• RECAP:

Cbn and Cbv Calculi.

- The (pure) **Call-by-Name** calculus $\Lambda^{cbn} = (\Lambda, \rightarrow_{\beta})$ is the set of terms equipped with the contextual closure of the β-rule.

\[
(\lambda x. M)N \rightarrow_{\beta} M[N/x]
\]

- The (pure) **Call-by-Value** calculus $\Lambda^{cbv} = (\Lambda, \rightarrow_{\beta_v})$ is the same set equipped with the contextual closure of the β_v-rule.

\[
(\lambda x. M)V \rightarrow_{\beta_v} M[V/x] \quad \text{where } V \in \mathcal{V}
\]

Head reduction in Cbn

Head reduction is the closure of β under head context

\[
\lambda x_1 \ldots x_n. (\| M_1 \ldots M_k)
\]

Head normal forms (hnf), whose set is denoted by \mathcal{H}, are its normal forms.

- Given a rule ρ, we write \rightarrow^v_ρ for its closure under head context.
- A step \rightarrow^v_ρ is non-head, written \rightarrow^h_ρ if it is not head.

Weak reductions in Cbv

The result of interest are **values** (i.e. functions).

In languages, in general the reduction is weak, that is, it does not reduce in the body of a function.

There are three main weak schemes: left, right and in arbitrary order.

Left contexts L, right contexts R, and (arbitrary order) weak contexts W are defined by

\[
L ::= \emptyset \mid L \cdot M \mid L
\]

\[
R ::= \emptyset \mid R \cdot M \mid R
\]

\[
W ::= \emptyset \mid W \cdot M \mid W
\]

Given a rule \rightarrow^v_ρ on Λ, **weak reduction** \rightarrow^v_ρ is the closure of \rightarrow^v_ρ under context W.

A step $T \rightarrow S$ is non-weak, written $T \rightarrow \nexists S$ if it is not weak. Similarly for left (\rightarrow^l_ρ and \rightarrow^h_ρ), and right (\rightarrow^r_ρ and \rightarrow^h_ρ).

Fact 3 (Weak normal forms). Given M a closed term, M is \rightarrow^v_ρ-normal iff M is a value.

• TD 1. We work on the properties and exercises which are highlighted

BASIC PROPERTIES OF THE CONTEXTUAL CLOSURE

If a step $T \rightarrow_{\beta} T'$ is obtained by closure under **non-empty context** of a rule \rightarrow_{γ}, then T and T' have the same shape, i.e. both terms are an application (resp. an abstraction, a variable).

Fact 5 (Shape preservation).

- Assume $T = C[R] \rightarrow C[R'] = T'$ and that the context C is non-empty. Then T and T' have the same shape.

- Hence, for any internal step $M \rightarrow M'$ ($s \in \{h, w, l, r, \ldots\}$) M and M have the same shape.
The following is an easy to verify consequence.

\textbf{Lemma 6} (Redexes preservation).
1. \textit{CbN}. Assume $T \xrightarrow{\beta} S$. T is a β-redex iff so is S.
2. \textit{CbV}. Assume $T \xrightarrow{\beta_v} S$. T is a β_v-redex iff so is S.

Fixed a set of redexes \mathcal{R}, M is w-normal (resp. h-normal) if there is no redex $R \in \mathcal{R}$ such that $M = \mathbf{W}(\{R\})$ (resp. $M = \mathbf{H}(\{R\})$)

\textbf{Lemma 7} (Surface normal forms).
1. \textit{CbN}. Let \mathcal{R} be the set of β_v-redexes.

Assume $M \xrightarrow{\mathcal{R}} \beta M'$. M is h-normal \iff M' is h-normal.

2. \textit{CbV}. Let \mathcal{R} be the set of β_v-redexes.

Assume $M \xrightarrow{\mathcal{R}} \beta_v M'$. M is w-normal \iff M' is w-normal.

\begin{itemize}
\item Using FACTORIZATION
\end{itemize}

\textbf{CbN}:

\begin{itemize}
\item Head Factorization: $\xrightarrow{\beta'} \subseteq \xrightarrow{h} \cdot \xrightarrow{\beta} \cdot \xrightarrow{h}$.
\item EX. A Prove that M has hnf if and only if head reduction from M terminates.
\end{itemize}

\textbf{CbV}:

Left contexts \mathbf{L}, right contexts \mathbf{R}, and (arbitrary order) weak contexts \mathbf{W} are def by

\begin{align*}
\mathbf{L} & ::= \emptyset \mid \mathbf{L} M \mid V \mathbf{L} \\
\mathbf{R} & ::= \emptyset \mid \mathbf{M} R \mid R V \\
\mathbf{W} & ::= \emptyset \mid \mathbf{W} M \mid M \mathbf{W}
\end{align*}

The closure under \mathbf{L} (resp. \mathbf{W}, \mathbf{R}) context is noted $\xrightarrow{\mathcal{I}}$ (resp \xrightarrow{w}, \xrightarrow{r})

Let $s \in \{w,l,r\}$

\begin{itemize}
\item weak factorization of $\xrightarrow{\beta_v}$:

$\xrightarrow{\beta_v} \subseteq \xrightarrow{\mathcal{I}} \cdot \xrightarrow{\beta_v} \cdot \xrightarrow{\mathcal{I}}$.
\end{itemize}

\textbf{Fact 7} (?). Let M be a closed term. We say that M returns a value when $M \xrightarrow{\beta}$ for some V.

\begin{itemize}
\item EX. B Prove any of the following
\item 1. M returns a value, if and only if $\xrightarrow{\beta_v}$-reduction from M terminates.
\item 2. M returns value, if and only if \xrightarrow{w}-reduction from M terminates.
\end{itemize}
EX. C. Normalization.
1. Give an inductive definition of **leftmost reduction**, completing the following b

Consider \((\Lambda, \to)\), where \(\to = \\to_\beta\). The relation \(\to_\lo \subseteq \to\) is induc

- If \(M \rightarrow M'\) then \(M \rightarrow_\lo M'\).
- If \(M \rightarrow_\h (i.e., M is h-normal) then:

\[
\begin{align*}
\frac{P \rightarrow_\lo P'}{M := (\lambda x. P) \rightarrow_\lo (\lambda x. P')} & \quad \frac{P \rightarrow_\lo P'}{M := PQ \rightarrow_\lo P'Q} & \quad \frac{Q \rightarrow_\lo Q'}{M := PQ \rightarrow_\lo PQ'}
\end{align*}
\]

2. Prove that **it is a normalizing strategy**, using head factorization.

Normalization (or, make your own Normalizing strategy)

Definition 8 (Iteration of surface reduction). **Given** \((\Lambda, \to)\), where \(\to\) is the context closure of a rule \(b \in \{\beta, \beta_c\}\), let \(\rightarrow_\s \subseteq \to\) be as follows:

\(\rightarrow_\s = \rightarrow\) if \(b = \beta\) (CbN) \quad \rightarrow_\s \in \{\rightarrow_\w, \rightarrow_\i, \rightarrow_\g\} if \(b = \beta_c\) (CbN).

The relation \(\rightarrow_\s \subseteq \to\) is inductively defined by

- If \(M \rightarrow_\s M'\) then \(M \rightarrow_\s M'\).
- If \(M \rightarrow_\s (i.e., M is s-normal) then:

\[
\begin{align*}
\frac{P \rightarrow_\s P'}{M := (\lambda x. P) \rightarrow_\s (\lambda x. P')} & \quad \frac{P \rightarrow_\s P'}{M := PQ \rightarrow_\s P'Q} & \quad \frac{Q \rightarrow_\s Q'}{M := PQ \rightarrow_\s PQ'}
\end{align*}
\]

Theorem 10 (Normalization).

CbN: \(\rightarrow_\beta\) is a normalizing strategy for \(\rightarrow_\beta\)

CbV: \(\rightarrow_\beta_c\) is a normalizing strategy for \(\rightarrow_\beta_c\).