Prediction of Infinite Words with Automata

Tim Smith

LIGM
Université Paris-Est Marne-la-Vallée

EQINOCS workshop, Paris 11 May 2016
Prediction Setting

• We consider an “emitter” and a “predictor”.

• The emitter takes no input, but just emits symbols one at a time, continuing indefinitely.

• The predictor receives each symbol output by the emitter, and tries to guess the next symbol.

• We say that the predictor “masters” the emitter if there is a point after which all of the predictor’s guesses are correct.
Our Model

• We view the emitter as an infinite word α, i.e., an infinite sequence of symbols drawn from a finite alphabet A.

• We view the predictor as an automaton M whose input is α and whose output is an infinite word $M(\alpha)$. We call each symbol of $M(\alpha)$ a guess.

• M is required to output the i-th symbol of $M(\alpha)$ before it can read the i-th symbol of α.

• If for some $n \geq 1$, for all $i \geq n$, $M(\alpha)[i] = \alpha[i]$, then M masters α.
Prediction Example

- A **DFA predictor** is a DFA which takes an infinite word as input, and on each transition, tries to guess the next symbol.

- Consider a DFA predictor M which always guesses that the next symbol is a.

- An **ultimately periodic word** is an infinite word of the form $xy^\omega = xyyy...$ for some x,y in A^*.

- M masters a^ω, ba^ω, aba^ω, bba^ω, ..., i.e., every ultimately periodic word ending in a^ω.
Limitations of DFA predictors

- A purely periodic word is an infinite word of the form $x^\omega = xxx...$ for some x in A^*.

- Theorem: No DFA predictor masters every purely periodic word.

- Proof by contradiction: Suppose there is a DFA predictor M which masters every purely periodic word. Let n be the number of states of M. Then M does not master the purely periodic word $(a^{n+1} b)^\omega$.
Research Direction

• [Smith 2016] Prediction of infinite words with automata CSR 2016 (forthcoming)

• Considers various classes of automata and infinite words in a prediction setting.

• Studies the question of which automata can master which infinite words.

• Motivation: Make connections among automata, infinite words, and learning theory, via the notion of mastery or “learning in the limit” [Gold 1967].
Automata Considered

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFA</td>
<td>deterministic finite automata</td>
</tr>
<tr>
<td>DPDA</td>
<td>deterministic pushdown automata</td>
</tr>
<tr>
<td>DSA</td>
<td>deterministic stack automata</td>
</tr>
<tr>
<td>multi-DFA</td>
<td>multihead deterministic finite automata</td>
</tr>
<tr>
<td>sensing multi-DFA</td>
<td>sensing multihead deterministic finite automata</td>
</tr>
</tbody>
</table>

- All of the automata have a one-way input tape.
Infinite Words Considered

<table>
<thead>
<tr>
<th>Class</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>purely periodic words</td>
<td>ababab...</td>
</tr>
<tr>
<td>ultimately periodic words</td>
<td>abaaaaa...</td>
</tr>
<tr>
<td>multilinear words</td>
<td>abaabaaab...</td>
</tr>
</tbody>
</table>

- We have the proper containments:
 - purely periodic \subset ultimately periodic \subset multilinear
Prediction Results

<table>
<thead>
<tr>
<th>Automata</th>
<th>Infinite Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFA</td>
<td>✗</td>
</tr>
<tr>
<td>DPDA</td>
<td>✗</td>
</tr>
<tr>
<td>DSA</td>
<td></td>
</tr>
<tr>
<td>Multi-DFA</td>
<td></td>
</tr>
<tr>
<td>Sensing Multi-DFA</td>
<td></td>
</tr>
</tbody>
</table>
Multihead Finite Automata

- Finite automata with one or more input heads on a single tape [Rosenberg 1965].
- We are interested in multi-DFA, the class of one-way multihead deterministic finite automata.

\[
\text{multi-DFA} = \bigcup_{k\geq 1} k\text{-DFA}
\]

- What are the predictive capabilities of multi-DFA?
Prediction by Multihead Automata

• Theorem: Some multihead DFA masters every ultimately periodic word.

• Construction: Variation of the “tortoise and hare” algorithm. Let M be a two-head DFA which always guesses that the symbols under the heads will match, and

• if the last guess was correct, M moves each head one square to the right;

• otherwise, M moves the left head one square to the right and the right head two squares to the right.
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)\omega \]
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)^\omega \]
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)^\omega \]
2-head DFA which masters all ultimately periodic words

$$\alpha = (aaab)\omega$$
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)^\omega \]
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)^\omega \]
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)^\omega \]
2-head DFA which masters all ultimately periodic words

$$\alpha = (aaab)^\omega$$
2-head DFA which masters all ultimately periodic words

$$\alpha = (aaab)^\omega$$
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)^\omega \]
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)^\omega \]
2-head DFA which masters all ultimately periodic words

$\alpha = (aaab)^\omega$
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)^\omega \]
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)^\omega \]
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)^\omega \]
2-head DFA which masters all ultimately periodic words

\[\alpha = (aaab)^\omega \]

\begin{array}{cccccccc}
 a & a & a & b & a & a & a & b & a & a & a & b \\
\end{array}
Prediction Results

<table>
<thead>
<tr>
<th></th>
<th>purely periodic</th>
<th>ultimately periodic</th>
<th>multilinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>∃ masters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFA</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DPDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>multi-DFA</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>sensing multi-DFA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DPDA predictors

- [Smith 2016] No DPDA predictor masters every purely periodic word.

- Proof idea:

 - Suppose there is a DPDA predictor M which masters every purely periodic word. Set n to be very large with respect to the number of states of M and the size of the stack alphabet. Let $\alpha = (a^n b)^\omega$.

 - We show that in some block of consecutive a’s, there are configurations C_i and C_j of M with the same state and top-of-stack symbol, such that the stack below the top symbol at C_i is not accessed between C_i and C_j. Then M does not master α.
Stack Automata

- Generalization of pushdown automata due to [Ginsburg, Greibach, & Harrison 1967].
- In addition to pushing and popping at the top of the stack, the stack head can move up and down the stack in read-only mode.
- We consider DSA, the class of one-way deterministic stack automata.
Prediction with Stack Automata

• [Smith 2016] Some DSA predictor masters every purely periodic word.

• Algorithm: The goal is to build up the stack until it holds the period of the word.

• The stack automaton M makes guesses by repeatedly matching its stack against the input. Call each traversal of the stack a “pass”.

• In the event of a mismatch, M finishes the current pass, then continues making passes until one succeeds with no mismatches. Then it pushes the next symbol of the input onto the stack and continues as before.

• Eventually the stack holds the period and M achieves mastery.
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

$$\alpha = x^\omega$$

stack

<table>
<thead>
<tr>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
</tr>
<tr>
<td>a</td>
</tr>
</tbody>
</table>

[[a]]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]

\[\begin{array}{c}
 \text{stack} \\
 c \\
 b \\
 a
\end{array} \]

\[\begin{array}{ccc}
 \cdots & a & b
\end{array} \]

\[\uparrow \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

$$\alpha = x^\omega$$

stack

```
  c
  b
  a
```

```
  ... a b c a
```

[Valid]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Stack automaton which masters all purely periodic words

\[\alpha = x^\omega \]
Prediction Results

<table>
<thead>
<tr>
<th>Masters</th>
<th>Purely Periodic</th>
<th>Ultimately Periodic</th>
<th>Multilinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFA</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DPDA</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DSA</td>
<td>✓</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>multi-DFA</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>sensing multi-DFA</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Multilinear Words

• An infinite word α is multilinear if it has the form

$$q \prod_{n \geq 1} \prod_{i \geq 1} p_i s_i^n$$

• Thus, α is broken into blocks, each consisting of m segments of the form $p_is_i^n$.

• Example: $\prod_{n \geq 1} ab^n c^n = abcabbccabbbcccc \cdots$

• [Endrullis et al. 2011], [Smith 2013]

• Normal form (unless α is ultimately periodic):
 • $p_i \neq \varepsilon, s_i \neq \varepsilon, s_i[1] \neq p_{i+1}[1]$, and $s_m[1] \neq p_1[1]$
Predicting Multilinear Words

- We have seen that there is a two-head DFA which masters every ultimately periodic word.

- Can some multihead DFA master every multilinear word? Open problem.

- We consider sensing multihead DFAs, an extension of multihead DFAs able to sense, for each pair of heads, whether those two heads are at the same input position.

- [Smith 2016] Some sensing multihead DFA masters every multilinear word.
Algorithm which masters every multilinear word

- Uses a 10-head sensing DFA. Alternates between two procedures, correction and matching, with an increasing threshold k.

```
    k = 0
    loop
      k += 1
      correction procedure
      matching procedure
```

- The correction procedure tries to line up certain heads at segment boundaries so that the number of segments separating the heads is a multiple of m.

- The matching procedure tries to master the input α on the assumption that the correction procedure has successfully lined up the heads.
Correction Procedure

• Tries to line up the heads h_1, h_2, h_3, and h_4 to be k segments apart.

• k is a threshold which increases each time the procedure is entered.

• When the procedure is entered, $h_1 < h_2 < h_3 < h_4$.

• Uses a subroutine **advance** whose successful operation depends on k.

move h_1 until $h_1 = h_4$

advance h_1 by 1 segment

move h_2 until $h_2 = h_1$

advance h_2 by k segments

move h_3 until $h_3 = h_2$

advance h_3 by k segments

move h_4 until $h_4 = h_3$

advance h_4 by k segments
advance subroutine

• Tries to advance a given head h_i past its current segment $p_j s_j^n$, leaving h_i at p_{j+1}.

• Uses a threshold k which increases between calls to the subroutine.

• Follows tortoise and hare algorithm until the number of consecutive correct guesses reaches k.

• Finally, moves t and h_i together until they disagree.

move t until $t = h_i$
move h_i
correct = 0
while correct < k
 if $\alpha[t] = \alpha[h_i]$
 correct += 1
 else
 correct = 0
move h_i
move t and h_i
while $\alpha[t] = \alpha[h_i]$
move t and h_i
Matching Procedure

- Tries to master the multilinear word α.
- Works if h_1, h_2, h_3, and h_4 are a multiple of m segments apart, where m is the number of segments per block of α.
- Uses h_1, h_2, and h_3 to coordinate and predict $\alpha[h_4]$.
- If any guess is incorrect, exits so that the correction procedure can be called again.

```
loop
  move $h_{3a}$ until $h_{3a} = h_3$
  while $\alpha[h_1] = \alpha[h_2] = \alpha[h_3] = \alpha[h_4]$
    move $h_1$, $h_2$, $h_{3a}$, $h_3$
    move $h_4$, guessing $\alpha[h_2]$
    exit procedure if guess was wrong
  while $\alpha[h_2] = \alpha[h_3] = \alpha[h_4]$
    move $h_2$, $h_3$
    move $h_4$, guessing $\alpha[h_3]$
    exit procedure if guess was wrong
  while $\alpha[h_{3a}] = \alpha[h_3] = \alpha[h_4]$
    move $h_{3a}$, $h_3$
    move $h_4$, guessing $\alpha[h_{3a}]$
    exit procedure if guess was wrong
  while $h_{3a} \neq h_3$ and $\alpha[h_{3a}] = \alpha[h_4]$
    move $h_{3a}$
    move $h_4$, guessing $\alpha[h_{3a}]$
    exit procedure if guess was wrong
```
Prediction Results

<table>
<thead>
<tr>
<th>masters</th>
<th>purely periodic</th>
<th>ultimately periodic</th>
<th>multilinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFA</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DPDA</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DSA</td>
<td>✓</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>multi-DFA</td>
<td>✓</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>sensing multi-DFA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Further Work

• Consider other classes of automata and infinite words to see what connections can be made among them in a prediction setting.

• **Open problems:**

 • Can some DSA master every ultimately periodic word?

 • Can some (non-sensing) multi-DFA master every multilinear word?
Thank you!