Induction and Co-induction
(co-inductive definitions and the (co-)inductive method)

What we proved?

F(A) is the set of judgements that can be inferred in one step from the judgments in A by using the rules.

A is

closed if F(A) ⊆ A
consistent if A ⊆ F(A)

The rules operator has both a least fixed point and a greatest fixed point, which are the smallest closed set and the largest consistent set:

\[\text{lp}(F) = \bigcap \{A \mid F(A) \subseteq A\} \]
\[\text{gp}(F) = \bigcup \{A \mid A \subseteq F(A)\} \]

Inductive and co-inductive interpretation of rules

\[\text{lp}(F) = \bigcap \{A \mid F(A) \subseteq A\} \]
\[\text{gp}(F) = \bigcup \{A \mid A \subseteq F(A)\} \]

- If F(A) ⊆ A then F_{\text{ind}} ⊆ A --- Induction proof principle
- If A ⊆ F(A) then A ⊆ F_{\text{coind}} --- Co-induction proof principle

Reasoning on equivalence of programs

We observe the termination of the term placed in a closing context, i.e.,

\[M \downarrow \text{ and say that } M \text{ converges if } \exists V \ M \downarrow V \]

Notes by
Luke Ong (Oxford)
Roberto Amadio (IRIF)
Motivating example

\[
\begin{align*}
\text{one} & \overset{\text{def}}{=} \lambda x, y. x \ y \\
\text{two} & \overset{\text{def}}{=} \lambda x, y. x \ (y \ y) \\
\text{succ} & \overset{\text{def}}{=} \lambda x, y. x \ (\text{one} \ y)
\end{align*}
\]

Is it the case that \(\text{one} \leq \text{two}\), two holds?

Simulation

We consider weak call-by-name \(\lambda\) calculus. We write \(\Downarrow\) for \(\Downarrow^\uparrow\).

Definition. \(\leq_S\) is the largest fixed point of the following function on binary relations

\[
f(S) = \{(M, N) \mid \Downarrow^\uparrow M \implies N \Downarrow^\uparrow \land \forall P \in S \ (MP, NP) \in S\}
\]

Ex. 3 Simulation

To prove that \(M \leq_S N\) (\(M, N\) closed) it suffices to find a relation \(S\) which is a simulation and such that \(M \leq_S N\).

Ex.

i. Show that \(\leq_S\) is a preorder over \(\Lambda\) i.e. a reflexive and transitive binary relation

ii. Is the union of two simulations a simulation?

iii. If \(M \Downarrow^\uparrow V\) and \(N \Downarrow^\uparrow V\), \(M, N\) closed, then \(M \equiv_S N\). Prove it.

Bisimulation where the idea comes from?

The Reference:
Homework

Ex 1. Co-continuity

1. Prove that if \(F \) is co-continuous (or continuous), then it is also monotone. (Hint: take \(x \geq y \), and the sequence \(x, y, y, y, \ldots \).)

Ex 2. Consider the strings over an alphabet \(\Sigma \)

- Consider the set \(S \) co-inductively defined by the following rules (where \(\Sigma \) is an alphabet)
 \[
 \begin{array}{c}
 e \in S \\
 s \in S \\
 \sigma_1 \leq \sigma_2 \\
 \sigma_1 \leq \sigma_2 \\
 P(\lambda) = \{(s, t) \mid s \leq \sigma_1 \land t \leq \sigma_2 \} \\
 \end{array}
 \]
 EX. Prove that \(\text{aaa...} \leq \text{bbb...} \) (the two strings are infinite)

Ex 3. Simulation

To prove that \(M \preceq \Sigma N \) (\(M, N \) closed) it suffices to find a relation \(S \) which is in a simulation and such that \(M \preceq S \).

EX

1. Show that \(\preceq \) is a preorder over \(\lambda \) (is a reflexive and transitive binary relation)

2. Is the union of two simulations a simulation?

3. If \(M \parallel V \) and \(N \parallel V \), then \(M \parallel S \). Prove it.

Recall that:

- A relation is a set. In particular, a simulation is a subset of \(\text{Terms} \times \text{Terms} \) (where \(\text{Terms} \) is the set of terms).
- \(\preceq \) is the largest fixed point of a function \(f \) on binary relations. The function \(f \) is monotone.
Ex. 4 Contextual pre-order

Prove the following properties

\(\mathcal{L}_O \) is a pre-order (reflexive and transitive):

\[\forall x, y, z \in \mathcal{L}_O \quad x \preceq y \iff \forall z \in \mathcal{L}_O \quad (x \preceq z \Rightarrow z \preceq y). \]