Timed Regular Expressions Derivatives and Matching

Dogan Ulus¹, **Thomas Ferrère**¹, Eugene Asarin², and Oded Maler¹

¹ VERIMAG, Université Grenoble-Alpes & CNRS, France
² IRIF, Université Paris Diderot, France

May 10, 2016

EQINOCS Workshop

Regular Expressions

Formal Languages

- ▶ Alphabet: set of actions $\Sigma = \{a, b, c, \dots, z\}$
- ▶ Word: sequence $w = a_1 a_2 a_3 \dots a_n$ where $a_i \in \Sigma$

Regular Expressions

Syntax:

$$\varphi := \varnothing \mid \epsilon \mid a \mid \varphi \cdot \varphi \mid \varphi \vee \varphi \mid \varphi^*$$

Semantics:

$$\begin{split} \llbracket\varnothing\rrbracket_w &= \emptyset \qquad \llbracket\epsilon\rrbracket_w = \{(i,i): 0 \leq i \leq n\} \\ \llbracket a\rrbracket_w &= \{(i-1,i): w[i-1,i] = a\} \\ \llbracket \varphi \cdot \psi \rrbracket_w &= \{(i,j): \exists k, \, (i,k) \in \llbracket\varphi\rrbracket_w \wedge (k,j) \in \llbracket\psi\rrbracket_w\} \\ \llbracket \varphi \vee \psi \rrbracket_w &= \llbracket\varphi\rrbracket_w \cup \llbracket\psi\rrbracket_w \qquad \llbracket\varphi^*\rrbracket_w = \bigcup_{i>0} \llbracket\varphi^i\rrbracket_w \end{split}$$

Pattern Matching

Problem (Matching)

Given $w = a_1 a_2 a_3 \dots a_n$ and expression φ , compute $\llbracket \varphi \rrbracket_w$.

Example

$$\varphi = a^*(bc)^*$$

Timed Languages

Timed words
$$w = (t_1, a_1)(t_2, a_2) \dots (t_n, a_n)$$
 with $0 \le t_1 \le t_2 \le \dots \le t_n$.

Two alternative interpretations:

- Event sequences
 - interpret (t, a) as "a occurs at time t"
 - ▶ notation: $w = r_1 a_1 r_2 a_2 \dots r_n a_n$ (with $r_i = t_i t_{i-1}$, $t_0 = 0$)
- Continuous Signals
 - ▶ interpret (t, a) as "a holds up to time t"
 - notation: $w = a_1^{r_1} a_2^{r_2} \dots a_n^{r_n}$ (with $r_i = t_i t_{i-1}$, $t_0 = 0$)
 - closure under stuttering: $a^r \cdot a^s = a^{r+s}$ and $a^0 = \epsilon$

Timed Regular Expressions

- lacktriangle New operator $\langle \,
 angle_I$ requiring duration in interval I
- ▶ Atomic expressions a now denote $r \cdot a$ (resp. a^r) for abritrary r
- Syntax:

$$\varphi := \varnothing \mid \epsilon \mid a \mid \varphi \cdot \varphi \mid \varphi \vee \varphi \mid \varphi^* \mid \langle \varphi \rangle_I$$

Semantics:

$$\begin{split} \llbracket \varnothing \rrbracket_w &= \emptyset \qquad \llbracket \epsilon \rrbracket_w = \{(t,t): 0 \leq t \leq |w|\} \\ \llbracket a \rrbracket_w &= \{(t,t'): w[t,t'] = a\} \\ \llbracket \varphi \cdot \psi \rrbracket_w &= \{(t,t'): \exists t'', (t,t'') \in \llbracket \varphi \rrbracket_w \wedge (t'',t') \in \llbracket \psi \rrbracket_w \} \\ \llbracket \varphi \vee \psi \rrbracket_w &= \llbracket \varphi \rrbracket_w \cup \llbracket \psi \rrbracket_w \qquad \llbracket \varphi^* \rrbracket_w = \bigcup_{i \geq 0} \llbracket \varphi^i \rrbracket_w \\ \llbracket \langle \varphi \rangle_I \rrbracket_w &= \{(t,t') \in \llbracket \varphi \rrbracket_w : t' - t \in I\} \end{split}$$

Timed Regular Expressions

- lacktriangle New operator $\langle \,
 angle_I$ requiring duration in interval I
- Atomic expressions a now denote $r \cdot a$ (resp. a^r) for abritrary r
- Syntax:

$$\varphi := \varnothing \mid \epsilon \mid a \mid \varphi \cdot \varphi \mid \varphi \vee \varphi \mid \varphi^* \mid \langle \varphi \rangle_I$$

Semantics:

$$\begin{split} \llbracket \varnothing \rrbracket_w &= \emptyset \qquad \llbracket \epsilon \rrbracket_w = \{(t,t): 0 \leq t \leq |w|\} \\ \llbracket a \rrbracket_w &= \{(t,t'): w[t,t'] = a\} \\ \llbracket \varphi \cdot \psi \rrbracket_w &= \llbracket \varphi \rrbracket_w \circ \llbracket \psi \rrbracket_w \\ \llbracket \varphi \vee \psi \rrbracket_w &= \llbracket \varphi \rrbracket_w \cup \llbracket \psi \rrbracket_w \qquad \llbracket \varphi^* \rrbracket_w = \bigcup_{i \geq 0} \llbracket \varphi^i \rrbracket_w \\ \llbracket \langle \varphi \rangle_I \rrbracket_w &= \{(t,t') \in \llbracket \varphi \rrbracket_w : t' - t \in I\} \end{split}$$

Atomic Events and Atomic Signals

Let
$$w = (t_1, a_1)(t_2, a_2) \dots (t_n, a_n)$$
.

Definition (sub-sequence)

w[t,t']=a if and only if $\exists i,\ t=t_{i-1}\leq t'=t_i$, and $a_i=a$

Definition (sub-signal)

w[t,t'] = a if and only if $\exists i, t_{i-1} \le t < t' \le t_i$, and $a_i = a$ assuming w stutter-free.

- ▶ In event sequences $w[t,t^\prime]$ only defined if some events occur at times t and t^\prime
- ▶ In continuous signals w[t,t'] defined everywhere

Timed Pattern Matching (Event Sequences)

Example

Timed Pattern Matching (Event Sequences)

Example

Timed Pattern Matching (Continuous Signals)

Timed Pattern Matching (Continuous Signals)

Example

Offline Matching Continuous Signals

Theorem (FORMATS'14)

The set of matches $[\![\varphi]\!]_w$ is computable as a finite union of 2d zones.

Proof.

Structural induction over φ :

- a: triangular zones for every segment
- $\triangleright \varphi \lor \psi$: simple union
- $\triangleright \varphi \cdot \psi$: composition of binary relations
- $ightharpoonup \varphi^*$: closure is obtained in 2(|w| + ||w||) + 1 iterations
- $\triangleright \langle \varphi \rangle_I$: intersection of zones with diagonal band of $\{(t, t'): t' - t \in I\}$

Offline Matching Continuous Signals (Concatenation)

Example

Concatenation of $\varphi=\langle p\rangle_{[1,\infty]}$ with $\psi=\langle q\rangle_{[0,2]}$

Derivatives of Regular Expressions

Nullable check

$$\nu(\varnothing) = \varnothing \qquad \qquad \nu(\varphi_1 \cdot \varphi_2) = \nu(\varphi_1) \cdot \nu(\varphi_2)$$

$$\nu(\epsilon) = \epsilon \qquad \qquad \nu(\varphi_1 \vee \varphi_2) = \nu(\varphi_1) \vee \nu(\varphi_2)$$

$$\nu(a) = \varnothing \qquad \qquad \nu(\varphi^*) = \epsilon$$

Derivatives

$$d_{a}(\varnothing) = \varnothing \qquad d_{a}(\varphi_{1} \cdot \varphi_{2}) = d_{a}(\varphi_{1}) \cdot \varphi_{2} \vee \nu(\varphi_{1}) \cdot d_{a}(\varphi_{2})$$

$$d_{a}(\epsilon) = \varnothing \qquad d_{a}(\varphi_{1} \vee \varphi_{2}) = d_{a}(\varphi_{1}) \vee d_{a}(\varphi_{2})$$

$$d_{a}(a) = \epsilon \qquad d_{a}(\varphi^{*}) = d_{a}(\varphi) \cdot \varphi^{*}$$

$$d_{a}(b) = \varnothing$$

Example: $\varphi = a^*(bc)^*$ and w = abcbc.

Symbols	a	b	c	ь	c
Positions	1	2	3	4	5

1 (

Symbols	a	b	c	b	c
Positions	1	2	3	4	5

1
$$\varphi \longrightarrow a^*(bc)^*$$

Symbols			a		b	c	b	c
Positions			1		2	3	4	5
1	φ	$\xrightarrow{\mathrm{d}_a}$	$a^*(bc)^*$	$\xrightarrow{d_b}$	$c(bc)^*$			

Symbols			a		b		c	b	c
Positions			1		2		3	4	5
1	φ	$\xrightarrow{\mathrm{d}_a}$	$a^*(bc)^*$	$\xrightarrow{\operatorname{d}_b}$	$c(bc)^*$	$\xrightarrow{\operatorname{d}_c}$	$(bc)^*$		

Symbols			a		b		c	b	c
Positions			1		2		3	4	5
1	φ	$\xrightarrow{\mathrm{d}_a}$	$a^*(bc)^*$	$\xrightarrow{\operatorname{d}_b}$	$c(bc)^*$	$\xrightarrow{\operatorname{d}_c}$	$(bc)^*$	$\xrightarrow{d_b} c(bc)^*$	

Symbols			a		b		c		b		c
Positions			1		2		3		4		5
1	φ	$\xrightarrow{\operatorname{d}_a}$	$a^*(bc)^*$	$\xrightarrow{\operatorname{d}_b}$	$c(bc)^*$	$\xrightarrow{\operatorname{d}_c}$	$(bc)^*$	$\xrightarrow{\mathrm{d}_b}$	$c(bc)^*$	$\xrightarrow{\operatorname{d}_c}$	$(bc)^*$

Symbols			a		b		c		b		c
Positions			1		2		3		4		5
1	φ	$\xrightarrow{\operatorname{d}_a}$	$a^*(bc)^*$	$\xrightarrow{\operatorname{d}_b}$	$c(bc)^*$	$\xrightarrow{\operatorname{d}_{c}}$	$(bc)^*$	$\xrightarrow{\mathrm{d}_b}$	$c(bc)^*$	$\xrightarrow{\operatorname{d}_c}$	$(bc)^*$
2			φ	$\xrightarrow{\mathrm{d}_b}$	$c(bc)^*$	$\xrightarrow{\mathbf{d}_c}$	$(bc)^*$	$\xrightarrow{\mathrm{d}_b}$	$c(bc)^*$	$\xrightarrow{\mathbf{d}_c}$	$(bc)^*$
3				Ü	φ	$\xrightarrow{\operatorname{d}_c}$	Ø	$\xrightarrow{\mathrm{d}_b}$		$\xrightarrow{\operatorname{d}_c}$	Ø
4							φ	$\xrightarrow{\mathrm{d}_b}$	$c(bc)^*$	$\xrightarrow{\operatorname{d}_c}$	$(bc)^*$
5								-0	φ	$\xrightarrow{\operatorname{d}_c}$	Ø

Derivatives of Timed Regular Expressions (Event Sequences)

- $\qquad \qquad \text{Nullable check: } \nu(\langle \varphi \rangle_I) = \left\{ \begin{array}{ll} \epsilon & \text{ if } 0 \in I \text{ and } \nu(\varphi) \\ \varnothing & \text{ otherwise} \end{array} \right.$
- ▶ Derivative relative to events: $d_a(\langle \varphi \rangle_I) = \langle d_a(\varphi) \rangle_I$
- ▶ Derivative relative to time: $d_r(a) = a$ and $d_r(\langle \varphi \rangle_I) = \langle d_r(\varphi) \rangle_{I \ominus r}$
- ▶ The set of derivatives over some event sequence is finite

Derivatives of Timed Regular Expressions (Continuous Signals)

- Problem: there can be an unbounded number of segments in some atomic sub-signal a^r for r > 0
- ▶ In general $d_{a^r}(\varphi_1 \cdot \varphi_2) \neq d_{a^r}(\varphi_1) \cdot \varphi_2 \vee \nu(\varphi_1) \cdot d_{a^r}(\varphi_2)$
- ▶ We also have terms $\mathbf{d}_{a^{r-s}}(\varphi_2)$ for every 0 < s < r such that $a^s \in \varphi_1$
- The set of derivatives over some event sequence is typically uncountable

Partial Derivatives of Timed Regular Expressions (Continuous Signals)

- Pratial derivatives are sets of expressions
- ▶ Property: $uv \in \varphi$ if and only if there exists $\varphi' \in \partial_u(\varphi)$ such that $v \in \varphi'$
- ► Intuitively (total) derivatives ~ states in a DFA acceptor; partial derivatives ~ states in a NFA acceptor

Derivatives

$$\partial_{a^{r}}(\varnothing) = \varnothing \qquad \partial_{a^{r}}(\varphi_{1} \cdot \varphi_{2}) = \partial_{a^{r}}(\varphi_{1}) \cdot \varphi_{2} \cup \bigcup_{\substack{a^{r-s} \in \varphi_{1} \\ 0 \leq s \leq r}} \partial_{a^{s}}(\varphi_{2})$$

$$\partial_{a^{r}}(\epsilon) = \varnothing \qquad \partial_{a^{r}}(\varphi_{1} \vee \varphi_{2}) = \partial_{a^{r}}(\varphi_{1}) \cup \partial_{a^{r}}(\varphi_{2})$$

$$\partial_{a^{r}}(a) = \{a, \epsilon\} \qquad \partial_{a^{r}}(\varphi^{*}) = \partial_{a^{r}}(\varphi) \cdot \varphi^{*} \text{ if } r \leq d$$

$$\partial_{a^{r}}(b) = \varnothing \qquad \partial_{a^{r}}(\langle \varphi \rangle_{I}) = \langle \partial_{a^{r}}(\varphi) \rangle_{I \ominus r}$$

Instead of replacing letter by ϵ we replace them by matched intervals. Example: $\varphi=a^*(bc)^*$ and w=abcbc.

a	b	c	b	С
1	2	3	4	5

 1φ

Instead of replacing letter by ϵ we replace them by matched intervals. Example: $\varphi=a^*(bc)^*$ and w=abcbc.

a	b	c	ь	c
1	2	3	4	5

 $1 \quad \varphi \quad \xrightarrow{\delta_a} \quad \left[[0,1](bc)^* \right]$

a	ь	c	b	c
1	2	3	4	5
 [0 +1/1)*	[0 0] (1)*			

$$1 \quad \varphi \quad \xrightarrow{\delta_a} \quad [0,1](bc)^* \quad \xrightarrow{\delta_b} \quad [0,2]c(bc)^*$$

	a	b	c	b	c
	1	2	3	4	5
$1 \varphi \xrightarrow{\delta_{\alpha}}$	$[0,1](bc)^*$	$\xrightarrow{\delta_b}$ [0, 2] $c(bc)^*$ -	\rightarrow $[0,3](bc)^*$		

	a	b	c	b	c
	1	2	3	4	5
$1 \varphi \xrightarrow{\delta_a}$	$[0,1](bc)^*$	$\xrightarrow{\delta_b}$ $[0, 2]c(bc)^*$ $\xrightarrow{\delta_b}$	\rightarrow $[0,3](bc)^*$	$\xrightarrow{\delta_h} [0,4]c(bc)^*$	

	a	b	c	b	\bar{c}
	1	2	3	4	5
$1 \varphi \xrightarrow{\delta_a}$	$[0,1](bc)^*$	$\xrightarrow{\delta_b}$ [0, 2]c(bc)*	$\xrightarrow{\delta_c} [0,3](bc)^*$	$\xrightarrow{\delta_b} [0, 4]c(bc)^*$	$\xrightarrow{\delta_c} [0, 5](bc)^*$

	a		b		c		b		c
	1		2		3		4		5
$1 \varphi \xrightarrow{\delta_a}$	$[0,1](bc)^*$	$\xrightarrow{\delta_b}$	$[0, 2]c(bc)^*$	$\xrightarrow{\delta_c}$	$[0,3](bc)^*$	$\xrightarrow{\delta_b}$	$[0, 4]c(bc)^*$	$\xrightarrow{\delta_c}$	$[0, 5](bc)^*$
2	φ	$\xrightarrow{\delta_h}$	$[1,2]c(bc)^*$	$\xrightarrow{\delta_C}$	$[1,3](bc)^*$	$\xrightarrow{\delta_h}$	$[1,4]c(bc)^*$	$\xrightarrow{\delta_c}$	$[1, 5](bc)^*$
3		. 0	φ	$\xrightarrow{\delta_c}$	Ø	$\xrightarrow{\delta_b}$		$\xrightarrow{\delta_c}$	
4					φ	$\xrightarrow{\delta_b}$	$[3,4]c(bc)^*$	$\xrightarrow{\delta_c}$	$[3, 5](bc)^*$
5						. 0	φ	$\xrightarrow{\delta_c}$	Ø

Signals with Absolute Time

ightharpoonup A signal is a piecewise-constant function over Σ :

$$w:[t,t')\to \Sigma$$

with domain dom(w) = [t, t').

▶ The concatenation $w_1 \cdot w_2$ is defined only if w_1 meets w_2 :

Extended Signals

- ▶ The special symbol \checkmark extends the alphabet Σ .
- $\Sigma_{\checkmark} = \Sigma \cup \{\checkmark\}$
- ▶ An extended signal w if $w \in \Sigma_{\mathcal{L}}^{(*)}$.
- Some classes of extended signals: **pure** signals in $\Sigma^{(*)}$, **reduced** signals in $\checkmark^{(*)}$, and **left-reduced** signals in $\checkmark^{(*)} \cdot \Sigma^{(*)}$

Intuition

- Pure Original Specification
- Reduced Fully Checkmarked Specification
- ► Left-reduced Partially checkmarked Specification

Extended Timed Regular Expressions

Syntax:

$$\varphi := \varnothing \mid \epsilon \mid a \mid \checkmark \mid \varphi_1 \cdot \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \varphi^* \mid {}_{I}^{K} \langle \varphi \rangle_{I}$$

where I, J, K are intervals of $\mathbb{R}_{\geq 0}$.

Semantics:

$$\llbracket \checkmark \rrbracket_w = \{(t, t') : 0 \le t \le t' \le t_n\}$$

$$\dots$$

$$\llbracket {}_J^K \langle \varphi \rangle_I \rrbracket_w = \{(t, t') \in \llbracket \varphi \rrbracket_w : t \in J, t' \in K, t' - t \in I\}$$

Left Reduction

Figure: A left reduction example.

Left Reduction

▶ We introduce left reduction as a position (and duration) preserving derivative operation.

Definition (Left Reduction)

The left reduction of a language \mathcal{L} with respect to u is:

$$\delta_u(\mathcal{L}) = \left\{ \begin{array}{ccc} \sigma \tau v & : & \sigma u v \in \mathcal{L}, \ \sigma, \tau \in \checkmark^{(*)}, \ v \in \varSigma^{(*)}, \\ & \text{and } \operatorname{dom}(\tau) = \operatorname{dom}(u) \end{array} \right\}$$

Language Membership

$$u \in \mathcal{L}$$
 iff $\delta_u(\mathcal{L}) \cap \checkmark^{(*)} \neq \emptyset$

Timed Regular Expressions Reduction

Theorem (TACAS'16)

$$\begin{split} \delta_v(\varnothing) &= \varnothing \\ \delta_v(\epsilon) &= \varnothing \\ \delta_v(\checkmark) &= \varnothing \\ \delta_v(a) &= \begin{cases} \begin{bmatrix} [t,t'] \\ [t,t'] \end{bmatrix} \langle \checkmark \rangle_{[0,t'-t]} \cdot (\epsilon \vee a) & \text{if } v \in a^{(*)} \\ \varnothing & \text{otherwise} \end{cases} \\ \delta_v(\psi_1 \cdot \psi_2) &= \delta_v(\psi_1) \cdot \psi_2 \vee \mu(\psi_1 \vee \delta_v(\psi_1)) \cdot \delta_v(\psi_2) \\ \delta_v(\psi_1 \vee \psi_2) &= \delta_v(\psi_1) \vee \delta_v(\psi_2) \\ \delta_v(\int_J^K \langle \psi \rangle_I) &= \int_J^K \langle \delta_v(\psi) \rangle_I \\ \delta_v(\psi^*) &= \mu(\delta_v(\psi))^* \cdot \delta_v(\psi) \cdot \psi^* \end{split}$$

where $\mu(\varphi)$ is such that $\mu(\varphi) = \varphi \cap \checkmark^{(*)}$

Online Timed Pattern Matching

Inputs/Outputs:

- ▶ Input φ a timed regular expression;
- ▶ Input $w = u_1 u_2 \dots u_n$ incrementally;
- ▶ Output set of matches ending in j^{th} segment at each step.

Procedure:

- \blacktriangleright Extract φ to see if the empty word is a match
- ▶ For $1 \le j \le n$ repeat:
 - ▶ Derive previous state relative to u_j and add new expression $\delta_{u_j}(\varphi)$ to the current state
 - lacktriangle Extract matches ending in j^{th} segment from the state

Example

Symbols Segments		$par{q}$ $[0,3)$	pq $[3,8)$	$ar{p}q$ [8, 10)
[0, 3)	$\langle p\cdot q \rangle_I$	$\underset{\Delta_{w_1}}{\longrightarrow} \langle \Gamma_1 \cdot q \rangle_I \vee \\ \Gamma_1 \cdot p \cdot q \rangle_I$	$\underset{\Delta_{w_2}}{\longrightarrow} \frac{\langle \Gamma_1 \cdot \Gamma_2 \rangle_I \ \lor}{\langle \Gamma_1 \cdot \Gamma_2 \cdot q \rangle_I \ \lor} \\ \underset{\langle \Gamma_1 \cdot \Gamma_2 \cdot p \cdot q \rangle_I}{\longleftarrow} $	$\underset{\Delta_{w_3}}{\longrightarrow} \langle \Gamma_1 \cdot \Gamma_2 \cdot \Gamma_3 \rangle_I \vee $
[3, 8)		$\langle p\cdot q\rangle_I$	$\overset{\langle \Gamma_2 \rangle_I}{\xrightarrow{\Delta_{w_2}}} \overset{\langle \Gamma_2 \cdot q \rangle_I}{\langle \Gamma_2 \cdot p \cdot q \rangle_I} \vee$	$\underset{\Delta_{w_3}}{\longrightarrow} \frac{\langle \Gamma_2 \cdot \Gamma_3 \rangle_I}{\langle \Gamma_2 \cdot \Gamma_3 \cdot q \rangle_I} \vee$
[8, 10)			$\langle p\cdot q angle_I$	$\stackrel{\longrightarrow}{\Delta_{w_3}} \varnothing$

$$\Gamma_1 = {\begin{smallmatrix} [0,3] \\ [0,3] \end{smallmatrix}} \langle \checkmark \rangle_{[0,3]}$$

$$\Gamma_2 = \frac{[3,8]}{[3,8]} \langle \checkmark \rangle_{[0,5]}$$

$$\Gamma_3 = {[8,10] \atop [8,10]} \langle \checkmark \rangle_{[0,2]}$$

Example

► At each step, report segments satisfying the expression

10 t

Online vs Offline Performance

	Offline Algorithm Input Size			Online Algorithm Input Size		
Test Patterns	100K	500K	1M	100K	500K	1M
$\begin{matrix} p \\ p \cdot q \\ \langle p \cdot q \cdot \langle p \cdot q \cdot p \rangle_I \cdot q \cdot p \rangle_J \\ p \cdot (q \cdot r)^* \end{matrix}$	0.06/17 0.08/21 0.23/28 0.11/20	0.27/24 0.42/46 1.09/77 0.49/37	0.51/33 0.74/77 2.14/140 0.96/60	6.74/14 8.74/14 28.07/14 11.53/15	29.16/14 42.55/14 130.96/14 52.87/15	57.87/14 81.67/14 270.45/14 110.58/15

- Execution times/memory usage (in seconds/megabytes).
- Both are linear for typical inputs.
- Online is 100 times slower but memory usage is constant.
- ▶ These numbers are sufficient for many applications.

Discussion

- There exists an inductive characterization of the match set of a timed regular expression in terms of zones
- An offline monitoring procedure has been implemented
- Several approaches to quotient timed regular expressions by timed words (online monitoring)
 - 1. Derivatives
 - 2. Partial Derivatives
 - 3. Rewriting
- An online matching procedure (based on 3.) has been implemented
- ► The procedure consumes a constant segment from the input signal and reports a set of matches ending in that segment.
- Applications: Runtime verification, robotics, medical monitoring, . . .