Classical realizability and side-effects

Étienne MIQUEY^{1,2}

 1 Équipe πr^2 (INRIA), IRIF, Université Paris-Diderot 2 IMERL, Fac. de Ingeniería, Universidad de la República

17 Novembre 2017

Étienne MIQUEY

Classical realizability and side-effects

Part I

What is this thesis about?

A tricky question

Every Ph.D. student has been asked a thousand times:

"What is the title of your thesis?"

In my case, the next questions:

- classical?
- realizability?
- side-effects?
- What does it have to do with logic/mathematics/computer science?

Algebraic models of classical realizability

Proofs

A (very) old one:

Algebraic models of classical realizability

Proofs

An easy one:

Plato is a cat. All cats like fish. Therefore, Plato likes fish .

Algebraic models of classical realizability

Proofs

An easy one:

Plato is a cat. All cats like fish. Therefore, Plato likes fish .

Intuitively:

from a set of hypotheses

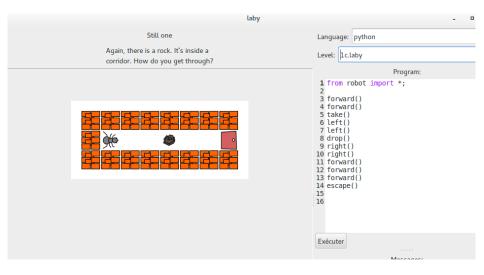
apply deduction rules

to obtain a theorem

Programs

A constructive proof of DC

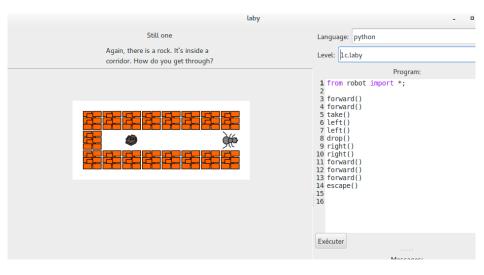
Algebraic models of classical realizability



Programs

A constructive proof of DC

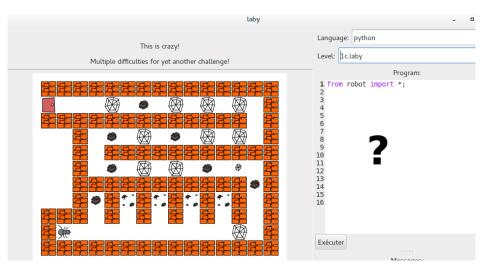
Algebraic models of classical realizability



Programs

A constructive proof of DC

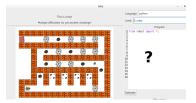
Algebraic models of classical realizability



A constructive proof of DC

Algebraic models of classical realizability

Programs



Think of it as a **recipe** (algorithm) to draw a computation forward.

So?

A constructive proof of DC

Algebraic models of classical realizability

Proof:

from a set of hypotheses

apply **deduction rules**

to obtain a theorem

Program:

from a set of inputs

apply instructions

to obtain the output

Curry-Howard

(On well-chosen subsets of mathematics and programs)

That's the same thing!

A constructive proof of DC

Algebraic models of classical realizability

Proof trees

Sequent:

Deduction rules:

$$\frac{A \in \Gamma}{\Gamma \vdash A} (Ax) \qquad \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} (\Rightarrow_{l}) \qquad \qquad \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} (\Rightarrow_{\mathcal{E}})$$

A constructive proof of DC

Algebraic models of classical realizability

Proof trees

Sequent:

Deduction rules:

$$\frac{A \in \Gamma}{\Gamma \vdash A} (Ax) \qquad \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} (\Rightarrow_{l}) \qquad \qquad \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} (\Rightarrow_{E})$$

Example:

Plato is a cat. If Plato is cat, Plato likes fish. Therefore, Plato likes fish .

Conclusion

$$\frac{(A \Rightarrow B) \in \Gamma}{\Gamma \vdash A \Rightarrow B} \xrightarrow{(Ax)} \frac{B \in \Gamma}{\Gamma \vdash B} \xrightarrow{(Ax)} \xrightarrow{(Az)} \underset{(\Rightarrow_{E})}{(\Rightarrow_{E})}$$

A constructive proof of DC

Algebraic models of classical realizability

Proof trees

Sequent:

Deduction rules:

$$\frac{A \in \Gamma}{\Gamma \vdash A} (Ax) \qquad \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} (\Rightarrow_{l}) \qquad \qquad \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} (\Rightarrow_{E})$$

Example:

Hyp. { Plato is a cat. If Plato is cat, Plato likes fish. Therefore, <u>Plato likes fish</u>.

Conclusion

$$\frac{(A \Rightarrow B) \in \Gamma}{\Gamma \vdash A \Rightarrow B} \xrightarrow{(Ax)} \frac{B \in \Gamma}{\Gamma \vdash B} \xrightarrow{(Ax)} \xrightarrow{(Ax)} \xrightarrow{(Az)}$$

Proofs-as-programs

The Curry-Howard correspondence		
Mathematics	Computer Science	
Proofs	Programs	
Propositions	Types	
Deduction rules	Typing rules	
$\frac{\Gamma \vdash A \Longrightarrow B \Gamma \vdash A}{\Gamma \vdash B} \ (\Rightarrow_{E})$	$\frac{\Gamma \vdash t : A \to B \Gamma \vdash u : A}{\Gamma \vdash t \; u : B} \; (\to_E)$	

Benefits:

Program your proofs!

Prove your programs!

A constructive proof of DC

Algebraic models of classical realizability

Proofs-as-programs

Limitations	
Mathematics	Computer Science
$A \lor \neg A$ $\neg \neg A \Rightarrow A$ All sets can be well-ordered	trycatch x := 42 random()
Sets that have the same elements are equal	stop goto

 \hookrightarrow We want more !

Extending Curry-Howard

Classical logic = Intuitionistic logic + $A \lor \neg A$

1990: Griffin discovered that call/cc can be typed by Peirce's law (well-known fact: Peirce's law $\Rightarrow A \lor \neg A$)

Classical Curry-Howard:

λ -calculus + call/cc

Other examples:

- quote instruction ~ dependent choice
- monotonic memory ~ Cohen's forcing

•

he motto

With side-effects come new reasoning principles.

Algebraic models of classical realizability

Extending Curry-Howard

Classical logic = Intuitionistic logic + $A \lor \neg A$

1990: Griffin discovered that call/cc can be typed by Peirce's law (well-known fact: Peirce's law $\Rightarrow A \lor \neg A$)

Classical Curry-Howard:

 λ -calculus + call/cc

Other examples:

- quote instruction ~ dependent choice
- monotonic memory ~ Cohen's forcing

• ...

The motto

With side-effects come new reasoning principles.

Algebraic models of classical realizability

Extending Curry-Howard

Classical logic = Intuitionistic logic + $A \lor \neg A$

1990: Griffin discovered that call/cc can be typed by Peirce's law (well-known fact: Peirce's law $\Rightarrow A \lor \neg A$)

Classical Curry-Howard:

 λ -calculus + call/cc

Other examples:

- quote instruction ~ dependent choice
- monotonic memory ~ Cohen's forcing
- ...

The motto

With side-effects come new reasoning principles.

Teaser #1

The motto

With side-effects come new reasoning principles.

In Part II, we will use several **computational features**:

- dependent types lazy evaluation
- streams

- shared memory

to get a **proof** for the axioms of **dependent and countable choice** that is compatible with **classical logic**.

Algebraic models of classical realizability

Theory vs Model

What is the status of axioms (*e.g.* $A \lor \neg A$)?

↔ neither true nor false in the ambient theory (here, *true* means *provable*)

There is another point of view:

- **Theory**: *provability* in an axiomatic representation (sy
- Model: *validity* in a particular structure

(syntax) (semantic)

Algebraic models of classical realizability

Theory vs Model

What is the status of axioms (*e.g.* $A \lor \neg A$)?

↔ neither true nor false in the ambient theory (here, *true* means *provable*)

There is another point of view:

- Theory: provability in an axiomatic representation (syntax
- Model: *validity* in a particular structure

(syntax) (semantic)

Theory vs Model

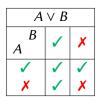
What is the status of axioms (*e.g.* $A \lor \neg A$)?

↔ neither true nor false in the ambient theory (here, *true* means *provable*)

There is another point of view:

- Theory: provability in an axiomatic representation (synta:
- **Model**: *validity* in a particular structure

(syntax) (semantic)



Theory vs Model

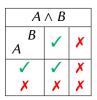
What is the status of axioms (*e.g.* $A \lor \neg A$)?

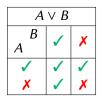
↔ neither true nor false in the ambient theory (here, *true* means *provable*)

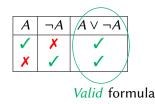
There is another point of view:

- Theory: provability in an axiomatic representation (synta
- **Model**: *validity* in a particular structure

(syntax) (semantic)







Teaser #2

Classical realizability:

 $A\mapsto \{t:t\Vdash A\}$

(intuition: programs that share a common computational behavior given by A)

Great news

Classical realizability semantics gives surprisingly new models!

In Part III, we will study the **algebraic structure** of these models.

Part II

A constructive proof of dependent choice compatible with classical logic

Algebraic models of classical realizability

The axiom of choice

Chapter 5

Axiom of Choice:

$$AC : \forall x^{A} \exists y^{B} P(x, y) \to \exists f^{A \to B} \forall x^{A} P(x, f(x))$$

Chapter 5

The axiom of choice

Axiom of Choice:

$$AC : \forall x^{A} \exists y^{B} P(x, y) \rightarrow \exists f^{A \rightarrow B} \forall x^{A} P(x, f(x))$$

:= $\lambda H.(\lambda x.wit(Hx), \lambda x.prf(Hx))$

Computational content through dependent types:

$$\frac{\Gamma, x: T \vdash t: A}{\Gamma \vdash \lambda x. t: \forall x^{T}. A} (\forall_{l}) \qquad \frac{\Gamma \vdash p: A[t/x] \quad \Gamma \vdash t: T}{\Gamma \vdash (t, p): \exists x^{T}. A} (\exists_{l})$$
$$\frac{\Gamma \vdash p: \exists x^{T}. A(x)}{\Gamma \vdash \text{wit } p: T} (\text{wit}) \qquad \frac{\Gamma \vdash p: \exists x^{T}. A(x)}{\Gamma \vdash \text{prf } p: A(\text{wit } p)} (\text{prf})$$

Incompatibility with classical logic

Bad news

One can define:

$$H_0 := \operatorname{call/cc}_{\alpha}(1, \operatorname{throw}_{\alpha}(0, p)) : \exists x. P(x)$$

and reach a contradiction:

$$(\text{wit} H_0, \text{prf} H_0) \rightarrow \underbrace{(1, p)}_{\exists x, P(\overline{x})}$$

We need to:

 \rightarrow share

↔ **restrict** dependent types

D(0)

Incompatibility with classical logic

Bad news

One can define:

$$H_0 := \operatorname{call/cc}_{\alpha}(1, \operatorname{throw}_{\alpha}(0, p)) : \exists x. P(x)$$

and reach a contradiction:

$$(\text{wit} H_0, \text{prf} H_0) \rightarrow \underbrace{(1, p)}_{\exists \mathbf{x} \neq \mathbf{f}(\overline{\mathbf{x}})}$$

We need to:

 \hookrightarrow share

↔ restrict dependent types

 $D(\mathbf{0})$

Toward a solution ?

• Restriction to countable choice:

$$AC_{\mathbb{N}}: \forall x^{\mathbb{N}} \exists y^{\mathbb{B}} P(x, y) \to \exists f^{\mathbb{N} \to \mathbb{B}} \forall x^{\mathbb{N}} P(x, f(x))$$

• Proof:

 $AC := \lambda H.(\lambda n. \text{if } n = 0 \text{ then wit}(H \ 0) \text{ else}$ if $n = 1 \text{ then wit}(H \ 1) \text{ else } ...,$ $\lambda n. \text{if } n = 0 \text{ then prf}(H \ 0) \text{ else}$ if $n = 1 \text{ then prf}(H \ 1) \text{ else } ...)$

Toward a solution ?

• Restriction to countable choice:

$$AC_{\mathbb{N}}: \forall x^{\mathbb{N}} \exists y^{\mathbb{B}} P(x, y) \to \exists f^{\mathbb{N} \to \mathbb{B}} \forall x^{\mathbb{N}} P(x, f(x))$$

• Proof:

 $AC_{\mathbb{N}} := \lambda H. \operatorname{let} H_0 = H 0 \operatorname{in}$ $\operatorname{let} H_1 = H 1 \operatorname{in}$

```
...

(\lambda n.if n = 0 \text{ then wit } H_0 \text{ else}

if n = 1 \text{ then wit } H_1 \text{ else } \dots,

\lambda n.if n = 0 \text{ then prf } H_0 \text{ else}

if n = 1 \text{ then prf } H_1 \text{ else } \dots)
```

Toward a solution ?

• Restriction to countable choice:

$$AC_{\mathbb{N}}: \forall x^{\mathbb{N}} \exists y^{\mathbb{B}} P(x, y) \to \exists f^{\mathbb{N} \to \mathbb{B}} \forall x^{\mathbb{N}} P(x, f(x))$$

• Proof:

 $AC_{\mathbb{N}} := \lambda H. \text{let } H_{\infty} = (H \ 0, H \ 1, \dots, H \ n, \dots) \text{ in}$ $(\lambda n. \text{ wit } (\text{nth } n \ H_{\infty}), \lambda n. \text{ prf } (\text{nth } n \ H_{\infty}))$

Toward a solution ?

• Restriction to countable choice:

$$AC_{\mathbb{N}}: \forall x^{\mathbb{N}} \exists y^{\mathbb{B}} P(x, y) \to \exists f^{\mathbb{N} \to \mathbb{B}} \forall x^{\mathbb{N}} P(x, f(x))$$

• Proof:

$$\begin{aligned} AC_{\mathbb{N}} &:= \lambda H. \, \text{let} \, H_{\infty} = \text{cofix}_{bn}^{0}(H \, n, b(S(n))) \, \text{in} \\ & (\lambda n. \, \text{wit} \, (\text{nth} \, n \, H_{\infty}), \lambda n. \, \text{prf} \, (\text{nth} \, n \, H_{\infty})) \end{aligned}$$

dPA^{ω} (Herbelin's recipe)

A proof system: • classical:

 $p,q ::= \dots \mid \operatorname{catch}_{\alpha} p \mid \operatorname{throw}_{\alpha} p$

- with stratified **dependent types** :
 - terms: t, u ::= ... | wit p• formulas: $A, B ::= ... | \forall x^T A | \exists x^T A | \Pi a : A B | t = u$ • proofs: $p, q ::= ... | \lambda x.p | (t,p) | \lambda a.p$
- a syntactical restriction of dependencies to NEF proofs
 call-by-value and sharing:

 $p,q ::= \dots \mid \text{let} a = q \text{ in } p$

• with inductive and **coinductive** constructions:

 $p,q ::= \dots \mid \operatorname{ind}_{bn}^t[p \mid p] \mid \operatorname{cofix}_{bn}^t p$

• lazy evaluation for the cofix

dPA^{ω} (Herbelin's recipe)

A proof system: • classical:

 $p,q ::= \dots \mid \operatorname{catch}_{\alpha} p \mid \operatorname{throw}_{\alpha} p$

- with stratified **dependent types** :
 - terms: t, u ::= ... | wit p• formulas: $A, B ::= ... | \forall x^T A | \exists x^T A | \Pi a : A B | t = u$
 - proofs: $p,q ::= ... \mid \lambda x.p \mid (t,p) \mid \lambda a.p$
- a syntactical restriction of dependencies to NEF proofs
 call-by-value and sharing:

 $p,q ::= \dots \mid \text{let } a = q \text{ in } p$

• with inductive and **coinductive** constructions:

 $p,q ::= \dots \mid \operatorname{ind}_{bn}^t[p \,|\, p] \mid \operatorname{cofix}_{bn}^t p$

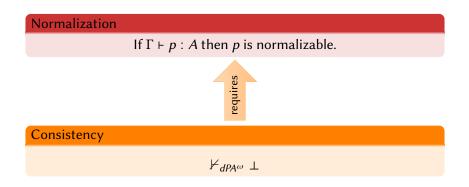
• lazy evaluation for the cofix

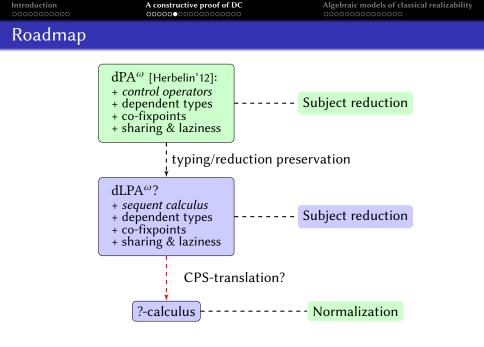
Algebraic models of classical realizability

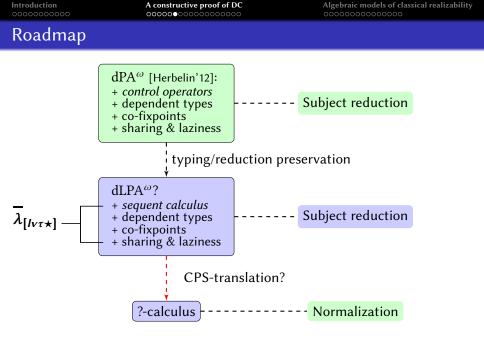
State of the art

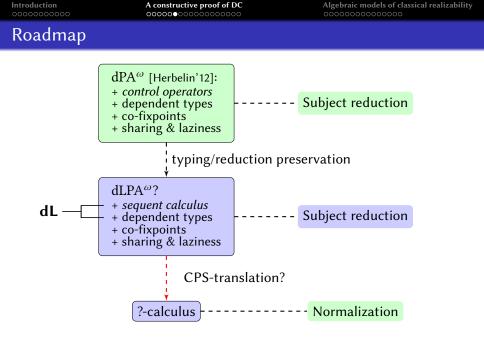
Subject reduction

If $\Gamma \vdash p : A$ and $p \rightarrow q$, then $\Gamma \vdash q : A$.









Chapter 6

The $\overline{\lambda}_{[lv\tau\star]}$ -calculus (Ariola *et al.*):

- a sequent calculus with explicit stores
- Danvy's method of semantics artifact:
 - derive a small-step reduction system
 - 2 derive context-free small-step reduction rules
 - derive an (untyped) CPS

Questions:

 \hookrightarrow Does it normalize?

Classical call-by-need

- \hookrightarrow Can the CPS be typed?
- \hookrightarrow Can we define a realizability interpretation?

Algebraic models of classical realizability

Danvy's semantics artifacts

Syntax:

(Proofs)	р	::=	V μα.c
(Weak values)	V	::=	v a
(Strong values)	V	::=	λ <i>a.p</i>
(Contexts)	е	::=	E μ̃a.c
(Catchable contexts)	Ε	::=	$\alpha \mid F \mid \widetilde{\mu}[a].\langle a \mid F \rangle \tau$
(Forcing contexts)	F	::=	$p \cdot E$
(Commands)	с	::=	$\langle p \parallel e \rangle$
(Closures)	l	::=	ст
(Store)	τ	::=	$\epsilon \mid \tau[a := p]$

Reduction rules:

(Lazy storage)	<i>⟨p</i> ∥ <i>µ̃a.c⟩</i> τ	\rightarrow	$c\tau[a := p]$
	$\langle \mu \alpha. c \parallel E \rangle \tau$	\rightarrow	$(c[E/\alpha])\tau$
(Lookup)	$\langle a \ \mathbf{F} \rangle \tau[a := \mathbf{p}] \tau'$	\rightarrow	$\langle \boldsymbol{p} \parallel \tilde{\mu}[a] . \langle a \parallel F \rangle \tau' \rangle \tau$
(Forced eval.)	$\langle \boldsymbol{V} \ \tilde{\mu}[a]. \langle a \ F \rangle \tau' \rangle \tau$	\rightarrow	$\langle \boldsymbol{V} \ F \rangle \tau[a := \boldsymbol{V}] \tau'$
	$\langle \lambda a.p \parallel q \cdot E \rangle \tau$	\rightarrow	$\langle q \parallel \tilde{\mu} a. \langle p \parallel E \rangle \rangle \tau$

Algebraic models of classical realizability

Danvy's semantics artifacts

Small steps:

— e	$\langle p \parallel \tilde{\mu} a.c \rangle_e \tau$ $\langle p \parallel E \rangle_e \tau$	\rightarrow \rightarrow	$c_e \tau [a := p]$ $\langle p \parallel E \rangle_p \tau$
p		\rightarrow \rightarrow	$(c[E/\alpha])\tau \\ \langle V \parallel E \rangle_E \tau$
— E		\rightarrow \rightarrow	$ \begin{array}{l} \langle V \parallel F \rangle_V \tau [a := V] \tau' \\ \langle V \parallel F \rangle_V \tau \end{array} $
-V	$ \begin{array}{l} \langle a \ F \rangle_V \tau[a := p] \tau' \\ \langle \lambda a.p \ F \rangle_V \tau \end{array} $	\rightarrow \rightarrow	$ \begin{array}{l} \langle p \parallel \tilde{\mu}[a]. \langle a \parallel F \rangle \tau' \rangle_p \tau \\ \langle \lambda a. p \parallel F \rangle_F \tau \end{array} $
+ F	$\langle \lambda a.p \parallel q \cdot E \rangle_F \tau$	\rightarrow	$\langle q \parallel \tilde{\mu} a. \langle p \parallel E \rangle \rangle_e \tau$

Algebraic models of classical realizability

Danvy's semantics artifacts

CPS:

I	$[\![\langle p \ e \rangle \tau]\!]$:=	$\llbracket e \rrbracket_e \llbracket \tau \rrbracket_\tau \llbracket p \rrbracket_p$
— e	[[µ̃a.c]]e [[E]]e		$\lambda \tau p. \llbracket c \rrbracket \tau \llbracket a := p \rrbracket$ $\lambda \tau p. p \tau \llbracket E \rrbracket_E$
p	$\llbracket \mu \alpha.c \rrbracket_p \\ \llbracket V \rrbracket_p$		$\lambda \tau E.(\llbracket c \rrbracket_c \tau)[E/\alpha]$ $\lambda \tau E.E \tau \llbracket V \rrbracket_v$
— E	$ \begin{split} \llbracket \widetilde{\mu}[a].\langle a \parallel F \rangle \tau' \rrbracket_E \\ \llbracket F \rrbracket_E \end{split} $		$\lambda \tau V. V \tau [a := V] \tau' \llbracket F \rrbracket_F$ $\lambda \tau V. V \tau \llbracket F \rrbracket_F$
+ v	[[a]] _v [[λa.p]] _v		$\begin{split} &\lambda \tau F.\tau(a) \tau \left(\lambda \tau V.V \tau[a := V] \tau' \llbracket F \rrbracket_F\right) \\ &\lambda \tau F.F \tau \left(\lambda q \tau E.\llbracket p \rrbracket_p \tau[a := q] E\right) \end{split}$
— F	$\llbracket q \cdot E \rrbracket_F$:=	$\lambda \tau v. v \llbracket q \rrbracket_p \tau \llbracket E \rrbracket_E$

Realizability interpretation

- Store extension: $\tau \lhd \tau'$
- **Term-in-store** $(t|\tau)$: closed store τ s.t. $FV(t) \subseteq dom(\tau)$.

(\hookrightarrow generalizes closed terms)

- **Pole** : set of closures $\perp\!\!\!\perp$ which is:
 - saturated:

 $c'\tau' \in \bot$ and $c\tau \to c'\tau'$ implies $c\tau \in \bot$

• closed by store extension:

 $c\tau \in \bot$ and $\tau \lhd \tau'$ implies $c\tau' \in \bot$

- Compatible stores: $\tau \diamond \tau'$
- **Orthogonality** $(t|\tau) \perp (e|\tau'): \tau \diamond \tau'$ and $\langle t \parallel e \rangle \overline{\tau \tau'} \in \perp$.
- **Realizers**: definitions derived from the small-step rules!

- Store extension: $\tau \lhd \tau'$
- **Term-in-store** $(t|\tau)$: closed store τ s.t. $FV(t) \subseteq dom(\tau)$.

(\hookrightarrow generalizes closed terms)

- **Pole** : set of closures $\perp\!\!\!\perp$ which is:
 - saturated:

 $c'\tau' \in \bot$ and $c\tau \to c'\tau'$ implies $c\tau \in \bot$

• closed by store extension:

 $c\tau \in \bot$ and $\tau \lhd \tau'$ implies $c\tau' \in \bot$

- Compatible stores: τ ◊ τ'
- **Orthogonality** $(t|\tau) \perp (e|\tau'): \tau \diamond \tau'$ and $\langle t \parallel e \rangle \overline{\tau \tau'} \in \perp$.
- Realizers: definitions derived from the small-step rules!

Realizability interpretation

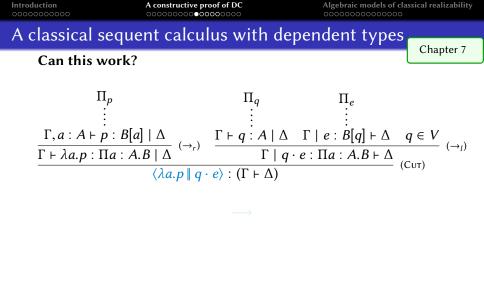
Adequacy

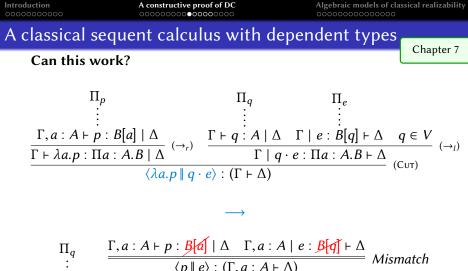
For all $\bot\!\!\!\bot$, if $\tau \Vdash \Gamma$ and $\Gamma \vdash_c c$, then $c\tau \in \bot\!\!\!\bot$.

Normalization

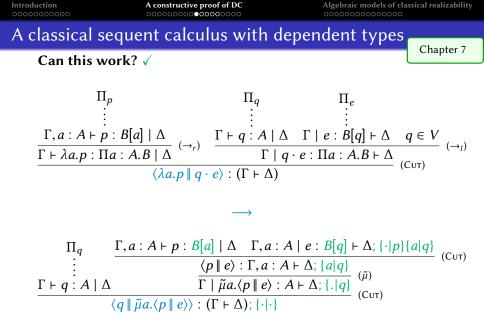
If $\vdash_l c\tau$ then $c\tau$ normalizes.

(+ Bonus: typed CPS translation unveiling Kripke's forcing.)





$$\frac{\prod_{i=1}^{n} \frac{\langle p \parallel e \rangle : (1, a : A \vdash \Delta)}{\Gamma \mid \tilde{\mu}a.\langle p \parallel e \rangle : A \vdash \Delta}}{\langle q \parallel \tilde{\mu}a.\langle p \parallel e \rangle \rangle : (\Gamma \vdash \Delta)} \stackrel{(\tilde{\mu})}{(Cut)}$$



dL

A constructive proof of DC

A type system with:

• a list of dependencies:

$$\frac{\Gamma \vdash p : A \mid \Delta; \sigma \quad \Gamma \mid e : A' \vdash \Delta; \sigma\{\cdot \mid p\} \quad A' \in A_{\sigma}}{\langle p \parallel e \rangle : (\Gamma \vdash \Delta; \sigma)} \quad (Cut)$$

• a value restriction

- Is it enough?
 - subject reduction
 - normalization
 - consistency as a logic
 - suitable for CPS translation

dL

A constructive proof of DC

A type system with:

• a list of dependencies:

$$\frac{\Gamma \vdash p : A \mid \Delta; \sigma \quad \Gamma \mid e : A' \vdash \Delta; \sigma\{\cdot \mid p\} \quad A' \in A_{\sigma}}{\langle p \parallel e \rangle : (\Gamma \vdash \Delta; \sigma)} \quad (Cut)$$

• a value restriction

- Is it enough?
 - subject reduction \checkmark
 - normalization \checkmark
 - consistency as a logic \checkmark
 - suitable for CPS translation X

dL

A constructive proof of DC

A type system with:

• a list of dependencies:

$$\frac{\Gamma \vdash p : A \mid \Delta; \sigma \quad \Gamma \mid e : A' \vdash \Delta; \sigma\{\cdot \mid p\} \quad A' \in A_{\sigma}}{\langle p \parallel e \rangle : (\Gamma \vdash \Delta; \sigma)} \quad (Cut)$$

• a value restriction

- Is it enough?
 - subject reduction \checkmark
 - normalization \checkmark
 - consistency as a logic \checkmark
 - suitable for CPS translation X

$$\llbracket q \rrbracket \llbracket \tilde{\mu}a.\langle p \parallel e \rangle \rrbracket = \underbrace{\llbracket q \rrbracket}_{\neg \neg A} (\lambda a. \underbrace{\llbracket p \rrbracket}_{\neg \neg B(a)} \underbrace{\llbracket e \rrbracket}_{\neg B(q)})$$

Algebraic models of classical realizability

Toward a CPS translation (1/2)

This is quite normal:

- we observed a desynchronization
- we compensated only within the type system
- \hookrightarrow we need to do this already in the calculus!

Who's guilty ?

 $\llbracket \langle q \parallel \widetilde{\mu}a. \langle p \parallel e \rangle \rangle \rrbracket = \llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket \llbracket e \rrbracket)$

Motto: $[\![p]\!]$ shouldn't be applied to $[\![e]\!]$ before $[\![q]\!]$ has reduced

 $(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket$

So, we're looking for:

Algebraic models of classical realizability

Toward a CPS translation (1/2)

This is quite normal:

- we observed a desynchronization
- we compensated only within the type system
- \hookrightarrow we need to do this already in the calculus!

Who's guilty ?

$\left[\!\left[\langle q \,\|\, \widetilde{\mu}a. \langle p \,\|\, e \rangle \rangle\right]\!\right] = \left[\!\left[q\right]\!\right] (\lambda a. \left[\!\left[p\right]\!\right] \left[\!\left[e\right]\!\right])$

Motto: [*p*] *shouldn't be applied to* [*e*] *before* [*q*] *has reduced*

$(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket$

So, we're looking for:

Algebraic models of classical realizability

Toward a CPS translation (1/2)

This is quite normal:

- we observed a desynchronization
- we compensated only within the type system
- \hookrightarrow we need to do this already in the calculus!

Who's guilty ?

 $\left[\!\left[\langle q \,\|\, \widetilde{\mu}a.\langle p \,\|\, e\rangle\rangle\right]\!\right] = \left[\!\left[q\right]\!\right](\lambda a.\left[\!\left[p\right]\!\right]\!\left[\!\left[e\right]\!\right])$

Motto: $[\![p]\!]$ shouldn't be applied to $[\![e]\!]$ before $[\![q]\!]$ has reduced

 $(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket$

So, we're looking for:

Toward a CPS translation (1/2)

This is quite normal:

- we observed a desynchronization
- we compensated only within the type system
- \hookrightarrow we need to do this already in the calculus!

Who's guilty ?

 $\left[\!\left[\langle q \,\|\, \widetilde{\mu}a.\langle p \,\|\, e\rangle\rangle\right]\!\right] = \left[\!\left[q\right]\!\right](\lambda a.\left[\!\left[p\right]\!\right]\!\left[\!\left[e\right]\!\right])$

Motto: $[\![p]\!]$ shouldn't be applied to $[\![e]\!]$ before $[\![q]\!]$ has reduced

 $(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket$

So, we're looking for:

 $\langle \lambda a.p \, \| \, q \cdot e \rangle \rightarrow \langle \mu \hat{\mathbf{p}}. \langle q \, \| \, \tilde{\mu} a. \langle p \, \| \, \hat{\mathbf{p}} \rangle \rangle \, \| \, e \rangle$

A constructive proof of DC

Algebraic models of classical realizability

Toward a CPS translation (2/2)

$$\llbracket \langle \lambda a.p \, \| \, q \cdot e \rangle \rrbracket \xrightarrow{?} (\llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket)) \llbracket e \rrbracket$$

Questions:

- Is any q compatible with such a reduction ?
- Is this typable ?

A constructive proof of DC

Algebraic models of classical realizability

Toward a CPS translation (2/2)

$$\llbracket \langle \lambda a.p \, \| \, q \cdot e \rangle \rrbracket \xrightarrow{?} (\llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket)) \llbracket e \rrbracket$$

Questions:

Is any *q* compatible with such a reduction ?

- If q eventually gives a value V: $\rightsquigarrow [\![p[V/a]]\!][\![e]\!] \checkmark$
- If $\llbracket q \rrbracket \to \lambda_{-}.t$ and drops its continuation: $\rightsquigarrow t \llbracket e \rrbracket$

X

A constructive proof of DC

Algebraic models of classical realizability

Toward a CPS translation (2/2)

$$\llbracket \langle \lambda a.p \, \| \, q \cdot e \rangle \rrbracket \xrightarrow{?} (\llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket)) \llbracket e \rrbracket$$

Questions:	
Is any q compatible with such a reduction ?	$\rightsquigarrow q \in NEF$
 If q eventually gives a value V: → [[p[V/a]]] If [[q]] → λt and drops its continuation: → t[[e]] 	[[e]] ✓ ×
Negative-elimination free (Herbelin'12)	
Values + one continuation variable + no application	n

A constructive proof of DC

Algebraic models of classical realizability

 $\rightsquigarrow a \in \text{NEF}$

Toward a CPS translation (2/2)

$$\llbracket \langle \lambda a.p \, \| \, q \cdot e \rangle \rrbracket \xrightarrow{?} (\llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket)) \llbracket e \rrbracket$$

Questions:

- Is any q compatible with such a reduction ?
- Is this typable ?

Naive attempt:

$$(\underbrace{\llbracket q \rrbracket}_{(A \to \bot) \to \bot} (\underbrace{\lambda a.\llbracket p \rrbracket}_{\Pi_{(a:A)} \neg \neg B(a)})) \underbrace{\llbracket e \rrbracket}_{\neg B[q]}$$

A constructive proof of DC

Algebraic models of classical realizability

 $\rightsquigarrow q \in \mathsf{NEF}$

Toward a CPS translation (2/2)

$$[\![\langle \lambda a.p \, \| \, q \cdot e \rangle]\!] \xrightarrow{?} ([\![q]\!] (\lambda a.[\![p]\!]))[\![e]\!]$$

Questions:

- Is any q compatible with such a reduction ?
- Is this typable ?

Better:

$$\underbrace{(\underbrace{\llbracket q \rrbracket}_{\forall R.(\Pi_{(a:A)}R(a)) \to R(q)} (\underbrace{\lambda a.\llbracket p \rrbracket}_{\Pi_{(a:A)} \neg \neg B(a)}))}_{\neg \neg B(q)} \underbrace{\llbracket e \rrbracket}_{\neg B[q]}$$

(*Remark: not possible without* $q \in NEF$)

An extension of dL with:

- delimited continuations
- dependent types restricted to the NEF fragment
- $\begin{array}{c|c} Regular \ mode \\ \bullet \ \underline{\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash \Delta} \\ \hline \langle p \parallel e \rangle : \Gamma \vdash \Delta \end{array} \qquad \begin{array}{c|c} Dependent \ mode \\ \hline \Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash_d \Delta, \hat{\mathrm{tp}} : B; \sigma\{\cdot \mid p\} \\ \hline \langle p \parallel e \rangle : \Gamma \vdash_d \Delta, \hat{\mathrm{tp}} : B; \sigma \end{array}$
 - delimited scope of dependencies:

 $\frac{c:(\Gamma \vdash_d \Delta, \hat{\mathrm{tp}} : A; \{\cdot | \cdot\})}{\Gamma \vdash \mu \hat{\mathrm{tp}}. c: A \mid \Delta} \hat{\mathrm{tp}}_I$

- Mission accomplished?
 - subject reduction
 - normalization
 - consistency as a logic
 - CPS translation

$$\frac{B \in A_{\sigma}}{\Gamma \mid \hat{\mathrm{tp}} : A \vdash_{d} \Delta, \hat{\mathrm{tp}} : B; \sigma\{\cdot \mid p\}} \hat{\mathrm{tp}}_{E}$$

- *(Bonus)* embedding into Lepigre's calculus √
 - → realizability interpretation

An extension of dL with:

- delimited continuations
- dependent types restricted to the NEF fragment
- $\begin{array}{c|c} Regular \ mode \\ \bullet \ \underline{\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash \Delta} \\ \hline \langle p \parallel e \rangle : \Gamma \vdash \Delta \end{array} \qquad \begin{array}{c|c} Dependent \ mode \\ \hline \Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash_d \Delta, \hat{\mathrm{tp}} : B; \sigma\{\cdot \mid p\} \\ \hline \langle p \parallel e \rangle : \Gamma \vdash_d \Delta, \hat{\mathrm{tp}} : B; \sigma \end{array}$
 - delimited scope of dependencies:

 $\frac{c:(\Gamma\vdash_{d}\Delta,\hat{\mathrm{tp}}:A;\{\cdot|\cdot\})}{\Gamma\vdash\mu\hat{\mathrm{tp}}.c:A\mid\Delta} \hat{\mathrm{tp}}_{I}$

- $-\frac{B \in A_{\sigma}}{\Gamma \mid \hat{\mathrm{tp}} : A \vdash_{d} \Delta, \hat{\mathrm{tp}} : B; \sigma\{\cdot \mid p\}} \hat{\mathrm{tp}}_{E}$
- Mission accomplished \checkmark
 - subject reduction \checkmark
 - normalization \checkmark
 - consistency as a logic \checkmark
 - CPS translation \checkmark

- (Bonus) embedding into Lepigre's calculus √
 - ↔ realizability interpretation

Chapter 8

A classical sequent calculus with:

- stratified dependent types :
 - terms: t, u ::= ... | wit p
 - formulas: $A, B ::= \dots | \forall x^T A | \exists x^T A | \Pi a : A B | t = u$
 - proofs: $p,q ::= \dots \mid \lambda x.p \mid (t,p) \mid \lambda a.p$
- a restriction to the NEF fragment
- arithmetical terms:

 $t, u ::= \dots \mid 0 \mid S(t) \mid \mathsf{rec}_{xy}^t[t_0 \mid t_S] \mid \lambda x.t \mid t \ u$

stores:

$$\tau ::= \varepsilon \mid \tau[a := p_{\tau}] \mid \tau[\alpha := e]$$

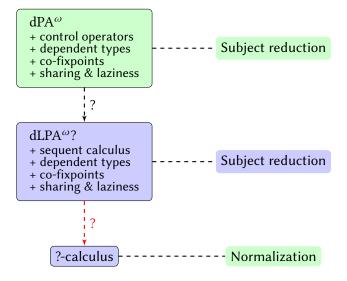
• inductive and **coinductive** constructions:

$$p,q ::= \dots \mid \operatorname{ind}_{bn}^t[p \,|\, p] \mid \operatorname{cofix}_{bn}^t p$$

• a call-by-value reduction and lazy evaluation of cofix

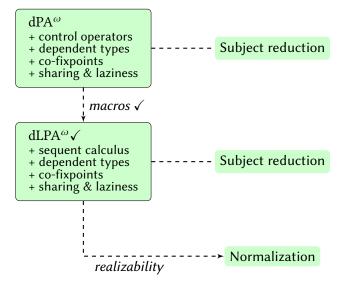
Algebraic models of classical realizability

End of the road



Algebraic models of classical realizability

End of the road



Same methodology:

- small-step reductions
- erive the realizability interpretation

Resembles $\overline{\lambda}_{[lv\tau\star]}$ -interpretation, plus:

- dependent types from Lepigre's calculus
- o co-inductive formulas

Same methodology:

- small-step reductions
- erive the realizability interpretation

Resembles $\overline{\lambda}_{[lv\tau\star]}$ -interpretation, plus:

• dependent types from Lepigre's calculus:

$$\Pi a: A.B \triangleq \forall a.(a \in A \rightarrow B)$$

• co-inductive formulas

Same methodology:

- small-step reductions
- erive the realizability interpretation

Resembles $\overline{\lambda}_{[lv\tau\star]}$ -interpretation, plus:

- dependent types from Lepigre's calculus
- co-inductive formulas: by finite approximations

 $\|v_{Xx}^tA\|_f \triangleq \bigcup_{n \in \mathbb{N}} \|F_{A,t}^n\|_f$

Same methodology:

- small-step reductions
- erive the realizability interpretation

Resembles $\overline{\lambda}_{[lv\tau\star]}$ -interpretation, plus:

- dependent types from Lepigre's calculus
- co-inductive formulas: by finite approximations

Consequences of adequacy:

Normalization

If $\Gamma \vdash_{\sigma} c$, then *c* is normalizable.

Consistency

$$\nvdash_{\mathrm{dLPA}^{\omega}} p : \bot$$

Conclusion and further work

Contributions of this part:

- classical call-by-need:
 - realizability interpretation
 - typed continuation-and-store-passing style translation
- dependent classical sequent calculus:
 - list of dependencies
 - use of delimited continuations for soundness
 - dependently-typed continuation-passing style translation
- $dLPA^{\omega}$:
 - soundness and normalization,
 - realizability interpretation of co-fixpoints

Conclusion and further work

Contributions of this part:

- classical call-by-need
- dependent classical sequent calculus
- $dLPA^{\omega}$

Further work:

- Can dL_{tp} be related to:
 - Pédrot-Tabareau's Baclofen Type Theory ?
 - Vákár's categorical presentation ?
 - Bowman *et. al.* CPS for *CC* ?
- 2 Relation to Krivine's realizability semantics of DC:
 - Compatible with quote?
 - Approximation of the limits required for bar recursion?
- Algebraic counterpart of side-effects in realizability structures?

Conclusion and further work

Contributions of this part:

- classical call-by-need
- dependent classical sequent calculus
- $dLPA^{\omega}$

Further work:

- Can dL_{tp} be related to:
 - Pédrot-Tabareau's Baclofen Type Theory ?
 - Vákár's categorical presentation ?
 - Bowman et. al. CPS for CC?
- Prevention of Comparison of
 - Compatible with quote?
 - Approximation of the limits required for bar recursion?

Identify a structures of side-effects in realizability structures?

Conclusion and further work

Contributions of this part:

- classical call-by-need
- dependent classical sequent calculus
- $dLPA^{\omega}$

Further work:

- Can dL_{tp} be related to:
 - Pédrot-Tabareau's Baclofen Type Theory ?
 - Vákár's categorical presentation ?
 - Bowman *et. al.* CPS for *CC* ?
- 2 Relation to Krivine's realizability semantics of DC:
 - Compatible with quote?
 - Approximation of the limits required for bar recursion?

Algebraic counterpart of side-effects in realizability structures?

Part III

Algebraic models of classical realizability

Algebraic models of classical realizability

Algebraization of classical realizability

Realizers:

Chapter 9

$t \Vdash A$ defined as $t \in ||A||^{\perp}$

Key elements:

• the pole \perp • the lattice $(\mathcal{P}(\Pi), \supseteq)$

Observations:

• this induces a semantic subtyping:

$$A \leq_{\perp} B \triangleq ||B|| \subseteq ||A||$$

• connectives/quantifiers:

$$X = \bigwedge X = X$$

Realizability

Fhis is to be compared with:

$$\forall = \bigwedge = \land$$

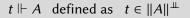
Étienne MIQUEY

Algebraic models of classical realizability

Chapter 9

Algebraization of classical realizability

Realizers:



Key elements:

• the pole \bot • the lattice $(\mathcal{P}(\Pi), \supseteq)$

Observations:

• this induces a semantic subtyping:

$$A \leq_{\perp} B \triangleq ||B|| \subseteq ||A||$$

• connectives/quantifiers:

This is to be compared with

$$\forall = \bigwedge = \land$$

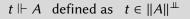
Forcing

Algebraic models of classical realizability

Chapter 9

Algebraization of classical realizability

Realizers:



Key elements:

• the pole \bot • the lattice $(\mathcal{P}(\Pi), \supseteq)$

Observations:

• this induces a semantic subtyping:

$$A \leq_{\perp} B \triangleq ||B|| \subseteq ||A||$$

• connectives/quantifiers:

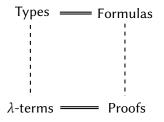
$$\ell = \bigwedge \land = \times$$
 Realizability

This is to be compared with:

$$\forall = \bigwedge = \land$$
 Forcing

Algebraic models of classical realizability

Implicative structures

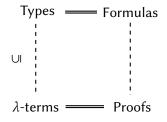


In particular, $a \preccurlyeq b$ reads:

- *a* is a *subtype* of *b*
- *a* is a *realizer* of *b*
- the realizer *a* is more defined than *b*

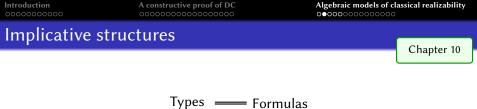
Algebraic models of classical realizability

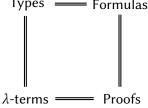
Implicative structures



In particular, $a \preccurlyeq b$ reads:

- *a* is a *subtype* of *b*
- *a* is a *realizer* of *b*
- the realizer *a* is more defined than *b*





In particular, $a \preccurlyeq b$ reads:

- *a* is a *subtype* of *b*
- a is a realizer of b
- the realizer *a* is more defined than *b*

Implicative structures

Chapter 10

Definition:

Complete meet-semilattice $(\mathcal{A}, \preccurlyeq, \rightarrow)$ s.t.:

• if $a_0 \preccurlyeq a$ and $b \preccurlyeq b_0$ then $(a \rightarrow b) \preccurlyeq (a_0 \rightarrow b_0)$

Examples:

- complete Heyting/Boolean algebras
- classical realizability:

•
$$\mathcal{A} \triangleq \mathcal{P}(\Pi);$$

•
$$a \preccurlyeq b \triangleq a \supseteq b$$

• $a \to b \triangleq a^{\perp} \cdot b = \{t \cdot \pi : t \in a^{\perp}, \pi \in b\}$

Interpretating of λ -terms

λ-terms:

$$a@b \triangleq \bigwedge \{c \in \mathcal{A} : a \preccurlyeq (b \rightarrow c)\} \qquad \lambda f \triangleq \bigwedge_{a \in \mathcal{A}} (a \rightarrow f(a))$$

• call/cc:

$$\boldsymbol{cc} \triangleq \ \mathbf{k}_{a,b\in\mathcal{A}}(((a\to b)\to a)\to a)$$

Adjunction:	$a \preccurlyeq b \rightarrow c$	\Leftrightarrow	$a@b \preccurlyeq c$
-------------	----------------------------------	-------------------	----------------------

Adequacy: If $\vdash t : A$ then $t^{\mathcal{A}} \preccurlyeq A^{\mathcal{A}}$

In particular:

$$\begin{aligned} & \kappa^{\mathcal{R}} &= \bigwedge_{a,b\in\mathcal{R}} (a\to b\to a) \\ & s^{\mathcal{R}} &= \bigwedge_{a,b,c\in\mathcal{R}} ((a\to b\to c)\to (a\to b)\to a\to c) \end{aligned}$$

Interpretating of λ -terms

λ-terms:

$$a@b \triangleq \bigwedge \{c \in \mathcal{A} : a \preccurlyeq (b \rightarrow c)\} \qquad \lambda f \triangleq \bigwedge_{a \in \mathcal{A}} (a \rightarrow f(a))$$

• call/cc:

Adjunction:	$a \preccurlyeq b \rightarrow c$	\Leftrightarrow	$a@b \preccurlyeq c$
-------------	----------------------------------	-------------------	----------------------

Adequacy: If
$$\vdash t : A$$
 then $t^{\mathcal{A}} \preccurlyeq A^{\mathcal{A}}$

In particular:

$$\begin{aligned} & \mathbf{\kappa}^{\mathcal{A}} &= \bigwedge_{a,b\in\mathcal{A}} (a\to b\to a) \\ & \mathbf{s}^{\mathcal{A}} &= \bigwedge_{a,b,c\in\mathcal{A}} ((a\to b\to c)\to (a\to b)\to a\to c) \end{aligned}$$

Implicative algebras

Separator *S*:

• $\kappa^{\mathcal{A}} \in \mathcal{S}$, and $s^{\mathcal{A}} \in \mathcal{S}$	(Combinators)
2 If $a \in S$ and $a \preccurlyeq b$, then $b \in S$.	(Upwards closure)
3 If $(a \rightarrow b) \in S$ and $a \in S$, then $b \in S$.	(Modus ponens)

Implicative algebras:

 $(\mathcal{A},\preccurlyeq,\rightarrow)$ + separator \mathcal{S}

Entailment:

$$a \vdash_{\mathcal{S}} b \triangleq a \to b \in \mathcal{S}.$$

Adjunction

 $a \vdash_S b \rightarrow c$ if and only if $a \times b \vdash_S c$

Implicative algebras

Separator *S*:

•
$$\kappa^{\mathcal{A}} \in S$$
, and $s^{\mathcal{A}} \in S$ (Combinators)• If $a \in S$ and $a \preccurlyeq b$, then $b \in S$.(Upwards closure)• If $(a \rightarrow b) \in S$ and $a \in S$, then $b \in S$.(Modus ponens)

Implicative algebras:

 $(\mathcal{A},\preccurlyeq,\rightarrow)$ + separator \mathcal{S}

Entailment:

$$a \vdash_{\mathcal{S}} b \triangleq a \rightarrow b \in \mathcal{S}.$$

Adjunction

$$a \vdash_{\mathcal{S}} b \to c$$
 if and only if $a \times b \vdash_{\mathcal{S}} c$

Implicative tripos

Adjunction

 $a \vdash_{\mathcal{S}} b \to c$ if and only if $a \times b \vdash_{\mathcal{S}} c$

 $(\hookrightarrow (\mathcal{A}/\mathcal{S}, \vdash_{\mathcal{S}}, \times, +, \rightarrow) \text{ is a Heyting algebra})$

Tripos:

$$\mathcal{T}: \left\{ \begin{array}{ll} \mathbf{Set}^{op} & \to & \mathbf{HA} \\ I & \mapsto & \mathcal{R}^{I}/\mathcal{S}[I] \end{array} \right.$$

Collapse criteria

The following are equivalent:

- $\mathbb 0 \,\, \mathcal{T}$ is isomorphic to a forcing tripos
- 2 $S \subseteq \mathcal{A}$ is a principal filter of \mathcal{A} .
- ③ $S \subseteq \mathcal{A}$ is finitely generated and $\pitchfork \in S$.

Implicative tripos

Adjunction

 $a \vdash_{\mathcal{S}} b \to c$ if and only if $a \times b \vdash_{\mathcal{S}} c$

 $(\hookrightarrow (\mathcal{A}/\mathcal{S}, \vdash_{\mathcal{S}}, \times, +, \rightarrow) \text{ is a Heyting algebra})$

Tripos:

$$\mathcal{T}: \left\{ \begin{array}{ll} \mathbf{Set}^{op} & \to & \mathbf{HA} \\ I & \mapsto & \mathcal{R}^{I}/\mathcal{S}[I] \end{array} \right.$$

Collapse criteria

The following are equivalent:

- **①** \mathcal{T} is isomorphic to a forcing tripos
- **2** $S \subseteq \mathcal{A}$ is a principal filter of \mathcal{A} .
- **()** $S \subseteq \mathcal{A}$ is finitely generated and $\pitchfork \in S$.

Decomposing the arrow

Logic:

$$A \to B \triangleq \neg A \lor B$$

Different axiomatic:

 λ -calculus:

$$\lambda x.t \triangleq \tilde{\mu}([x],\beta).\langle t \parallel \beta \rangle : \neg A \, \mathfrak{P} B$$

- L^{29} fragment of Munch-Maccagnoni's system L
- embedding of the *call-by-name* λ -calculus

Algebraic models of classical realizability

Disjunctive structures

Complete meet-semilattice $(\mathcal{A}, \preccurlyeq, ??, \neg)$:

- ¬ is anti-monotonic
- 2 \Re is monotonic

Examples:

- complete Boolean algebras
- classical realizability in L^{28} :

•
$$\mathcal{A} \triangleq \mathcal{P}(\Pi)$$

• $a \preccurlyeq b \triangleq a \supseteq b$

•
$$a^{2}b \triangleq (a,b)$$

• $\neg a \triangleq [a^{\perp}]$

Induced implication

$$(\mathcal{A}, \preccurlyeq, \stackrel{\mathfrak{T}}{\rightarrow})$$
 with $a \stackrel{\mathfrak{T}}{\rightarrow} b \triangleq \neg a \, \mathfrak{T} b$ is an implicative structure

Algebraic models of classical realizability

Disjunctive structures

Complete meet-semilattice $(\mathcal{A}, \preccurlyeq, ??, \neg)$:

- ¬ is anti-monotonic
- **2** \mathfrak{P} is monotonic

●
$$\int_{b\in B} (a \, \Im \, b) = a \, \Im \, (\int_{b\in B} b)$$
 and $\int_{b\in B} (b \, \Im \, a) = (\int_{b\in B} b) \, \Im \, a$
● $\neg \int_{a\in A} a = \Upsilon_{a\in A} \neg a$

Examples:

- complete Boolean algebras
- classical realizability in L^{\Im} :

$$\mathcal{A} \triangleq \mathcal{P}(\Pi)$$

$$a \ll b \triangleq a \supseteq b$$

$$a \And b \triangleq (a, b)$$

$$\neg a \triangleq [a^{\perp}]$$

Induced implication

 $(\mathcal{A}, \preccurlyeq, \stackrel{\mathfrak{P}}{\rightarrow})$ with $a \stackrel{\mathfrak{P}}{\rightarrow} b \triangleq \neg a \stackrel{\mathfrak{P}}{\rightarrow} b$ is an implicative structure

Algebraic models of classical realizability

Disjunctive structures

Complete meet-semilattice $(\mathcal{A}, \preccurlyeq, ??, \neg)$:

- ¬ is anti-monotonic
- **2** \mathfrak{P} is monotonic

●
$$\int_{b\in B} (a \, \Im \, b) = a \, \Im \, (\int_{b\in B} b)$$
 and $\int_{b\in B} (b \, \Im \, a) = (\int_{b\in B} b) \, \Im \, a$
● $\neg \int_{a\in A} a = \Upsilon_{a\in A} \neg a$

Examples:

- complete Boolean algebras
- classical realizability in $L^{\mathfrak{N}}$:

Induced implication

$$(\mathcal{A}, \preccurlyeq, \stackrel{\mathfrak{N}}{\rightarrow})$$
 with $a \stackrel{\mathfrak{N}}{\rightarrow} b \triangleq \neg a \mathfrak{N} b$ is an implicative structure

Interpreting L^{\Re}

Contexts:

Terms:

•
$$(a,b) \triangleq a \ \mathfrak{P} b$$

• $[a] \triangleq \neg a$
• $\mu^{-}.c \triangleq \bigwedge_{a \in \mathcal{A}} \{a : c(a) \in \bot\}$
• $\mu^{()}.c \triangleq \bigwedge_{a,b \in \mathcal{A}} \{a \ \mathfrak{P} b : c(a,b) \in \bot\}$

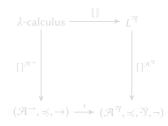
•
$$\mu^+.c \triangleq \Upsilon_{a \in \mathcal{A}} \{a : c(a) \in \bot\!\!\!\!\bot\}$$

•
$$\mu^{()}.c \triangleq \bigwedge_{a,b\in\mathcal{A}} \{a \ \Im \ b : c(a,b) \in \mathcal{A} \}$$

• $\mu^{[]}.c \triangleq \bigwedge_{a\in\mathcal{A}} \{\neg a : c(a) \in \bot\}$

Adequacy

- for any term t, if $\Gamma \vdash t : A \mid \Delta$, then $(t[\sigma])^{\mathcal{A}} \preccurlyeq A[\sigma]^{\mathcal{A}}$;
- 2 for any context e, if $\Gamma \mid e : A \vdash \Delta$, then $(e[\sigma])^{\mathcal{A}} \succeq A[\sigma]^{\mathcal{A}}$;



Interpreting L^{γ}

Contexts:

Terms:

•
$$(a,b) \triangleq a \ \mathfrak{P} b$$

• $[a] \triangleq \neg a$
• $\mu^{-}.c \triangleq \bigwedge_{a \in \mathcal{A}} \{a : c(a) \in \bot\}$
• $\mu^{()}.c \triangleq \bigwedge_{a,b \in \mathcal{A}} \{a \ \mathfrak{P} b : c(a,b) \in \bot\}$

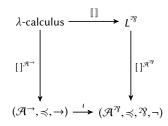
•
$$\mu^+.c \triangleq \Upsilon_{a \in \mathcal{A}} \{a : c(a) \in \bot\!\!\!\!\bot\}$$

•
$$\mu^{()}.c \triangleq \bigwedge_{a,b\in\mathcal{A}} \{a \ \mathfrak{N} \ b : c(a,b) \in \mu^{[]}.c \triangleq \bigwedge_{a\in\mathcal{A}} \{\neg a : c(a) \in \bot\}$$

Adequacy

- for any term t, if $\Gamma \vdash t : A \mid \Delta$, then $(t[\sigma])^{\mathcal{A}} \preccurlyeq A[\sigma]^{\mathcal{A}}$;
- 2 for any context e, if $\Gamma \mid e : A \vdash \Delta$, then $(e[\sigma])^{\mathcal{A}} \succeq A[\sigma]^{\mathcal{A}}$;

Besides:



Disjunctive algebras

Bourbaki's axioms:

$$\begin{split} \mathbf{s}_{1}^{3} &\triangleq & \int_{a \in \mathcal{A}} \left[(a \, \mathfrak{P} \, a) \to a \right] \\ \mathbf{s}_{2}^{3} &\triangleq & \int_{a,b \in \mathcal{A}} \left[a \to (a \, \mathfrak{P} \, b) \right] \\ \mathbf{s}_{3}^{3} &\triangleq & \int_{a,b \in \mathcal{A}} \left[(a \, \mathfrak{P} \, b) \to (b \, \mathfrak{P} \, a) \right] \\ \mathbf{s}_{4}^{3} &\triangleq & \int_{a,b,c \in \mathcal{A}} \left[(a \to b) \to (c \, \mathfrak{P} \, a) \to (c \, \mathfrak{P} \, b) \right] \\ \mathbf{s}_{5}^{3} &\triangleq & \int_{a,b,c \in \mathcal{A}} \left[(a \, \mathfrak{P} \, (b \, \mathfrak{P} \, c)) \to ((a \, \mathfrak{P} \, b) \, \mathfrak{P} \, c) \right] \end{split}$$

Separator S:

(1) If
$$a \in S$$
 and $a \preccurlyeq b$ then $b \in S$ (upward closure)(2) s_1, s_2, s_3, s_4 and s_5 are in S(combinators)(3) If $a \xrightarrow{\gamma} b \in S$ and $a \in S$ then $b \in S$ (closure under modus ponens)

Introduction
00000000000

Algebraic models of classical realizability

Internal logic

Recall:

$$a \vdash_{\mathcal{S}} b \triangleq a \xrightarrow{\mathfrak{N}} b \in \mathcal{S}$$

Sum type:

1. $a^{\Re} b \vdash_{\mathcal{S}} a + b$ 2. $a + b \vdash_{\mathcal{S}} a^{\Re} b$

Negation:

1. $\neg a \vdash_{\mathcal{S}} a \xrightarrow{\gamma} \bot$ 2. $a \xrightarrow{\gamma} \bot \vdash_{\mathcal{S}} \neg a$

Double-negation elimination:

1. $a \vdash_S \neg \neg a$ 2. $\neg \neg a \vdash_S a$

Theorem

${\cal S}$ is an implicative separator

Introduction
00000000000

Algebraic models of classical realizability

Internal logic

Recall:

$$a \vdash_{\mathcal{S}} b \triangleq a \xrightarrow{\mathfrak{N}} b \in \mathcal{S}$$

Sum type:

1. $a^{2}b \vdash_{S} a + b$ 2. $a + b \vdash_{S} a^{2}b$

Negation:

1. $\neg a \vdash_{\mathcal{S}} a \xrightarrow{\mathfrak{N}} \bot$ 2. $a \xrightarrow{\mathfrak{N}} \bot \vdash_{\mathcal{S}} \neg a$

Double-negation elimination:

1. $a \vdash_S \neg \neg a$ 2. $\neg \neg a \vdash_S a$

Theorem

${\mathcal S}$ is an implicative separator

Conclusion

Disjunctive structures:

- induced by classical realizability
- allow to adequately embed L^{\Im}
- are implicative structures

Disjunctive algebras:

- are intrinsically classical
- are implicative algebras
- do not necessarily collapse to a forcing situation

Conclusion

Implicative algebras are more general.

Conclusion

Disjunctive structures:

- induced by classical realizability
- allow to adequately embed $L^{2\gamma}$
- are implicative structures

Disjunctive algebras:

- are intrinsically classical
- are implicative algebras
- do not necessarily collapse to a forcing situation

Conclusion

Implicative algebras are more general.

Conclusion

Disjunctive structures:

- induced by classical realizability
- allow to adequately embed $L^{2\gamma}$
- are implicative structures

Disjunctive algebras:

- are intrinsically classical
- are implicative algebras
- do not necessarily collapse to a forcing situation

Conclusion

Implicative algebras are more general.

Same process:

Conjunctive algebras

- **O** Conjunctive structures $(\mathcal{A}, \preccurlyeq, \otimes, \neg)$
- 2 Adequate embedding of L^{\otimes}
- Onjunctive algebras

What we got:

- Duality between conjunctive and disjunctive structures
- Construction of conjunctive algebras from disjunctive algebras.
- Internal logic
 - Trinoses
 - Construction of disjunctive algebras from conjunctive algebras.

Same process:

Conjunctive algebras

- **O** Conjunctive structures $(\mathcal{A}, \preccurlyeq, \otimes, \neg)$
- 2 Adequate embedding of L^{\otimes}
- Onjunctive algebras

What we got:

- Duality between conjunctive and disjunctive structures
- Construction of conjunctive algebras from disjunctive algebras.

What we don't:

- Internal logic
- Triposes
- Construction of disjunctive algebras from conjunctive algebras.

Same process:

Conjunctive algebras

- **○** Conjunctive structures $(\mathcal{A}, \preccurlyeq, \otimes, \neg)$
- 2 Adequate embedding of L^{\otimes}
- Onjunctive algebras

What we got:

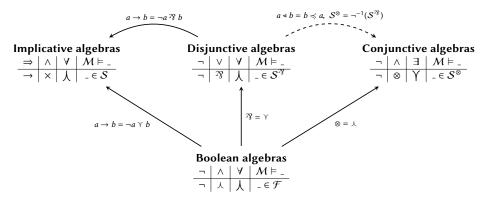
- Duality between conjunctive and disjunctive structures
- Construction of conjunctive algebras from disjunctive algebras. What we don't:
 - Internal logic
 - Triposes
 - Construction of disjunctive algebras from conjunctive algebras.

Introduction

A constructive proof of DC

Algebraic models of classical realizability

Final picture

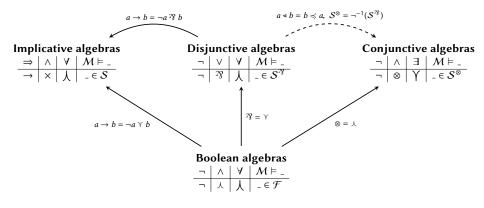


(Bonus: proven in Coq)

Introduction

Algebraic models of classical realizability

Final picture



- Complete the duality:
 - Conjunctive triposes?
 - From conjunctive algebras to disjunctive algebras?
- Ombination of disjunctive and conjunctive algebras:
 - Would it collapse to a forcing situation?
 - Any chance to get call-by-push-value algebras?
- 3 Algebraic counterpart of strategy/side-effects:
 - Lazy algebras?
 - Algebraic counterpart of memory?
 - ...

- Complete the duality:
 - Conjunctive triposes?
 - From conjunctive algebras to disjunctive algebras?
- Ombination of disjunctive and conjunctive algebras:
 - Would it collapse to a forcing situation?
 - Any chance to get call-by-push-value algebras?
- 3 Algebraic counterpart of strategy/side-effects:
 - Lazy algebras?
 - Algebraic counterpart of memory?
 - ...

- Complete the duality:
 - Conjunctive triposes?
 - From conjunctive algebras to disjunctive algebras?
- Ombination of disjunctive and conjunctive algebras:
 - Would it collapse to a forcing situation?
 - Any chance to get call-by-push-value algebras?
- Algebraic counterpart of strategy/side-effects:
 - Lazy algebras?
 - Algebraic counterpart of memory?
 - ...

- Complete the duality:
 - Conjunctive triposes?
 - From conjunctive algebras to disjunctive algebras?
- Ombination of disjunctive and conjunctive algebras:
 - Would it collapse to a forcing situation?
 - Any chance to get call-by-push-value algebras?
- Algebraic counterpart of strategy/side-effects:
 - Lazy algebras?
 - Algebraic counterpart of memory?
 - ...

Thank you for you attention.

Cbn Cps	$dLPA^{\omega}$ 00	Implicative Alg.	⊗-algebra
●		O	⊙
Implicative tripo)S		

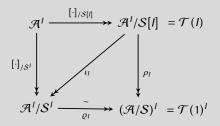
Tripos:

$$\mathcal{T}: \left\{ \begin{array}{ll} \mathbf{Set}^{op} & \to & \mathbf{HA} \\ I & \mapsto & \mathcal{R}^{I}/\mathcal{S}[I] \end{array} \right.$$

For the product \mathcal{R}^{l} , two possible separators:

$$\begin{array}{ll} \mathcal{S}^{I} & \triangleq & \prod_{i \in I} \mathcal{S} \\ \mathcal{S}[I] & \triangleq & \{a \in \mathcal{R}^{I} : \exists s \in S. \forall i \in I.s \preccurlyeq a_{i}\} \end{array}$$
 (product) (uniform)

The diagram:



CbN CPS	$dLPA^{\omega}$	Implicative Alg.	⊗-algebra
	•0		

Application in L[⊗]:

$$t u \triangleq \mu \alpha . \langle t \parallel \mu[\beta] . \langle (u, [\alpha]) \parallel \beta \rangle \rangle$$

Application in conjunctive structures:

$$t@u = \bigwedge \{a : t \preccurlyeq \Upsilon \{\neg b : u \otimes \neg a \preccurlyeq b\}$$