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Abstract

This paper proposes an approach for extending to graphs the close relation between
proofs and innocent strategies. We work in the setting of L-nets, introduced by Fag-
gian and Maurel as a game model of concurrent interaction. Weshow how L-nets
satisfying an additional condition, which we callLS-nets, can be sequentialized into
traditional tree-like strategies. Conversely, sequential strategies can be relaxed into
more asynchonous ones.

We develop an algebra of constructors and destructors that serve to build and de-
compose graph strategies, and to describe a class of minimally sequential graph strate-
gies, which can be seen as an abstract kind of multiplicative-additive proof nets.

1. Introduction

The attempt to go beyond sequential computation, to capturea parallel or asyn-
chronous notion of computation, appears currently an active direction in game se-
mantics. Starting with the pioneering paper by Abramsky andMellies [1], several
proposals have emerged - with different motivations - towards a notions of strategy
where sequentiality is relaxed to capture a more asynchronous form of interaction
[2, 3, 4, 5, 6, 7, 8, 9] (and most recently [10]). Such strategies are often defined as
graphswith certain properties, in contrast to more traditional (sequential) strategies,
such as Hyland-Ong innocent strategies [11], which aretrees. In this sense, we will
talk of graph strategies, as opposed to tree strategies.

Our specific goal and contribution here, is to relate parallel strategies and sequen-
tial strategies, by showing how strategies represented by graphs, with partial ordering
information, can be sequentialized into tree-like strategies, and how conversely, se-
quential strategies can be relaxed into more asynchronous ones. We work in the setting
of L-nets that were introduced by Faggian and Maurel [4]. As we discuss at the end
of this section, there are a number of closely related settings, to which our techniques
should extend. The present paper builds on a preliminary extended abstract [12].

An innocent strategy describes in an abstract way the operational behaviour of a
proof (or program). An interaction between “standard” treestrategies produces a se-
quence of actions (called play) which describes the trace ofthe computation. The idea
underlying L-nets (as well as other of the approaches cited above) is that the order in
which the actions should be performed is not completely specified, while still remain-
ing able to express constraints. Certain tasks may have to beperformed before other
tasks; other actions can be performed in parallel, or scheduled in any order. A strategy
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as L-net is adirected acyclic graph. The interaction results in a partial order, allowing
for parallelism.

L-nets are based ondesigns, which form the first brick of Girard’s Ludics [13]. The
tree strategies and the graph strategies that we will consider are designs and L-nets,
respectively:

• Designs are a linear variant of Hyland-Ong innocent strategies on a universal
arena, as discussed in [14] (see also [15]). They are also particular sorts of
abstract Böhm trees [16, 17].

To be precise, we actually work with forests (which we call L-forests, rather than
trees), relaxing the connectedness of Girard’s original designs.

• L-nets are (potentially infinite) graph strategies on the same universal arena.

Note that sequential strategies are a special case of graph strategies: a tree is, in partic-
ular, a graph. On the other hand, it is possible to define a class of L-nets of minimal
sequentiality, which we callparallel L-nets. As a result, we have a homogeneous space
inside which we can move, adding or relaxing sequentiality (i.e., dependency between
the actions). Between completely sequential and completely parallel strategies, we get
a full range of intermediate strategies with decreasing sequentiality level.

Two flavours of views.It is known that (innocent) tree strategies can be presentedas
sets of views with certain properties. A view is a totally ordered sequence of moves
(again with certain properties), and the set of views forms atree. Any interaction results
into a totally ordered set of moves.

An L-net is a set of partially ordered views, each of which is apartially ordered
set of moves, where the partial order expresses a (partial) scheduling among moves.
The set of such partially ordered views forms a directed acyclic graph. Any interaction
results into a partially ordered set of moves.

The proof net experience.Tree strategies can be seen as abstract sequent calculus
proofs. Specifically, designs arose as abstract (untyped) versions of (focalized) sequent
calculus proofs of multiplicative-additive linear logic.By contrast, parallel L-nets can
be seen as abstract multiplicative-additive proof nets. Indeed, there are two standard
ways to handle proofs in linear logic: either as sequent calculus proofs, or as proof nets,
which are graph-like structures satisfying a so-called correctness criterion. Sequent cal-
culus proofs can be mapped onto proof nets, by forgetting some of the order between
the rules, and conversely proof nets can be sequentialized into proofs. The correctness
criterion is precisely the key property that makes sequentialization possible. Here we
are looking for an abstract counterpart of this correspondence.

While the origins of game semantics are closely connected tothe analysis of correct
proof structures [18], this paper, to the best of our knowledge, is the first one to transfer
– so to say in the other direction – the use of proof net techniques to the semantic
setting of (innocent) games. In this respect, our contribution fits into a general research
direction aiming at bringing closer together syntax and semantics.
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Relating sequential and parallel strategies.As we have anticipated, L-nets are a con-
servative extension of innocent strategies (in the form used by ludics). This makes it
possible to relate the two approaches (graphs versus trees). We are able to associate
a set of tree-strategiesto a parallel L-net (actually, to any “correct” L-net, see below)
D, by saturating the order, i.e., we add sequentiality to the point that all choices of
scheduling of the moves during an execution are determined.Conversely, given a tree
strategyΠ, we have a desequentialization procedure, which returns a parallel strategy,
forgetting some “inessential” information on the scheduling.

Sequentialization is not possible for an arbitrary L-net, as L-nets can be intrinsically
parallel, in the sense that actions depend on each other in anessential way (see Figure
5 for an example based on a well-known non-sequential function1). For this reason, we
introduceLS-nets (S for “sequentializable”), which are L-nets satisfying an additional
condition calledCycles. This condition upgrades the acyclicity condition of [4], which
is sufficient for computation purposes (i.e., to guarantee that strategies compose), but
not for our goals here. ConditionCycles can be considered as an abstract correctness
criterion, and as a matter of fact, it is the adaptation to oursetting of Hughes and Van
Glabbeek’s toggling condition [20].

A correctness criterion for proof nets has two roles: it guarantees that (i) normal-
ization is possible (we are not stuck with cycles during normalization), and (ii) it is
possible to associate a sequent calculus proof to the graph.The acyclicity condition is
a minimal criterion which takes care of (i); the new condition Cycles guarantees also
(ii).

We present an algebra of constructors and destructors allowing us to build and de-
compose graph strategies. This in particular allows us to (co)inductively define the
classes of strategies of maximal and minimal sequentiality(i.e. of sequential and par-
allel strategies, respectively). The destructors and constructors are also used to define
the sequentialization procedure. This procedure works as astream-like, bottom-up pro-
cess (coinductively) acting on potentially infiniteLS-nets. Dually, the same operations
serve us to define a desequentialization procedure that transforms L-forests into parallel
L-nets. We will show that sequentialization and desequentialization can be performed
so as to be inverse to each other.

A novelty of our framework is also that it allows us to define (and sequential-
ize) intermediate strategies that are neither “maximally sequential” (tree strategies) nor
“minimally sequential”, hence allowing for a whole range ofsequentiality.

Some related works(see also Section 13.1). In this paper we are interested in the ques-
tion of “sequentialization”. Such a notion, together with the notion of proof net, is
central to proof theory, in particular that based on Linear Logic. For this reason, we
carried this first investigation quite naturally in a setting that is close enough to proof
theory, namely Ludics, which maintains a close and direct connection with proofs, of
which strategies are an abstraction. This in particular enabled us to take profit of the
important work of Hughes and Van Glabbeek in our very definition ofLS-nets.

We expect that methods similar to those proposed in this paper could be applied to

1Some background on sequentiality in denotational semantics may be found in [19].
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more general frameworks and to larger classes of strategies. As a matter of fact, several
of the approaches quoted at the beginning of this section arequite close to L-nets:

• Mimram has shown in his PhD thesis [21][Section 2.5.8] how tocharacterize
L-nets (but notLS-nets) in the terminology of asynchronous games. Via his
translation, it may be possible to import our techniques in the setting of [9].
Even though the focus of their work and our work is different,this might lead to
insights on how to accommodateLS-nets rather than just L-nets, which would
amount to accommodate additives in their framework (in [9],the study of a crite-
rion relating sequential and asynchronous games is limitedto the multiplicative
fragment).

• The recent work by Rideau and Winskel [10], that builds on [9], and also on some
follow-up of our work [22, 23] (see Section 13.1), provides an attractive, well-
structured generalization of asynchronous strategies in the language of spans
of event structures. Further reformulations and extensions of our approach to
sequentialization and desenquentialization could be explored in that setting.

Our work is also close in spirit to the work of Abramsky and Melliès [1] on con-
current games:

• In their approach of strategies as closure operators, thereare implicit identifica-
tions of more or less sequential strategies.

• They sketch a proof of full completeness that involves an interactive / realizabil-
ity style criterion. Hence they investigate the relation between sequential and
parallel, if we note that definability can be seen as a kind of sequentializability.

But direct technical comparisons with our work would be difficult, partly because the
strategies under study are typed (ours are not) and, more importantly, because their
strategies are closure operators, and not directely comparable with HO strategies. How-
ever, Melliès and Mimram’s work [9] (building itself on [8]) provides an explicit link
between concurrent strategies as closure operators and concurrent strategies as strate-
gies played on graphs or more precisely on asynchronous transition systems.

Asynchronous games and concurrent games are therefore a quite natural direction
in which to look for extending the results of this paper.

LS-nets versus Girard’s and Hughes and Van Glabbeek’s proof nets. The problem
of making explicit the (typed) proof nets which underly (untyped)LS-nets and their
connection with other notions of proof nets have been studied by Di Giamberardino
[24] (which moreover provides a “local” sequentializationin the typed setting – see
Section 13.1). It turns out that there is an injection from Girard’s proof nets with
weights [25] into (a typed version of)LS-nets and from these into Hughes and Van
Glabbeek’s proof nets. All of these inclusions are strict. This is because our strategies
have an “operational semantics” flavour which carries somehow a certain amount of
sequentiality, given by additive jumps.
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Plan of the paper.Section 2 provides some rather informal introduction to thebasic
language of ludics, and to the close connection between proofs and designs (i.e., strate-
gies), and between logical rules and actions (moves). We hope that having a grasp on
such intuitions can help the reader. The reader may however skip this section, or con-
sult it later. The interested reader can of course learn muchmore on ludics in [13], but
note that none of the structures built by Girard on top of designs is used here.

Appendix Appendix A is instead a quite formal account of the L-forests as abstract
sequent calculus proofs, and will be needed in connection with Section 8.

Sections 3 and 5 introduce our graph strategies: we recall the definition of L-net
[4], and we define our subclass of sequentializable L-nets, theLS-nets2.

The main technical result aboutLS-nets is the Splitting Lemma (the key to sequen-
tialization) which we prove in Appendix Appendix B. The coreof the paper lies in
Sections 6 through 11: we present our basic (co)algebra of elementary operations on
L-nets (Sections 6 and 10), we describe, illustrate, and relate our sequentialization and
desequentialization procedures (Sections 7, 8, 9, 11).

In Section 12, we impose connectedness restrictions on boththe source and target
of the procedures, so as to adjust the picture to Girard’s original designs. Section 4
provides a more precise road-map for the Sections 5 to 12. Section 13 is a concluding
section.

Notation. We use
⊎

to denote disjoint union, and⊑ for the prefix ordering on words.
We denote concatenation of words or of a word and a letter by juxtaposition, and ifI
is a set of letters, we letξ ∗ I denote{ξi : i ∈ I}.

2. Tree strategies and sequent calculus proofs

Designs, introduced in [13], have a twofold nature: they areat the same time seman-
tic structures (an innocent strategy, presented as a set of views) and syntactic structures,
which can be understood as abstract sequent calculus proofs(in a focusing calculus,
which we introduce next).

In the following, we review in which (intuitive) sense a treestrategy can be asso-
ciated with a sequent calculus proof, and vice versa. In Appendix Appendix A , we
provide formal procedures.

2.1. Focalization and synthetic connectives

Multiplicative and additive connectives of linear logic separate into two families:
synchronous (also called positive) connectives:⊗,⊕, 1, 0, and asynchronous (or nega-
tive) ones:

&

,&, ⊥, ⊤. A formula is positive (negative) if its outermost connective is
positive (negative).

A cluster of connectives with the same polarity can be seen asa single connective
(called asyntheticconnective), and a “cascade” of decompositions with the same po-
larity as a single rule. This corresponds to a property knownas focalization, discovered
by Andreoli (see [26]), and which provides a (complete) so-calledfocusingstrategy in

2
LS-nets were called logical L-nets in [12].
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proof-search: (i) negative connectives, if any, are given priority for persistent decom-
position, (ii) when a subgoal containing only positive formulas is reached, choose a
positive focus, and persistently decompose it up to its negative sub-formulas.

The division of connectives into positive and negative onesis not only fundamental
to proof-search in linear logic, but also corresponds to thePlayer/Opponent duality in
a strategy, and the organisation in clusters / synthetic connectives corresponds to the
strict Opponent/Player alternation.

Shift. To these standard connectives, it is natural to add two new (dual) connectives,
calledshift (first introduced in [27])↓ (positive) and↑ (negative). The role of the shift
operators is to change the polarity of a formula: ifn is negative,↓n is positive, and if
p is positive,↑p is negative. When decomposing a positive connective into its negative
subformulas (or viceversa), the shift marks the polarity change. As an example, the
formula(a&b)⊕ (c⊗ d) should now be written(↓(a′&b′))⊕ (c′ ⊗ d′), where, say,a′

is the result of recursively decoratinga with shift operators. The shift is the connective
whichcaptures “time” (or sequentiality): it marks a step in computation.

Focusing calculus (HS).Focalization is captured by the following sequent calculus,
called HS, originally introduced by Girard in [28], and closely related to Andreoli’s
focusing calculus (see [26]). A nice reference where to find more details on HS and its
motivations is [29].

Axioms:⊢ x⊥, x

We assume by convention that all atomsx are positive (hencex⊥ is negative).

Any positive (resp. negative) cluster of connectives can bewritten as a⊕ of ⊗ (resp.
a& of

&
), modulo distributivity and associativity. The rules for synthetic connectives

are as follows. Notice that each rule has labels; rather thanmore usual labels such as
⊗Left ,⊗Right , etc., we use formulas in the labels, as described below.

Positive connectives:Letp(n1, . . . , nn) = ⊕I∈N (⊗i∈I(↓ni)), whereN is a set of sets
I of indices (with eachI subset of{1, . . . , n}). Each⊗i∈I(↓ni) is called an additive
component. In the calculus, there is an introduction rule for each additive component:

. . . ⊢ ni,∆i . . . ⊢ nj ,∆j . . .

⊢ p, . . . ,∆i, . . . ,∆j , . . .
(p, nI)

wherei, . . . , j range overI. Each positive rule is labelled with a pair of (i) the active
formula (or focus)p of the conclusion, and (ii) the setnI = {ni : i ∈ I} of the
subformulas of the additive component to which the rule corresponds.

Note that we should rather speak of a rule scheme, because even whenp andnI

have been fixed, there remains freedom in the way of splittingthe rest of the sequent
between the premises.

Negative connectives:Let n(p1, . . . , pn) = &I∈N (

&

i∈I(↑pi)). Again, we call each

&

i∈I(↑pi) an additive component. There is only one introduction rule,which has a
premise for each additive component :

. . . ⊢ pI ,∆ . . . ⊢ pJ ,∆ . . .

⊢ n,∆
{. . . , (n, pI), . . . , (n, pJ), . . . }
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wherepI = {pi : i ∈ I}. A negative rule is labelled by a set of pairs, each of the form
(focus, set of subformulas), for each premise.

We call each of the pairs we used in the labels anaction.We call an action positive
(resp. negative) if it appears in the label of a positive (resp. negative) rule. In a negative
rule, there is an action for each additive component.

In the purely multiplicative case (no connectives⊕,&), all negative rules have a
single premise, and hence are labelled by a single action, while only one rule can be
applied to each positive connective.

It is important to notice theduality between positive and negative rules: each
premise (encoded by the action)(n, pI) of a negative rule corresponds to one posi-
tive rule(n⊥, p⊥I ) (wherep⊥I = {n⊥

i : i ∈ I}).
Another observation is that, starting with a proof of a sequent⊢ p or⊢ n consisting

of one formula only, the rules maintain the invariant that all sequents contain at most
one negative formula, a fact that can be stressed by writingn⊥ ⊢ ∆ (resp.n⊥

i ⊢ ∆i,
n⊥
j ⊢ ∆j ,...) instead of⊢ n,∆ (resp.⊢ ni,∆i, ⊢ nj ,∆j ,. . . ).

Finally we note the following two special cases of the positive and negative rules
(whenN = {I} is a singleton andI is a singleton):

n⊥ ⊢ ∆
⊢ ↓n,∆

(↓n, n)
⊢ p,∆

(↑p)⊥ ⊢ ∆
(↑p, p)

In the sequel, we will keep the shift operators mostly implicit (they can easily be re-
constructed).

2.2. Designs as (untyped) focusing proofs

Designs are an abstract version of focusing proofs. They areobtained in two steps:

1. One transforms a sequent calculus proof into a tree whose nodes are labelled by
actions.

2. One replaces all the formula occurrences by addresses.

Conversely, given a design, we can build the “skeleton” of a sequent calculus proof.
Such a skeleton becomes a concrete (typed) proof as soon as weare able to decorate it
with formulas. Let us sketch this using an example.

First example.Consider the (purely multiplicative) proof on the left-hand side of Fig-
ure 1, wherea = ↑a0 andb = ↑b0 are negative formulas and wherec, d are positive
formulas.

By forgetting everything in the sequent calculus proof but the labels of the rules, we
obtain the tree depicted in the top right corner of Figure 1. This representation is more
concise than the original sequent proof, but it still carries all relevant information, i.e.,
the sequents can be reconstructed. For example, when we apply the⊗ rule, we know
that the context ofa ⊗ b is c, d, because they are used afterwards (above). After the
decomposition ofa⊗ b, we know thatc (resp.d) is in the context ofa (resp.b) because
it is used aftera (resp.b).
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Sequent calculus Tree

Typed

. . .
⊢ a0, c

(c,mI)

a⊥ ⊢ c
(a, {a0})

. . .
⊢ b0, d

(d, nJ)

b⊥ ⊢ d
(b, {b0})

⊢ c, d, a⊗ b
(a⊗ b), {a, b})

(c

&

d)⊥ ⊢ a⊗ b
(c

&

d, {c, d})

(c

&

d,{c,d})

(a⊗b,{a,b})

(a,{a0})

(c,mI)

. . .

(b,{b0})

(d,nJ)

. . .

Untyped

. . .
⊢ ξ10, σ1

(σ1, I)

ξ1 ⊢ σ1
(ξ1, {0})

. . .
⊢ ξ20, σ2

(σ2, J)

ξ2 ⊢ σ2
(ξ2, {0})

⊢ σ1, σ2, ξ
(ξ, {1, 2})

σ ⊢ ξ
(σ, {1, 2})

(σ,{1,2})

(ξ,{1,2})

(ξ1,{0})

(σ1,I)

. . .

(ξ2,{0})

(σ2,J)

. . .

Figure 1: From focalized proofs to designs

Addresses (loci).One of the essential features of ludics is that proofs do not manipu-
late formulas, butaddresses. An address is a sequence of natural numbers, which could
be thought of as a channel, or as the address of a memory cell where anoccurrence of
a formulais stored. If we give addressξ to an occurrence of a formula, its (immediate)
subformulas will receive addressesξi, ξj, etc. Leta = ((p1

&
p2)⊗m)⊕n. If we locate

a at the addressξ, we can locatep1

&

p2,m, n respectively atξ1, ξ2, ξ3 (the choice of
addresses is arbitrary, as long as each occurrence receivesa distinct immediate exten-
sion of ξ). Hence what remains of a formula is a positional notation that retains the
subformula information.

Let us consider an action, say,(p, nI), wherenI corresponds to⊗i∈I(↓ni). Its
translation is(ξ,K), whereξ is the address ofp, andK is the (finite) set of natural
numbers corresponding to the relative addressesi of the subformulasni.

First example, continued.Coming back to our example (Figure 1), let us abstract from
the type annotation (the formulas), and work with addresses. We locatea ⊗ b at the
addressξ; for its subformulasa andb we choose the subaddressesξ1 andξ2. In the
same way, we locatec

&

d, c, d, a0, b0 at the addressesσ, σ1, σ2, ξ10, ξ20, respectively.
The result is depicted in the bottom right corner of Figure 1.

The two successive transformations are in fact independent. One can first transform
formulas into addresses in the sequent calculus proof, yielding the bottom left abstract
sequent calculus proof, and then keep only the tree of abstract labels. In Girard’s ter-
minology, the bottom left proof and the bottom right tree arecalleddessinanddessein,
respectively: they are the syntactic face and the semantic face of the same objects,
which are called designs.

To indicate the polarity, in our pictures of designs and L-nets, we circle positive
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actions (as a reminder of the fact that they come from clusters of⊗ and⊕).

Understanding the additives.A &-rule must be thought of as the superposition of
two unary rules on the same formula, corresponding to the twoactions(a&b, a) and
(a&b, b). Given a sequent calculus proof in Multiplicative AdditiveLinear Logic
(MALL), if for each &-rule we select one of the premises, we obtain a proof where
all &-rules are unary. This is called aslice [30]. For example, below, the proof on the
left can be decomposed into the two slices on the right.:

⊢ a, c ⊢ b, c

⊢ a&b, c

⊢ (a&b)⊕ d, c  

⊢ a, c

⊢ a&b, c
(a&b, a)

⊢ (a&b)⊕ d, c and

⊢ b, c

⊢ a&b, c
(a&b, b)

⊢ (a&b)⊕ d, c

A more structured example.Let

a = (m⊗ n)⊕ c , m = (p1

&

p2)&(q1

&

q2)&r , n = b1

&

b2

&

b3 ,

with r, pi, qi (i = 1, 2), bi (i = 1, 2, 3) positive formulas. Consider the following proof:

. . .
⊢ p1, p2

(p1, . . .)
. . .
⊢ q1, q2

(q2, . . .)
. . .
⊢ r

(r, . . .)

m⊥ ⊢
R1

. . .
⊢ b1, b2, b3

. . .

n⊥ ⊢
R2

⊢ (m⊗ n)⊕ c
a, {m,n}

whereR1 = {(m, {p1, p2}), (m, {q1, q2}), (m, r)} andR2 = {(n, {b1, b2, b3})}. The
associated design is obtained as above in two steps:

a,{m,n}

(m,{p1,p2})

(p1,...)

. . .

(m,{q1,q2})

(q2,...)

. . .

(m,r)

(r,...)

. . .

(n,{b1,b2,b3})

...

. . .

ξ,{1,2}

(ξ1,{1,2})

ξ11,...

. . .

(ξ1,{3,4})

ξ14,...

. . .

(ξ1,{5})

ξ15,...

. . .

(ξ2,{1,2,3})

...

. . .

It has three slices:

ξ,{1,2}

(ξ1,{1,2})

ξ11,...

. . .

(ξ2,{1,2,3})

...

. . .

ξ,{1,2}

(ξ1,{3,4})

ξ14,...

. . .

(ξ2,{1,2,3})

...

. . .

ξ,{1,2}

(ξ1,{5})

ξ15,...

. . .

(ξ2,{1,2,3})

...

. . .
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Bipoles. It is very natural to read a design (or an L-net) as built out ofbipoles, which
are the groups formed by a positive action (say, on addressξ) – theroot of the bipole
–, and all the negative actions which follow it (all being at immediate subaddressesξi

of ξ). The positive action corresponds to a positive connective. The negative actions
are partitioned according to the addresses: each address corresponds to a formula oc-
currence, and each action on that address corresponds to an additive component of that
formula. Each set of the partition is called anadditive rule. For example,

ξ,{1,2}

(ξ1,{1,2}) (ξ1,{3,4}) (ξ1,{5}) (ξ2,{1,2,3})

is a bipole, with the following two additive rules:

{(ξ2, {1, 2, 3})} and {(ξ1, {1, 2}), (ξ1, {3, 4}), (ξ1, {5})} .

2.3. Towards L-nets
Relating two orders.Let us consider a multiplicative design (or a slice). We are given
two partial orders,which correspond to two kinds of information on each (occurrence
of) action(σ, I): (i) a time relation (sequential order), specified by the tree structure
of the design; (ii) a space relation (prefix order), corresponding to the relation of being
subaddress (the arena dependency in game semantics).

Let us look again at our first example of design. We make the relation of being a
subaddress explicit, by means of a dashed arrow, as follows:

    
  

ξ

σ

σ2σ1

{1, 2}

{1, 2}

{0}

ξ1 {0} ξ2 {0}

{0}

σ

ξ

ξ1 ξ2
σ1 σ2

If we emphasize the prefix order rather than the sequential order, we recognize some-
thing similar to a proof net (see [31]), with some additionalinformation on sequential-
ization. Taking forward this idea of proof nets leads us to L-nets.

Additives: alternative choices and sharing.A strategy can be seen as representing the
abstraction of a program, or the evolution of a system. An additive rule marks a choice
in the possible evolution of the system.

This is immediate to see in the case of a tree. Each additive rule X can be inter-
preted as giving rise to different possible evolutions. Forexample, ifX = {x1, x2}, to
select a possible evolution, we choose one of the additive componentsx1 or x2.

Assume that some actions are performed in both evolutions. When working with
trees, this part has to be duplicated. When working with graphs, only the actions that
are specific to a certain evolution are made to depend on the choice, while the parts that
are common are shared.

This is illustrated in Figure 2 (withx1 = (ξ0, I), x2 = (ξ0, J)). We will discuss
this issue in more detail in Sections 6.6, 6.7, and 9.2 (wherethe example of Figure 2 is
revisited).
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ξ,{0}

ξ0,I

α,{0}

α0,{0}

α00,{1}

ξ0,J

α,{0}

α0,{0}

α00,{2}

α00, {2}

ξ, {0} α, {0}

α0, {0}ξ0, I ξ0, J

α00, {1}

Figure 2: Duplication and sharing

Additives: a typed example.The following (typical) example with additives illustrates
the relation between tree strategies and (parallel) L-nets(which will be defined shortly).

Assume that we have proofsΠ1, . . . ,Π4 of ⊢ a, c, ⊢ a, d, ⊢ b, c, ⊢ b, d, respec-
tively. In the sequent calculus (and in proof nets with additive boxes [30]) there are two
distinct ways to derive⊢ a&b, c&d, and the two proofs differ only by commutations of
the rules.

Π1

⊢ a, c

Π2

⊢ a, d

⊢ a, c&d
c&d

Π3

⊢ b, c

Π4

⊢ b, d

⊢ b, c&d
c&d

⊢ a&b, c&d
a&b

Π1

⊢ a, c

Π3

⊢ b, c

⊢ a&b, c
a&b

Π2

⊢ a, d

Π4

⊢ b, d

⊢ a&b, d
a&b

⊢ a&b, c&d
c&d

The same phenomenon can be reproduced in the setting of designs; the above
proofs closely correspond to the following two (typed) designsD1 andD2 (we write
formulas instead of addresses, to make the example easier tograsp):

↓(a&b)

a&b,a

↓(c&d)

c&d,c

Π1

c&d,d

Π2

a&b,b

↓(c&d)

c&d,c

Π3

c&d,d

Π4

↓(c&d)

c&d,c

↓(a&b)

a&b,a

Π1

a&b,b

Π3

c&d,d

↓(a&b)

a&b,a

Π2

a&b,b

Π4

The following graph (which is a typed version of an L-net) is our intended common
desequentialization ofD1 andD2 (more on this example in Section 9.3).

↓(a&b) ↓(c&d)

a&b, a a&b, bc&d, c c&d, d

Π∗
1 Π∗

2 Π∗
3 Π∗

4

3. L-nets

In this section, we introduce L-nets, which were first presented in [4]. Our defini-
tion is simpler than, but equivalent to the original definition, forgetting for the moment
about one condition (the acyclicity condition), to which weshall return in Section 5.
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L-nets are given by an interface, providing the names on which the L-net can com-
municate with other L-nets, and an internal structure, described by adirected acyclic
graphwhose nodes are labelled byactions. Before giving the definition of L-net, we
recall some preliminary notions on directed acyclic graphs.

3.1. Directed acyclic graphs and terminology

We recall that a directed acyclic graph (dag)G is an oriented graph without (ori-
ented) cycles. We writea ← b for an edge fromb to a. In all our pictures, the edges

are oriented downwards. We denote by
+
← the transitive closure of←, which defines a

strict partial order on the nodes ofG.
We recall that thetransitive reductionof a dagG is the graph that has the same

vertices asG and whose edges are the edgesa ← b of G such thatG does not contain
another path fromb to a of length> 1. (In terms of the underlying partial order, the
transitive reduction retains only the covering relation, wherey coversx whenx < y

and there is noz such thatx < z < y).) If an edgea ← b of G is also in its transitive
reduction, we say thata is apredecessorof b. A dag is calledreduced if it coincides
with its transitive reduction.

A noden of G is called aroot (resp. aleaf) if there is no nodea such thata ← n

(resp.n← a).

Downward closure.Given a noden ∈ G, we denote byn↓ the downward closure of

n, i.e., the sub-graph induced by restriction ofG on{n} ∪ {n′ : n′ +
← n}.

3.2. L-nets

Addresses and interfaces.An address (called locus in [13]) is a string of natural
numbers. We use the variablesξ, σ, α, . . . to range over addresses . Two addresses are
disjoint if neither is a prefix of the other.

An interface (calledbasein [13]) is a finite set of pairwise disjoint addresses,
together with apolarity (positive or negative) for each address, such thatat most one
is negative. We write an interface as a sequentΞ ⊢ Λ, whereΞ is the set of the
addresses with negative polarity, andΛ those with positive polarity.

An interface isnegativeif it contains a negative name,positiveotherwise. In par-
ticular, the empty interface is positive.

An interfaceΞ ⊢ Λ induces the definition of a polarity for each address of the form
σ′ such that there isσ ⊑ σ′ for σ ∈ Ξ∪Λ: the polarity ofσ′ is the same as the polarity
of σ if the length ofτ (whereσ′ = στ ) is even, opposite otherwise.

Actions (moves).An action is either the special symbol† (called daimon) or a pair
k = (ξ, I) whereξ is an address andI afiniteset of natural numbers. We will say that
the actionk usesthe addressξ.

Given an actionk = (ξ, I), we say thatk generatesξi, for eachi ∈ I, and also that
k is theparent of b, if b is an action of the form(ξi, J).

The definition of polarity for the addresses induces a definition of polarity for all
actions of the formk = (σ′, I): the polarity ofk is the same as the polarity ofσ′. The
polarity of† is always defined positive.

12



Given an interfaceΞ ⊢ Λ, we denote byA(Ξ ⊢ Λ) the set of all actions for which
a polarity is defined.

In the terminology of game semantics, the positive and negative actions are the
Player and Opponent moves of our universal arena, respectively, while the parent rela-
tion expresses enabling constraints between the moves.

Nodes labelled by actions.We will work with dag’s whosenodes are labelled by ac-
tions. We extend to nodes the terminology that we have introduced for the actions. We
will say that a node is positive or negative, and that a node uses or generates an address,
if it is the case for the labelling action.

As a matter of fact, we shall quite freely confuse a node with its labelling action,
so that in the sequelk, a, b, c, . . . may denote either nodes and actions:k = (ξ, I) will
read as either “k is a node labelled by(ξ, I)”, or “k is an action equal to(ξ, I)” (and
what is meant in each instance should be clear from the context).

Now we can give the definition of L-net, as a dag whose transitive reduction satis-
fies six conditions. Conditions 1-4 are enough if all addresses are distinct (i.e., if the
structure is purely multiplicative). Conditions 5-6 allowus to deal with the multiple
use of addresses induced by the additive structure.

Definition 3.1 (L-nets). AnL-netD is given by:

• An interfaceΞ ⊢ Λ.

• A possibly infinite setA of nodes which are labelled by actions ofA(Ξ ⊢ Λ)
(hence nodes areoccurrencesof actions).

• A structure onA of directed acyclic, reduced, and bipartite graph(if k ← k′,
then their labelling actions have opposite polarity), whose transitive reduction
satisfies conditions 1-4 and 5-6 below. We say that a node is positive (resp.
negative) according to the polarity of the labelling action.

1. Views. For each nodek, all the addresses used ink↓ are distinct .
2. Parents.

– For each nodea, using addressσ, eitherσ belongs to the interface, or

σ is generated by an action which labels a preceding nodec
+
← a.

– If a← b anda is positive, thenb must use an address generated bya3.

– If a is negative, it has at most one predecessor.

(It follows that if a negative node is not a root then its parent is the label of
the unique predecessor.)

3. Negativity. If Ξ = {ξ} is not empty (i.e. the interface is negative), then
either the set of nodesA is empty, or at least one node usesξ.

4. Positivity. If a is a leaf, then it is positive.

3This is the innocence condition, cf. [11, 32].
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Two distinct nodes are calledconflicting if they use the same address. We call
additive paira pair of conflictingnegativenodes which have the same predeces-
sor.

5. Siblings. Any two conflicting nodes which have the same predecessor have
distinct labels, i.e., of the form(σ, I1), (σ, I2), with I1 6= I2.

6. Additives. Given twopositiveconflicting nodesk1, k2, there exists an ad-

ditive pairw1, w2 such thatw1
+
← k1, andw2

+
← k2.

Remark 3.2. Note that by conditionParents every root uses an address in the inter-
face. Conversely, the same condition also imposes that an action using the negative
address of the interface (if any) is a root, butactions using a positive address of the
interface need not be roots.

In order to obtain a good computational behaviour of L-nets as strategies, and to
be able to relate them to sequential innocent strategies, westill need a correctness
condition. This will lead us toLS-nets in Section 5.

Rules and conclusions.We callrule of an L-net a maximal set of nodes that are pair-
wise conflicting and have the same or no predecessor. A rule ispositive or negative
according to the polarity of the nodes.

We say that a rule isunary if it is a singleton (a positive rule is always unary).
When a rule is not unary, we call it anadditive rule(think of each action as an additive
component). Note that an additive rule is necessarily a negative rule, but negative rules
can be unary (see Section 3.3). Note also that ifw1, w2 form an additive pair, then
w1, w2 belong to the same negative rule.

By analogy with proof nets, we callconclusiona rule whose nodes are all roots. By
conditionsParents andNegativity, we have:

• An L-net is positive if and only if it has only positive conclusions (which are all
on distinct addresses by conditionAdditives).

• A (non-empty) L-net is negative if and only if it has a negative conclusion. (Note
that an L-net can have at most one negative conclusion, by definition of a rule,
and by the assumption that an interface contains at most one negative address.)

We note that the positive nodes induce a partition of the dag into bipoles (cf. Section
2.2) (plus possibly a negative conclusion), where a bipole consists of a positive rule (its
root) and a set of negative rules. For example, the followingbipole has two negative
rules (R1 = {(σ1, J)} andR2 = {(σ2, J ′), (σ2, J ′′)}) and one positive rule (R =
{(σ, {1, 2})}).

(σ,{1,2})

(σ1,J) (σ2,J′) (σ2,J′′)
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Enabling sets.The key role of conditionAdditives is to ensure a one-to-one corre-
spondence between the nodes of an L-net and the sets of actions in their downward
closure, that represent their history, or their preconditions.

Lemma 3.3. For each pair of distinct nodesk, k′ of an L-netD, the sets of actions of
k↓ andk′↓ are different.

Proof. Suppose thatk, k′ are distinct, but that the sets of actions ofk↓ andk′↓ are
the same. Then in particular there exists somek1 ∈ k′↓ such thatk andk1 have the
same label. We distinguish two cases:

• If k1 6= k′, thenk↓1 is strictly contained ink′↓, and hence by our assumptionk1
andk must be distinct.

• If k1 = k′, thenk1 6= k by assumption.

Hence in both cases we have proved thatk1 andk are distinct. By conditionAdditives,
there exists an additive pairw1, w2 such thatw1 ∈ k↓ andw2 ∈ k

↓
1 (and hencew2 ∈

k′↓). Then, by our assumption, there is a nodew ∈ k↓ that has the same label asw2.
But this is impossible, as it would violate conditionViews applied tok. �

3.3. Slices

A sliceS of an L-netD is a downward closedsubgraph ofD in which no two
nodes are conflicting, and which is an L-net (i.e., satisfies conditionPositivity). In this
paper, we also insist that slices are alwaysmaximalsuch subgraphs.

3.4. L-nets as sets of views

Just as innocent strategies (and designs), an L-net can be presented as a set of views,
with some properties. In this setting, a view is not a sequence of moves, but a partial
order (with a top element).

Definition 3.4 (View). A view on the interfaceΞ ⊢ Λ is a setc of polarized actions
equipped with a partial order with a maximal element, which,when considered as a
dag where the nodes are labelled by themselves, is an L-net onthe same interface. A
view is called positive or negative, not according to the interface, but according to the
polarity of its top element. We define a partial order on viewsas follows: c ⊑ c′ if c
is the restriction ofc′ to {x : x ≤ a}, for a certaina ∈ c′. A setS of views isclosed
under restrictionif c′ ∈ S andc ⊑ c′ impliesc ∈ S.

We note that the conditionsSiblings andAdditives are vacuous for a view since by
definition actions are not repeated.

When the order is total, views coincide with Girard’schronicles[13] (and conform
with the notion of view in Hyland-Ong’s framework), whence our choice of notation
c, c′ for views.
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From L-nets to sets of views.Any nodek of an L-netD defines a view: indeed,k↓

induces a partial order on its nodes (cf. Section 3.1) and by the conditionViews, in k↓

there is a one-to-one correspondence between the nodes and their labelling actions. Let
n be the action labelling the noden. We set:

pkq = {n : n ∈ k↓}, with the order induced by← .

Hence we can associate to each L-netD a setViews(D) of views, as follows:

Views(D) = {pnq : n is a node ofD} .

The setViews(D) is closed under restriction.

From sets of views to L-nets.Conversely, given a set∆ of views which is closed under
restriction, we define a directed graphGraph(∆) as follows: the nodes are the elements
of ∆, andc← c′ iff c ⊏1 c′.

Lemma 3.5. Let∆ be a (possibly infinite) set of views closed under restriction. Then
Graph(∆) is an L-net iff it satisfies conditionsPositivity andAdditives.

Proof. The conditionsParents andViews hold obviously. ConditionSiblings also
holds: two negative views with the same parentc have the formc1 = c ∪ {a} and
c2 = c ∪ {b}. If c1 6= c2, necessarilya 6= b. �

It is rather easy to express bothPositivity andAdditives in terms of views. Hence
we can also define an-L-net on a given interface as a set of views closed under restric-
tion, which satisfies (the analogue of)Positivity andAdditives.

Relating the presentations.It is immediate thatViews(Graph(∆)) = ∆, if ∆ is a set of
views closed under restriction. Conversely, given (the transitive reduction of) an L-net
D, we have thatGraph(Views(D)) is isomorphic toD (easy consequence of Lemma
3.3).

Summarizing, we have shown thatViewsandGraphare inverse bijections.
We will use both presentations for L-nets. The presentationof L-nets as sets of

views, on which we will largely rely, allows us to compare nodes in different graphs,
by comparing the corresponding views. This will be particularly useful in Sections 6.3
and 6.6.

Sometimes, the graph presentation is more intuitive. However, it is obvious that all
notions and conditions can be expressed in either term. Observe in particular that

k1
+
← k2 iff pk1q ⊏ pk2q iff k1 < k2 in pk2q .

Conventions.We will often not distinguish between isomorphic notions, such as a
view c and the induced node, or a nodek and the viewpkq. Moreover, to keep notation
simple, we will sometimes writek ∈ c (for example,k ∈ pkq) instead ofk ∈ c,
and we will decorate actions, nodes, views and L-nets with their polarity (for example,
k+, c+,D+) only if we want to stress it.
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3.5. L-forests and designs

If the views are totally ordered, the above definitions produce a forest, correspond-
ing to a “standard” innocent strategy.

Definition 3.6. An L-forest is an L-netΠ which is a forest; we require that ifΠ is
negative, then it has only one conclusion.

In Appendix Appendix A, we will show that L-forests arise from adding a MIX
rule to the sequent calculus underlying designs.

By further restricting the notion of L-forest, we arrive atdesigns.

Proposition 3.7. An L-forest which has a unique conclusion, and whichbranches only
on positive nodes. is a design (as defined in [13]).

4. Sequential versus parallel strategies: an overview

Let us stop a moment to reflect on the notions we have seen so far, before entering
the more technical part of the paper.

Part of the process of abstraction leading from concrete proofs to the abstract proofs
of ludics is that an action (a move) can be seen as a cluster of operations that can be
performed together (thanks to focalization). However, in atree strategy (L-forests,
designs, innocent strategies...), there remains a lot of artificial sequentiality, like in
sequent calculus proofs for linear logic. In the case of proofs, the solution has been
to develop proof nets, a theory which gave rise to many successful developments. The
advantage of proof nets is that information which is irrelevant to the “essence” of the
proof is forgotten. More precisely, proof nets allow us to identify sequent calculus
proofs that only differ by somepermutations of rules. Consider, for example, the two
standard proofs

⊢ a, a⊥ ⊢ b, b⊥ ⊢ c, c⊥
. . . (a⊥ ⊗ b)

⊢ a⊥ ⊗ b, b⊥ ⊗ c, . . .
(b⊥ ⊗ c)

and

⊢ a, a⊥ ⊢ b, b⊥ ⊢ c, c⊥
. . . (b⊥ ⊗ c)

⊢ a⊥ ⊗ b, b⊥ ⊗ c, . . .
(a⊥ ⊗ b)

and compare them with the (unique) corresponding proof net,which has the following
shape:

⊗ ⊗

Thedifferent permutationsof the rules correspond todifferent sequentializationsof
the proof net, that is, in our view, todifferent schedulingsof the rules.

Similarly, sequential strategies (hence designs, in particular) distinguish proofs (or
programs) which only differ by the order in which the operations are performed.
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Proof nets and sequentialization.Proof nets were introduced by Girard along with lin-
ear Logic as a graph representation of proofs. To each sequent calculus proof, one
associates a proof net (several sequent calculus derivations can become the same proof
net). Conversely, given a proof net, we can associate to it some (usually more than
one) sequent calculus derivations; this procedure is called sequentialization. Proof nets
are defined in two steps. One first defines “logically correct”typed graphs, which are
called proof structures. A proof net is a proof structure which is the image of a sequent
calculus derivation. Proof nets are characterized by geometrical properties, calledcor-
rectness criterion. A very useful one is AC, for Acyclic and Connected (also called
Danos-Regnier criterion). Acyclicity (of certain paths) is the fundamental property
which guarantees sequentialization. Connectness (of the paths) is instead related to the
refusal in the logic of the MIX rule (see Section 12). We will apply similar techniques
to L-nets.

The dynamics.In this paper, we focus on sequentialization. The dynamics of L-nets
is described in[4] (more details -in a more general setting-are in [22]). Normalization
(i.e., composition) of L-nets is reduced to normalization (composition) of slices: (i)
decompose each L-net in its slices, (ii) normalize the slices, and (iii) put them together
(superimpose), where the superposition of the slices is simply the union of the views.

Composition of slices, which is the core of L-nets normalization, is as straightfor-
ward as normalization on MLL (multiplicative linear logic)proof-nets, as slices are
sort of purely multiplicative proof-nets. There are several possible ways to present it.
One can use rewriting rules in the style of MLL proof-nets, oran abstract machine (as
in[4]). The most elegant way is however based on Girard’s “merging of orders”, de-
fined in [13] (the generalization to L-nets is in [22] ): each slice can be seen as a partial
order on occurrences of actions; the merging of two orders isthen the transitive closure
of their set-theoretical union; the acyclicity conditions(which are true for designs, but
also for L-nets) insures that the result is a partial order, and is in fact a slice.

4.1. Sequentialization (and desequentialization) of L-nets
In Section 5.1, we will define acorrectness criterion, inspired by [20], which guar-

antees that an L-net can be “sequentialized”. An L-net whichsatisfies the criterion is
calledLS-net. If we continue the analogy with proof nets, we can see L-nets as proof
structures, andLS-nets as proof nets.

We will then define (Sections 7 and 8) two procedures which we call desequential-
izationandsequentialization, that associate

• anLS-netdeseq(Π) to an L-forestΠ (Section 8), and

• a set{seq(D)} of L-forests to anLS-netD (Section 7), respectively.

We will show (Theorem 11.2) thatall dependency which is taken away by desequen-
tialization can be (non-deterministically) restored through sequentialization. The non-
determinism corresponds to the fact that several L-forestsΠi can be associated to the
sameLS-netD, each of which can be recovered by sequentialization ofD. In Section
10, we make precise in which sensedeseq(Π) has less sequentiality thanΠ, and give a
description of theLS-nets of “minimal sequentiality” (which we call parallel L-nets),
based on the operations presented in Section 6.
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Figure 3: Maximally parallel L-net

Targetting L-forests (instead of design).As we said, we will first prove a sequential-
ization (resp. desequentialization) result that holds forall LS-nets, and that has the
class ofL-forests as target(resp. source). Only later, in Section 12, we will restrict
this procedure so as to havedesigns as target. More precisely, we can characterize
the class ofLS-nets which sequentialize into a design as those which beside acyclicity
satisfy also aconnectness criterion.

We make this choice for a number of reasons. First, it is more general, and more
natural, to target L-forests instead of designs. An L-net does not need to be connected
(in the ordinary graph-theoretic sense), and its natural target is an L-forest.

Also, non-connectedness appears as a natural and desirablefeature if we want par-
allelism. In further work joint work of the second author [33], a full abstraction result
for the linearπ-calculus [34] which involves L-forests rather than designs is estab-
lished: this is because theparallel compositionin process calculi corresponds to jux-
taposition in the semantics; the natural result is not a design, but a forest. (See Section
13 for more discussion.)

Non-connectedness may also arise in proof development. It is an ingredient of
Andreoli’s concurrent proof construction [35]. In such a setting, there may be discon-
nected partial proofs that will be connected later in the proof development.

4.2. Graduating sequentiality

Consider the L-netD in Figure 3. It is maximally parallel, in the sense that the
only sequentiality that it expresses is relative to the axioms (see Section 8). The three
actionsa, b, c can be performed in parallel, or in any order. This L-net corresponds to
the multiplicative proof net depicted on the right-hand side (we can think ofa, b, c as
tensors).

The L-netD′ in Figure 4, is more sequential. Indeed, the order has been increased:
the actionb has now to be performed after the actiona1. The actionsa andc can still
be performed in parallel.

The L-netD′′ is completely sequential, as there are no choices in the scheduling:
the actionc has to be performed first.

This last L-net is in fact a tree, and corresponds to the following sequent calculus
proof (which we only sketch). Once again, rules are labelledby the active formula, i.e.
the formula which is decomposed in the rule.
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Figure 4: Partially and totally sequential L-net

...
a0 ⊢

a0

⊢ ... ⊢ ...
⊢ ....

b

a1 ⊢ b, c00
a1

⊢ c00, a, b
a

c0 ⊢ a, b
c0

...
⊢ c10

c10

c1 ⊢
c1

⊢ a, b, c
c

5. LS-nets

In this section we refine the notion ofL-netof Faggian and Maurel [4]. Instead of
the acyclicity condition in the original definition, we havehere a stronger one, resulting
in the (new) notion ofLS-nets.

We recall that we are only interested in the properties of theunderlying transitive
reduction of anL-net. All conditions in this section are therefore on the transitive
reduction of the graph.

Paths. The following notions are relative to some L-netD. An edge is anentering
edgeof the nodea if it hasa as target, as an oriented edge ofD. If R is a negative rule
ande an entering edge of an actiona ∈ R, we calle a switching edgeof R.

A rule path is a sequence of nodesk1, ...kn belonging to distinct rules, and such
that for eachi < n eitherki → ki+1 (the path is going down) orki ← ki+1 (the path
is going up). A rule cycle is defined similarly as a sequence ofnodesk1, ...kn, kn+1,
where theki’s (i ≤ n) are distinct, wherek1 = kn+1, and for eachi < n + 1 either
ki → ki+1 or ki ← ki+1.
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A switching pathis a rule path which uses at most one switching edge for each
negative rule, i.e., the path does not contain three successive nodeski−1, ki, ki+1 such
thatki is negative,ki ← ki−1, andki ← ki+1.

A switching cycleis a rule cycle which uses at most one switching edge for each
negative rule.

Correctness criterion.Now we can complete the definition ofLS-net. We want to
be able to sequentialize our graphs. The following condition (which can be seen as a
correctness criterion) guarantees that it is always possible to find a rule which does not
depend on any other rule.

Definition 5.1 (LS-nets). An LS-net is an L-netD such that the following condition
holds for its transitive reduction:

• Cycles. Given a non-empty unionC of switching cycles ofD, there is an additive
rule W not intersectingC, and a pairw1, w2 ∈ W such that for some nodes

c1, c2 ∈ C, w1
+
← c1, andw2

+
← c2.

This criterion, closely inspired by the analogous criterion given in [20], is delicate; its
technical meaning (and the need to consider a set of cycles and not only one) will be
apparent in the proof of the Splitting Lemma (in Appendix Appendix B), which is an
adaptation of the analogous proof in [20]. Below, we try however to provide some
intuitions, by giving a typical example of its failure, namely an instance of the well
known Gustave function4.

L-nets andLS-nets. The conditionCycles is a strengthening of the acyclicity condition
of [4]. Acyclicity asserts that there are no switching cycles in a slice5. It is immediate
that the conditionCycles implies the acyclicity condition, and reduces to it in a purely
mutliplicative framework (i.e., in the absence of any additive rule). Notice that while
acyclicity is a property of a slice, the new condition speaksof cycles which traverse
slices.

In Figure 5, we show an example of an L-net that satisfies the acyclicity condition
but does not satisfy the conditionCycles.

There are three additive rules:{(α0, {1}), (α0, {2})}, {(β0, {1}), (β0, {2})}, and
{(γ0, {1}), (γ0, {2})}.

We could type this L-net as follows:

4This example is inspired by the Berry-Kleene function, alsoknown as Gustave function, which is the
simplest example of a stable but non sequential function (see [19]). The Gustave function recurs often in the
theory of MALL proof nets; in particular, we adapt here the example given in [20]

5It is the condition that (together with connectedness) characterizes mutliplicative proof nets.
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Figure 5: Gustave L-net

pq

a1&a2 ⊗ a′

c1&c2 ⊗ c′

b1 b2

c1 c2
r

b1&b2 ⊗ b′a1 a2

a′

c′
b′

We think of the three conclusions as Tensor rules, and of the leaves (p, q, r) as occur-
rences of axioms (for example,⊢ 1). We seea1, a2 as the two components of a&, and
similarly for b1, b2 andc1, c2 (hence, each conclusion can be typed as(1&1)⊗↑1). We
check our claims as follows.

1. The Gustave L-net satisfies acyclicity, because there are several switching cy-
cles, but none appears inside a single slice. This property is an immediate con-
sequence of the following two observations:

(a) The set of slices of the Gustave L-net is{p↓, q↓, r↓}. Indeed, any two
axioms are separated by an additive pair, in the sense that each of the two
axioms depends on a different component of the additive pair. For example,
if we considerp, q we havec1 ← q andc2 ← p. Similarly, the pairp, r
(resp.q, r) is separated by the rule{b1, b2} (resp.{a1, a2}).

(b) Each switching cycle has to use at least two axioms.
2. The Gustave L-net does not satisfy the conditionCycles, because there are switch-

ing cycles that use (intersect)all the additive rules, which a fortiori does not leave
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any space for an additive rule outside the cycle to “break” it. Here is one: start
from (a1&a2)⊗ a′, go up througha1 to q, down throughb′ to (b1&b2)⊗ b′, up
throughb1 to r, down throughc′ to (c1&c2)⊗ c′, up throughc2 to p, and finally
down througha′.

We will see in Section 6.5 that the Gustave L-net, does not admit sequentialization.

6. Operations onLS-nets

In this section, we introduce operations that allow us to construct and decompose
L-nets andLS-nets.

• Constructors:rooting, boxing, superposition, and additive union.

• Destructors:root removal, splitting, and scoping.

In the sequel, we will make an extensive use of these operations.
We will first (Sections 6.2 through 6.4) treat the operationsthat deal with positive

rules and unary negative rules (which is enough for the purely multiplicative case). We
will then introduce the additive structure, wheresharingplays a crucial role (Sections
6.6 and 6.7).

Warning. Throughout the section, we assume that the operations we define takere-
ducedL-nets (resp.LS-nets) (in the sense that their dag is reduced) as input. We will
see that these operations return (possibly partial)L-nets (resp.LS-nets) that are not
always reduced (see Remark 6.6). This is actually the reasonwhy we allowed non
reduced dags in the definition of anL-net.

6.1. Preliminary properties

A convenient notion is that of partial L-net. We say that an L-net ispartial if it
possibly does not satisfy conditionPositivity.

We will make a repeated use of the following result.

Lemma 6.1 (Downward closure).LetD be an L-net. Any downward closed subsetG

ofD is a (possibly partial) L-net. IfD satisfies conditionCycles, so doesG.

Proof. All properties are inherited fromD. Any view ofG is also a view ofD. Let
us check the preservation of conditionsAdditives andCycles. If k1, k2 are two distinct
nodes inG on the same address, then conditionAdditives for D provides a pair of

negative nodesw1, w2 such thatwi
+
← ki, which (by downward closure) belong toG.

Observe that any cycle inG is also a cycle inD. If we have a collection of switching
cycles insideG, the conditionCycles for D gives us an additive ruleW that is not
traversed by any of the cycles, and a pairw1, w2 ∈ W ∩ G. Then, takingW ∩G,w1,
andw2, the condition holds inG. �

Corollary 6.2. If D is anLS-net andK is a set of positive nodes ofD, then the sub-
graph induced on

⋃
{k↓ : k ∈ K} is anLS-net.
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Figure 6: Superposition

Superposition of L-nets.Given a collection of L-nets, let us consider their unionas
sets of views(the union is not disjoint in general). We call this operation superposi-
tion. Under which conditions is a superposition of L-nets an L-net? By Lemma 3.5, if
D1,D2 are L-nets (resp.LS-nets),D1 ∪D2 is an L-net (resp. anLS-net) iff it satisfies
conditionAdditives (resp. conditionsAdditives andCycles).

Remark 6.3. In defining the superposition of graphs (and additive union,in Section
6.6), it is crucial that we work not just with nodes, but with their view. This allows us
to compare nodes belonging to different graphs.

Example 1: sharing of context.Consider the two L-netsD1,D2 in Figure 6. The
superposition ofD1 andD2 produces the L-netD = D1

⋃
D2.

In fact, the set of views ofD1 is the set of views defined by each of its nodesk, that
is:

{ α,0 , α,0

α0,0

, (ξ0, I), p(α00, {1})q = D1}.

The set of views ofD2 is:

{ α,0 , α,0

α0,0

, (ξ0, J), p(α00, {2})q = D2}.

The resulting union is:

{ α,0 , α,0

α0,0

, (ξ0, I), (ξ0, J),D1,D2},

which corresponds toD.

Example 2: positive n-ary rules.Superposition allows us to construct positive rulesk

which have more then one premiss, as illustrated in Figure 7.
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Figure 7: Positive binary rule

6.2. Constructing: rooting and boxing

The following constructions allow us to add a newunaryconclusion to an L-net.

Definition 6.4 (Rooting). Let D be a positive (resp. negative) L-net, of interface⊢
ξi, ξj, . . . , ∆ (resp. ξi ⊢ ∆). Let (ξ, I) be a negative (resp. positive) action. We
indicate byx ◦D the graph obtained as follows:

1. add a nodex = (ξ, I) toD;
2. add an edgex← k for each nodek which uses an addressξi (for somei ∈ I).

If (ξ, I) is positive, the result is always an L-net (on the interface⊢ ξ,∆). If (ξ, I)
is negative, the result is a possibly partial L-net (on the interfaceξ ⊢ ∆). The condition
Positivity is satisfied only if at least one of the addressesξi is used inD.

Definition 6.5 (Boxing). LetD be a positive L-net (of interface⊢ ξi, ξj, . . . ,∆) and
let (ξ, I) be a negative action, withi, j, . . . ∈ I. We indicate byx�D the graph obtained
as follows:

1. add a nodex = (ξ, I) toD;
2. add an edgex← k for each nodek which belongs to a conclusion ofD.

The result is clearly an L-net of interfaceξ ⊢ ∆.

Remark 6.6. Note that the edges by the boxing construction survive in thetransitive
reduction, while some of the edges added by the rooting construction may be just “tran-
sitivity” edges that do not add anything to the underlying transitive reduction.

On positive L-nets, rooting and boxing give us two choices for adding a new nega-
tive node:

• Rooting is a parallel operation,in the sense that it only adds the minimum
amount of sequentiality that is needed for conditionParents to hold.

• Boxing instead is a serial (sequential) operation, which adds a maximal amount
of sequentiality. If we think in terms of proof nets,boxing corresponds to en-
closingD in a box, which hasx as principal port.

As we will see in Section 10, repetitive and consistent use ofrooting and boxing
will lead to (abstract versions of) proof nets and sequent calculus proofs, respectively.
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D′′ = (ξ0, {1, 2}) �DD′ = (ξ0, {1, 2}) ◦DD (of interface⊢ σ, ξ01, ξ02)

Figure 8: Rooting and boxing

Examples.In Figure 8 we give an example of both constructions. Given the L-net
D of interface⊢ σ, ξ01, ξ02, we add a negative action(ξ, {1, 2}). The L-netD′ is
obtained by rooting, whileD′′ results from boxing. Again, we can see the positive
action(σ, {1, 2}) as a Tensor, and the negative action(ξ0, {1, 2}) as a Par. We can see
D′ as a kind of proof net, whileD′′ is a tree, corresponding to a sequent calculus proof.

Remark 6.7. Rooting and boxing are two extremes. In between, we can defineinter-
mediate operators which add, on top of rooting, as much sequentiality as we wish:
after rooting, we add any number of edges from positive nodesto x. Let us indicate
this (generically) byx⊳D. Hence, considering the respective designs as partial orders,
we have:

(x ◦D) ⊆ (x ⊳D) ⊆ (x �D) .

The differences between the three L-nets are only the amountof order betweenx
and the nodes ofD.

6.3. Constructing a positive rule

Let us callD1 the L-netσ1 �ξ01
+, andD2 the L-netσ2 �ξ02

+. Letk = (σ, {1, 2}).
Then the designD of Figure 8 can be assembled as follows:D = (k ◦D1)

⋃
(k ◦D2)

(note the superposition of the two occurrences ofk). Observe on the other hand that
D1

⋃
D2 is not an L-net (there are two negative conclusions).

The correctness of the construction relies on the followingproperty.

Proposition 6.8. If two positiveLS-nets are of the formk+ ◦D1, k
+ ◦D2 and are such

that the sets of addresses used byD1 andD2 are disjoint, then(k+ ◦D1)∪ (k+ ◦D2)
is anLS-net.

Proof. ConditionAdditives is obviously inherited by the disjointness assumption.
We show that this also true of conditionCycles. Suppose that there is a switching cycle
traversing bothD1 andD2, and consider two minimal portions of the cycle going from
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Figure 9: Splitting

D1 to D2 and fromD2 to D1, respectively. At most one of these portions can go
throughk. Thus, the other portion consists of two consecutive nodesc1 andc2, with,
say,c1 ∈ D1, c2 ∈ D2, andc1 ⊏1 c2, contradicting the disjointness assumption.�

Remark 6.9. We write(k+ ◦ D1) ∪ (k+ ◦ D2) instead ofk ◦ (D1

⊎
D2), because

D1

⊎
D2 is notan L-net, according to our definition.

In fact, only the superpositions of this form (which are hence morally disjoint
unions) will be needed in the purely multiplicative case. Note that the “real” superpo-
sition as we have seen in the Example 1 (Figure 6) involves an additive rule (to get an
intuition, the reader can take a look also at Figure 11).

6.4. Removing a negative unary rule: root removal

The following operation allows us to decompose anegative L-net, whose negative
conclusion isunary(this is the only negative destructor we need in the case of a purely
multiplicative L-net).

Definition 6.10 (Root removal). Given an L-netD (of interfaceξ ⊢ ∆) with a nega-
tive unary conclusion{x} with x = (ξ, I), we indicate byD \ x the graph obtained
fromD by removingx.

It is immediate that the result is an L-net on the interface⊢ . . . , ξi, . . . ,∆ (i ∈ I).

6.5. Removing a positive rule: splitting

We next state a key lemma, relying on the notion of splitting rule, that allows us to
decompose apositiveLS-net into disjoint components, where each component is itself
anLS-net.

The notion of splitting.The notion of splitting comes from the theory of proof nets:
given a proof netR whose conclusions are all positive (Tensor), a conclusion is splitting
if by deleting it,R splits into two connected componentsR1,R2, which are themselves
proof nets. This allows us to (inductively) decomposeR into proof nets of smaller size.
Observe that not any positive conclusion is splitting. Let us consider the proof net in
Figure 9 (left). The right-most Tensor is splitting, while the left-most is not.
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The same notion immediately translates in our setting. Let us consider theLS-net
given in Figure 9 (right). The node(ξ, {0, 1}) is splitting, while the node(σ, {1, 2}) is
not, because by deleting it we do not have anLS-net. If we delete the node(ξ, {0, 1}),
we obtain twoLS-nets:D′ (as in Figure 8) andC = (ξ1, {0}) � (ξ10)+. TheLS-net
illustrated in the picture can indeed be written as

(ξ, {0, 1}) ◦D′
⋃

(ξ, {0, 1}) ◦ C

Let us formulate this more formally.

Definition 6.11 (Splitting rules). 1. A negative ruleW = {. . . , wI , . . .} of an L-
netD is called splitting if either it is conclusion ofD (eachwI is a root), or if
after deleting the edgesw ← wI to the common predecessor (for allwI ∈ W ),
there is no more connection (i.e., no sequence of consecutive edges) between any
of thewI ’s andw.

2. A positive rule ofD is called splitting if it is a conclusion and all negative rules
just above it are splitting.

Lemma 6.12 (Splitting Lemma). EveryLS-netD has a splitting conclusion. In par-
ticular, if all the conclusions are positive (i.e., ifD is positive), there is at least one
positive splitting rule.

The proof is given in Appendix Appendix B.

As a consequence of the Splitting Lemma, we have the following property.

Proposition 6.13 (Splitting). LetD be anLS-net. IfD is positive, then there exists a
positive conclusionk = (ξ, I), which we call a splitting conclusion ofD, such that

D = (
⋃

i∈I

(k ◦Di))
⊎

C .

where allDi’s andC areLS-nets and do not share addresses.

Proof. Let k = (ξ, I) be a splitting positive conclusion. By deletingk, the graph
splits into several connected components. Let us indicate by Di the part of the graph
which is connected to some nodes of addressξi, and let us indicate byC the rest of the
graph.

1. It is immediate that bothC and eachk ◦ Di’s are downward closed, and hence
areLS-nets by Lemma 6.1. It follows readily thatDi = (k ◦Di) \ k is anLS-net, for
all i.

2. Suppose for a contradiction that there are two nodesk1, k2, say inDi and inDj

using the same address. By conditionAdditives applied toD, there exists an additive
pair w1, w2, with w1, w2 below k1, k2, respectively, which by downward closedness
implies w1 ∈ Di andw2 ∈ Dj . This is impossible because all the nodes in any
negative ruleW of D belong to the same connected component. �
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Figure 10: Marking choices without sharing

An example of a non-splitting L-net.The L-net given in Figure 5 does not satisfy con-
dition Cycles. Observe in fact that all conclusions are positive, but noneof them is
splitting. As a consequence, we have no way to decompose thisL-net into L-nets of
smaller size.

6.6. Constructing: additive union

In this section and the following one, we introduce the operations which deal with
additive structure. We first give an informal intuition for the constructions.

As we have already mentioned in Section 2.3, the additives convey the notion of
choice between possible different evolutions of the system. Each choice is marked by
adifferentaction on the same name, such as for examplex1 = (ξ, I1) andx2 = (ξ, I2)
(with I1 6= I2).

For example, consider the two possible evolutions described by the (generic) L-nets
D′

1 andD′
2 given at the top of Figure 10 (see also Section 9.2 for a concrete example).

Using the operations introduced so far (boxing and superposition), we could obtain
(x1 �D

′
1)∪ (x2 �D

′
2) (bottom of the figure). The additive ruleX = {x1, x2}marks the

branching. Given the resulting L-net, we can select a possible evolution by selecting
one of the components ofX , and consider the sub-net.

Now, as suggested by the drawings, let us assume that a part ofthe evolution is
common to the two possible choices: eachD′

i can be partitioned intoBi andC, where
the partBi is specific toD′

i, while the partC is common to the two possible evolutions
(i.e.D′

1 ∩D′
2 = C) Instead of duplicatingC as we have just done by boxingx1 (resp.

x2) belowD′
1 (resp.D′

2), we want tosharethe common partC. This is the purpose of
the “additive union” (see figure 11).

Specifically, we start with a collection of L-netsDi , where each one has a unary
negative conclusion of the formxi = (ξ, Ii) (for example, we could haveDi = xi◦D′

i).
We then obtain their additive union by proceeding in two steps:
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Figure 11: Additive union

1. We make the dependency from a choice explicit, by adding edges towards the
additive componentxi for all actions that are not common to all evolutions (i.e.
all actions inBi).

2. We share the partC that is common by superposing the common views (cf.
Remark 6.3).

The operation is illustrated in figure 11. We can now give the formal definition

Definition 6.14 (Additive union). Let DI ,DJ , . . . be a collection of L-nets which
have respective negativeunaryconclusionsxI = (ξ, I), xJ = (ξ, J), . . . on the same
addressξ (with distinctI, J, . . .). Their additive union↓

⋃
I DI is defined as the fol-

lowing superposition:

↓
⋃

I

DI =
⋃

I

Φ(DI) ,

where eachΦ(DI) is obtained fromDI by adding edges in such a way thatxI ← k

(in Φ(DI) for each positive nodek ∈ DI such thatpkq 6∈ DJ (for someJ 6= I).

Intuitively,Φ is a function on views whichmarkswith an edge towardsxI the views
of DI which are specific to it, or more precisely those views which are not sharedby
all DJ ’s.

Remark 6.15. 1. Notice that if the set ofDI ’s is a singleton, thenΦ(DI) = DI .
This observation allows us to treat both unary and non unary conclusions as a
single case.

2. If DI = xI � CI , DJ = xJ � CJ , . . ., thenΦ(DI) = DI for all I, and hence
additive union boils down to superposition (in this case, just disjoint union):
↓
⋃

I DI =
⊎

I DI .
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The following two lemmas will play a crucial role in the decomposition of L-nets.

Lemma 6.16. With the notations of Definition 6.14, and assuming that there are at
least two designsDI ,DJ in the collection, we have the following partitions:

1. The views ofΦ(DI) can be split into two disjoint sets:

Φ(DI) = C ⊎BI ,

where

C =
⋂

J DJ = {c : c ∈ DJ , for all J}

BI = {pkq ∈ Φ(DI) : xI
+
← k} = {c ∈ Φ(DI) : (ξ, I) ∈ c}

2. If D = ↓
⋃

I DI thenD = C ⊎ (
⊎

I BI).

Proof.

1. If a view c of Φ(DI) does not belong toBI , then, by construction, no edge has
been added, which implies both thatc is a view ofDI and that it belongs to all
DJ ’s (J 6= I). ThusΦ(DI) = C ∪ BI . Moreover, if(ξ, I) ∈ c, thenc cannot
belong to anyDJ (J 6= I), as this would entail thatDj would have a node
labelled by(ξ, I), contradicting the assumption thatDJ has aunaryconclusion.
Hence the union is disjoint.

2. If D = ↓
⋃

I DI =
⋃

I Φ(DI), we can writeD =
⋃

I (C⊎BI) = C⊎(
⋃

I BI).
Finally, theBI ’s are all pairwise disjoint since a view cannot contain(ξ, I) and
(ξ, J) with I, J distinct.

�

Proposition 6.17. ↓
⋃

I DI is an L-net. Moreover the construction preserves condition
Cycles.

Proof. It is immediate that eachΦ(DI) is an L-net. All properties are inherited from
D. As for conditionCycles, notice that all the newly added edges enterxI , and no
switching path which uses the new edges toxI can continue to form a cycle. Hence all
Φ(DI)’s areLS-nets.

We are left to show (cf. Section 6.3) that↓
⋃

I DI =
⋃

J Φ(DJ) satisfies conditions
Additives andCycles. We just check conditionCycles. It is convenient to partition the
nodes of ↓

⋃
I DI as in Lemma 6.16.

Assume that a collection of switching cycles is contained inside one of theΦ(DJ )’s:
in such a case the additive pair is given by the condition applied toΦ(DJ ).

Otherwise, we have at least a nodek1 ∈ BI and a nodek2 ∈ BJ (with I 6= J)
traversed by the cycles. By construction,xI

+
← k1 andxJ

+
← k2, and conditionCycles

is satisfied. �

Remark 6.18. Notice that
⋂
DJ is not an L-net in general , because its maximal views

do not need to be positive.

31



6.7. Removing an additive rule: scoping

Root removal is all we need to decompose a negative slice. Butin the general set-
ting where additive rules are not all unary, we need to define amore complex operation.
Given an L-net whose conclusion is an additive ruleX = {x1, x2}, we can retrieve the
evolution corresponding to the choice ofx1 by deleting all actions that depend onx2.
In this way, we recover the actions that are specific to the choice marked byx1, as well
as the actions that are common to the other possible evolutions. We call this operation
scoping.

Definition 6.19 (Scoping).LetD be an L-net of negative conclusionX = {xI : I ∈
N}, wherexI = (ξ, I), xJ = (ξ, J), . . . . For all I ∈ N , we define thescope ofxI in
D as follows:

Scope(xI ,D) = {c : ∃ c′ (c ⊑ c′, c′ ∈ D, c′positive, and(∀ J ∈ N \{I} xJ 6∈ c′))} .

or, equivalently:

Scope(xI ,D) =
⋃
{k↓ : k positive and(∀ J ∈ N \ {I} xJ 6

+
← k)} .

By Lemma 6.1, ifD is an L-net (resp. anLS-net),Scope(xI ,D) ⊆ D is an L-net (resp.
anLS-net).

Lemma 6.20. If D = ↓
⋃

I DI , then:

1. Scope(xI ,D) = Φ(DI) (for all I indexing the additive union).
2. AssumeDI = xI ◦ CI , or DI = xI � CI . Then:

Scope(xI ,D) \ xI = CI .

Proof.

1. By Lemma 6.16, we can writeD = C ⊎ (
⊎

J BJ). We show:

• BI ⊆ Scope(xI ,D). Indeed, if(ξ, I) ∈ c, thenc can contain no other
action on the same address.

• C ⊆ Scope(xI ,D). Cf. the proof of Lemma 6.16, where we have estab-
lished that a view inC cannot contain any action(ξ, J).

• BJ

⋂
Scope(xI ,D) = ∅ (J 6= I). This is obvious since a view inBj

contains by definition an action(ξ, J).

It follows thatScope(xI ,D) = C ⊎BI = Φ(DI).
2. This follows immediately from 1, since all whatΦ does toDI is undone when

xI is removed.

�

Note that whenX = {XI} is unary, then scoping boils down to identity, i.e.,
Scope(xI ,D) = D, and the more complex operationScope(xI ,D) \ xI boils down to
simple root removal.
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6.8. Using constructors and destructors

Summing up the content of this section, the operators that wehave presented can
be grouped into two families:

• Rooting, boxing, superposition, and additive union areconstructors.

• Root removal, splitting, and scoping aredestructors. The decomposition of an
LS-net goes as follows:

D is positive.All conclusions are positive. If there are no negative rules, we
are done:D is reduced to its conclusions.

Otherwise, by splitting, we getD = (
⋃

i (x ◦Di))
⊎

C. Hence

D decomposes into . . . , Di , . . . , C .

D is negative(and non empty). LetX be the unique negative conclusion ofD.

i. If X is unary, we decomposeD by root removal.
ii. Otherwise, we reduceD to the previous case by scoping.

Altogether, ifX = {. . . , xI , . . . },

D decomposes into . . . , Scope(xI ,D) \ xI , . . . .

These constructors and destructors are put to use in the following sections.

7. Sequentializing a graph strategy

An edge of an L-net states a dependency, or a precedence amongactions. The
aim of this section is to provide a procedure, which takes anLS-netD and returns an
L-forest, which is obtained by adding enough such dependency edges toD. Let us
consider a very simple example: a (partially ordered) viewc.

A sequentialization ofc is a linear extension of the partial order. That is, we add
sequentiality (edges) to obtain a total order. A total orderthat extendsc defines a
complete scheduling of the tasks, respecting the constraint that each action is performed
only after all of its original constraints are satisfied.

Dependency between the actions of a slice, and of sets of slices (L-nets) is more
subtle, as there are also global constraints. The key point in the sequentialization is to
select a rule that does not depend on others. This is exactly the role of the Splitting
Lemma, and the reason for the conditionCycles.

The process of sequentialization is non-deterministic, asone can expect, i.e., there
are several tree strategies which can be associated to the sameLS-net.

As we have both multiplicative and additive structure, whensequentializing we will
perform two tasks:

1. add sequentiality (sequential links) until the order in each view is completely
determined;

2. separate slices which are shared through additive superposition.
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Sequentialization procedure.The following procedureprogressivelytransforms apo-
tentially infiniteLS-netD into an L-forest on the same interface asD. It works bottom-
up and follows the paradigm of lazy, stream-like computation.

The procedure is non-deterministic. In what follows,D′ = seq(D) should be read
as: “D′ is a possible sequentialization ofD”.

A)D is negative.LetX = {. . . , xI , . . . } be the unique negative conclusion ofD. Let
DI = Scope(xI ,D) \ xI , for all I. Then:

• seq(D) =
⋃

I (xI � seq(DI)).

Here, boxing and scoping take care of the two tasks mentionedabove, respectively.
Note that nodes lying in someScope(xI ,D)

⋂
Scope(xJ ,D) are duplicated.

B)D is positive.

1. Assume thatD is connected (in the ordinary graph-theoretic sense).

If D consists of a single positive node, we are done.

Otherwise we select a positive splitting rulex = (ξ, I) and proceed as follows.
By Proposition 6.13, each of the componentsDi obtained by splitting is anLS-
net whith a negative conclusion on an addressξi. Then:

• seq(D) =
⋃

i (x ◦ seq(Di)).

2. AssumeD =
⊎

i Ci, where theCi’s are the connected components ofD. Then:

• seq(D) =
⊎

i (seq(Ci)).

Proposition 7.1. If D is anLS-net on the interfaceΞ ⊢ ∆, seq(D) is an L-forest on
the same interface.

Proof. We have already established all partial results needed to prove this. �

This procedure applies to infinite L-nets, by coinduction. Indeed, one can formally
show that L-forests form a final coalgebra and theLS-nets form a coalgebra for a func-
tor F on sets, and thatseq is the associated unique coalgebra morphism. We only
sketch the construction below. The reader unfamiliar with final coalgebra semantics
can get the necessary background from, say [36].

• One considers the functorF in the category of sets and functions that takes a
setX to the disjoint union of the set of all finite sets whose elements are of the
form ((ξ, I), {. . . , ai, . . .}), where theai’s form a collection of elements ofX
indexed by a subset ofI, and of the set of all{. . . , ((ζ, J), aJ ), . . .}, where the
aJ ’s form a collection of elements ofX indexed by someN ⊆ Pf (ω).

• One proves that the collection of all L-forests forms a final coalgebra for this
functor. The situation is similar to that of, say, Böhm trees. The coalgebra
structure takes a positive (respectively negative) L-forest and decomposes it into
its root(s) and its immediate subforests.
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• Thanks to the Splitting Lemma, one can choose a decomposition for each posi-
tive LS-net, and codify this “oracle” in the form of a coalgebra structure on the
collection of allLS-nets.

• Thenseq(along the oracle) is the unique coalgebra morphism from this coal-
gebra to the final coalgebra. That it is a coalgebra morphism amounts to the
equations given above to defineseq(D).

More concretely, the progressive construction ofseq(D) yields at any step an actual
finite partΠ – the part of the forest that has been already recognized –, and a collection
of LS-nets to sequentialize, each associated with a leaf ofΠ.

8. Desequentializing a tree strategy

In order to define the desequentialization procedure, we need to introduce a new
notion, that of decoration.

Making the axioms explicit: decorations.In Section 4, we have illustrated the pur-
pose of desequentialization by taking as example the relation between proof nets and
sequent calculus proofs. Our aim is to remove some artificialsequentialization, while
preserving essential information:

1. axioms(multiplicative proof net = formula tree + axioms [30]);
2. dependency due to additive rules: some nodes must not be shared.

The second issue is addressed by our definition of additive union (cf. Section 6.6). As
for axioms, such information is present in the source L-forest (or design), but isimplicit
(and not uniquely determined). To make the information on the axioms explicit, we
introduce an auxiliary notion: we decorate each leafk with a set of addresses, which
we denote bylink(k).

The notion of decoration is closely related to the sequent calculus presentation of
an L-forest. In Section 2.2, we already sketched how to move from an L-forest to an
explicit sequent calculus style presentation. Given an L-forestΠ, one has to associate
to each nodek of Π a sequent of addresses. In particular, each leafk = (ξ, I) in the
forest should correspond to ageneralized axiomin the sequent calculus proof, of either
of the two forms

⊢ ξ,Γ
k = (ξ, I)+

⊢ Γ
k = †

(see Appendix Appendix A for details). This is where decoration helps: the sequent
associated with a leafk can be inferred fromlink(k) = {ξ1, . . . , ξn}: if k has label
(ξ, I) (resp. †), the sequent is⊢ ξ, ξ1, . . . , ξn (resp.⊢ ξ1, . . . , ξn). The other way
around, starting from a proof, we transfer the sequent information of the generalised
axioms to the link sets.

35



Decorated leaves as boxes.The idea of decoration is also associated with that oftrun-
cation. Suppose that we truncate the treeΠ after the nodek, leaving out the subtrees
Πi, abovek. The sequent associated to the nodek, which is now a leaf, is the interface
of the subtree

⋃
(k ◦ Πi). Hence, the addresses inlink(k) are meant as the addresses

which are used in theΠi’s. In this sense, a decorated leaf acts as a sort of (black) box:
we hide the content of the box (i.e.,

⋃
(k ◦Πi)) and only keep memory of the interface

(the conclusion of the box).

Link sets versus infinitary expansions.In ludics, identity axioms are interpreted by
infinitary strategies, called faxes in [13]. These strategies are an instance of the copy-
cat strategies of game semantics. In such infinitary strategies, every generated action
is eventually used. Faxes are the typical example of what we want to enclose in a box.
Actually, even if we are establishing general results, the kind of strategies we are really
interested in are those corresponding to proofs. Morally, the (real) use of link sets is to
deal with finite truncations of these strategies. Seen from that point of view, link sets
are a way to express (in a finitary way) the axioms.

Definition 8.1. A decoratedLS-net is anLS-netD in which all leavesk are equipped
with a finite setlink (k) of addresses (called the link set ofk), in such a way that
the conditions onLS-nets hold with respect to all addresses (thus, including those in
the link sets). The label of a node is now a decorated action, i.e., an action possibly
together with a link set . Two labels((ξ, I),Λ1) and((ξ, I),Λ2), with Λ1 6= Λ2, are
considered different6.

We still useD to denote a decoratedLS-net.

Observe that ifD is an L-net, and given an assignment of link sets to the leavesof
D, all what we have to check for it to yield a decoratedLS-net are conditionsParents
andAdditives.

From now on, we extend the definition of “a node uses an address” as follows:

Definition 8.2 (used addresses).Letk be a node labelled by an action and possibly a
link set. We say that the nodek uses an addressξ if eitherξ is the address of the action,
or appears in the link setof k.

The extension of the operators introduced in Section 6 to decorated L-nets is im-
mediate. The extended definition plays a role only when rooting an L-net on a negative
action: now (with the notation of Definition 6.4), we add7 an edge(ξ, I)← k for each
nodek such thatk is generated by(ξ, I), or k is a leaf such thatξi ∈ link (k) for some
i. We maintain the same notations as in Section 6.

The desequentialization procedure takes as input finite decorated L-forests. More
precisely we choose a special decoration discipline. In Appendix Appendix A, we
prove that it is always possible to choose a decoration whichsatisfies the following
property.

6This is natural if we consider that they correspond to different axioms.
7These new edges are close in spirit to theµ-pointers introduced by Laurent in his investigations on game

semantics for first-order (classical) logic [37].
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Definition 8.3 (well-decorated).A well decoratedLS-net is a decoratedLS-net D
such that all addresses of the interface, and all addresses generated by a negative
action ofD are used inD (in the sense of Definition 8.2).

Lemma 8.4. Every L-forest can be well decorated.

Proof. See Corollary Appendix A.5. �

Desequentialization procedure.Let Π be afinite well-decorated L-forest. Its dese-
quentializationdeseq(Π) is defined by induction as follows:

Π is negative.Let X = {xI , xJ , . . .} be the conclusion ofΠ. Let us callΠI the
subforest abovexI (i.e.,Π =

⋃
I (xI � ΠI)). Then:

• deseq(Π) = ↓
⋃

I (xI ◦ deseq(ΠI)).

Π is positive.

1. Assume thatΠ is a tree of conclusionx, using addressξ. If the tree is reduced to
a single node, then we are done (base case). Otherwise, it hasthe formΠ =⋃

i (x ◦ Πi), where eachΠi is the subforest of all the trees on the addressξi

(i ∈ I). Then:

• deseq(Π) =
⋃

i (x ◦ deseq(Πi)).

2. AssumeΠ =
⊎

i Πi. Then:

• deseq(Π) =
⊎

i (deseq(Πi)).

Remark 8.5. One checks easily that the sets of labels ofΠ and deseq(Π) are the same
(intuitively, no node is deleted), and that ifl is the label of a leaf inΠ, it also labels a
leaf in deseq(Π).

Proposition 8.6. If Π is a finite well decorated L-forest on the interfaceΞ ⊢ ∆, then
deseq(Π) is anLS-net on the same interface.

Proof. Thatdeseq(Π) is a partialLS-net is a consequence of Propositions 6.17 and
6.8 (that the hypotheses of the latter are met is a consequence of Remark 8.5).

ConditionPositivity follows from Lemma 8.7 below, and by (the upgraded) defini-
tion of rooting. �

Notice that decorations play a role only to prove thatdeseq(D) satisfies condition
Positivity: the well-decorated assumptionguarantees thatno rooting involved in the
construction is partial.

Lemma 8.7. Let Π be a well decorated L-forest on the interfaceΞ ⊢ ∆. All the
addresses of the interface are used in deseq(Π).

Proof. Similar to the proof of Lemma 12.6. �

37



X : A :

ξ0,I

α,{0}

α0,{0}

α00,{1}

ξ0,J

α,{0}

α0,{0}

α00,{2}

 ξ,{0}

ξ0,I

α,{0}

α0,{0}

α00,{1}

ξ0,J

α,{0}

α0,{0}

α00,{2}

α,{0}

α0,{0}

ξ,{0}

ξ0,I

α00,{1}

ξ0,J

α00,{2}

Figure 12: Two possible sequentializations

Remark 8.8. Note that we have usedinductionrather than coinduction in this section.
This is because the operations involved (additive union, rooting, decoration) do not
lend themselves to coinduction, unlike (disjoint) union and boxing: say, boxing on one
hand is a “black box” operation while rooting on the other hand requires visiting the
structure of the L-net (to look for where to add new edges).

We can think of the desequentialization of an infinite L-forest Π as follows: take
an (arbitrarily large) finite truncationΠ′ of Π, and graft appropriately on deseq(Π′)
the subforests that have been taken away by the truncation. The result depends on
the choice of the truncation, and is not a parallel L-net (since the grafted trees are
untouched), but it is the best one can hope.

9. Examples of sequentialization and desequentialization

9.1. Sequentialization
Consider the followingLS-netR:

α00, {2}

ξ, {0} α, {0}

α0, {0}ξ0, I ξ0, J

α00, {1}

(cf. Figure 2). We have two negative rules ({(ξ0, I), (ξ0, J)} and{(α0, {0})}), and
two positive conclusions, that are both splitting. To sequentialize, we choose one of
them. If we choose(ξ, {0}), we obtain the two trees on the left-hand side of Figure 12,
and then the designX. Instead, by choosing(α, {0}) we obtain the designA (on the
right).

9.2. Desequentialization
Example 1.Desequentializing eitherA or X in the example of Section 9.1, equipped
with the only possible uniform decoration

link(α00, 1) = {ξ0 ∗ I} , link(α00, 2) = {ξ0 ∗ J} ,

yields the original L-netR.
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Example 2.Our next example is a variant of the previous one and illustrates the process
of adding edges, on one hand because of rooting plus decoration, and of the other hand
because of additive union. Let us consider the design in Figure 13, where we just omit
an obvious negative action at the place of. . . . The only uniform decoration is:

link(b) = {α001, ξ0 ∗ I} , link(c) = {α002, ξ0 ∗ J} .

ξ0,I

α,{0}

α0,{0}

α00,{1}

...

b

ξ0,J

α,{0}

α0,{0}

α00,{2}

...

c

Figure 13: An L-forest ...

Following the desequentialization procedure, a few easy steps produce the two L-
netsD1,D2, represented in Figure 14. Note that by the decoration, rooting has pro-
duced edges fromb, c to (ξ0, I), (ξ0, J), respectively.

We then obtainD′
1 = Φ(D1) by adding the relation(ξ0, I)← (α00, {1}), andD′

2

in a similar way. (Note that, say the edge fromc to (ξ0, I) need not be shown anymore,
since it “holds” by transitivity.)

Finally, the superpositionD′
1

⋃
D′

2 produces the L-net on the right-hand side of
Figure 14.

9.3. Additives

As our last illustration, we resume the last example of Section 2.3. With the no-
tation of that section, we have that desequentialization applied to eitherD1 or D2

yieldsR, and that we get eitherD1 orD2 back when sequentializingR, depending on
whether we choose to start froma&b or fromc&d (botha&b andc&d are splitting).

b
cb c

α, {0}

α0, {0}

α00, {2}

ξ0, I ξ0, J

α00, {1}

α, {0}

α0, {0}ξ0, I

α, {0}

α0, {0}ξ0, J

α00, {1} α00, {2}
 

D2:D1:

Figure 14: ... and its desequentialization
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10. An algebraic presentation

In this section, we focus on theLS-nets generated by the constructors (rooting,
boxing, superposition, and additive union), and we single out two important classes of
LS-nets, obtained by consistently using rooting, or consistently using boxing, respec-
tively (cf. Section 6.2). In the first case, we speak ofparallel L-nets, which we regard
asabstract proof nets. In the second case, we get theL-forests, which correspond to
abstract sequent calculus proofs.

In the following, we denote withD+ a positive L-net, and withD−
σ a negative L-

net whose negative conclusion uses addressσ. We denote byk+ a (possibly decorated)
positive action.

Abstract proof nets.A parallel L-netis anLS-net generated by the following grammar:

D ::= D+ | D−
σ

D+ ::= E+
⊎

. . .
⊎

E+

E+ ::= k+ |
⋃

i∈I ((ξ, I)+ ◦D−
ξi
)

D−
σ ::= ↓

⋃
J (σ, J)− ◦D+

Such anLS-net hasminimal sequentiality,in the sense that the we use constructors of
minimal sequentiality.

Abstract sequent calculus proofs.The sequentialL-nets are the L-nets generated by
the following grammar:

D ::= D+ | D−
σ

D+ ::= E+
⊎

. . .
⊎

E+

E+ ::= k+ |
⋃

i∈I ((ξ, I)+ ◦D−
ξi
)

D−
σ ::=

⋃
J ((σ, J)− �D+)

It is clear that sequential L-nets and L-forests are one and the same thing.
In both syntaxes, the production ruleD+ ::= E+

⊎
. . .

⊎
E+ takes care of

graphs that are not connected. Notice also that, by construction, both classes of L-nets
hereditarily admit splitting.

Remark 10.1. 1. In the description ofsequentialL-nets, we have chosen the form
x+ ◦D, but we could write it also asx+ �D, the result being the same. WhenD

is an L-forest, positive rooting behaves in a “boxing-like”fashion inx+ ◦D. By
this observation, together with Remark 6.9, we see that the syntax of L-forests
is essentially a combination of boxings and disjoint unions(as expected for a
forest!).

2. In the productionD−
σ ::=

⋃
J ((σ, J)− �D+), we can replace the (disjoint) union

by the (trivial) additive union symbol (cf Remark 6.15). Hence the difference
between the two syntaxes indeed lies in a systematic use of rooting versus boxing.

Last but not least, according to the discussions in Sections7 and 8, the syntax of
L-forests can be read coinductively, while the syntax of parallel L-nets is inductive, and
hence defines finite graphs.
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11. Relating sequential and parallel strategies

In this section, we study the relation between L-forests andparallel L-nets. We
have already proved (Proposition 7.1) that for everyLS-net, seq(D) is an L-forest.
Conversely, the following is an immediate consequence of the definition of parallel
L-nets.

Proposition 11.1. For every finite L-forestΠ, deseq(Π) is a parallel L-net.

Every time we desequentialize an L-forestΠ, there is a way to resequentialize back
toΠ.

Theorem 11.2.Given a finite L-forestΠ, there exists a strategy of sequentialization
such thatΠ = seq(deseq(Π)).

Proof. We only consider the interesting cases.

Π is negative.Let us denote by{xI , . . . } the conclusion of the tree. SinceΠ =⋃
I (xI �Πi), its desequentialization isdeseq(Π) = ↓

⋃
I (xI ◦deseq(ΠI)). To sequen-

tialize, we use scoping. By Lemma 6.20 (ii),Scope(xI , (deseq(Π)))\xI = deseq(ΠI).
Hence

seq(deseq(Π)) =
⋃

I

(xI � seq(deseq(ΠI))) .

Π is positive. If the root isx, Π =
⋃

i (x.Πi). Sincedeseq(Π) =
⋃

i (x◦deseq(Πi)),
to sequentialize it we selectx as splitting rule. Removingx gets us back to the set of
all deseq(Πi)’s. Hence:

seq(deseq(Π)) =
⋃

i

(x ◦ seq(deseq(Πi))) .

�

Theorem 11.2 says that in the desequentialization there is no essential loss of infor-
mation. All dependency (sequentialization) which is takenaway can be restored.

Establishing a result in the opposite direction (i.e.,deseq(seq(D)) = D) only
makes sense starting from a parallel L-net, because asdeseq(Π) reduces sequentiality
to a “minimal” amount, ifD is not parallel there is no hope thatdeseq(seq(D)) = D.

Theorem 11.3. If R is a parallel L-net, it admits a sequentialization procedure such
that deseq(seq(R)) = R.

Proof. Following the destructors, we are guaranteed (i) to have splitting, and (ii) that
when we use scoping, we are in the situation described by Lemma 6.20. We just spell
out the definitions.

• If R is negative, we haveR− = ↓
⋃

I (xI ◦RI). By definition of sequentializa-
tion, we have

seq(R) =
⋃

I

(xI � (Scope(xI ,R) \ xI)) .
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But by Lemma, 6.20, we haveScope(xI ,R) \ xI = RI . Hence we have in fact
seq(R) =

⋃
I (xI � (seq(RI)), from which

deseq(seq(R−)) = ↓
⋃

I

(xI ◦ deseq(seq(RI)))

follows.

• If R is positive, assumeR+ =
⋃

i (x ◦ Ri) (all others cases are immediate).
By construction,x is a splitting positive rule, and we select it. We have that
seq(R) =

⋃
i (x ◦ seq(Ri)). Hence we have:

deseq(seq(R+)) =
⋃

i

(x ◦ deseq(seq(Ri))) .

�

In the result above, we follow the structure of the term describing the L-net, by sub-
stituting all occurrences of boxing with occurrences of rooting, and vice-versa. IfR =
R′ as L-nets, even if the description is different,deseq(seq(R)) = deseq(seq(R)). In
case we do not follow the structure of a term, it is possible that the operation of scoping
cancel some actions; this is due to the fact that the L-net arenot typed (i.e. are taken
on a universal arena, without constraints).

Corollary 11.4 (Completeness).AnLS-netD is a parallel L-net if and only if there is
an L-forestΠ such thatD = deseq(Π). In particular, parallel L-nets areLS-nets.

Remark 11.5. The crucial point in the proof of Theorem 11.3 is that the following
holds for a parallel L-net:

R− = ↓
⋃

I

(xI ◦ (Scope(xI ,R) \ xI)) ,

i.e. we can decompose (or destruct) a negative parallel L-net (scoping) and then re-
construct it (rooting and additive union). This does not hold in general for all (finite)
LS-nets.

Remark 11.6. We have omitted decorations in this section for simplicity.To be per-
fectly rigorous, one should maintain decorations through all the sequentialization and
desequentialization process. For example, the sequentialization of a well decoratedLS-
net is defined just as the sequentialization of anLS-net (the only difference concerns
the base case, where the decorations are kept).

12. Restricting the picture to designs

In this section, we show that we can get rid of the MIX rule (andhence restrict
our attention to Girard’s original designs) by (unsurprisingly) imposing an additional
connectedness assumption onLS-nets.
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Given an L-netD and a sliceS ⊆ D, aswitching graphofS is a subgraph obtained
fromS by choosing a single entering edge for each negative node, and deleting all the
other ones. A slice isS-connectedif all its switching graphs are connected. Finally, we
call an L-net S-connected if all its slices are.

An S-connected L-forest is obviously a tree, and in fact it isa design.

Lemma 12.1. An L-forestΠ is S-connected iff it is a design (in the sense of [13]).

Sequentialization and desequentialization preserve S-connectedness, and hence by
restriction to S-connectedLS-nets our results specialize to designs, rather than arbitrary
L-forests. We will give details only for the desequentialization. The proofs concerning
the sequentialization are similar and simpler.

Lemma 12.2 (Slices).LetD+ =
⋃

i (x+ ◦ Di). All slices ofD have the formS =⋃
i (x+ ◦Si), where eachSi is a slice ofDi.

LetD− = ↓
⋃

I (xI ◦DI) =
⋃

I Φ(xI ◦DI). If S is a slice ofD, thenS is a slice
of Φ(xI ◦DI) (for someI), and conversely. Moreover,SI = S \ xI is a slice ofDI .
On can recoverS fromxI ◦SI by adding appropriate edges from some nodes ofSI

to xI .

Proposition 12.3. If the L-netD is S-connected, seq(Π) is S-connected, and hence it
is a design.

In order to restrict the converse transformation, we need a strengthening of Lemma
8.7.

Definition 12.4. A uniformly decoratedL-forest is an L-forest that is well decorated
slicewise, i.e., each sliceS uses all the addresses of the interface, and all the addresses
generated by a negative action ofS.

Lemma 12.5. Every L-forest can be uniformly decorated.

Proof. See Corollary Appendix A.5. �

There is a bijective correspondence between uniformly decorated L-forests, and
their sequent calculus representation (Proposition Appendix A.4).

Lemma 12.6 (Used addresses).LetΠ be a uniformly decorated L-forest on the inter-
faceΞ ⊢ ∆. If S is a slice of the decorated L-net deseq(Π), all the addresses of the
interface are used inS.

Proof. The claim is true ifΠ consists of a single decorated action on⊢ Γ (Π is
essentially reduced to an axiom).

AssumeΠ =
⋃

i ((ξ, I)+ ◦ Πi) is positive and has interface⊢ ξ,∆. EachΠi is an L-
forest of interfaceξi ⊢ ∆. For eachi, any sliceSi ⊆ deseq(Πi) uses all the addresses
in ξi ⊢ ∆. Hence

⋃
i ((ξi) ◦ deseq(Si)) is a slice which uses all the addresses in

⊢ ξ,∆.
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AssumeΠ =
⋃

I ((ξ, I)− � ΠI) is negative and has interfaceξ ⊢ ∆. By Lemma 12.2,
T is a slice in ↓

⋃
I ((ξ, I)− ◦ deseq(ΠI)) iff T is a slice ofΦ((ξ, I) ◦ deseq(ΠI)), for

someI. Moreover,TI = T \ xI is a slice ofdeseq(ΠI).
EachΠI is an L-forest of interface⊢ ξ∗I,∆ HenceTI uses all the addresses in this

interface, and we can obtain the sliceT′ = (ξ, I)− ◦SI which uses all the addresses in
ξ ⊢ ∆. Finally, sinceT is obtained fromT′ by adding some edges, this operation does
not change the nodes, and hence does not change the set of addresses that are used.�

Proposition 12.7. If Π is a finite design, and if we choose a uniform decoration forΠ,
then deseq(Π) is S-connected.

Proof. By assumption,Π is an S-connected L-forest.

Π is negative.By Lemma 12.2,S is a slice ofdeseq(Π) =
⋃

I Φ(xI ◦ deseq(ΠI))
iff S is a slice ofΦ(xI ◦ DI), for someI. We have thatSI = S \ xI is a slice of
deseq(ΠI). By hypothesis,SI is S-connected. LetxI = (ξ, I). By Lemma 12.6, in
xI ◦SI there are some edges connectingxI to the nodes ofSI , those using someξi.
We obtainS by adding some more edges.

We conclude by observing that (i) any choice of an edge entering xI leavesxI

connected to a node ofSI , (ii) any switchingS of S restricted toSI is a switching of
SI , and (iii) by hypothesis, any two nodes ofSI are connected inS.

Π is positive. By Lemma 12.2,S is a slice ofdeseq(Π) =
⋃

i (x ◦ deseq(Πi)) iff
S =

⋃
i (x ◦Si), andSi is a slice ofdeseq(Πi), for all i. By induction, all theSi’s

are S-connected, and henceS is S-connected. �

13. Discussion and further work

In this section, we point to some follow-up developments that have taken place
after our preliminary presentation [12], and we indicate a number of open questions
and directions for future work.

13.1. Some follow-up developments

Proof nets. Above, we have claimed that tree strategies can be seen asabstract se-
quent calculus proofs, and that L-nets correspond toabstract proof nets, and we have
argued that one could move gradually between the two notions. In [38], Faggian and
Di Giamberardino have explored and realized these ideas in atyped setting. They have
introduced a new syntax for (multiplicative) proof nets, called J-nets: a J-net is a typed
L-net. They give a new, remarkably simple proof of sequentialization [39], based on
the following insights. By building on the semantical experience, graphs (proof nets)
can be treated as orders. To add sequentiality corresponds to adding edges, in such a
way that the correctness criterion is still satisfied. When agraph is saturated (no edge
can be added without violating the acyclicity condition of the correctness criterion), it
turns out to be a tree, and hence can be seen as a sequent calculus proof.

The extension of this result to additives is also possible, and is studied by Di Gi-
amberardino in his PhD thesis [40, 24].
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Event Structures.The goal of generalizing the notion of innocent strategy in such a
way that sequentiality is relaxed is pursued further in workby Faggian and Piccolo
[41, 33, 22, 23]. They observed that L-nets are in fact a classof event structures [42].
Event structures are a fundamental tool of the “true concurrency” approach to the study
of parallel and concurrent programming languages: concurrency, dependency, and con-
flict are directly expressed. Namely, an event structure describes a concurrent system
in terms of a partial order, which specifies the causality relation between actions, and
a conflict relation, which specifies which actions are mutually exclusive. L-nets can be
naturally presented as event structures: the order relation is the same, and the conflict
relation is induced by “using the same name”. More precisely, L-nets appear as a class
of confusion freeevent strategies, where conflict (choice) is localized in cells. Our
notion of rule corresponds directly to the notion of cell.

Linear pi-calculus. The bridge between game semantics and concurrency theory that
we discussed in the previous paragraph allows also for a gamesemantical analysis of
the linear pi-calculus, introduced by Yoshida, Honda and Berger [34]. In [33], it is
shown that ludics is a model for the finitary linear pi-calculus. More precisely, the
translation (as in [43]) of linear pi-calculus into event structures produces anL-forest.
Somehow surprisingly, this seems to say that an L-forest hassome degree of “paral-
lelism”, as it corresponds to a term of an asynchronous pi-calculus. The restriction to
designs is obtained if we furthermore assume a “sequentiality” constraint (expressed –
and named such – in [34] as “at most one output is active at eachsingle time”).

This raises a number of interesting questions. The translation from the linear pi-
calculus into event structures follows [43] and closely corresponds to the sequential
constructors given here (cf. Section 10). We wonder what theparallel constructors
would produce, and what a “parallel” strategy captures (seealso below).

Completeness.It is natural to wonder if our setting would allow for a completeness
result with respect to a (focalized) version of MALL. The answer is positive, and the
calculus is quite naturally the calculus underlying Ludics, i.e. HS (see Section 2). The
technical development of the construction goes beyond the scope of this paper, however
the details are provided in a technical report [44]. With respect to the material presented
in this paper, there are only two missing ingredients: the definition of an arena, and a
notion of total strategy (since in this paper we work in a general, untyped setting).
Assume to take the natural definitions. By exploiting the immediate relation between
HS proofs and L-forests, it is immediate to interpret an HS proof into into a parallel
L-net: from the proof, one moves to the corresponding L-forest, and one then applies
desequentialization. The converse can be obtained by factorizing via sequentialization:
given a total parallel L-netR on the suitable arena, we can sequentialize it into the
L-forest⊆ R, which corresponds to a HS proof.

13.2. Some directions for future work

Graduating sequentiality.The sequentialisation and desequentialisation procedures
that we have defined here are globally and (co)inductively defined. We should be able
to follow the lines of Section 13.1 in our untyped setting, since there is no essential
difference between J-nets and L-nets. This would enhance the meaning of “maximal
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sequentiality” as a saturation in the sense that adding any other edge would create cy-
cles. However, we still miss and would like to have a more precise characterization and
understanding of what it means to have minimal sequentiality (see also next paragraph).

Induced equivalence.A notion of parallel strategy is not only of interest as an “asyn-
chronous” model of computation, but could play the same rolethat proof nets play in
providing an equational theory for proofs. It would be nice to have an independent
characterization of the equivalence relation on L-forestsinduced by desequentializa-
tion:

Π1
∼= Π2 ⇐⇒ deseq(Π1) = deseq(Π2) .

Also, in reference to the linear pi-calculus interpretation mentioned above, it would be
interesting to understand the induced equivalence relation on processes.

Exponentials.A direction in which we expect a rather straightforward extension of
our techniques is the setting of Ludics with exponentials. In [15], building on Maurel’s
PhD thesis [45], Basaldella and Faggian have shown that ludics can be extended with
repetitions, so as to have exponentials. We expect that L-nets can be extended also
to designs with repetitions, leading to some analogue of exponential proof nets. In
this perspective, it might be useful to take profit of the co-inductive constructions and
methods developped by Terui and Basaldella [46, and citations therein].

From proofs to programs.As we already mentioned, in this paper we have chosen to
work in a framework, Ludics, which originated from a proof-theoretical analysis, and
maintains a close and direct connection with proofs, to profit from the toolkit accu-
mulated by the proof-theory of Linear Logic. We hope that similar methods as those
proposed in this paper can be extended to a larger class of strategies, thus leading to
models that can handle programming languages rather than proofs.

Acknowledgments.We wish to thank Dominic Hughes and Rob van Glabbeek for fruit-
ful exchanges on the technique of domination, and Olivier Laurent for numerous dis-
cussions on MALL proof nets.

Appendix A. Sequent calculus presentation of L-forests anddecoration

In this section, we recall the sequent calculus for designs [13] (see also [17]). We
add aMIX rule (that isnotpart of Girard’s original framework in [13]), and we examine
the correspondence between such extended designs and L-forests.

Notation. In this section,Π will range over sequent calculus proofs. This does not
conflict with our use ofΠ to denote L-forests, since we show here in some detail that
they are essentially one and the same thing.

Girard’s original sequent calculus for designs is the following (an interface is called
well-formed if it consists of pairwise disjoint addresses with respect to the prefix or-
dering):

Daimon: (⊢ Λ well formed)
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⊢ Λ
†

Positive rule (I ⊆ ω finite, one premise for eachi ∈ I, all Λi’s pairwise disjoint and
included inΛ, ⊢ ξ,Λ well formed):

· · · ξi ⊢ Λi · · ·

⊢ ξ,Λ
(ξ, I)+

Negative rule (N ⊆ Pf (ω) possibly infinite, one premise for eachJ ∈ N , all ΛJ ’s
included inΛ, ξ ⊢ Λ well formed):

· · · ⊢ ξ ∗ J,ΛJ · · ·

ξ ⊢ Λ
{(ξ, J)− : J ∈ N}

MIX (⊢ Λ1, . . . ,Λn well formed, allΛm’s pairwise disjoint)

⊢ Λ1 . . . ⊢ Λn

⊢ Λ1, . . . ,Λn
MIX

(Replacing theΛi’s with concrete contextsΓi of formulas, this is the well-known MIX
rule of linear logic.)

Remark Appendix A.1. The negative rule conveys some inherent weakening. Each
action(ξ, J)− creates simultaneously all the addressesξj (j ∈ J), which are recorded
in the sequent, regardless of whether they will be used or not.

Applications of the rule Daimon yield positive leaves in a proof tree. We will also
consider as a positive leaf any proof tree of the following form:

. . . ξi ⊢ Λi
∅

. . .

⊢ ξ,Λ
(ξ, I)+

where all negative rules are applied withN empty. We will write simply:

⊢ ξ,Λ
(ξ, I)+

We now briefly review how we can translate (in this extended setting) a sequent
calculus proofΠ of a sequentΞ ⊢ Λ into an L-forestΠ on the interfaceΞ ⊢ Λ. We use
the syntax introduced in Section 10. We omit the (easy) proofthatΠ is an L-forest.

• Daimon. ThenΠ = †.

• (ξ, I)+. ThenΠ =
⋃

i∈I ((ξ, I)+ ◦ Πi), where theΠi’s are the proofs of the
sequentsξi ⊢ Λi (i ∈ I). Note thatΠ is a tree.

• {(ξ, J)− : J ∈ N}. ThenΠ =
⋃

J ((ξ, J)− � ΠJ ), where theΠJ ’s are the
proofs of the sequents⊢ ξ ∗ J,ΛJ .
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• MIX. ThenΠ =
⊎

m Πm, where theΠm’s are the proofs of the sequents⊢ Λm’s.

It should be clear that the rules ofΠ (as defined in Section 3) are in one-to-one
correspondence with the occurrences of rules inΠ. By going fromΠ to Π, we have
just forgotten all sequent informations except at the root.We now examine the converse
direction, from L-forests to sequent calculus proofs.

Proposition Appendix A.2. The mappingΠ 7→ Π is onto. More precisely, for every
L-forestD on an interfaceΞ ⊢ Λ there exists auniform sequent calculus proofΠ of
conclusionΞ ⊢ Λ such thatD = Π, where a uniform proof is a proof in which the
positive and negative rules are constrained as follows:

· · · ξi ⊢ Λi · · ·

⊢ ξ,
⊎

i Λi

(ξ, I)+

with the side condition thatΛ =
⋃

i Λi (i.e., no address is lost)

· · · ⊢ ξ ∗ J,Λ · · ·

ξ ⊢ Λ
{(ξ, J)− : J ∈ N}

i.e., allΛJ ’s are chosen maximal (and equal toΛ).

Proof. We have to extend the setting of [13] (see also [17]) from designs to L-forests,
and to make sure that the target is restricted to uniform proofs. LetD be an L-forest.
There are four cases. In each case, we sketch how to (coinductively) generate the
final rule of the proof (we give more details for the quite similar proof of Proposition
Appendix A.4 (2) below).

1. If D is a leaf, then the associated proof is its interface.
2. If D is negative on interfaceξ ⊢ Λ, then it is easily seen that each⊢ ξ ∗ J,Λ

is an interface for the corresponding subtree ofD, so that we can carry on the
construction (cases 1, 3, 4).

3. If D is a positive L-forest with more than one root, then we transform each of
the treesEj of D into a proof of⊢ Λ′

j , where eachΛ′
j consists of the minimal

addresses used inEj , and then we accommodate the constraintΛ =
⋃

j Λj by
dispatching arbitrarily anyξ ∈ Λ \ (

⋃
i Λ

′
i) to exactly one of theΛ′

j ’s, yielding
suitableΛj ’s.

4. If D is positive and is a tree, then we carry on the construction onits immediate
subtrees (case 2), and we assemble them essentially as in case 3.

�

Remark Appendix A.3. The uniform proof discipline described in the statement of
Proposition Appendix A.2 corresponds to pushing weakeningmaximally to the leaves.

The assignment of a sequent calculus proof to an L-forest is non-deterministic, i.e.,
the mapΠ → Π is not injective. But, with decorations (cf. Section 8), we get a
bijective correspondence. We recall (cf. Definitions 8.1, 8.3, and 12.4) that:
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• a decorated L-forest is an L-forestD in which all leavesk are equipped with a
finite setlink (k) of addresses (called the link set ofk), in such a way that the
conditions on L-nets hold with respect to all addresses (including those in the
link sets);

• a well decorated L-net is a decorated L-netD such that all addresses of the
interface, and all addresses generated by a negative actionof D are used inD,
i.e., appear as a label of the underlying L-net or in a link set;

• a uniformly decorated L-forest is a decorated L-forestD such that every slice of
D is well decorated.

Note that the interface of a well decorated L-net is determined by the rest of the struc-
ture: it is the set of all minimal addresses appearing in the L-net (for non decorated
L-nets, we have only an inclusion of the latter set in the interface).

Proposition Appendix A.4. 1. Well decorated L-forests are in one-to-one corre-
spondence with sequent calculus proofs (of their uniquely determined interface)
subject to the restriction that in all applications of the positive rule (resp. nega-
tive rule) we have

⊎
i∈I Λi = Λ (resp.

⋃
J∈N ΛJ = Λ).

2. Uniformly decorated L-forests are in one-to-one correspondence with the proofs
subject to the further restriction of uniformity (ΛJ = Λ, for all J , cf. Proposition
Appendix A.2).

Proof. 1. The correspondence in one direction is obtained by adapting Π, as fol-
lows: for each leaf with conclusion⊢ Λ (resp. ⊢ ξ,Λ) obtained by an application
of † (resp. (ξ, I)+), the translation is now† (resp. (ξ, I)+) with link (†) = Λ (resp.
link((ξ, I)+) = Λ). It is easily checked that the respective restrictions on the construc-
tion of proofs ensure thatΠ is a well decorated or a uniformly decorated L-forest.

Conversely, given a well decorated L-forestD, we associate (deterministically) a
proof of its interface, as follows.

• D =
⊎

i Ci has several positive conclusions. Then we translate each ofthe trees
C1, . . . ,Cn of D, yielding proofs of sequents⊢ Λ1, . . . ,⊢ Λn. By condition
Additives we are sure that theΛi’s are distinct. Therefore we can apply the MIX
rule, and we defineD as

C1 . . . Cn

⊢ Λ1, . . . ,Λn
MIX

where⊢
⊎
Λi is clearly the interface ofD.

• D has conclusionk = † with link(k) = Λ. Then we can use the positive rule
and defineD as

⊢ Λ
†

• D has only one positive conclusion(ξ, I)+. If D is reduced to a leaf, then we
proceed as in the previous case. IfD =

⋃
{j∈J} ((ξ, I)+ ◦Dj), for someJ ⊆ I,
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by the same reasoning as in the first case, we have that theDj ’s are proofs of
sequents⊢ Λj, for paiwise disjointΛj ’s. Then we defineD as

. . . Dj . . . ξk ⊢
∅

. . .

⊢ Λ
(ξ, I)+

wherej (resp.k) ranges overJ (resp. I \ J), and whereΛ is the union of the
Λi’s.

• D =
⋃

J ((ξ, J) �DJ). By definition of well decorated L-nets, the interface of
eachDJ is ⊢ ξ ∗ J,ΛJ . Then we can use the negative rule and defineD as

. . . DJ . . .

ξ ⊢ Λ
{(ξ, J)− : J ∈ N}

whereN = {J : (ξ, J)− is a root ofD} andΛ is the union of theΛJ ’s.

It is straightforward to prove that this transformation is inverse to the transformation
Π 7→ Π.

2. This correspondence is simply obtained by restricting the correspondence to uni-
formly decorated L-nets and to uniform proofs. �

Corollary Appendix A.5. Every L-forest can be uniformly decorated, and hence a
fortiori well decorated.

Proof. To an L-forestD, we can associate a uniform proof by Proposition Appendix
A.2, and then a uniform decoration, by Proposition AppendixA.4. �

Remark Appendix A.6. Note that the bijective correspondences of Proposition Ap-
pendix A.4 induce a bijective correspondence between the link sets used in the dec-
oration of an L-forest and the generalized axioms used in thecorresponding sequent
calculus proof.

Appendix B. Proof of the Splitting Lemma

In this section, we prove Lemma 6.13, namely that everyLS-netD has a splitting
conclusion.

We recall from section 6.5 that a negative ruleW = {. . . , wI , . . .} of an L-net
D is called splitting if either it is conclusion of theLS-net (eachwI is a root), or if
after deleting all the edgeswI → w there is no more connection (i.e., no sequence of
consecutive edges) between any of thewI ’s andw, and that a positive conclusion ofD
is called splitting if all negative rules just above it are splitting.

If D is negative, then the Splitting Lemma holds vacuously. For positiveD’s, we
first establish the following Negative Splitting Lemma.
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Lemma Appendix B.1 (Negative Splitting Lemma). Every positiveLS-netD which
has a negative rule has a splitting negative rule among all the negative rules of level 1
(i.e., located just above a conclusion).

Our proof is an adaptation to our setting of the proof of the similar lemma in [20]. A
switching pathx0 . . . xn is calledstrong(and denotedx0 ⇐ xn) if either its last node
is positive or if it ends upwards in the last node. Strong switching paths satisfy the
following concatenation property: ifγ1 is a strong switching path andγ2 is a switching
path such that their concatenationγ1γ2 is a rule path (cf. Section 5), thenγ1γ2 is
switching, and if moreoverγ2 is strong, thenγ1γ2 is strong.

Definition Appendix B.2 (Domination). Given anLS-netD, a negative ruleX and
a finite set of nodesG, we say thatG is anX-zone if for everyz ∈ G there are nodes
x ∈ X andx′ such thatx← x′ ⇐ z, where the pathx′ ⇐ z is included inG. Given a
nodez of D, we say thatX dominatesz, denotedX ED z (or simplyX E z), if there
exists anX-zoneG in D such thatz ∈ G. We say that the zoneG and the sequence
x← x′ ⇐ z witnessX E z.

The following statement lists some simple consequences of the definition of domi-
nation.

Lemma Appendix B.3. 1. X-zones are closed under unions.
2. If X E z is witnessed by a sequencex← x′ ⇐ z, thenX dominates every node

of the pathx′ ⇐ z.
3. If x← y for somex ∈ X , thenX E y.
4. Given a negative ruleW , if X dominates a nodew ∈ W , thenX dominates all

w′ ∈ W .
5. If X E y, and ify ← z, or if z ← y andz is not negative, thenX E z.

Proof. The first three parts of the statement are obvious. LetX E w be witnessed
by G andx ← x′ ⇐ w. By definition of strong, the pathx′ ⇐ w terminates with
k ← w. Then we obtain a strong path to anyw′ ∈ W by just replacing the last edge
with k ← w′. It follows thatG∪W is anX-zone, and therefore(∀w′ ∈ W X E w′).

We now prove the last assertion of the statement. LetG andx ← a ⇐ y be a
witness ofX E y. If z does not belong to a rule that intersects the sequencea . . . y, then
the sequencea . . . yz is a path, that is switching by the assumptions. HenceG ∪ {z}
andx← a ⇐ z are a witness forX E z. If z intersects the sequencea . . . y, then we
conclude using the second and fourth parts of the statement. �

Thanks to Lemma Appendix B.3, we will henceforth safely assume thatX-zones
arerule-saturated, i.e. are unions of rules.

The notion of domination extends to rules. LetW be a rule. We writeW1 E W2

if there existsw2 ∈ W2 such thatW1 E w2 (or, equivalently, ifW1 E w2 for all
w2 ∈ W2, by Lemma Appendix B.3). IfX is not dominated, we say that it isfree.

Lemma Appendix B.4. Domination is transitive.
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Proof. AssumeX E Y andY E Z, witnessed by (rule-saturated)G andx ←
a ⇐ y, and byG′ andy′ ← b ⇐ z (z ∈ Z, y, y′ ∈ Y , x ∈ X), respectively. By
Lemma Appendix B.3, we can assumey = y′. It is enough to show thatG′ ∪ G

is anX-zone, and for this we only have to considerz′ ∈ G′ \ G, if any, witnessed
by y′′ ← b′ ⇐ z′. Let z′′ be the last node in the sequencey′′b′ . . . z′ which is in
G, witnessed byx′ ← a′ ⇐ z′′. Then, concatenating with the rest of the sequence
from (the successor of)z′′ to z′, we obtain a path (by construction, and becauseG is
rule-saturated). This path is strong and switching becauseits constituents are. �

Lemma Appendix B.5. Let W be a negative rule. Ifw ∈ W is below a node of a
switching cycleC, thenW dominates all nodes of the cycle. Ifw1, w2 ∈ W are such

thatwi
+
← z0 andwj

+
← zn, thenW dominates every node in a switching path fromz0

to zn.

Proof. We prove the second part of the statement (the reasoning is the same for the
first part). LetG1 (resp. G2) be the set of nodes on a path going up fromw1 to z0
(resp. fromw2 to zn). We will show thatG1 ∪ G2 ∪ C is aW -zone. ThatG1 and
G2 areW -zones follows readily from Lemma Appendix B.3. Letz ∈ C. BecauseC
is switching, we have eitherz0 ⇐ z or zn ⇐ z. Suppose that we have, say,z0 ⇐ z.
Let z′1 be the first node on the way up fromw0 to z0 that belongs to a rule intersecting
z0 ⇐ z at somez′2. Then the sequence obtained by going up fromw1 to z′2 and then to
z is witnessingW E z. �

Lemma Appendix B.6. Let D be afinite LS-net. If a ruleX intersects a switching
cycle, thenX is dominated by an additive ruleW which intersects no switching cycle.

Proof. We construct a sequence of negative rulesWi as follows. We setX = W0.
If Wi intersects a switching cycle, then applying the conditionCycles gives us a rule
Wi+1. We haveWi+1 E Wi, by Lemma Appendix B.5. At each iteration the union
of the cycles increases strictly, and hence by finiteness ofD we eventually reach some
negative ruleWn = W which intersects no switching cycle. Moreover, we haveW E

X by Lemma Appendix B.4. �

Due to the finiteness condition in the previous lemma, we willfirst establish the
Splitting Lemma in the finite case, and then show how to lift the result also to infinite
LS-nets.

Lemma Appendix B.7. If X E X , then X is in a switching cycle.

Proof. If X E X , we havex ← a ⇐ x for somex ∈ X . Then we can close the
path froma tox with the edgex← a. Because the path froma tox is strong, the cycle
is switching. �

Proposition Appendix B.8. Let D be a finiteLS-net. Every negative rule is either
free or dominated by a free negative rule. As a consequence, if there are negative rules,
there exists a free negative rule.
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Proof. The proof is by contradiction. LetX be a negative rule that is neither free
nor dominated by a free negative rule. We will build an infinite sequence of rulesXi

which are all distinct, are all dominated, and are such that

. . .Xi+1 E Xi E . . .X1 E X0 E X ,

contradicting the finiteness ofD. We takeX0 = X . By assumption,X0 is not free.
Suppose that we have constructed the sequence up toXi. We distinguish two cases:

1. If Xi is not in a switching cycle, we choose anyXi+1 such thatXi+1 E Xi (this
is possible sinceXi is not free by induction hypothesis). ThisXi+1 is fresh as
otherwise we would have by transitivityXi E Xi, contradicting our assumption
onXi, by Lemma Appendix B.7.

2. If Xi is in a switching cycle, then by Lemma Appendix B.6 we can choose a
rule Xi+1 such thatXi+1 intersects no switching cycle. ThisXi+1 is fresh as
otherwise we would have by transitivityXi+1 E Xi+1, and this contradicts our
assumption about the choice ofXi+1, by Lemma Appendix B.7.

In both cases, we have constructed a freshXi+1 such thatXi+1 E Xi. Moreover, by
transitivity,Xi+1 E X , from which it follows thatXi+1 is not free. �

Let X,Y be distinct negative rules.

• We writeX ←→ Y if there is a switching pathz0 . . . zn (called witnessing path)
such thatx← z0 andzn → y, for somex ∈ X andy ∈ Y .

• We writeX →← Y if X,Y belong to the same bipole, i.e.,x → k andy → k,
for somek and allx ∈ X andy ∈ Y .

Lemma Appendix B.9. If X , Y andZ are negative rules such thatX 6= Y , X E Z

andY E Z, thenX ←→ Y .

Proof. Considerx ← a E z (for somex ∈ X andz ∈ Z). Let z′ be the first node
on the path froma to z such thatY E z′ (and hencey ← b ⇐ z′ for somey ∈ Y ).
Then we get a path witnessingX ←→ Y by going froma to z′ and then fromz′ to
b. This sequence of nodes is a rule path since if it were not, there would bez1 in the
first portion andz2 in the second portion belonging to the same rule, but we have that
Y E z′ impliesY E z2 which in turn impliesY E z1, contradicting the minimality of
z′. It is switching since the path fromb to z′ is strong. �

Lemma Appendix B.10. If X is a free negative rule ofD and does not split, then
there exist free negative rulesY, Z ofD such thatX →← Y andX ←→ Z.

Proof. Let c be the node just belowX . SinceX does not split, for somex ∈ X we
can form a cycle (in the ordinary sense of graph theory, i.e. without the disjoint rules
assumption)xc . . . ax, without using any edge betweenc andX other thanc ← x.
SinceX is free,c is a conclusion of the net, and the next node on the cycle must be
somey such thatc ← y. By construction,y belongs to a ruleY distinct fromX , and
thus we haveX →← Y .
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Next we observe that we cannot haveX E x, becauseX is free, and thatX E a

becausex ← a (since the only edge ofD out ofx is already used). Letb be the first
node, following the cycle in the directionxc . . ., such thatX E b. The nodez′ before
b must be negative and we must havez′ ← b as otherwise we would haveX E z′

by Lemma Appendix B.3. LetZ ′ be the rule to whichz′ belongs. Then we have
X ←→ Z ′. If Z ′ is free, we can setZ = Z ′. If Z ′ is not free, it dominates some free
Z, by Proposition Appendix B.8, and we conclude by Lemma Appendix B.9 (since
X E {b}, andZ E {b} by transitivity). �

We are now able to prove the Negative Splitting Lemma forfiniteLS-nets, i.e. for
LS-nets having finitely many nodes.

Proof (Negative Splitting Lemma, finite case).If theLS-netD has no splitting negative
rules, then all its conclusions must be positive, and starting from a free negative rule
X0 (whose existence is guaranteed by Proposition Appendix B.8), and using again and
again Lemma Appendix B.10, we can build an infinite sequenceX0 →← X1 ←→
X2 →← . . . whereXi+1 is a free negative rule andXi+1 6= Xi, for all i. Since there
are only finitely many free negative rules, we haveXi = Xj = X for somei < j.
By the definition of the→← and←→ relations, we can form a switching sequence of
nodes starting inXi = X and ending inXj = X which is nondegenerate (i.e. of length
at least 2) sinceXi 6= Xi+1. But this sequence is not guaranteed to be a rule path. To
build a rule path, we take two nodesz1 andz2 at minimal distance in the sequence
such thatz1 andz2 belong to the same rule. Again, this distance is non-degenerate,
asz1 andz2 cannot belong to the same path witnessing someX2k+1 ←→ X2k+2

(i ≤ 2k + 1 < j), and moreover, by the same reason, the pathz1z
′
1 . . . z

′
2z2 from z1 to

z2 must cross someXn. We distinguish two cases:

1. If z′1 ← z1 or z′2 ← z2, say,z′1 ← z1, then we also havez′1 ← z2, and adding
this (reversed) edge to the path fromz′1 to z2 yields a switching cycle. Then, by
a (weakened form of) Lemma Appendix B.6, we obtain thatXn is dominated.

2. If z1 ← z′1 andz2 ← z′2, then we are in the situation of the (second part of the
statement of) Lemma Appendix B.5, and we also obtain thatXn is dominated.

We have reached a contradiction, sinceXn is free by construction. 2

The Negative Splitting Lemma holds actually for arbitraryLS-nets. The following
definition and lemma ensure a finiteness condition, even if our LS-netD is infinite.

Definition Appendix B.11. LetD be anLS-net whose conclusions are all positive. We
denote byNeg1(D) the set of negative rules that are just above a conclusion (i.e., the
set of rules of level 1).

Lemma Appendix B.12. 1. The setNeg1(D) is finite.
2. Every free (negative) rule is inNeg1(D).

Proof. By the finiteness of the interface, there are finitely many conclusions, and
since there are are only finitely many rules just above a positive rule, it follows that
Neg1(D) is finite. Suppose thatW is a rule of level> 1, then, going down from
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W , we reach a ruleW ′ that dominatesW (thatW ′ E W follows by repeated use of
Lemma Appendix B.3). The second part of the statement follows. �

Proof (Negative Splitting Lemma, infinite case).Let D be an infiniteLS-net. We con-
centrate onNeg1(D). For each pairX,X ′ ∈ Neg1(D) such thatX E X ′, we take
anX-zone witnessing this domination. LetF be a minimal (finite)LS-net containing
these zones, obtained by possibly adding in a minimal way positive views to the setF′

of all viewspkq, wherek ranges over the union of the zones (note thatF′ is already a
partial L-net by Lemma 6.1). By construction,Neg1(F) consists of all setsX ∩F such
thatX ∈ Neg1(D) andX ∩ F 6= ∅. Moreover, for any twoX,X ′ ∈ Neg1(D), we
have, by construction ofF:

X ED X ′ ⇔ (X ∩ F 6= ∅ , X ′ ∩ F 6= ∅ , and (X ∩ F) EF (X ′ ∩ F)) .

It follows that if (X ∩F) ∈ Neg1(F) is free (inF), thenX is free (inD), using the fact
that whenever a rule is dominated, it is dominated by a rule inNeg1(D).

Now, suppose that there exists a negative ruleX of D that is neither free nor dom-
inated by a free rule. We can assumeX ∈ Neg1(D) since this property is a fortiori
true of any negative rule below. Then, as we noted above,X ∩ F is not free. Neither
canX ∩ F be dominated by a free ruleX ′ ∩ F, because then we would have thatX ′ is
free andX ′ ED X . ThereforeX ∩ F is neither free nor dominated by a free rule inF,
contradicting the Negative Splitting Lemma (finite case). 2

We now prove the Splitting Lemma, as a consequence of the Negative Splitting
Lemma.

Proof (Splitting Lemma).Let D be anLS-net that has only positive conclusions. We
definesize(D) as:

• 0 if at least one of the positive conclusions ofD is a leaf, and otherwise as

• the cardinal of the set of level 1 negative rules ofD.

SinceD has finitely many positive conclusions, the size ofD is finite, even ifD is not
finite.

We apply the Negative Splitting Lemma toD. We select a splitting negative rule
X . SinceD has no negative conclusion,X is just above a conclusionk of D. We
delete the edges fromx to k, for all x ∈ X .

Let us callDX the union of the connected components (in the ordinary unoriented
graph-theoretic sense) of the elements ofX , andDk the rest of the graph, which con-
tainsk. We prove thatDX andDk areLS-nets. LetD′ stand for eitherDX or Dk.
We note that ifc ∈ D′, thenD′ contains every path ofD starting fromc that does not
go through one of the deleted edges. It follows thatpcqD′ possibly differs frompcqD
only by not containingk. We are thus almost in the situation of Lemma 6.2, modulo
straightforward adaptations. Let us look for example at theconditionAdditives: the
path leading down fromk1 to w1 (resp. fromk2 to w2) does not go throughk, and
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hence belongs topk1qD′ (resp.pk2qD′), so conditionAdditives in D′ is inherited from
conditionAdditives in D.

We have thatsize(Dk) < size(D), because every conclusionk′ of Dk is a conclu-
sion ofD, and every negative rule ofDk is a negative rule ofD. Moreover, every free
splitting negative rule ofDk is a splitting negative rule ofD: indeed, ifDk splits into
Dk′ andDX′ , thenD splits into(Dk′ ∪DX) andDX′ . We are now ready to prove that
D has a positive splitting conclusion, by induction onsize(D):

• Base case. Obvious. Since one positive conlusion is a leaf, it is splitting vacu-
ously.

• Induction case. Letk′ be a splitting positive conclusion ofDk. If k′ 6= k, then it
is also a splitting positive conclusion ofD, since every negative rule just above
k′ is splitting inDk, hence inD. If k′ = k, let Y be a negative rule just above
k. If Y = X , it is splitting by construction; ifY 6= X , Y belongs toDk by
construction, and henceY is splitting inDk, and hence also inD, so thatk is a
positive splitting conclusion. This completes the proof. 2
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