B , ∀a.(a ∈ A→ B) (if a ∈ FV (B))

Πa : A.B , A→ B (if a < FV (B))

218

8.4. NORMALIZATION OF dLPAω

�is corresponds to the language of formulas and types de�ned by:

Types
Formulas

T ,U ::= � | T → U | t ∈ T
A,B ::= > | ⊥ | X (t) | t = u | A ∧ B | A ∨ B | a ∈ A | ∀x .A | ∃x .A | ∀a.A | ν tXxA

and to the following inference rules:

Γ `σ v : A a < FV (Γ)

Γ `σ v : ∀a.A
(∀ar)

Γ `σ v : A x < FV (Γ)

Γ `σ v : ∀x .A
(∀xr)

Γ `σ v : A[t/x]
Γ `σ v : ∃x .A

(∃xr)

Γ `σ e : A[q/a] q nef
Γ `σ e : (∀a.A)⊥⊥

(∀al)
Γ `σ e : A[t/x]
Γ `σ e : (∀x .A)⊥⊥

(∀xl)
Γ `σ e : A x < FV (Γ)

Γ `σ e : (∃x .A)⊥⊥
(∃xl)

Γ `σ p : A p nef
Γ `σ p : p ∈ A (∈

p
r)

Γ `σ e : A⊥⊥
Γ `σ e : (q ∈ A)⊥⊥

(∈
p
l)

Γ `σ t : T
Γ `σ t : t ∈ T (∈tr)

Γ `σ π : T⊥⊥
Γ `σ π : (t ∈ T)⊥⊥

(∈tl)

�ese rules are exactly the same as in Lepigre’s calculus [108] up to our strati�ed presentation in a
sequent calculus fashion and modulo our syntactic restriction to nef proofs instead of his semantical
restriction. It is a straightforward veri�cation to check that the typability is maintained through the
decomposition of dependent products and sums.

Another similarity with Lepigre’s realizability model is that truth/falsity values will be closed under
observational equivalence of proofs and terms. To this purpose, for each store τ we introduce the
relation ≡τ , which we de�ne as the re�exive-transitive-symmetric closure of the relation .τ :

t .τ t ′ whenever ∃τ ′,∀π , (〈t ||π 〉τ → 〈t ′ ||π 〉τ ′

p .τ q whenever ∃τ ′,∀f (〈p || f 〉τ → 〈q || f 〉τ ′)

All this being se�led, it only remains to determine how to interpret coinductive formulas. While
it would be natural to try to interpret them by �xpoints in the semantics, this poses di�culties for the
proof of adequacy. We will discuss this ma�er in the next section, but as for now, we will give a simpler
interpretation. We stick to the intuition that since cofix operators are lazily evaluated, they actually
are realizers of every �nite approximation of the (possibly in�nite) coinductive formulas. Consider for
instance the case of a stream

str0
∞p , cofix0

bx [(px ,b (S (x)))]

of type ν0
f xA(x) ∧ f (S (x)) = 0. Such stream will produce on demand any tuple (p0, (p1, ...(pn,�)...)

where � denotes the fact that it could be any term, in particular strn+1
∞ p. So that str0

∞p should be a
successful defender of the formula

(A(0) ∧ (A(1) ∧ ...(A(n) ∧ >)...)

Since cofix operators only reduce when they are bound to a variable in front of a forcing context,
it suggests to interpret the coinductive formula ν0

f xA(x) ∧ X (S (x)) at level f as the union of all the
opponents to a �nite approximation.

To this end, given a coinductive formula ν0
XxA where X is positive in A, we de�ne its �nite approx-

imations by:
F 0
A,t , > Fn+1

A,t , A[t/x][FnA,y/X (y)]

Since f is positive in A, we have for any integer n and any term t that ‖FnA,t ‖f ⊆ ‖F
n+1
A,t ‖f . We can

�nally de�ne the interpretation of coinductive formulas by:

‖ν tXxA‖f ,
⋃
n∈�

‖FnA,t ‖f

219

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

‖⊥‖f , Λτf
‖>‖f , ∅

‖Ḟ (t)‖f , F (t)

‖t = u‖f ,



{(µ̃=.c |τ) : cτ ∈ ⊥⊥} if t ≡τ u
Λτf otherwise

‖p ∈ A‖f , {(V |τ) ∈ |A|V : V ≡τ p}⊥⊥f
‖T → B‖f , {(Vt · e |τ) : (Vt |τ) ∈ |t ∈ T |Vt ∧ (e |τ) ∈ ‖B‖e }

‖A→ B‖f , {(V · e |τ) : (V |τ) ∈ |A|V ∧ (e |τ) ∈ ‖B‖e }

‖T ∧A‖f , {(µ̃ (x ,a).c |τ) : ∀τ ′,Vt ∈ |T |τ
′

Vt
,V ∈ |A|τ

′

V ,τ � τ
′ ⇒ c[Vt/x]ττ ′[a := V] ∈ ⊥⊥}

‖A1 ∧A2‖f , {(µ̃ (a1,a2).c |τ) : ∀τ ′,V1 ∈ |A1 |
τ ′
V ,V2 ∈ |A2 |

τ ′
V ,τ � τ

′ ⇒ cττ ′[a1 := V1][a2 := V2] ∈ ⊥⊥}
‖A1 ∨A2‖f , {(µ̃[a1.c1 |a2.c2]|τ) : ∀τ ′,V ∈ |Ai |

τ ′
V ,τ � τ

′ ⇒ cττ ′[ai := V] ∈ ⊥⊥}
‖∃x .A‖f ,

⋂
t ∈Λt ‖A[t/x]‖f

‖∀x .A‖f , (
⋂

t ∈Λt ‖A[t/x]‖⊥⊥vf)⊥⊥f

‖∀a.A‖f , (
⋂

t ∈Λp ‖A[p/a]‖⊥⊥vf)⊥⊥f

‖ν tf xA‖f ,
⋃

n∈� ‖F
n
A,t ‖f

|A|V , ‖A‖⊥⊥Vf = {(V |τ) : ∀f τ ′,τ � τ ′ ∧ (f |τ ′) ∈ ‖A‖f ⇒ (V |τ)⊥⊥(F |τ ′)}

‖A‖e , |A|⊥⊥eV = {(E |τ) : ∀Vτ ′,τ � τ ′ ∧ (V |τ ′) ∈ |A|V ⇒ (V |τ ′)⊥⊥(E |τ)}

|A|p , ‖A‖
⊥⊥p
e = {(p |τ) : ∀Eτ ′,τ � τ ′ ∧ (E |τ ′) ∈ ‖A‖E ⇒ (t |τ)⊥⊥(E |τ ′)}

|�|Vt , {(Sn (0) |τ),n ∈ �}
|t ∈ T |Vt , {(Vt |τ) ∈ |T |Vt : Vt ≡τ t }
|T → U |Vt , {(λx .t |τ) : ∀Vtτ ′,τ � τ ′ ∧ (Vt |τ

′) ∈ |T |Vt ⇒ (t[Vt/x]|ττ ′) ∈ |U |t }
|T |π , |A|⊥⊥πVt

= {(F |τ) : ∀vτ ′,τ � τ ′ ∧ (v |τ ′) ∈ |A|v ⇒ (v |τ ′)⊥⊥(F |τ)}

|T |t , |A|⊥⊥tπ = {(V |τ) : ∀Fτ ′,τ � τ ′ ∧ (F |τ ′) ∈ ‖A‖F ⇒ (V |τ)⊥⊥(F |τ ′)}

where:

• p ∈ Sτ (resp. e ,V ,etc.) denote (p |τ) ∈ S (resp. (e |τ),(V |τ),etc.),
• F is a function from Λt to P (Λτf)/≡τ .

Figure 8.8: Realizability interpretation for dLPAω

�e realizability interpretation of closed formulas and types is de�ned in Figure 8.8 by induction on
the structure of formulas at level f , and by orthogonality at levels V ,e,p. When S is a subset of P (Λτp)
(resp. P (Λτe),P (Λτt),P (Λτπ)), we use the notation S⊥⊥f (resp. S⊥⊥V , etc.) to denote its orthogonal set
restricted to Λτf (resp. ΛτV , etc.):

S⊥⊥f , {(f |τ) ∈ Λτf : ∀(p |τ ′) ∈ S ,τ � τ ′ ⇒ 〈p || f 〉ττ ′ ∈ ⊥⊥}

At level f , closed formulas are interpreted by sets of strong forcing contexts-in-store (f |τ). As
observed in the previous section, these sets are besides closed under the relation ≡τ along their com-
ponent τ , we thus denote them by P (Λτf)/≡τ . Second-order variables X ,Y , . . . are then interpreted by
functions from the set of terms Λt to P (Λτf)/≡τ and as usual for each such function F we add a predicate
symbol Ḟ in the language.

We shall now prove the adequacy of the interpretation with respect to the type system. To this
end, we need to recall a few de�nitions and lemmas. Since stores only contain proof terms, we need

220

8.4. NORMALIZATION OF dLPAω

to de�ne valuations for term variables in order to close formulas9. �ese valuations are de�ned by the
usual grammar:

ρ ::= ε | ρ[x 7→ Vt] | ρ[X 7→ Ḟ]

We denote by (p |τ)ρ (resp. pρ , Aρ) the proof-in-store (p |τ) where all the variables x ∈ dom(ρ) (resp.
X ∈ dom(ρ)) have been substituted by the corresponding term ρ (x) (resp. falsity value ρ (x)).

De�nition 8.18. Given a closed store τ , a valuation ρ and a �xed pole ⊥⊥, we say that the pair (τ ,ρ)
realizes Γ, which we write10 (τ ,ρ)
 Γ, if:

1. for any (a : A) ∈ Γ, (a |τ)ρ ∈ |Aρ |V

2. for any (α : A⊥⊥ρ) ∈ Γ, (α |τ)ρ ∈ ‖Aρ ‖e

3. for any {a |p} ∈ σ , a ≡τ p
4. for any (x : T) ∈ Γ, x ∈ dom(ρ) and (ρ (x) |τ) ∈ |Tρ |Vt y

We recall two key properties of the interpretation, whose proofs are similar to the proofs for the
corresponding statement in the λ[lvτ?]-calculus (Lemma 6.16 and Proposition 6.14):

Lemma 8.19 (Store weakening). Let τ and τ ′ be two stores such that τ C τ ′, let Γ be a typing context,
let ⊥⊥ be a pole and ρ a valuation. �e following statements hold:

1. ττ ′ = τ ′

2. If (p |τ)ρ ∈ |Aρ |p for some closed proof-in-store (p |τ)ρ and formula A, then (p |τ ′)ρ ∈ |Aρ |p . �e
same holds for each level e,E,V , f ,t ,π ,Vt of the interpretation.

3. If (τ ,ρ)
 Γ then (τ ′,ρ)
 Γ.

Proposition 8.20 (Monotonicity). For any closed formula A, any typeT and any given pole ⊥⊥, we have
the following inclusions:

|A|V ⊆ |A|p ‖A‖f ⊆ ‖A‖e |T |Vt ⊆ |T |t

Finally we can check that the interpretation is indeed de�ned up to the relations ≡τ :

Lemma 8.21. For any store τ and any valuation ρ, the component along τ of the truth and falsity values
de�ned in Figure 8.8 are closed under the relation ≡τ :

1. if (f |τ)ρ ∈ ‖Aρ ‖f and Aρ ≡τ Bρ , then (f |τ)ρ ∈ ‖Bρ ‖f ,

2. if (Vt |τ)ρ ∈ |Aρ |Vt and Aρ ≡τ Bρ , then (Vt |τ)ρ ∈ |Bρ |v .

�e same applies with |Aρ |p , ‖Aρ ‖e , etc.

Proof. By induction on the structure of Aρ and the di�erent levels of interpretation. �e di�erent base
cases (p ∈ Aρ , t ∈ T , t = u) are direct since their components along τ are de�ned modulo ≡τ , the other
cases are trivial inductions. �

Proposition 8.22 (Adequacy). �e typing rules are adequate with respect to the realizability interpreta-
tion. In other words, if Γ is a typing context, ⊥⊥ a pole, ρ a valuation and τ a store such that (τ ,ρ)
 Γ;σ ,
then the following hold:

1. If v is a strong value such that Γ `σ v : A or Γ `d v : A;σ , then (v |τ)ρ ∈ |Aρ |V .

9Alternatively, we could have modi�ed the small-step reduction rules to include substitutions of terms.
10Once again, we should formally write (τ ,ρ)
⊥⊥ Γ but we will omit the annotation by ⊥⊥ as o�en as possible.

221

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

2. If f is a forcing context such that Γ `σ f : A⊥⊥ or Γ `d f : A⊥⊥;σ , then (f |τ)ρ ∈ ‖Aρ ‖f .

3. If V is a weak value such that Γ `σ V : A or Γ `d V : A;σ , then (V |τ)ρ ∈ |Aρ |V .

4. If e is a context such that Γ `σ e : A⊥⊥ or Γ `d e : A⊥⊥;σ , then (e |τ)ρ ∈ ‖Aρ ‖e .

5. If p is a proof term such that Γ `σ p : A or Γ `d p : A;σ , then (p |τ)ρ ∈ |Aρ |p .

6. If Vt is a term value such that Γ `σ Vt : T , then (Vt |τ)ρ ∈ |Tρ |Vt .

7. If π is a term context such that Γ `σ π : T , then (π |τ)ρ ∈ |Tρ |π .

8. If t is a term such that Γ `σ t : T , then (t |τ)ρ ∈ |Tρ |t .

9. If τ ′ is a store such that Γ `σ τ ′ : (Γ′;)σ ′, then (ττ ′,ρ)
 (Γ,Γ′;σσ ′).

10. If c is a command such that Γ `σ c or Γ `d c;σ , then (cτ)ρ ∈ ⊥⊥.

11. If cτ ′ is a closure such that Γ `σ cτ ′ or Γ `d cτ ′;σ , then (cττ ′)ρ ∈ ⊥⊥.

Proof. �e proof is done by induction on the typing derivation such as given in the system extended
with the small-step reduction s . Most of the cases correspond to the proof of adequacy for the in-
terpretation of the λ[lvτ?]-calculus, so that we only give the most interesting cases. To lighten the
notations, we omit the annotation by the valuation ρ whenever it is possible.

• Case (∃r). We recall the typing rule through the decomposition of dependent sums:

Γ `σ t : u ∈ T Γ `σ p : A[u/x]
Γ `σ (t ,p) : (u ∈ T ∧A[u])

By induction hypothesis, we obtain that (t |τ) ∈ |u ∈ T |t and (p |τ) ∈ |A[u]|p . Consider thus any
context-in-store (e |τ ′) ∈ ‖u ∈ T ∧A[u]‖e such that τ and τ ′ are compatible, and let us denote by τ0 the
union ττ ′. We have:

〈(t ,p) ||e〉pτ0 s 〈p ||µ̃ťp.〈t ||µ̃x .〈ťp||µ̃a.〈(x ,a) ||e〉〉〉〉pτ0

so that by anti-reduction, we need to show that µ̃ťp.〈t ||µ̃x .〈ťp||µ̃a.〈(x ,a) ||e〉〉〉 ∈ ‖A[u]‖e . Let us then
consider a value-in-store (V |τ ′0) ∈ |A[u]|V such that τ0 and τ ′0 are compatible, and let us denote by τ1 the
union τ0τ ′0 . By closure under delimited continuations, to show that 〈V ||µ̃ťp.〈t ||µ̃x .〈ťp||µ̃a.〈(x ,a) ||e〉〉〉〉pτ1
is in the pole it is enough to show that the closure 〈t ||µ̃x .〈V ||µ̃a.〈(x ,a) ||e〉〉〉τ1 is in ⊥⊥,. �us it su�ces
to show that the coterm-in-store (µ̃x .〈V ||µ̃a.〈(x ,a) ||e〉〉|τ1) is in |u ∈ T |π .

Consider a term value-in-store (Vt |τ
′
1) ∈ |u ∈ T |Vt , such that τ1 and τ ′1 are compatible, and let us

denote by τ2 the union τ1τ ′1 . We have:

〈Vt ||µ̃x .〈V ||µ̃a.〈(x ,a) ||e〉〉〉τ2 s 〈V ||µ̃a.〈(Vt ,a) ||e〉〉τ2 s 〈(Vt ,a) ||e〉τ2[a := V]

It is now easy to check that ((Vt ,a) |τ2[a := V]) ∈ |u ∈ T ∧ A[u]|V and to conclude, using Lemma 8.19
to get (e |τ2[a := V]) ∈ ‖u ∈ T ∧A[u]‖e , that this closure is �nally in the pole.

• Case (≡r),(≡l). �ese cases are direct consequences of Lemma 8.21 since if A,B are two formulas
such that A ≡ B, in particular A ≡τ B and thus |A|v = |B |v .

• Case (refl),(=l). �e case for refl is trivial, while it is trivial to show that (µ̃=.〈p ||e〉|τ) is in ‖t = u‖f
if (p |τ) ∈ |A[t]|p and (e |τ) ∈ ‖A[u]‖e . Indeed, either t ≡τ u and thus A[t] ≡τ A[u] (Lemma 8.21, or
t .τ u and ‖t = u‖f = Λτf .

222

8.4. NORMALIZATION OF dLPAω

• Case (∀xr). �is case is standard in a call-by-value language with value restriction. We recall the
typing rule:

Γ `σ v : A x < FV (Γ)

Γ `σ v : ∀x .A
(∀xr)

�e induction hypothesis gives us that (v |τ)ρ is in |Aρ |V for any valuation ρ[x 7→ t]. �en for any t ,
we have (v |τ)ρ ∈ ‖Aρ [t/x]‖⊥⊥vf so that (v |τ)ρ ∈ (

⋂
t ∈Λt ‖A[t/x]‖⊥⊥vf). �erefore if (f |τ ′)ρ belongs to

‖∀x .Aρ ‖f = (
⋂

t ∈Λt ‖A[t/x]‖⊥⊥vf)⊥⊥f , we have by de�nition that (v |τ)ρ⊥⊥(f |τ ′)ρ .

• Case (ind). We recall the typing rule:

Γ `σ t : � Γ `σ p0 : A[0/x] Γ,x : T ,a : A `σ pS : A[S (x)/x]
Γ `σ indtax [p0 | pS] : A[t/x]

(ind)

We want to show that (indtax [p0 | pS]|τ) ∈ |A[t]|p , let us then consider (e |τ ′) ∈ ‖A[t]‖e such that τ and
τ ′ are compatible, and let us denote by τ0 the union ττ ′. By induction hypothesis, we have11 t ∈ |t ∈ �|t
and we have:

〈indtbx [p0 | pS]||e〉pτ0 s 〈µt̂p.〈t ||µ̃y.〈a ||t̂p〉[a := ind
y
bx [p0 | pS]]〉||e〉pτ0

so that by anti-reduction and closure under delimited continuations, it is enough to show that the
coterm-in-store (µ̃y.〈a ||e〉[a := ind

y
bx [p0 | pS]]|τ0) is in |t ∈ �|π . Let us then consider (Vt |τ ′0) ∈ |t ∈ �|Vt

such that τ0 and τ ′0 are compatible, and let us denote by τ1 the union τ0τ ′0 . By de�nition, Vt = Sn (0) for
some n ∈ � and t ≡τ1 S

n (0), and we have:

〈Sn (0) ||µ̃y.〈a ||e〉[a := ind
y
bx [p0 | pS]]〉τ1 s 〈a ||e〉τ1[a := indS

n (0)
bx [p0 | pS]]

We conclude by showing by induction on the natural numbers that for any n ∈ N , the value-in-store
(a |τ1[a := indS

n (0)
bx [p0 | pS]]) is in |A[Sn (0)]|V . Let us consider (f |τ ′1) ∈ ‖A[Sn (0)]‖f such that the store

τ1[a := indS
n (0)

bx [p0 | pS]] and τ ′1 are compatible, and let us denote by τ2[a := indS
n (0)

bx [p0 | pS]]τ ′2 their
union.

• If n = 0, we have:

〈a || f 〉τ2[a := ind0
bx [p0 | pS]]τ ′2 s 〈p0 ||µ̃a.〈a || f 〉τ

′
2〉τ2

We conclude by anti-reduction and the induction hypothesis for p0, since it is easy to show that
(µ̃a.〈a || f 〉τ ′2 |τ2) ∈ ‖A[0]‖e .

• If n = S (m), we have:

〈a || f 〉τ2[a := indS (S
m (0))

bx [p0 | pS]]τ ′2 s 〈pS [Sm (0)/x][b ′/b]||µ̃a.〈a || f 〉τ ′2〉pτ2[b ′ := indS
m (0)

bx [p0 | pS]]

Since we have by induction that (b ′ |τ2[b ′ := indS
m (0)

bx [p0 | pS]]) is in |A[Sm (0)]|V , we can conclude
by anti-reduction, using the induction hypothesis for pS and the fact that (µ̃a.〈a || f 〉τ ′2 |τ2) belongs
to ‖A[S (Sm (0))]‖e .

11Recall that any term t of type T can be given the type t ∈ T .

223

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

• Case (cofix). We recall the typing rule:

Γ `σ t : T Γ,x : T ,b : ∀yT.X (y) `σ p : A X positive in A X < FV (Γ)

Γ `σ cofixtbx [p] : ν tXxA
(cofix)

We want to show that (cofixtbx [p]|τ) ∈ |ν tXxA|p , let us then consider (e |τ ′) ∈ ‖ν tXxA‖e such that τ and
τ ′ are compatible, and let us denote by τ0 the union ττ ′. By induction hypothesis, we have t ∈ |t ∈ T |t
and we have:

〈cofixtbx [p]||e〉pτ0 s 〈µt̂p.〈t ||µ̃y.〈a ||t̂p〉[a := cofix
y
bx [p]]〉||e〉pτ0

so that by anti-reduction and closure under delimited continuations, it is enough to show that the
coterm-in-store (µ̃y.〈a ||e〉[a := cofix

y
bx [p]]|τ0) is in |t ∈ �|π . Let us then consider (Vt |τ

′
0) ∈ |t ∈ T |Vt

such that τ0 and τ ′0 are compatible, and let us denote by τ2 the union τ0τ ′0 . We have:

〈Vt ||µ̃y.〈a ||e〉[a := cofix
y
bx [p]]〉τ1 s 〈a ||e〉τ1[a := cofixVtbx [p]]

It su�ces to show now that the value-in store (a |τ1[a := cofixVtbx [p]]) is in |νVtXxA|V . By de�nition, we
have:

|νVtXxA|V = (
⋃
n∈�

‖FnA,Vt ‖f)
⊥⊥V =

⋂
n∈�

‖FnA,Vt ‖
⊥⊥V
f =

⋂
n∈�

|FnA,Vt |V

We conclude by showing by induction on the natural numbers that for any n ∈ N and any Vt , the
value-in-store (a |τ1[a := cofixVtbx [p]]) is in |FnA,Vt |V .

�e case n = 0 is trivial since |F 0
A,Vt
|V = |>|V = ΛτV . Let then n be an integer and any Vt be a term

value. Let us consider (f |τ ′1) ∈ ‖Fn+1
A,Vt

A‖f such that τ1[a := cofixVtbx [p]] and τ ′1 are compatible, and let
us denote by τ2[a := cofixVtbx [p]]τ ′2 their union. By de�nition, we have:

〈a || f 〉τ2[a := cofixVtbx [p]]τ ′2 s 〈p[Vt/x][b ′/b]||µ̃a.〈a || f 〉τ ′2〉τ2[b ′ := λy.cofixybx [p]]

It is straightforward to check, using the induction hypothesis for n, that (b ′ |τ2[b ′ := λy.cofixybx [p]])
is in |∀y.y ∈ T → FnA,y |V . �us we deduce by induction hypothesis for p, denoting by S the function
t 7→ ‖FnA,t ‖f , that:

(p[Vt/x][b ′/b]|τ2[b ′ := λy.cofixybx [p]]) ∈ |A[Vt/x][Ṡ/X]|p = |A[Vt/x][FnA,y/X (y)]|p = |Fn+1
A,Vt |p

It only remains to show that (µ̃a.〈a || f 〉τ ′2 |τ2) ∈ ‖F
n+1
A,Vt
‖e , which is trival from the hypothesis for f . �

We can �nally deduce from Propositions 8.14 and 8.22 that dLPAω is normalizable and sound.

�eorem 8.23 (Normalization). If Γ `σ c , then c is normalizable.

�eorem 8.24 (Consistency). 0dLPAω p : ⊥

Proof. Assume there is such a proof p, by adequacy (p |ε) is in |⊥|p for any pole. Yet, the set ⊥⊥ , ∅ is a
valid pole, and with this pole, |⊥|p = ∅, which is absurd. �

8.4.2 About the interpretation of coinductive formulas

While our realizability interpretation �nally gave us a proof of normalization and soundness for dLPAω ,
it has two aspects that we could �nd unsatisfactory. First, regarding the small-step reduction system,
one could have expected the lowest level of interpretation to bev instead of f . Moreover, if we observe
our de�nition, we notice that most of the cases of ‖ · ‖f are in fact de�ned by orthogonality to a subset

224

8.4. NORMALIZATION OF dLPAω

of strong values. Indeed, except for coinductive formulas, we could indeed have de�ned instead an
interpretation | · |v of formulas at level v and then the interpretation ‖ · ‖f by orthogonality:

|⊥|v , ∅

|t = u |v ,



refl if t ≡ u
∅ otherwise

|p ∈ A|v , {(v |τ) ∈ |A|v : v ≡τ p}
|T → B |v , {(λx .p |τ) : ∀Vtτ ′,τ � τ ′ ∧ (Vt |τ

′) ∈ |T |V ⇒ (p[Vt/x]|ττ ′) ∈ |B |p }
|A→ B |v , {(λa.p |τ) : ∀Vτ ′,τ � τ ′ ∧ (V |τ ′) ∈ |A|V ⇒ (p |ττ ′[a := V]) ∈ |B |p }
|T ∧A|v , {((Vt ,V) |τ) : (Vt |τ) ∈ |T |Vt ∧ (V |τ) ∈ |A2 |V }

|A1 ∧A2 |v , {((V1,V2) |τ) : (V1 |τ) ∈ |A1 |V ∧ (V2 |τ) ∈ |A2 |V }

|A1 ∨A2 |v , {(ιi (V) |τ) : (V |τ) ∈ |Ai |V }

|∃x .A|v ,
⋃

t ∈Λt |A[t/x]|v
|∀x .A|v ,

⋂
t ∈Λt |A[t/x]|v

|∀a.A|v ,
⋂

p∈Λp |A[p/x]|v
‖A‖f , {(f |τ) : ∀vτ ′,τ � τ ′ ∧ (v |τ ′) ∈ |A|v ⇒ (v |τ ′)⊥⊥(F |τ)}

If this de�nition is somewhat more natural, it poses a problem for the de�nition of coinductive
formulas. Indeed, there is a priori no strong value in the orthogonal of ‖ν tf vA‖f , which is:

(‖ν tf vA‖f)
⊥⊥v = (

⋃
n∈�

‖FnA,t ‖f)
⊥⊥v =

⋂
n∈�

(‖FnA,t ‖f)
⊥⊥v)

For instance, consider again the case of a stream of type ν0
f xA(x) ∧ f (S (x)) = 0, a strong value in the

intersection should be in every |A(0) ∧ (A(1) ∧ . . . (A(n) ∧ >) . . .) |v , which is not possible due to the
�niteness of terms12 �us the de�nition |ν tf vA|v ,

⋂
n∈� |F

n
A,t |v would give |ν tf xA|v = ∅ = |⊥|v .

Interestingly, and this is the second aspect that we do not �nd completely satisfactory, we could
have de�ne instead the truth value of coinductive formulas directly by :

|ν tf xA|v , |A[t/x][νyf xA/f (y) = 0]|v

Let us sketch the proof that such a de�nition is well-founded. We consider the language of formulas
without coinductive formulas and extended with formulas of the shape X (t) where X ,Y , ... are param-
eters. At level v , closed formulas are interpreted by sets of strong values-in-store (v |τ), and as we
already observed, these sets are besides closed under the relation ≡τ along their component τ . If A(x)
is a formula whose only free variable is x , the function which associates to each term t the set |A(t) |v
is thus a function from Λt to P (Λτv)≡τ , let us denote the set of these functions by L .

Proposition 8.25. �e set L is a complete la�ice with respect to the order ≤L de�ned by:

F ≤L G , ∀t ∈ Λt .F (t) ⊆ G (t)

Proof. Trivial since the order on functions is de�ned pointwise and the co-domain P (Λτv) is itself a
complete la�ice. �

12Yet, it might possible to consider interpretation with in�nite proof terms, the proof of adequacy for proofs and contexts
(which are �nite) will still work exactly the same. However, another problem will arise for the adequacy of the cofix operator.
Indeed, with the interpretation above, we would obtain the inclusion ⋃

n∈� (‖F
n
A,t ‖f) ⊂ (

⋂
n∈� |F

n
A,t |t)

⊥⊥f = ‖ν tf xA‖f which
is strict in general. By orthogonality, this gives us that |ν tf xA|V ⊆

⋃
n∈� (‖F

n
A,t ‖f))

⊥⊥V , while the proof of adequacy only
proves that (a |τ [a := cofixtb [x]p]) belongs to the la�er set.

225

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

We de�ne valuations, which we write ρ, as functions mapping each parameter X to a function
ρ (X) ∈ L . We then de�ne the interpretations |A|ρv , ‖A‖

ρ
f , ... of formulas with parameters exactly as

above with the additional rule13:

|X (t) |
ρ
v , {(v |τ) ∈ ρ (X) (t)}

Let us �x a formula A which has one free variable x and a parameter X such that sub-formulas of
the shape X t only occur in positive positions in A.

Lemma 8.26. Let B (x) is a formula without parameters whose only free variable is x , and let ρ be a
valuation which maps X to the function t 7→ |B (t) |v . �en |A|ρv = |A[B (t)/X (t)]|v

Proof. By induction on the structure ofA, all cases are trivial, and this is true for the basic caseA ≡ X (t):

|X (t) |
ρ
v = ρ (X) (t) = |B (t) |v

�

Let us now de�ne φA as the following function:

φA :
{

L → L

F 7→ t 7→ |A[t/x]|[X 7→F]
v

Proposition 8.27. �e function φA is monotone.

Proof. By induction on the structure ofA, whereX can only occur in positive positions. �e case |X (t) |v
is trivial, and it is easy to check that truth values are monotonic with respect to the interpretation of
formulas in positive positions, while falsity values are anti-monotonic. �

We can thus apply Knaster-Tarski theorem to φA, and we denote by gfp(φA) its greatest �xpoint.
We can now de�ne:

|ν tXxA|v , gfp(φA) (t)

�is de�nition satis�es the expected equality:

Proposition 8.28. We have:
|ν tXxA|v = |A[t/x][νyXxA/X (y)]|v

Proof. Observe �rst that by de�nition, the formulaB (z) = |νzXxA|v satis�es the hypotheses of Lemma 8.26
and that gfp(φA) = t 7→ B (t). �en we can deduce :

|ν tXxA|v = gfp(φA) (t) = φA (gfp(φA)) (t) = |A[t/x]|[X 7→gfp(φA)]
v = |A[t/x][νyXxA/X (y)]|v

�

Back to the original language, it only remains to de�ne |ν tf xA|v as the set |ν tXxA[X (y)/f (y) = 0]|v
that we just de�ned. �is concludes our proof that the interpretation of coinductive formulas through
the equation in Proposition 8.28 is well-founded.

We could also have done the same reasoning with the interpretation from the previous section, by
de�ning L as the set of functions from Λt to P (Λτf)≡τ . �e function φA, which is again monotonic, is
then:

φA :
{

L → L

F 7→ t 7→ |A[t/x]|[X 7→F]
v

13Observe that this rule is exactly the same as in the previous section (see Figure 8.8).

226

8.5. CONCLUSION AND PERSPECTIVES

We recognize here the de�nition of the formula FnA,t . De�ning f 0 as the function t 7→ ‖>‖f and
f n+1 , φA (f

n) we have:
∀n ∈ �, ‖FnA,t ‖f = f n (t) = φnA (f

0) (t)

However, in both cases (de�ning primitively the interpretation at level v or f), this de�nition does
not allow us to prove14 the adequacy of the (cofix) rule. In the case of an interpretation de�ned at
level f , the best that we can do is to show that for any n ∈ �, f n is a post-�xpoint since for any term
t , we have:

f n (t) = ‖FnA,t ‖f ⊆ ‖F
n+1
A,t ‖f = f n+1 (t) = φA (f

n) (t)

With ‖ν tf xA‖f de�ned as the greatest �xpoint ofφA, for any term t and anyn ∈ �we have the inclusion
f n (t) ⊆ gfp(φA) (t) = ‖ν

t
f xA‖f and thus:⋃

n∈�

‖FnA,t ‖f =
⋃
n∈�

f n (t) ⊆ ‖ν tf xA‖f

By orthogonality, we get:
|ν tf xA|V ⊆

⋂
n∈�

|FnA,t |V

and thus our proof of adequacy from the last section is not enough to conclude that cofixtbx [p] ∈
|ν tf xA|p . For this, we would need to prove that the inclusion is an equality. An alternative to this would
be to show that the function t 7→

⋃
n∈� ‖F

n
A,t ‖f is a �xpoint for φA. In that case, we could stick to this

de�nition and happily conclude that it satis�es the equation:

‖ν tXxA‖f = ‖A[t/x][νyXxA/X (y)]‖f

�is would be the case if the function φA was Sco�-continuous on L (which is a dcpo), since we
could then apply Kleene �xed-point theorem15 to prove that t 7→ ⋃

n∈� ‖F
n
A,t ‖f is the stationary limit

of φnA (f0). However, φA is not Sco�-continuous16 (the de�nition of falsity values involves double-
orthogonal sets which do not preserve supremums), and this does not apply.

8.5 Conclusion and perspectives

Recap of the journey In the end, we met our main objective, namely proving the soundness and
the normalization of a language which includes proof terms for dependent and countable choice in
a classical se�ing. �is language, which we called dLPAω , provides us with the same computational
features as dPAω but in a sequent-calculus fashion. �e calculus indeed includes co-�xpoint operators,
which are lazily evaluated. To this end, dLPAω uses the design of the λ[lvτ?]-calculus of Ariola et
al. [4], which we equipped in Chapter 6 with a type system and which we proved to be normalizing.
In addition, the proof terms of dLPAω are dependently typed thanks to a restriction of dependencies
to the negative-elimination-free fragment which makes them compatible with classical logic. �ese
computational features allows dLPAω to internalize the realizability approach of [15, 40] as a direct
proofs-as-programs interpretation: both proof terms for countable and dependent choices furnish a

14To be honest, we should rather say that we could not manage to �nd a proof, and that we would welcome any suggestion
from insightful readers.

15In fact, Cousot and Cousot proved a constructive version of Kleene �xed-point theorem which states that without any
continuity requirement, the trans�nite sequence (φαA (f

0))α ∈On is stationary [30]. Yet, we doubt that the gain of the desired
equality is worth a trans�nite de�nition of the realizability interpretation.

16In fact, this is nonetheless a good news about our interpretation. Indeed, it is well-know that the more “regular” a model
is, the less interesting it is. For instance, Streicher showed that the realizability model induced by Sco� domains (using it as
a realizability structure) was not only a forcing model by also equivalent to the ground model.

227

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

lazy witness for the ideal choice function which is evaluated on demand. At the risk of repeating
ourself, this interpretation is in line with the slogan that with new programing principles—here the
lazy evaluation and the co-inductive objects—come new reasoning principles—here the axioms AC�
and DC .

In our search for a proof of normalization for dLPAω , we developed novel tools to study these side-
e�ects and dependent types in presence of classical logic. On the one hand, we set out in Chapter 7 the
di�culties related to the de�nition of a sequent calculus with dependent types. We proposed a formal-
ism, dLt̂p, which restricts the dependencies to proofs in the nef fragment together. �is restriction is
strengthened with an evaluation of dependently typed computations within delimited continuations;
while the type system is enriched with an explicit list of dependencies. �is provides us with a calculus
whose reduction is safe, and which has the advantage of being suitable for a typed continuation-passing
style translation carrying the dependencies.

On the other hand, we de�ned a typed continuation-and-store passing style translation for the
λ[lvτ?]-calculus, which we related to Kripke forcing semantics. Besides, we saw how to handle laziness
and explicit stores in a realizability interpretation à la Krivine. �is might be a �rst step toward new
interpretations of di�erent axioms using laziness within Krivine classical realizability. In a long term
perspective, it would be interesting to understand the impact of laziness and stores on the corresponding
realizability algebras. More generally, the algebraic models that we study in the last part of this thesis
are oriented toward the call-by-name and the call-by-value evaluation strategies. While it is probably
the case that these structures could be modi�ed to obtain call-by-need algebras, the structure of such
algebras is not obvious a priori.

Comparison with Krivine’s interpretations of dependent choice At the end of the day, we pre-
sented a calculus, dLPAω , with the nice property of allowing for the direct de�nition of a proof term for
the axiom of dependent choice. Beside, we prove the normalization and soundness of dLPAω by means
of a realizability interpretation à la Krivine. Yet, the computational content we give to the axiom of
dependent choice is pre�y di�erent of Krivine’s usual realizer of the same [94]. Indeed, our proof uses
dependent types to get witnesses of existential formulas, and represents the choice function through
the lazily evaluated stream of its values. In turn, Krivine realizes a statement which is logically equiv-
alent to the axiom of dependent choice thanks to the instruction quote, which injectively associates a
natural number to each closed λc -term. In particular, such an instruction allows to compare the codes
of two programs, so that terms of the λc -calculus extended with quote can reduce di�erently according
to the code of the arguments they are given. In a more recent work [102], Krivine proposes a realiz-
ability model which has a bar-recursor and where the axiom of dependent choice is realized using the
bar-recursion. �is realizability model satis�es the continuum hypothesis and many more properties,
in particular the real numbers have the same properties as in the ground model. However, the very
structure of this model, where Λ is of cardinal ℵ1 (in particular in�nite streams of integer are terms),
makes it incompatible with the instruction quote.

It is clear that the three approaches are di�erent in terms of programming languages. Nonetheless,
it could be interesting to compare them from the point of view of the realizability models they give rise
to. We did not study at all this question for dLPAω , especially we do not know whether it is suitable
to de�ne the same model of ZF + ¬ AC + ¬ CH (set theory with the negation of the axiom of choice
and the negation of continuum hypothesis). Neither do we know if the induced model is compatible
with the quote instruction (we conjecture that it is). It might be the case that our approach can be
related with the one with a bar-recursor in [102]. In particular, our analysis of the interpretation of
co-inductive formulas may suggest that the interest of lazy co-�xpoints is precisely to approximate the
limit situation where Λ has in�nite objects.

�e study of the structures of Krivine realizability models is already a hard question, and so is in
general the problem of determining the consequences that a particular set of instructions or a speci�c

228

8.5. CONCLUSION AND PERSPECTIVES

pole might have on on the model17. Nonetheless, the question still holds.

Reduction of the consistency of classical arithmetic in �nite types with dependent choice to
the consistency of second-order arithmetic �e standard approach to the computational content
of classical dependent choice in the classical arithmetic in �nite types is via realizability as initiated by
Spector [150] in the context of Gödel’s functional interpretation, and later adapted to the context of
modi�ed realizability by Berardi et al [15]. In the di�erent se�ings of second-order arithmetic [97] and
classical realizability, Krivine [94] gives a realization of a formulation of dependent choice over sets of
numbers using side-e�ects (a clock or a quote operator).

In all these approaches, the correctness of the realizer, which implies consistency of the system,
is itself justi�ed by a use at the meta-level of a principle classically equivalent to dependent choice
(dependent choice itself in Krivine, bar induction or update induction [16] in the case of Spector or
Berardi et al).

Our approach is here di�erent. Not only we directly interpret proofs of dependent choice in classical
arithmetic computationally but we propose a path to a computational reduction of the consistency of
classical arithmetic in �nite types (PAω) to the one of the target language Fϒ. �is system is an extension
of system F , but it is not clear whether its consistency is conservative of not over system F . Ultimately,
we would be interested in a computational reduction of the consistency of dPAω or dLPAω to the
one of PA2, that is to the consistency of second-order arithmetic. While it is well-known that DC is
conservative over second-order arithmetic with full comprehension (see [149, �eorem VII.6.20]), it
would nevertheless be very interesting to have such a direct computational reduction. �e converse
direction has been recently studied by Valentin Blot, who presented in [18] a translation of System F
into a simply-typed total language with a variant of bar recursion.

17To quote the last PhD student in date who a�empted to de�ne purpose-oriented realizability models [2], they are like
Forrest’s Gump chocolates boxes, “you never know what you’re gonna get”.

229

CHAPTER 8. A SEQUENT CALCULUS WITH DEPENDENT TYPES FOR CLASSICAL ARITHMETIC

230

