The transitive-reflexive closure of a relation is a closure operator, i.e. satisfies
\[\rightarrow \subseteq \rightarrow^*, \quad (\rightarrow^*)^* = \rightarrow^*, \quad \rightarrow_1 \subseteq \rightarrow_2 \implies \rightarrow_1^* \subseteq \rightarrow_2^* \]

As a consequence
\[(\rightarrow_1 \cup \rightarrow_2)^* \subseteq (\rightarrow_1^* \cup \rightarrow_2^*)^* \]

EX1. Prove it!

CONFLUENCE

- **Confluent**

```
x * y1
```

- **Locally confluent**

```
x * y2
```

- **Strongly confluent**

```
x * y
```

- **Diamond**

```
x * y
```

EX 2

(a) Prove that strongly confluent implies confluent
(b) As a preliminary step, prove: \(\leftrightarrow^* \rightarrow \subseteq \rightarrow \leftrightarrow^* \) implies confluence

EX 4. Two relations commute if

\[\alpha \text{ and } \beta \text{ commute} \]

```
\alpha
```

```
\beta
```

```
\alpha
```

```
\beta
```
Prove that

- **Lemma (Hindley-Rosen).** Let \rightarrow_1 and \rightarrow_2 be relations on the set A. If \rightarrow_1 and \rightarrow_2 are confluent and commute with each other, then $\rightarrow_1 \cup \rightarrow_2$ is confluent.

EX. 5 Two relations strongly commute if

\[
\begin{array}{c}
\alpha \\
\downarrow \\
\beta \\
\end{array}
\quad
\begin{array}{c}
\beta \\
\uparrow \\
\alpha \\
\end{array}
\]

Prove that strong commutation implies commutation

TERMINATION

- The element s is \mathcal{R}-weakly normalising (WN) iff s has at least one normal form
- The element s is \mathcal{R}-strongly normalising (SN) iff there is no infinite sequence

Consider

\[
\begin{array}{c}
\ldots \\
\end{array}
\]

- **EX** Say which properties hold
 1. Confluent
 2. Locally confluent
 3. Normalising (weakly normalising, WN)
 4. Terminating (strongly normalising, SN)

- **EX. 8**

Newman’s Lemma. Every terminating and locally confluent ARS is confluent.

A second Proof.
It suffices to show that every element has unique normal forms
• suppose $B = \{ a \in A \mid \neg UN(a) \} \neq \emptyset$

• let $b \in B$ be minimal element (with respect to \rightarrow)

• $b \rightarrow^{1} n_{1}$ and $b \rightarrow^{1} n_{2}$ with $n_{1} \neq n_{2}$

➢ Conclude by showing that it is impossible (absurd)