
LUDICS WITH REPETITIONS

(EXPONENTIALS, INTERACTIVE TYPES AND COMPLETENESS)

MICHELE BASALDELLA AND CLAUDIA FAGGIAN

Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-
ku, Kyoto 606-8502, Japan.
e-mail address: mbasalde@kurims.kyoto-u.ac.jp
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Abstract. Ludics is peculiar in the panorama of game semantics: we first have the defi-
nition of interaction-composition and then we have semantical types, as a set of strategies
which “behave well” and react in the same way to a set of tests. The semantical types
which are interpretation of logical formulas enjoy a fundamental property, called internal
completeness, which characterizes ludics and sets it apart also from realizability. Internal
completeness entails standard full completeness as a consequence.

A growing body of works start to explore the potentiality of this specific interactive
approach. However, ludics has two main limitations, which are consequence of the fact
that in the original formulation, strategies are abstractions of MALL proofs. On one side,
no repetitions are allowed. On the other side, there is a huge amount of structure, and
the proofs tend to rely on the very specific properties of the MALL proof-like strategies,
making it difficult to transfer the approach to semantical types into different settings.

In this paper, we provide an extension of ludics which allows repetitions and show that
one can still have interactive types and internal completeness. From this, we obtain full
completeness w.r.t. polarized MELL. In our extension, we use less structure than in the
original formulation, which we believe is of independent interest. We hope this may open
the way to applications of ludics approach to larger domains and different settings.

1. Introduction

Ludics is a research program started by Girard [20] with the aim of providing a foun-
dation for logic based on interaction. It can be seen as a form of game semantics where
first we have the definition of interaction (equivalently called composition, normalization),
and then we have semantical types, as sets of strategies which “behave well” with respect to
composition. This role of interaction in the definition of types is where lies the specificity
of ludics in the panorama of game semantics.
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Recently, a growing body of work is starting to explore and to develop the potential of
this specific approach, and to put at work the more general notion of type offered by ludics:
the notion of type defined through interaction.

We mention in particular work by Saurin on interactive proof-search as a logic program-
ming paradigm [29], and work by Terui on computability [30]. Terui gives an especially
interesting use of the notion of orthogonality (“to interact well”): if the strategy D describes
an automaton, {D}⊥ (the set of all strategies which “interact well” with it) consists of the
languages accepted by that automaton. Moreover, interactive types seem to be a natural
domain for giving models of process calculi, Faggian and Piccolo [14] have shown a close
correspondence of ludics with the linear π-calculus [31].

More recently, in [5] Basaldella and Terui have studied the traditional logical duality
between proofs and models in the setting of computational ludics [30] enriched with expo-
nentials (following our approach to exponentials [4], this paper). Both proofs and models
live in an homogeneous setting, both are strategies, which are related by orthogonality.

Interactive types. The computational objects of ludics — designs — can be seen as a linear
form of Hyland-Ong (HO) innocent strategies (as shown in [12]) or as Curien’s abstract
Böhm trees [7, 10].

However, in game semantics, we first define the types (arenas, games), and then the
composition of strategies; the type guarantees that strategies compose well. In ludics, strate-
gies are untyped, in the sense that all strategies are given on a universal arena (the arena
of all possible moves); strategies can always interact with each other, and the interaction
may terminate well (the two strategies “accept each other”, and are said orthogonal) or
not (they deadlock). An interactive type is a set of strategies which “compose well”, and
reacts in the same way to a set of tests (see Section 4). A semantical type G is any set
of strategies which reacts well to the same set of tests E, which are themselves strategies
(counter-strategies), that is G = E⊥.

Internal completeness. With ludics, Girard also introduces a new notion of completeness,
which is called internal completeness (see Section 5). This is a key — really characterizing
— element of ludics. We have already said that a semantical type is a set of strategy
closed by biorthogonal (G = G⊥⊥). Internal completeness is the property which says that
the constructions on semantical types do not require any closure, i.e., are already closed by
biorthogonal.

While it is standard in realizability that a semantical type is a set S of terms closed by
biorthogonal (S = S⊥⊥), when interpreting types one has to perform some kind of closure,
and this operation can introduce new terms. For example, the interpretation of A ⊕ B is
(A ∪ B)⊥⊥. This set of terms could be in general strictly greater than A ∪ B. We have
internal completeness whenever A∪B is proved to be equal to (A∪B)⊥⊥. Since the closure
by biorthogonal does not introduce new terms, A ∪B already gives a complete description
of what inhabits the semantical type.

In Girard’s paper [20], the semantical types which are interpretation of formulas enjoy
internal completeness. This is really the key property (and the one used in [29, 30]). Full
completeness (for multiplicative-additive-linear logic MALL, in the case of [20]) directly
follows from it.
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1.1. Contributions of the paper. The purpose of this paper is two-fold.
On the one hand, we show that it is possible to overcome the main limitation of ludics,

namely the constraint of linearity, hence the lack of exponentials: we show that internal
completeness (and from that full completeness) can be obtained also when having repeti-
tions, if one extends in a rather natural way the setting of ludics.

On the other hand, we provide proofs which use less structure than the original ones
given by Girard. Not only we believe this improve the understanding of the results, but —
more fundamentally — we hope this opens the way to the application of the approach of
ludics to a larger domain.

We now give more details on the content of the paper.

1.1.1. Ludics architecture. A difficulty in [20] is that there is a huge amount of structure.
Strategies are an abstraction of MALL proofs, and enjoy many good properties (analytical
theorems). In [20], all proofs of the high level structure of ludics make essential use of these
properties. Since some of those properties are very specific to the particular nature of the
objects, this makes it difficult in principle to extend the — very interesting — approach
of ludics to a different setting, or build the interactive types on different computational
objects.

Ludics, as introduced in [20], is constituted by several layers.

• At the low level, there is the definition of the untyped computational structures
(strategies, there called designs) and their dynamics (interaction). Interaction allows
the definition of orthogonality.

– The computational objects satisfy certain remarkable properties, called ana-
lytical theorems, in particular separation property, the ludics analogue of
Böhm theorem:

two strategies A,B are syntactically equal if and only if they are
observationally equal (i.e., for any counter-strategy C, the strategies
A,B react in the same way to C).

• At the high level, there is the definition of interactive types, which satisfy internal
completeness.

By relying on less structure, we show that the high level architecture of ludics is some-
how independent from the low level entities (strategies), and in fact could be built on other
— more general — computational objects.

In particular, separation is a strong property. It is a great property, but it is not a
common one to have. However, the fact that computational objects do not enjoy separation
does not mean that it is not possible to build the “high level architecture” of ludics. In
fact, we show (Section 5) that the proofs of internal and full completeness rely on much less
structure, namely operational properties of the interaction.

We believe that discriminating between internal completeness and the properties which
are specific to the objects is important both to improve understanding of the results, and
to make it possible to build the same construction on different entities.

In particular, strategies with repetitions have weaker properties with respect to the
the original — linear — ones. We show that it is still possible to have interactive types,
internal completeness, and from this full completeness for polarized MELL (multiplicative-
exponential-linear logic). The extension to full polarized linear logic LLP [26] is straight-
forward.
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1.1.2. Exponentials in ludics. The treatment of exponentials has been the main open prob-
lem in ludics since [20]. Maurel [27] has been the first one to propose a solution (a summary
of this solution can be found in [10, 21]). The focus of Maurel’s work is to recover a form
of separation when having repetitions; to this purpose, he develops a sophisticated setting,
which is based on the use of probabilistic strategies: two probabilistic strategies “compose
well” with a certain probability. This approach is however limited by its technical com-
plexity; this is the main obstacle which stops Maurel from going further, and studying
interpretation and full completeness issues.

In this work, we do not analyze the issue of separation, while we focus exactly into
interactive types and internal completeness, and develop a fully complete interpretation
from it.

Maurel also explores a simpler solution in order to introduce exponentials, but he does
not pursue it further because of the failure of the separation property. Our work starts from
an analysis of this simpler solution, and builds on it.

1.1.3. Our approach. In the literature, there are two standard branches of game semantics
which have been extensively used to build denotational models of various fragments of linear
logic. On the one hand, we have Abramsky-Jagadeesan-Malacaria style game semantics
(AJM) [1] which is essentially inspired by Girard’s geometry of interaction [17]. On the
other hand, we have Hyland-Ong style game semantics (HO) [24], introducing innocent
strategies. The main difference between those two game models is how the semantical
structures corresponding to exponential modalities are built. In AJM, given a game A,
!A is treated as an infinite tensor product of A, where each copy of A receives a different
labeling index. Two strategies in !A which only differ by a different labeling of moves
are identified. By contrast, in HO the notion of justification pointer substitutes that of
index. The games A and !A share the same arena. Informally, a strategy in !A is a kind
of “juxtaposition” of strategies of A such that by following the pointer structure, we can
unambiguously decompose it as a set of strategies of A.

Girard’s designs [20] are a linear form of HO innocent strategies [12]. Hence, the most
natural solution to extend ludics to the exponentials is to consider as strategies, standard
HO innocent strategies (on an universal arena). But in order to do so, there is a new kind
of difficulty, which we deal with in this paper: we needs to have enough tests.

More precisely, as we illustrate in Section 6, we need non-uniform counter-strategies.
We implement and concretely realize this idea of non-uniform (non-deterministic) tests by
introducing a non-deterministic sum of strategies, which are based on work developed by
Faggian and Piccolo [15]. More precise motivations and a sketch of the solution are detailed
in Section 6.4.

1.2. Plan of the paper. In Section 2, we introduce the polarized fragment of linear logic
MELLS for which we will show a fully complete model in Section 10.

In Section 3, we recall the basic notions of HO innocent game semantics, which we then
use in Section 4 to present Girard’s ludics.

In Section 5 we review the results of internal completeness for linear strategies and
outline a direct proof of full completeness.

In Section 6, we provide the motivations and an informal description of non-uniform
strategies, and in Section 7 we give the formal constructions.

In Section 8 we describe in detail the composition of non-uniform strategies.
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In Section 9 we introduce semantical types for MELLS, and we extend internal com-
pleteness to non-linear strategies.

Full completeness is developed in Section 10.

2. Calculus

In this section, we introduce a calculus that we call MELLS, which is a variant of
polarized MELL based on synthetic connectives. In Section 10, we prove that our model
is fully complete for MELLS.

2.1. MELL and polarization. Formulas of propositional multiplicative-exponential linear
logic MELL [16] are finitely generated by the following grammar:

F ::= X | X⊥ | 0 | ⊤ | 1 | ⊥ | F ⊗ F | F � F | !F | ?F,

where X,X⊥ are propositional variables (also called atoms). We give the sequent calculus
in Figure 1. The notions of sequent, rule, derivation, etc for MELL are the standard ones.

Ax
⊢ X⊥,X

⊢ Γ, F ⊢ ∆, F⊥

Cut
⊢ Γ,∆

1

⊢ 1
⊢ Γ

⊥
⊢ Γ,⊥

⊤
⊢ Γ,⊤

⊢ Γ, F ⊢ ∆, G
⊗

⊢ Γ,∆, F ⊗ G

⊢ Γ, F,G �
⊢ Γ, F �G

⊢ ?Γ, F
!

⊢ ?Γ, !F

⊢ Γ, F
?

⊢ Γ, ?F

⊢ ?F, ?F,Γ
C

⊢ ?F,Γ
⊢ Γ

W
⊢ Γ, ?F

Figure 1: MELL

Linear logic distinguishes formulas into:

• linear formulas: 0,1,⊤,⊥, F ⊗ F,F � F ;
• exponential formulas: ?F, !F .

Linear formulas can only be used once, while the modalities !, ? allow formulas to be re-
peated. The possibility of repeating formulas is expressed in the sequent calculus by the
contraction rule on ?F formulas:

⊢ ?F, ?F,Γ
C

⊢ ?F,Γ

Dually, the modality ! allows proofs to be reused during cut-elimination procedure. In fact,
we have that:

... π
⊢ ?F, ?F,Γ

C
⊢ ?F,Γ

... ρ

⊢ !(F⊥)
Cut

⊢ Γ

 

... π
⊢ ?F, ?F,Γ

... ρ

⊢ !(F⊥)
Cut

⊢ ?F,Γ

... ρ

⊢ !(F⊥)
Cut

⊢ Γ
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The proof ρ can be used several times, once for each duplication of ?F .

Polarization. The connectives and constants of MELL can be split also according to their
polarity, into two classes:

Positive : 0,1,⊗, ?, Negative : ⊤,⊥,�, !.

This distinction is motivated by properties of the connectives in proof construction [2,
19, 8], which we will briefly recall below. In particular, the rules which introduce negative
connectives ⊤,⊥,�, ! are reversible: in the bottom-up reading, the rule is deterministic,
i.e., there is no choice. By contrast, a rule decomposing a positive connective involves a
choice, e.g., the spitting of the context in the ⊗ rule.

For the exponential modalities, the situation is a bit more complex1.
There is not a well established notation for exponentials in a polarized setting. Following

[31], we have chosen to write ! for the negative modality, and ? for the positive modality,
because these symbols are more familiar. However, the reader should be aware that in a
setting such as in [25, 8], the same connectives would be indicated by ♯ (negative modality),
and ♭ (positive modality). The contraction rule would be written as:

⊢ ♭P, ♭P,Γ
C

⊢ ♭P,Γ

2.2. Synthetic connectives: MELLS. We now introduce in detail the calculus MELLS.
Formulas are here built by synthetic connectives [19, 8] i.e., maximal clusters of connectives
of the same polarity. The key ingredient that allows for the definition of synthetic connec-
tives is focalization [2], a property which is based on the polarity of the formulas (i.e., the
polarity of the outermost connective). In [2], Andreoli demonstrates that if a sequent is
provable in full linear logic, then it is provable with a proof which satisfies the following
proof-search strategy (which is therefore complete).

In the bottom-up construction of a proof:

(1) If there is a negative formula, keep on decomposing it until we get to atoms or
positive subformulas.

(2) If there are not negative formulas, choose a positive formula, and keep on decom-
posing it until we get to atoms or negative subformulas.

From the point of view of logic, focalization means that each cluster of formulas with
the same polarities can be introduced by a single rule (with several premises), which allows
for the definition of synthetic connectives. By using synthetic connectives, formulas are in a
canonical form, where immediate subformulas have opposite polarity. This means that in a
(cut-free) proof of MELLS, there is a positive/negative alternation of rules, which matches
the standard Player (positive)/ Opponent (negative) alternation of moves in a strategy (see
Section 3).

1In a polarized setting (such as [18, 25]), exponentials are often analyzed by decomposing them into:

!F =: �♯F, ?F =: �♭F,

where ♯ is negative, ♭ is positive, and �, � are operators which change the polarity.
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Formulas of MELLS. Formulas of MELLS split into positive P and negative N formulas,
and they are finitely generated by the following grammar:

P := ?0 | ?X | ?(N ⊗ · · · ⊗ N); N := !⊤ | !X⊥ | !(P � · · ·� P );

where X and X⊥ are propositional variables.

We will use F as a variable for formulas and indicate the polarity also by writing
F+ or F−. To stress the immediate subformulas, we often write F+(N1, . . . , Nn) and
F−(P1, . . . , Pn).

The involutive linear negation ⊥ is defined as usual:

(?0)⊥ := !⊤; (?X)⊥ := !X⊥; (?(N1 ⊗ · · · ⊗ Nn))⊥ = !(N1
⊥ � · · ·�Nn

⊥).

A sequent of MELLS is a multi-set of formulas written ⊢ F1, . . . , Fn such that it contains
at most one negative formula.

Rules. For Γ multi-set of positive formulas, we have:

⊢ N1, F
+,Γ . . . ⊢ Nn, F+,Γ

Pos
⊢ F+,Γ

⊢ P1, . . . , Pn,Γ
Neg

⊢ F−,Γ

Ax
⊢ ?X, !X⊥,Γ

!⊤
⊢ !⊤,Γ

⊢ P,Ξ,Γ ⊢ P⊥,Γ
Cut

⊢ Ξ,Γ
where Ξ is either empty or consisting of one negative formula.

Notice that usual linear logic structural rules (weakening, contraction, promotion and
dereliction) are always implicit in our calculus.

Example 2.1. In standard MELL calculus, our positive rule

⊢ A, ?(A ⊗ B), ?C ⊢ B, ?(A ⊗ B), ?C
Pos

⊢ ?(A ⊗ B), ?C

would be decomposed as a dereliction and some contraction steps:

⊢ A, ?(A ⊗ B), ?C ⊢ B, ?(A ⊗ B), ?C
⊗

⊢ A ⊗ B, ?(A ⊗ B), ?(A ⊗ B), ?C, ?C
?

⊢ ?(A ⊗ B), ?(A ⊗ B), ?(A ⊗ B), ?C, ?C

... contractions
...

⊢ ?(A ⊗ B), ?C

Proposition 2.2. Cut-elimination property holds for MELLS.

Remark 2.3 (Intuitionistic logic). The calculus introduced above can be seen as a focal-
ized version of the ¬,∧ fragment of the sequent calculus for intuitionistic logic LJ (see
Appendix A).
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3. HO innocent game semantics

An innocent strategy [24] can be described either in terms of all possible interactions
for the player (strategy as set of plays), or in a more compact way, which provides only the
minimal information for Player to move (strategy as set of views) [22, 9]. It is standard that
the two presentations are equivalent: from a play one can extract the views, and from the
views one can calculate the play.

In this paper we use the “strategy as set of views” description. Our presentation of
innocent strategies adapts the presentation by Harmer [23] and Laurent [25].

Before introducing the formal notions, let us use an image. A strategy tells the player
how to respond to a counter-player move. The dialog between two players — let us call
them P (Player) and O (Opponent) — will produce an interaction (a play). The “universe
of moves” which can be played is set by the arena. Each move belongs to only one of the
players, hence there are P -moves and O -moves. For P, the moves which P plays are positive
(active, output), while the moves played by O are negative (passive, input), to which P has
to respond.

Polarities. Let Pol be the set of polarities, which here are positive (for Player) and negative
(for Opponent); hence we have Pol = {+,−}. We use the symbol ǫ as a variable to range
on polarities.

Arenas. An arena is given by a directed acyclic graph, d.a.g. for short, which describes a
dependency relation between moves and a polarity function, which assigns a polarity to the
moves.

Definition 3.1 (Arena). An arena (A,⊢A, λA) is given by:

• a directed acyclic graph (A,⊢A) where:
– A (elements of the d.a.g.) is the set of moves;
– ⊢A (edges of the d.a.g.) is a well founded, binary enabling relation on A. If

there is an edge from m to n, we write m ⊢A n. We call initial each move m
such that no other move enables it, and we write this as ⊢A n.

• a function λA : A → Pol which labels each element with a polarity.

Enabling relation and polarity have to satisfy the following property of alternation:

if n ⊢A m, they have opposite polarity.

If all the initial moves have the same polarity ǫ, we say that ǫ is the polarity of the
arena. In this case we say that A is a polarized arena (of polarity ǫ) [25].

Strategies.

Definition 3.2 (Justified sequences). Let A be an arena.
A justified sequence s = s0.s1. . . . sn on A is a string s ∈ A∗ with pointers between

the elements in the string which satisfies:

• Justification. For each non-initial move si of s, there is a unique pointer to an earlier
occurrence of move sj, called the justifier of si, such that sj ⊢A si.
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The polarity of a move in a justified sequence is given by the arena. We sometimes
put in evidence the polarity of a move x by writing x+ or x−.

Definition 3.3 (Views). A view s on A is a justified sequence on A which satisfies:

• Alternation. No two following moves have the same polarity.
• View. For each non-initial negative (Opponent) move si, its justifier is the immediate

predecessor si−1.

In the following, we will use another formulation of view, originally suggested by Be-
rardi. It is equivalent to Definition 3.3 here, but will allows for a generalization.

Proposition 3.4 (View). The two following definitions are equivalent:

(1) Definition 3.3.
(2) A view s on A is a justified sequence where for each pair of consecutive actions si, s1+1

such that

λ(si) = + or λ(si+1) = −

we have that si ⊢A si+1.

Definition 3.5 (Strategies). A strategy D on A, denoted by D : A is a prefix-closed set
of views, such that:

• Coherence. If s.m, s.n ∈ D and m 6= n then m,n are negative.
• Maximality. If s.m is maximal in D (i.e. no other view extends it), then m is

positive.

We call positive (resp. negative) a strategy on a positive (resp. negative) arena.

Composition of strategies. Composition of strategies as set of views has been studied in
particular by Curien and Herbelin, who introduce the View-Abstract-Machine (VAM) [7, 10]
by elaborating Coquand’s Debates machine [6].

Notation. Emphasizing the tree structure of a strategy, it is often convenient to write a
strategy whose first move is x as D = x.D′.

More precisely, if D is a positive strategy, we write it as D = a.{E1, . . . , En}, instead
of {a.s : s ∈ Ei, 1 ≤ i ≤ n}, where Ei are negative strategies; conversely, if E is a negative
strategy of root a, we write E = a.D instead of {a.s : s ∈ D}, where D is a positive strategy.

To better grasp the intuitions, we will draw strategies as trees whose nodes are labeled
by moves. Nodes which are labeled by positive moves are circled.

Example 3.6. The positive strategy D = a+.{b−.d+, c−.e+} can be represented by the
following tree:

D = a+

b−

d+

c−

e+



10 MICHELE BASALDELLA AND CLAUDIA FAGGIAN

4. Ludics

In this and next section we give a compact but complete presentation of ludics [20],
introducing all definitions and technical results which are relevant to our approach, including
internal completeness and full completeness. Our choice here is to give a presentation
which fits into the language of game semantics, and then restrict our attention to “linear
strategies”, and more specifically the ludics setting.

Let us first stress again the peculiarity of ludics in the panorama of game semantics. In
game semantics, one defines constructions on arenas which correspond to the interpretation
of types. A strategy is always “typed”, in the sense that it is a strategy on a specific arena:
first we have the “semantical type” (the arena), and then the strategy on that arena. When
strategies are opportunely typed, they interact (compose) well.

In the approach of ludics, there is only one arena (up to renaming): the universal arena
of all possible moves. Strategies are “untyped”, in the sense that all strategies are defined
on the universal arena. Strategies then interact with each other, and the interaction can
terminate well (the two strategies “accept” each other) or not (deadlock).

Two opposite strategies D, E whose interaction terminates well, are said orthogonal,
written D⊥E .

Orthogonality allows us to define interactive types. A semantical type G is any set
of strategies which react well to the same set of tests E, which are themselves strategies
(counter-strategies), that is G = E⊥.

Daimon. The program of ludics was to overcome the distinction between syntax (the formal
system) on one side and semantics (its interpretation) on the other side. Rather then having
two separate worlds, proofs are interpreted via proofs. To determine and test properties, a
proof of A should be tested with proofs of A⊥. Ludics provides a setting in which proofs of
A interact with proofs of A⊥; to this end, it generalizes the notion of proof.

A proof should be thought in the sense of “proof-search” or “proof-construction”: we
start from the conclusion, and guess a last rule, then the rule above. What if we cannot
apply any rule? A new rule is introduced, called daimon:

⊢ Γ
†

Such a rule allow us to assume any conclusion, or said in other words, it allows to close any
open branch in the proof-search tree of a sequent.

In the semantics, the daimon is a special action which acts as a termination signal.

4.1. Strategies on a universal arena. Strategies communicate on names. We can think
of names as process algebras channels, which can be used to send outputs (if positive) or to
receive inputs (if negative). Each strategy D has an interface, which provides the names on
which D can communicate with the rest of the world, and the use (input/output) of each
name.

A name (called locus in [20]) is a string of natural numbers. We use the variables
ξ, σ, α, . . . to range over names.Two names are disjoint if neither is a prefix of the other.

An interface Γ (called base in [20]) is a finite set of pairwise disjoint names, together
with a polarity for each name, such that at most one name is negative. If a name ξ has
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polarity ǫ, we write ξǫ ∈ Γ. An interface Γ is negative if it contains a negative name, positive
otherwise. In particular, the empty interface is positive.

An action x is either the symbol † (called daimon) or a pair (ξ, I), where ξ is a name,
and I is a finite subset of N. Since in this paper we are not interested in interpreting
the additives, from now on, we always assume that I is an initial segment of N i.e., I =
{1, 2, . . . , n}. We can think on the set I only just as an “arity provider”.

Given an action (ξ, I) on the name ξ, the set I indicates the names {ξi : i ∈ I} which
are generated from ξ by this action. The prefix relation (written ξ ⊑ σ) induces a natural
relation of dependency on names, which generates an arena.

Given an interface Γ, we call initial actions the action † and any action (ξ, I) such
that ξ ∈ Γ.

Definition 4.1 (Universal arena on an interface). Given an interface Γ, the universal
arena U(Γ) on Γ is the tuple (U(Γ),⊢, λ) where:

• The set of moves is the special action † together with the set of all actions of the
form (ξ′, I), for any ξ ⊑ ξ′, ξ ∈ Γ and I.

• The polarity of the initial actions (ξ, I) is the one indicated by the interface for ξ;
the polarity of each other action is the one induced by alternation.

• The enabling relation is defined as follows:
(1) (ξ, I) ⊢ (ξi, J), for i ∈ I;
(2) x ⊢ y, for each x negative initial action, and y positive initial action.

Example 4.2. The universal arena U(ξ+) for the interface Γ = ξ+ can be pictured as in
Figure 2. The arrows denote enabling relation; the polarity of the actions is given as follows:
actions lying on even (resp. odd) layers have positive (resp. negative) polarity.

...

Layer 1 (ξ1, {1}) . . . (ξ1, {1, . . . , n}) . . . (ξ2, {1}) . . . (ξ2, {1, . . . , n}) . . .

Layer 0 (Roots) † (ξ, {1}) (ξ, {1, 2}) . . .

Figure 2: The universal arena U(ξ+)

Definition 4.3 (Strategies on a universal arena (untyped strategies)). Let Γ be an interface.
A strategy D on Γ, also written D : Γ is a strategy (in the sense of Definition 3.5) on the
universal arena U(Γ).

Examples 4.4 (Basic strategies: Dai, Fid, ∅). Let us point out a few relevant strategies.

• There are two positive strategies which play a key role in ludics:
Dai: the strategy which consists of only one action {†}; it is called daimon.
Fid: the empty strategy on a positive base; it is called faith.

Observe that on the empty interface there are only two strategies: Dai and Fid.
• We highlight also a simple example of negative strategy: the empty strategy on a

negative base. We will denote this strategy simply by ∅.

Definition 4.5 (Totality). We say that an untyped strategy is total when it is not Fid.
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Definition 4.6 (Linearity). Given a strategy D : Γ, we say that an occurrence of action
(ξ, I) in D is linear if the name ξ is only used by that occurrence of action. We say that
D : Γ is linear if in D there is no repetition of actions on the same name.

Linear strategies are essentially the strategies introduced in [20] (there called designs).
The linearity condition is there actually slightly more complex to take into account also
the additive structures (additive duplication is allowed), but for our discussion it is enough
to ask that in a strategy each name is only used once. Linearity has as consequence that
that all pointers are trivial (each move has only one possible justifier and the prefix relation
between names univocally tells us which is), and then can be forgotten.

4.2. Dynamics. The composition of untyped strategies can be described via the VAM
machine (see Section 8). For the moment, we only describe normalization in the linear case
(see [20, 11]). This case is simpler, but has all the key ingredients to follow most of the
examples of this paper.

4.2.1. Dynamics in the linear case. We can compose two strategies D1,D2 when they have
compatible interfaces, that is they have a common name, with opposite polarity. For exam-
ple, D1 : σ+,Γ can communicate with D2 : σ−,∆ through the name σ. The shared name
σ, and all names hereditarily generated from σ, are said to be internal.

If R = {D1, . . . ,Dn} is a finite set of strategies which have pairwise compatible inter-
faces, we call it a cut-net. A cut-net is closed if all names are internal. A typical example
of closed net is when we compose strategies of opposite interface, like D : ξ+ and E : ξ−.

Given a cut-net R, we denote by [[R]] the result of the composition, also called normal
form. Composition (also called normalization) follows the standard paradigm of parallel
composition (the interaction) plus hiding of internal communication: [[R]] is obtained from
the result of the interaction by hiding all actions on internal names.

The most important case in ludics is the closed one. In this case, the normal form can
be obtained very easily: one can just apply step by step the following rewriting rules:

[[x+.{E1, . . . , En}, x
−.D,R′]]  [[E1, . . . , En,D,R′]]; (conversion)
[[Dai,R′]]  Dai; (termination)

[[R]]  Fid; otherwise. (deadlock)

Since each action appears only once, the dynamics is extremely simple: we match actions
of opposite polarity. Let us give an example of how interaction works.

Example 4.7. Let us consider the following small example of strategies (think x = (ξ, I)
and x1 = (ξ1,K)).

x+ x+

x−
1

†

x−

x+
1

D′ := x+ D := x+.x−
1 .† E := x−.x+

1
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Let us have D interact with E . D starts by playing the move x+, E checks its answer
to that move, which is x+

1 . If D receive input x1, its answer is †, which terminates the
interaction. Summing up, the interaction — the sequence of actions which matches —
produces x+.x−.x+

1 .x−
1 .†. If we hide the internal communication, we get †, i.e., [[D, E ]] = Dai.

If we have E interacting with D′, we again match x+ with x−. Then E plays x1, but D′

has no considered the action x1. Here we have a deadlock i.e., [[D′, E ]] = Fid.

4.2.2. A notation to describe the interaction. In the sequel, given two strategy D,E we often
describe their interaction in the following graphical way:

†

x−
1 x+

1

D x+ x− E

1

2

3

4

Here, we have taken D and E as in Example 4.7. We draw tagged arrows to denote the
matching of actions (e.g., x+ matches x− at step 1) and the (unique) positive action (the
“answer”) above a reached negative action (e.g., , x+

1 after x−). The tags 1, 2, . . . are only
needed to record the chronological order in which actions are visited. Following the arrows
with this order, we retrieve the sequence of actions x+.x−.x+

1 .x−
1 .† which correspond to the

interaction of D, E of Example 4.7.

4.3. Orthogonality and interactive types (behaviours). The most important case of
composition in ludics is the closed case, i.e. when all names are internal. We have already
observed that there are only two possible strategies which have empty interface: Dai and
Fid. Hence, in the closed case, we only have two possible outcomes: either composition fails
(deadlock), or it succeeds by reaching the action †, which signals termination. In the latter
case, we say that the strategies are orthogonal.

Definition 4.8 (Orthogonality). Given two strategies on interfaces of opposite polarity
D : ξ+ and E : ξ−, they are orthogonal, written D⊥E , if [[D, E ]] = Dai.
Given a set E of a strategies on the same interface, its orthogonal is defined as E⊥ :=
{D : E⊥D for any E ∈ E}.

The definition of orthogonality generalizes to strategies of arbitrary interface, which
form a closed net, for example, D : ξ−, α+, β+ and E1 : ξ+, E2 : α−, E3 : β−.

Let Γ = ξǫ1
1 , . . . , ξǫn

n ; if D : Γ we must have a a family of counter-strategies E1 :
ξǫ
1, . . . , En : ξǫ

n. We define D⊥{E1, . . . , En} if [[D, E1, . . . , En]] = Dai.

Orthogonality means that at each step any positive action x+ finds its negative dual
action x−, and the computation terminates, that is it meets a † action.

Example 4.9. In example 4.7, D⊥E , while D′ and E are not orthogonal.
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Orthogonality allows the players to agree (or not), without this being guaranteed in
advance by the type: {D}⊥ is the set of the counter-strategies which are consensual with
D.

Definition 4.10. A behaviour (or interactive type) on the interface Γ is a set G of
strategies D : Γ such that G⊥⊥ = G (it is closed by bi-orthogonal).

We say that a behaviour G is positive or negative according to its interface.

In the sequel, P will always denote a positive behaviour, N a negative one. When is
useful to emphasize that A is a set of strategies on the name ξ, we may annotate the name
ξ as a subscript: Aξ.

Remark 4.11. Orthogonality satisfies the usual closure properties.

• If E,F are sets of strategies on the same interface, E ⊆ F implies F⊥ ⊆ E⊥;
• E⊥ = E⊥⊥⊥.

Remark 4.12. Observe that the strategy Fid can never belong to a behaviour, as it has
no orthogonal. Hence all strategies in a behaviour are necessarily total.

4.4. Type constructors. In this section, we give the constructions on types which inter-
pret linear formulas.

Let D1 : ξ1−, . . . ,Dn : ξn− be negative strategies. We obtain a new positive strategy
on the interface ξ+, denoted by D1 • · · · • Dn, by adding to the union of the strategies the
positive root (ξ, I)+, i.e.,

D1 • · · · • Dn := (ξ, I)+.{D1, . . . ,Dn} (I = {1, . . . , n})

It is immediate to generalize the previous construction to strategies D1 : ξ1−,Γ,. . . , Dn :
ξn−,Γ to obtain D1 • · · · • Dn : ξ+,Γ.

Observe that the root (ξ, I)+ is always linear.
Conversely, given any strategy D : ξ+, such that the root is linear, we can write it as

D = x.{D1, . . .Dn}. It is immediate to check that each subtree Di is a negative strategy on
ξi−. Given a strategy D as just described, we will write D↾i for the operation which returns
Di.

Let N1,N2 be negative behaviours, respectively on ξ1− and ξ2−. We denote by N1•N2

the set {D1 • D2 : D1 ∈ N1,D2 ∈ N2} ∪ {Dai}. We define:

N1 ⊗ N2 := (N1 • N2)
⊥⊥ positive behaviour on ξ+;

N1
⊥ �N2

⊥ := (N1 • N2)
⊥ negative behaviour on ξ−.

The interpretation G of a formula G will be a behaviour, i.e., a set of strategies closed
by biorthogonal: D ∈ G if and only if D⊥E, for each E ∈ G⊥. The interpretation of a
sequent ⊢ G1, . . . , Gn naturally follows the same pattern.

Definition 4.13 (Sequent of behaviours). Let Γ = ξ1, . . . , ξn be an interface, and Γ =
Gξ1 , . . . ,Gξn

a sequence of behaviours.
We define a new behaviour on Γ, which we call sequent of behaviours and denote

by ⊢ Γ, as the set of strategies D : Γ which satisfy:
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D⊥{E1, . . . , En}, for all E1 ∈ G1
⊥, . . . , En ∈ Gn

⊥

It is clear that a sequent of behaviours is itself a behaviour, i.e, a set of strategies closed
by orthogonal. Observe that ⊢ P = P and ⊢ N = N.

We will use the following property, which is immediate by associativity (Theorem 8.8).

Proposition 4.14. D ∈ ⊢ Γ,G if and only if for each E ∈ G⊥ [[D, E ]] ∈ ⊢ Γ.

5. Ludics in the linear case: internal and full completeness

In this section we restrict our attention to linear strategies. In this case, the dynamics
is quite simple and the reader should easily grasp the proofs. We introduce the notion of
internal completeness and give a direct proof of internal completeness, as well as full com-
pleteness, without relying on separation.

In [20], the set of strategies which interpret MALL formulas satisfies a remarkable
closure property, called internal completeness: the set S of strategies produced by the con-
struction is (essentially) equal to its biorthogonal (S = S⊥⊥). Since the biorthogonal does
not introduce new objects, we have a complete description of all strategies in the behaviour.

The best example is the interpretation A1 ⊗ A2 := (A1 • A2)
⊥⊥ of a tensor formula.

One proves that (A1 • A2) = (A1 • A2)
⊥⊥, i.e., we do not add new objects when closing

by biorthogonal: our description is already complete.
From this, full completeness follows. In fact, because of internal completeness, if D ∈

A1 ⊗ A2 we know we can decompose it as D1 • D2, with D1 ∈ A1 and D2 ∈ A2. This
corresponds to writing the rule:

...
⊢ A1

...
⊢ A2

⊢ A1 ⊗ A2
A1 ⊗ A2

i.e., if each Di corresponds to a proof of Ai, D corresponds to a proof of A1 ⊗ A2.

All along this section, we assume the following:

- A,B are negative behaviours respectively on ξ1− and ξ2−;
- all strategies are linear (even though what we really need is only linearity of the

root);
- composition (normalization) is linear composition.

Let us consider A • B. By construction, each strategy in A • B is on ξ+ and has
x+ = (ξ, {1, 2})+ as root.

How is (A • B)⊥? By definition of linear normalization, each strategy has as root the
action x− = (ξ, {1, 2})− (otherwise, normalization would fail immediately). In particular
we have the strategy x−.†.

How is (A • B)⊥⊥? All strategies have a positive root, which, to normalize against
(A • B)⊥, must be either †, or x+. Hence, we know that a strategy D ∈ A ⊗ B has the
form x+.{D1,D2}, where D1 : ξ1 and D2 : ξ2. The following picture represents this.
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(A •B)⊥⊥ (A • B)⊥

(ξ, {1, 2})+

(ξ1, J)− (ξ2,K)−

(ξ, {1, 2})−

5.1. Internal completeness. We now prove that if D ∈ (A⊗B) then D1 ∈ A and D2 ∈ B,
which means that (A • B) was already complete, i.e., closed by biorthogonal.

Proposition 5.1 (Internal completeness of tensor). Let A,B be negative behaviours, re-
spectively on ξ1− and ξ2−. We have that A ⊗ B = A • B.

Proof. With the assumptions and the notation we have discussed above, we prove that
D1 ∈ A and D2 ∈ B.

(i) Given any E : ξ1+ ∈ A⊥, we obtain the strategy E ′ : ξ− = x−.E by adding the root
x−. For a generic D : ξ+ of the form x+.{D1,D2}, we have that

[[x−.E ,D]] = [[E ,D1]] (5.1)

by definition of normalization, and by the fact that since in E there are only names
generated by ξ1, E : ξ1+ only interact with the subtree D1 : ξ1−.

(ii) E ′ ∈ (A • B)⊥, because by using equation (5.1) we deduce that E ′⊥D, for any
D ∈ (A • B).

(iii) Given any D ∈ A⊗B, it must be D⊥E for each E ∈ (A •B)⊥. Hence in particular,
for each E ∈ A⊥, we have D⊥E ′ (E ′ defined as above), and hence, again because of
equation (5.1), D1⊥E . This says that D1 ∈ (A⊥)⊥ = A.

Remark 5.2 (Important). Observe that here we only use two properties of the strategies:
the dynamics (normalization), and the fact that the root is the only action on the name ξ
(to say that occurrences of ξ1 only appear inside D1).

Proposition 5.3 (Internal completeness of par). Let A⊥,B⊥ be positive behaviours respec-
tively on ξ1+ and ξ2+ and x = (ξ, {1, 2}). We have:

x−.E ∈ A⊥ �B⊥ ⇔ E ∈ ⊢ A⊥,B⊥. (5.2)

Proof. A strategy x−.E belongs to A⊥ �B⊥ if and only if for any x+.{D1,D2} ∈ A • B,
we have that x−.E ⊥ x+.{D1,D2}. By definition of normalization, [[x−.E , x+.{D1,D2}]] =
[[E ,D1,D2]], and from this and the definition of sequent of behaviours (Definition 4.13) the
claim immediately follows.



LUDICS WITH REPETITIONS 17

5.2. Full Completeness. Full completeness for multiplicative-linear logic MLL follows
from what we have seen in this section, by using the proof of internal completeness of
tensor and par and Proposition 4.14. Again, while the proof in [20] relies on separation
(unicity of the adjoint),we can give a simple and direct proof only using the properties of
the dynamics. In this section, we only give the outline of the proof. We will prove the result
in full detail in a setting which also includes exponentials in Section 10.5.

5.2.1. Interpretation. Let us denote by MLLS the multiplicative fragment of MELLS.
Chosen an arbitrary name ξ, the interpretation

〈

F
〉

ξ
of a formula F of MLLS is a behaviour,

which is defined by structural induction on F as follows:

〈

0
〉

ξ
:= {Dai};

〈

N1 ⊗ . . . ⊗ Nn

〉

ξ
:=

〈

N1

〉

ξ1
⊗ . . . ⊗

〈

Nn

〉

ξn
;

〈

⊤
〉

ξ
:= {Dai}⊥;

〈

P1 � . . .� Pn

〉

ξ
:=

〈

P1

〉

ξ1
� . . .� 〈

Pn

〉

ξn
.

A sequent ⊢ F1, . . . , Fn is interpreted by a sequent of behaviours ⊢ F1, . . . ,Fn on a given
interface ξ1, . . . , ξn.

The interpretation of a proof is a strategy, which satisfy some winning condition, i.e., it
is daimon-free and material (a notion which we can overlook for the moment; we will discuss
it in Section 10— the reader can have a good intuition by reading the Example 10.1).

We have the following theorems.

Theorem 5.4 (Interpretation). Let π be a proof of a sequent ⊢ Γ in MLLS. There exists
a winning strategy D ∈ ⊢ Γ such that D is interpretation of π.

Theorem 5.5 (Full Completeness). If D is a winning strategy in a sequent of behaviours
⊢ Γ then D is the interpretation of a cut-free proof π of the sequent ⊢ Γ in MLLS.

5.2.2. Outline of the proof of full completeness. Let ⊢ ∆ be the interpretation of the sequent
⊢ ∆, and D ∈ ⊢ ∆ a winning strategy. Our purpose is to associate to D a derivation D⋆ of
⊢ ∆ in MLLS by progressively decomposing D, i.e., inductively writing “the last rule”. To
be able to use internal completeness, which is defined on behaviours (and not on sequents
of behaviours), we will use — back and forth — the definition of sequent of behaviours and
in particular Proposition 4.14.

The formula on which the last rule is applied is indicated by the name of the root
action. For example, let us assume that the root of D is (ξ, I); then if D ∈ ⊢ Fξ,Gσ , the
behaviour which corresponds to the last rule is the one on ξ, i.e., Fξ.

The proof is by induction.
The base case is immediate; if D is empty, it must be D ∈ Dai⊥, i.e. D ∈

〈

⊤
〉

ξ
, and we

associate to D the ⊤-rule of MLLS.

Let D = x+.{D1, . . . ,Dn} be a positive winning strategy which belongs to ⊢ Fξ,Gα,
where Fξ and Gα are the interpretation of formulas F and G respectively. Let us assume
x = (ξ, {1, 2}), and Fξ = N1 ⊗N2. We have D = x.{D1,D2}. By Proposition 4.14, for any

E ∈ Gα
⊥, we have:
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(1) [[D, E ]] ∈ Fξ and the root of [[D, E ]] is still x+. This allows us to use internal
completeness.

(2) By internal completeness of tensor (5.1), we have that C = [[D, E ]] can be written as
C1 • C2, for some C1 ∈ ⊢ N1 and C2 ∈ ⊢ N2.

(3) The address α (which is the interface of E) will appear either in D1 or in D2, not
in both. Let assume it only appears in D1. By definition of normalization, it is
immediate that:

[[x+.{D1,D2}, E ]] = x+.{[[D1, E ]],D2, } = [[D1, E ]] • D2.

From this, we conclude that [[D1, E ]] ∈ ⊢ N1 and D2 ∈ ⊢ N2.

By applying Proposition 4.14 again, we have that D1 ∈ ⊢ N1,Gα and then we can write
the derivation:

... D⋆
1

⊢ N1, G

... D⋆
2

⊢ N2

⊢ N1 ⊗ N2, G
Pos

The negative case is an immediate application of the negative case of internal complete-
ness (and again Proposition 4.14).

6. Ludics with repetitions: what, how, why

In the previous section, we assumed linearity of the strategies to prove internal com-
pleteness. From now on, we go back to the general definition of strategy (on an universal
arena) as in Section 4, without any hypothesis of linearity. This means that strategies now
allow repeated actions.

In this section, we mainly discuss the difficulties in extending the approach of ludics to
this setting, and introduce our solution, which will be technically developed in Section 7.

First, let us introduce some operations which we will use to deal with repeated actions
and describe the composition.

6.1. Copies and renaming.

Renaming. Given a strategy E : ξ of arbitrary polarity, let us indicate by E [σ/ξ] the strategy
obtained from E by renaming, in all occurrences of action, the prefix ξ into σ, i.e., each
name ξ.α becomes σ.α. Obviously, if E : ξ, then E [σ/ξ] : σ.

Renaming of the root. Given a positive strategy D : ξ+, let us indicate by σ(D) the strategy
obtained by renaming the prefix ξ into σ in the root, and in all actions which are hereditarily
justified by the root. If D : ξ+, we obtain a new strategy σ(D) : σ+, ξ+. We picture this in
Figure 3, where we indicate an action on ξ simply with the name ξ.
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σ+

ξ+

ξ+

D : ξ+ σ(D) : ξ+, σ+

ξ+

ξ+

ξ+

ξ1 ξ1

ξ1 ξ1

ξ1 σ1

Figure 3: Renaming of the root

Copies of a behaviour. We remind that to emphasize that A is a set of strategies on interface
ξ, we annotate the name ξ as a subscript: Aξ. If Aξ is a set of strategies on the name
ξ, we write Aσ for {D[σ/ξ] such that D ∈ Aξ}. Aσ is a copy of Aξ: they are equal up to
renaming.

6.2. Composition (normalization). In a strategy, actions can now be repeated. Com-
position of strategies as sets of views can be described via the VAM abstract machines
introduced in [10]. We describe composition in details in Section 8.

We now give an example of composition of strategies using the graphical notation
introduce before.

However, what we will really need is only that composition has a fundamental property,
expressed by the following equation:

[[D, E ]] = [[σ(D), E , E [σ/ξ]]] (6.1)

This property will also hold for strategies with neutral actions we introduce later. The
proof for the general case is given in Section 8 (Proposition 8.9).

From Equation (6.1), we have in particular:

Corollary 6.1. D⊥E if and only if σ(D)⊥{E , E [σ/ξ]}.

Let us see how Equation (6.1) works by giving a description of the composition.

D : ξ+

ξ+

ξ+

ξ+

ξ1

ξ1

ξ1

σ−

E[σ/ξ] : σ−

ξ−

E : ξ−

ξ−

E : ξ−

(a)

(b)

σ+

ξ+

ξ+

ξ1

ξ1

σ1
σ(D) : ξ+, σ+

Figure 4: Composition (with repeated actions)
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Let D : ξ+ and E : ξ− be two strategies, which we represent in Figure 4 (a) (again, we
indicate an action x on ξ simply with the name ξ). The idea behind the abstract machine
in [10] is that, when the two strategies D and E interact, every time D plays an action x on
ξ, a copy of E is created; i.e., composition works as if we had a copy of E for each occurrence
of x in D. It is rather intuitive that the result of normalization is the same if we make this
explicit, by renaming one occurrence of x (namely the root), and making an explicit copy
of E , as illustrated in Figure 4 (b).

Example 6.2. Let us consider the strategies D and E in Figure 5, where we indicate an
action x on ξ simply with the name ξ. Observe that we explicitly need to draw a pointer
from ξ11+ to the right occurrence of ξ1− (the lowermost one in our case) which justifies it.
The interaction is the sequence given by following the arrows and the normal form is Dai.

ξ11+

ξ1− †

ξ+ ξ11−

ξ1− ξ1+

D ξ+ ξ− E

1

2,6

3

4
5

7

8

9

10

Figure 5: Example of interaction with repetitions

Example 6.3. We now check for D, E in Example 6.2 that [[D, E ]] = [[σ(D), E , E [σ/ξ]]] as
pictured in Figure 6. Since σ(D) is linear in this example, we no longer need to make
pointers explicit.

6.3. What are the difficulties. We are ready to discuss which are the difficulties in
extending the approach of ludics to a setting where strategies are non linear.

Problem 1: Separation. The first problem when strategies have repetitions is with separa-
tion. Let us give a simple example of why separation fails if we allow repetitions.

Example 6.4 ([27]). Let D1,D2 : ξ+ and E : ξ− be strategies as in Figure 7, where
x = (ξ, I), y = (ξi, J). We cannot find a strategy orthogonal to D1 but not orthogonal to
D2. For example, the interaction between D1 and E is the same of D2 and E and in both
cases the normal form is Dai.
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σ11+

† ξ1− †

σ11− ξ+ ξ11−

σ1+ σ1− ξ1+

E [σ/ξ] σ− σ+ ξ− E

σ(D)
1

2

3 4

5

6

7

8

9
10

Figure 6: Example of interaction with copies

†

y−

† x+

y− y+ y− y+

x+ x− x+ x−

D1 E D2 E
1

2

34

1

2,6

34

5

7

8

Figure 7: Non-separation

In this work, we ignore separation all together. As we discussed in Section 5, even if
separation is an important property, we don’t need it in order to have interactive types and
internal completeness. In future work, it may be possible to refine our setting using Maurel
techniques.

Problem 2: Enough tests (counter-strategies). The second problem — which we believe be-
ing the deeper one— has to do with having enough tests, i.e., enough counter-strategies.
As in [20], we have defined an interactive type to be any set of strategies closed by biorthog-
onal. Assume we have defined how to interpret formulas, and in particular ?A and !A⊥.
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We would like to associate to each “good” strategy in the interpretation of a formula, for
example a behaviour that we indicate with ?A, a syntactical proof of ?A (full completeness).

If D : ξ+ ∈ ?A, we would like to transform it into a strategy D′ ∈ ⊢ ?Aξ, ?Aσ (where
distinct names indicate distinct copies). This corresponds to the contraction rule (in its
upwards reading).

The natural idea is to use the same technique as in [1], and to rename the root, and all
the actions which are hereditarily justified by it. We have already illustrated this operation
in Section 6.1 (Figure 3). From D : ξ+, we obtain a new strategy D′ : ξ+, σ+, where
D′ = σ(D).
We would like to prove that:

(∗) D ∈ ⊢ ?Aξ ⇒ (∗∗) σ(D) ∈ ⊢ ?Aξ, ?Aσ.

To have (∗∗), we need (see Definition 4.13) to know that σ(D)⊥{E ,F} for each E ∈
(?Aξ)

⊥ and each F ∈ (?Aσ)⊥ . Since (?Aσ)⊥ is a copy (renamed in σ) of (?Aξ)
⊥, we can

also write this condition as
σ(D)⊥{E ,F [σ/ξ]}, (6.2)

where both F and E vary in (?Aξ)
⊥.

However, from Equation (6.1) we only have that σ(D)⊥{E , E [σ/ξ]}: two copies of the
same (up to renaming) strategy E . This fact can be rephrased by saying that in our “HO
setting”, strategies in !C are uniform: every time we find a repeated action in of “type”
?(C⊥), Opponent !C reacts in the same way.

6.4. A solution: non-uniform tests. The need for having enough tests appears similar
to the one which has led Girard to the introduction of the daimon rule: in ludics, one
typically opposes to an abstract “proof of A” an abstract “counter-proof of A”. To have
enough tests (that is, to have both proofs of A and proofs of A⊥) there is a new rule which
allow us to justify any premise.

Similarly here, when we oppose to a proof of ?A a proof of !A⊥ (= (?A)⊥), we need
enough counter-strategies. We are led to enlarge the universe of tests by introducing non-
uniform counter-strategies. This is extremely natural to realize in an AJM setting [1, 3],
where a strategy of type !C is a sort of infinite tensor of strategies on C, each one with its
index of copy. To have HO non-uniform counter-strategies, we introduce a non-deterministic
sum of strategies. Let us illustrate the idea, which we will formalize in the next section.

Non-uniform counter-strategies. The idea is to allow a “non-deterministic sum” of negative
strategies E ,F . Let us, for now, informally write the sum of E and F this way:

τ.E + τ.F

• During the composition with other strategies, we might have to use several time
this strategy, hence “entering” it several times. Every time is presented with this
choice, normalization will non-deterministically chooses one of the two possible con-
tinuations. The choice could be different at each repetition.

• To define orthogonality, we set:
D⊥(τ.E + τ.F) if and only if [[D, τ.E + τ.F ]] = Dai for each possible choice
among the τ ’s.
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It is immediate that:

D⊥(τ.E + τ.F) ⇒ D⊥E and D⊥F . (6.3)

As we will see, if E ∈ G and F ∈ G for G interpreting a formula of MELLS, we have
that (τ.E + τ.F) ∈ G, and vice-versa. Hence:

• if D ∈ ?A, for each E ,F ∈ (?A)⊥ we have D⊥(τ.E + τ.F).
• By using Equation (6.1) we have that σ(D)⊥{(τ.E + τ.F), (τ.E + τ.F)[σ/ξ]}.
• By using Equation (6.3), we deduce that σ(D)⊥{E , (F [σ/ξ])}, as we wanted.

Linearity of the root. Observe that by construction, in σ(D) the action at the root is positive
and it is the only action on the name σ. We can hence apply the same argument we have
already given in Section 5.1 for the internal completeness of tensor.

As a consequence, if A = A1⊗A2, given D ∈ ⊢?Aξ, we have that σ(D) actually belongs
to ⊢Aσ, ?Aξ , and can be decomposed in strategies σ(D)i ∈ ⊢ Ai, ?Aξ, where Ai is consisting
of strategies on interface σi−.

This allows us to associate to D ∈ ⊢?A,Γ a proof which essentially has this form:

...
⊢ A1, ?(A1 ⊗ A2),Γ

...
⊢ A2, ?(A1 ⊗ A2),Γ

⊢ A1 ⊗ A2, ?(A1 ⊗ A2),Γ
⊗ + contraction

⊢ ?(A1 ⊗ A2),Γ
dereliction + contraction

7. Ludics with repetitions: non-uniform strategies

In this section we technically implement the ideas which we have presented in Sec-
tion 6.4. In particular, we revise the definition of arena and strategy so to accommodate
actions which correspond to the τ actions we have informally introduced. To this purpose,
we consider a third polarity: the neutral one. In this section use notions which have been
developed to bridge between ludics and concurrency in [15]; we refer the reader to that
paper to understand the motivations behind the definitions.

Polarities and actions. We extend the set of polarities with a neutral polarity, hence we have
now three possibilities: positive (+), negative (−) and neutral (∓) i.e., Pol = {+,−,∓}.

We extend the set of actions with a set T = {τi : i ∈ N} of indexed τ actions, whose
polarity is defined to be neutral.

We denote by T also the neutral arena: the set of moves is T , the enabling relation is
empty, and the polarity is neutral.
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Non-uniform strategies. Let A be a (positive or negative) arena. It is immediate to extend
the definition of arena to A ∪ T , by extending the polarity function λA to a function on
λ : A ∪ T → {+,−,∓}. We set λ(x) = λA(x) if x ∈ A; λ(x) = ∓ if x ∈ T .

Definition 7.1 (Justified sequence and non-uniform view).

• A justified sequence s on A ∪ T is a justified sequence in the sense of Definition
3.5.

• A non-uniform view s on A is a justified sequence on A ∪ T , where:
for each pair of consecutive actions si, s1+1 such that λ(si) = + or λ(si+1) = −
we have that si ⊢A si+1.

This above condition deserves some comments (cf. also Definition 3.3 and Proposition
3.4). If s is a sequence on A ∪ T , the condition implies that immediate predecessors (resp.
successors) of neutral actions are either negative or neutral (resp. either positive, or neutral).
To understand the intuitions concerning this choice, it helps to think of a τ action as the
result of matching a positive and a negative action. One should think of a neutral action
as it were an ordered pair consisting of a positive action followed by a negative action. If
s is a sequence on A (and hence we have the standard alternation between positive and
negative actions), we already observed that the condition is equivalent to the standard one
(Proposition 3.4).

Definition 7.2 (Non-uniform strategy). A non-uniform strategy (n.u. strategy, for
short) D on A is a prefix-closed set of non-uniform views on A ∪ T , such that:

• Coherence. If s.m, s.n ∈ D and m 6= n then m,n are either both negative or both
neutral actions.

• Maximality. If s.m is maximal in D (i.e., no other view extends it), then m is
positive or neutral.

We will call deterministic a n.u. strategy which has no τ actions.

As we have done for Definition 4.3, given a base Γ, a n.u. strategy D on Γ, written
D : Γ, is a n.u. strategy on the universal arena U(Γ).

In Example 7.6, we show some n.u. strategies.

Remark 7.3. The index associated to a τ action is a technical choice, but it is irrelevant
for the semantics; as in [32], we identify strategy which only differ for the index associated
to an occurrence of τ action.

7.1. Slices. The following definitions are also introduced and motivated in [15].

Definition 7.4 (τ -cell). Given a n.u. strategy D, a τ-cell is a maximal set of occurrences
of τ actions, which have the same immediate predecessor.

A τ -cell is in many respects similar to an additive &-rule [20, 11]; hence, similarly to
the additive case, we can define a notion of slice.

Definition 7.5 (τ -slice). Let S and D be n.u. strategies. We say that S ⊆ D is a τ-slice
of D if each τ -cell in S is unary. Given a τ -slice S of D, S≈ is obtained from S by hiding
all τ actions; we also write S ≈ S≈.

Example 7.6. For example, let us consider the following n.u. strategy:
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D = x−

τ1

y+

y−1

τ1

†

τ2

τ2

τ1

†

τ2

z+

z−1

†

z−2

c+

It has four τ -slices:

S1 = x−

τ1

y+

y−1

τ1

†

S2 = x−

τ1

y+

y−1

τ2

S3 = x−

τ2

τ1

†

S4 = x−

τ2

τ1

z+

z−1

†

z−2

c+

Remark 7.7. S and S≈ are easily checked to be weekly bisimilar (see [15] for details).
The neutral actions are silent actions which are invisible from the point of view of the
environment, and in fact irrelevant w.r.t. observational equivalence.

7.2. Sum of strategies. We will use n.u. strategies to capture the idea of “non-uniform”
tests. As anticipated in Section 6.4, a n.u. strategies can be seen as a non-deterministic
sum of “standard” strategies.

Definition 7.8 (τ -sum). If {Di : Γ}i∈S (S ⊆ N) is a family of positive n.u. strategies, we
define their sum:

τ
∑

i∈S

Di :=
⋃

i∈S

{τi.Di}.

When S is a finite set, say {1, . . . , k}, we write D1 +τ . . . +τ Dk.

If {x−.Ei : Γ}i∈S (S ⊆ N) is a family of negative n.u. strategies which have the same
root x−, we define their sum:

τ
∑

i∈S

x−.Ei := x−.

τ
∑

i∈S

Ei

In the finite case, we write also x−.E1 +τ . . . +τ x−.Ek.
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8. Normalization and orthogonality

In this section we define the composition of strategies and we show some properties
of composition we need in the sequel. More specifically, we straightforwardly generalize
Curien and Herbelin’s View Abstract Machine [7, 10] (VAM) in order to compose strategies
with neutral actions. We have already introduced the intuitions and the basic definitions
concerning normalization in Section 4.2.1.

Two strategies D, E have compatible interfaces if D : Γ, ξ− and E : ∆, ξ+, where ξ is
the unique shared name, Γ∩∆ = ∅, and the set Γ,∆ of names which are not shared, forms
an interface.

We will compose an arbitrary finite number of strategies at the same time.

Definition 8.1 (Cut-net [20]). A cut-net R is a non empty finite set R = {D1, . . . ,Dn}
of strategies on pairwise compatible interfaces Γ1, . . . ,Γn, such that the graph whose nodes
are given by the interfaces, and whose edges are given by linking the shared names (e.g.,
we set a link from ξ+,Γ to ξ−,∆) is connected and acyclic.

The interface of a cut-net R is the union of all interfaces
⋃

1≤i≤n Γi where we delete all
names which are shared.

A cut-net is closed if the interface is empty.
An action in R is said internal if it is hereditarily justified by an action (ξ, I) where ξ

is a shared name, visible otherwise (observe that neutral actions are always visible).

Given a cut-net R, let us impose a partial order < on the interfaces Γ1, . . . ,Γn: the
relation Γi < Γj holds if there is a shared name ξ, such that ξ+ ∈ Γi and ξ− ∈ Γj. By the
definition of cut-net, it is easy to see that this order is tree-like. The main strategy of R is
the strategy on the interface which is minimal w.r.t. this order.

8.1. The abstract machine. We now introduce the machine VAM in two steps, which
correspond to the standard paradigm for computing the composition of strategies “parallel
composition plus hiding”:

(1) Given a cut-net R we calculate its interaction I(R) (Definition 8.4). This is a set
of justified sequences of actions, which we call plays.

(2) From the interaction I(R), we obtain the compound strategy, also called normal
form [[R]] (Definition 8.6) by hiding the internal communication (i.e., the internal
actions).

Since we allow for the repetition of actions, there might be several occurrence of the
same action a in a strategy. However, distinct occurrences are distinguished by being the
last element of distinct views; this holds because in our setting neutral actions are equipped
with an index.

In order to define the interaction of a cut-net, we first need the following notion.

Definition 8.2 (View extraction). Let s = x1 . . . xn be a justified sequence of actions. We
define the view of s denoted by psq as follows:

• psq := s if s is empty;
• ps.xq := psq.x if x is positive of neutral;
• ps.xq := pqq.x if x is negative, s = q.r.x and x points to the the last action of q. If

x is initial (i.e., it does not point to any previous action), we set ps.xq = x.
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In words, we trace back from the end of s: (i) following the pointers of negative actions
of s and erasing all actions under such pointers, (ii) bypassing positive and neutral actions,
(iii) stopping the process when we reach an initial negative action.

Hence, given a justified sequence of actions s = x1 . . . xn we obtain a subsequence
psq = xk1

. . . xkm
, where 1 ≤ k1 < . . . < km ≤ n. Implicitly, we intend the operation p q to

be pointer preserving: if xi points to xj in s and ks = i, kr = j, then xi points to xj in psq.

Example 8.3. Given s = x1.x2 . . . x9 and t = y1.y2 . . . y8 as follows:

s = τ1 a+ a− τ1 b+ b−0 τ1 a+
0 a−0 t = τ1 a+ a− τ1 b+ b−0 τ1 a+

0

we get psq = x1.x2.x9 and ptq = y3.y4.y5.y6.y7.y8:

psq = τ1 a+ a−0 ptq = a− τ1 b+ b−0 τ1 a+
0

Before giving the definition, let us informally explain how the abstract machine cal-
culates the interaction of a cut-net R. The machine visits actions of strategies of R and
collects the sequences of visited actions, proceeding as follows:

• We start on the roots of the main strategy of a cut net R.
• If we visit a visible action a occurring in some D ∈ R, we continue to explore the

current strategy D. The process eventually branches when a is a branching node of
D.

• If we visit an internal action a+ occurring in D we match it with its opposite a−

occurring in E ∈ R, then we continue to collect actions in E (this is a jump of
the machine). Since there could be several occurrences of a− in E , we use p q to
determinate the correct occurrence of action to which we have to move.

• We may eventually stop when either we reach a maximal action or an internal action
which has no match.

We now give the formal definition of interaction.

Definition 8.4 (Interaction). The interaction I(R) of a cut-net R = {D1, . . . ,Dn} is a
set of justified sequences of actions p called plays defined as follows:

Start: If a is a root of the main strategy of R, then a ∈ I(R). If the main strategy of
R is empty, we set I(R) := ∅.

Continuation: If p = x1 . . . xn ∈ I(R) and xn is either a visible action or a internal
negative action, then the interaction “continues” in the (unique) strategy Di ∈ R
such that ppq ∈ Di. So, for any action a which extends ppq in Di i.e., such that
ppq.a ∈ Di, we set p.a ∈ I(R) where the pointer for a is given by the equation
pp.aq = ppq.a.

Jump: If p = x1 . . . xn ∈ I(R) and xn = a+ is a internal positive action, then we
consider the sequence p.a− obtained by adding the action a− to p together with a
pointer from a− to xi−1 in case xn points to xi in p. If there is Di ∈ R such that
pp.a−q ∈ Di, we set p.a− ∈ I(R), otherwise (and we say that a+ has not match)
the play p is maximal, not extensible in I(R).
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Remark 8.5. In the case “continuation” above, the equation pp.aq = ppq.a summarizes
the following conditions:

• if a is negative, then a must point to xn;
• if a has no pointer in Di (i.e., a is either neutral or visible positive action whose

name is on the interface of Di or daimon) then a does not point to any action in p;
• if a is positive and points to an occurrence of negative action b in ppq in Di, then

a points at the unique occurrence of b occurring at the position xi of p such that
pp.aq = ppq.a (notice that a different pointer, say from a to an occurrence of b at
some different position xj, gives a sequence which is not a view of Di).

Definition 8.6 (Normal form). The normal form (or equivalently, the composite) of a
cut net R, denoted by [[R]], is obtained by hiding the occurrences of internal actions from
the plays of I(R). Precisely:

(1) Hiding. We consider each sequence p ∈ I(R) and we delete the internal actions.
What remains is the subsequence of visible actions of p, written hide(p), with the
obvious inherited pointer structure.

(2) Garbage collection. We erase from {hide(p) : p ∈ I(R)} the empty sequence and
any maximal sequence ending with negative actions.

The normal form [[R]] is then defined as the set of justified sequences obtained after hiding
and garbage collection.

We have the following properties.

Proposition 8.7. The normal form of a cut-net R is a strategy (on the interface of R).

Theorem 8.8 (Associativity). Let D, E , F be strategies. We have:

[[D, E ,F ]] = [[[[D, E ]],F ]]

The proof is given in Appendix B.

The main result of composition we use is given by the following proposition.

Proposition 8.9 (Copies). Let D : ξ+ and E : ξ− be strategies such that D has a positive
action x as root. We have:

[[D, E ]] = [[σ(D), E , E [σ/ξ]]] (8.1)

Proof. We define the following operation f which takes as input a play p ∈ I({D, E}) and
returns a justified sequence of actions f(p) as follows.

• f(p) = p is p is empty.
• Let p = x1 . . . xn ∈ I({D, E}). We set:

– f(p) = f(x1 . . . xn−1).(σ.α, I)ǫ if xn = (ξ.α, I)ǫ and (ξ.α, I)ǫ hereditarily points
to either x1(= x+) or x2(= x−).

– f(p) = f(x1 . . . xn−1).xn otherwise.
In both cases above, the pointer for xn is given as follows: if xn points to xi in p then
for f(p) = y1 . . . yn, yn points to yi in f(p) (notice that by definition, f preserves
the length of the sequences and the polarity of the actions).

It is not hard to prove that f provides a bijection from I({D, E}) to I({σ(D), E , σ(E)}) and
moreover, hide(p) = hide(f(p)). From this, we conclude [[D, E ]] = [[σ(D), E , E [σ/ξ]]].



LUDICS WITH REPETITIONS 29

8.2. Orthogonality. We revise Definition 4.8.

Definition 8.10 (Orthogonality). Let D : ξ+ and E : ξ− be n.u. strategies. We define
orthogonality as follows:

D⊥E if for each τ -slice S of [[D, E ]], S≈ = Dai.

The definition immediately generalizes to strategies on an arbitrary interface. Let Γ =
ξǫ1
1 , . . . , ξǫn

n ; if D : Γ we must have a a family of counter-strategies E1 : ξǫ
1, . . . , En : ξǫ

n, and
we define in the straightforward way D⊥{E1, . . . , En}.

The following corollary is an immediate consequence of the definition of orthogonality:

Corollary 8.11. Let E : ξ− be a negative strategy such that E =
∑τ

i∈S Ei and D : ξ+ a
positive strategy. We have that:

D⊥E ⇒ D⊥Ei, for any i ∈ S.

The converse does not hold in general. We now give a concrete example, which is also
useful to better describe composition via our graphical notation.

Example 8.12. Let us consider the following strategies.

D = x+

y−

x+

y−

†

z−

x+

z−

†

E1 = x−

y+

E2 = x−

z+

E1 +τ E2 = x−

τ1

y+

τ2

z+

If we compose D with Ei, it is rather clear that we always reach †, hence D⊥E1 and D⊥E2.
On the other hand, if we compose D with E1 +τ E2, we have the interaction as (partially)
described below.

† †

y− z−

x+ x+ y+ z+

y− z− τ1 τ2

D x+ x− E1 +τ E2
1

2 2’

3 3’

4

4’

5 5’
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After the steps tagged by 5 and 5′ the interaction “re-enters” in E1 +τ E2. The steps
which follow 5 are described below (for the steps which follow 5′ the situation is symmetric).

† †

y− z−

x+ x+ y+ z+

y− z− τ1 τ2

D x+ x− E1 +τ E26

7 7a

8 8a
9

10

Notice that after the step tagged by 8a we have a deadlock : the action z+ should match
an action z− above the last visited occurrence of x+ (the leftmost one), but there is no such
an action (we only have y−).

The result of composition is:

[[D, E1 +τ E2]] = τ1

τ1

†

τ2

τ2

τ1 τ2

†

which has four τ -slices:

S1 = τ1

τ1

†

S2 = τ1

τ2

S3 = τ1

τ2

S4 = τ2

τ2

†

That is:
S≈

1 = Dai S≈
2 = Fid S≈

3 = Fid S≈
4 = Dai

From this we conclude that D 6⊥ E1 +τ E2.

We will use the following properties of normalization.

Lemma 8.13. Let C, C1, C2 be strategies on the same interface Γ = ξ1+, . . . , ξn+.
Let {E1, . . . , En} be a family of negative strategies such that Ei : ξi− (with 1 ≤ i ≤ n).

We have the following:

(a) {E1, . . . , En} ⊥ C if and only if x+.{E1, . . . , En} ⊥ x−.C, where x = (ξ, {1, . . . , n});
(b) {E1, . . . , En} ⊥ C1 +τ C2 if and only if {E1, . . . , En} ⊥ C1 and {E1, . . . , En} ⊥ C2.



LUDICS WITH REPETITIONS 31

9. Ludics with repetitions: internal completeness

In this section we give constructions for behaviours, which correspond to the construc-
tion of MELLS formulas, and prove that they enjoy internal completeness.

As defined in Section 4.3, a behaviour G is a set of strategies closed by biorthogonal
G = G⊥⊥. The definition of sequent of behaviours remain the same; similarly Proposition
4.14 still hold:

Proposition 9.1. D ∈ ⊢ Γ,G if and only if for each E ∈ G⊥, [[D, E ]] ∈ ⊢ Γ.

9.1. Constant types. We define the positive (resp. negative) constant behaviour on ξ as
follows:

?0 := {Dai}⊥⊥ on interface ξ+; !⊤⊤⊤ := {Dai}⊥ on interface ξ−.

We have that ?0 contains a unique deterministic strategy, which is Dai. On the other side,
!⊤⊤⊤ contains all negative strategies which has interface ξ, including the empty one.

9.2. Compound types. In this section, we use the same constructions on strategies and
operations on sets of strategies as in Section 4.4.

Let us fix negative behaviours Nξ1, . . . ,Nξn on the interfaces ξ1, . . . , ξn respectively.
We define a new positive (resp. negative) behaviour on ξ as follows:

F+(Nξ1, . . . ,Nξn) := (Nξ1 • · · · •Nξn)⊥⊥; F−(Nξ1
⊥, . . . ,N⊥

n ) := (Nξ1 • · · · • Nξn)⊥.

Up to the end of Section 9 we fix the following notation:

• we denote by x the action (ξ, {1, . . . , n});
• Nξ = (Nξ1 • · · · • Nξn)⊥ and Pξ = (Nξ1 • · · · • Nξn)⊥⊥.

Remark 9.2. It is important to observe that, by construction, all strategies in Nξ1•· · ·•Nξn

have as root x = (ξ, {1, . . . , n}), which is linear. The repetitions of occurrences of x are
obtained via the closure by biorthogonality, and hence only belong to (Nξ1 • · · · • Nξn)⊥⊥

Proposition 9.3 (Internal completeness of F−).

(1) x−.D ∈ F−(P1, . . . ,Pn) ⇔ (2) D ∈ ⊢ P1, . . . ,Pn.

Proof. The proof follows immediately from the definitions. Expanding them, we obtain the
two following properties, which are equivalent by using Lemma 8.13(a):

(1) x−.D ⊥ x+.{E1, . . . , En}, for any E1 ∈ P1
⊥, . . . , En ∈ Pn

⊥;
(2) D ⊥ {E1, . . . , En}, for any E1 ∈ P1

⊥, . . . , En ∈ Pn
⊥.
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We will use the following technical properties.

Lemma 9.4.

(1) Let us denote by [Nξ] the set of all F ∈ Nξ such that F has a unique root. We have

that [Nξ]
⊥ = Nξ

⊥ i.e.,

Pξ = [Nξ]
⊥.

(2) Let F1,F2 ∈ Nξ. Assume F1 = x−.D1,F2 = x−.D2. We have x−.(D1 +τ D2) ∈ Nξ.
(3) If D ∈ Pξ, then for each τ -slice S of D (see Definition 7.5), the root of S≈ is either x+

or †.

Proof.

(1) It is immediate by definition of normalization; see Remark 9.2.
(2) By Internal completeness 9.3, for each i, x−.Di ∈ ⊢ P1, . . . ,Pn. By Lemma 8.13

D1 +τ D2 ∈ ⊢ P1, . . . ,Pn. Using 9.3 again, we conclude D1 +τ D2 ∈ N.
(3) It follows immediately from the fact that Pξ = [Nξ]

⊥ (point (1) above).

Observe that the property at the point (2) above does not hold in general, for arbitrary
behaviours (cf. Example 8.12).

Lemma 9.5. Let D ∈ Pξ = (Nξ1 • · · · • Nξn)⊥⊥, such that D = x.D′. We have that
σ(D) ∈ ⊢ Pξ ,Pσ. Moreover, the new root on σ is linear.

Proof. By Lemma 9.4(1), Pξ = [Nξ]
⊥. Moreover, for all pairs E ,F ∈ [Nξ], D⊥E and

D⊥F . By Lemma 9.4(2), we have that D⊥ E +τ F . Using Proposition 8.9, we have that
σ(D)⊥{E +τ F , (E +τ F)[σ/ξ]} and by Corollary 8.11 we have that σ(D)⊥{E ,F [σ/ξ]}, that
is σ(D) ∈ ⊢ Pξ,Pσ .

Proposition 9.6 (Internal completeness of F+). Let x.D ∈ Pξ = F+(Nξ1, . . . ,Nξn). Then
σ(D) = D′

1 • · · · • D
′
n where each D′

i ∈ ⊢ Nσi,Pξ .

Proof. By Lemma 9.5, we have that if x.D ∈ Pξ , then σ(x).D ∈ ⊢ Pξ,Pσ . Moreover,
the root is an action on the name σ, and it is the only occurrence of action on σ. By
using the same argument as in Proposition 5.1, we have that σ(x).D = D′

1 • · · · • D′
n and

D′
i ∈ ⊢ Nσi,Pξ .

10. Ludics with repetitions: full completeness

We now show that our model is fully complete with respect to MELLS (Section 2). In
this paper, we limit ourselves to the constant fragment of MELLS: ground, atomic formu-
las are therefore only ?0 and !⊤. From now on, by MELLS we always mean its constant
fragment.

As usual in game semantics (e.g., [26, 28]), not all strategies are suitable to be in-
terpretation of a proof. In general, strategies which are interpretation of a proof have to
satisfy some winning conditions which describe a ”good” strategy. Our winning strategies
are those that are finite, deterministic, daimon-free and material (see below).

We recall that we say that a strategy is deterministic if it is free of neutral actions; we
now introduce the notion of materiality.
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10.1. Materiality. By definition of composition (Section 8.1), at each step, the interaction
collects (i.e., visits) some occurrences of action of the strategies which we are composing.
Moreover, when visiting an occurrence of action a in some view w.a, all actions in w have
already been visited. We also say that the view w.a is used during the composition.

The idea of materiality is immediate to understand; let us consider the following exam-
ple.

Example 10.1. Let D, E ,F be the strategies in Figure 8.

G G⊥

D = x+ E = x+

x−
1

x+

F = x−

†

Figure 8: Materiality

Consider G = {D}⊥⊥ and notice that F ∈ G⊥. Observe also that E ∈ G, but the
normalization between E and F uses only the first action x+; the action x−

1 is never visited
through the interaction between E and F .

As the example shows us, normalization does not necessarily visit all the actions of a
strategy. The notion of materiality exactly captures the significant part of a strategy from
the point of view of a behaviour G, that is the part that is really used to react to the tests
(strategies of G⊥).

Definition 10.2 (Materiality). Let D, E be orthogonal strategies; we denote by DE the set
of views of D which are used during the normalization against E .

Let D be a strategy of G. We define the material part of D in G,

|D|G = {
⋃

E∈G⊥

DE}.

A strategy is said material in G if D = |D|G.

The content of this definition is made explicit by the points (2),(3) below.

Lemma 10.3.

(1) DE and |D|G are strategies.
(2) [[DE , E ]] = [[D, E ]].
(3) |D|G⊥E for each E ∈ G⊥.

Proof.

(1) It is a consequence of the fact that DE ⊆ D and |D|G ⊆ D, which guarantees most
of the conditions, in particular coherence. Maximality is given by the definition of
normalization (an action which is not matched, is not considered “visited”).

(2) and (3) express exactly the content of the definition of materiality: DE is all what
is used in D to react with E . So, in particular,

[[|D|G, E ]] = [[D, E ]] for each E ∈ G⊥.
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Obviously, from the previous lemma we have:

Corollary 10.4. If D ∈ G then |D|G ∈ G.

Coming back to Example 10.1, we can see that D is material in G whereas E is not.
The notion of materiality naturally extends to sequent of behaviours (considering fam-

ilies of counter-strategies instead of single counter-strategies).

Example 10.5 (Materiality with constant types). Let us fix a name ξ. The only mate-
rial and deterministic strategy in the constant type ?0 is Dai. What about !⊤⊤⊤ = {D :
D is on interface ξ−} ? The unique material strategy which inhabits !⊤⊤⊤ is the empty nega-
tive one ∅ (cf. Example 4.4). Indeed, no view of any other strategy D ∈ !⊤⊤⊤ can be visited
by the interaction with Dai.

10.2. Completeness theorems. In Section 10.3, we describe the interpretation of a for-
mula F of MELLS into a behaviour F and similarly the interpretation of syntactical se-
quents of MELLS into sequents of behaviours. Derivations of sequents in MELLS will be
interpreted by winning strategies.

Definition 10.6 (Winning strategy). A strategy D ∈ ⊢ Γ is said winning if it is finite,
deterministic, daimon-free and material in ⊢ Γ.

In the sequel, finiteness, determinism, daimon-freeness and materiality are also called
winning conditions.

Remark 10.7 (Finiteness condition). We here assume finiteness among the winning con-
ditions. However, recent work by Basaldella and Terui [5] shows an exciting property of
interactive types: any material, deterministic and daimon free strategy in a behaviour which
is interpretation of logical formula is finite. We are confident that this result is also valid our
setting; we need to check this in detail, and for lack of time we postpone it in a subsequent
work.

The rest of this article is then devoted to prove the following theorems.

Soundness: (Theorem 10.11) Let π be a derivation of a sequent ⊢ Γ in MELLS.
There exists a winning strategy π⋆ ∈ ⊢ Γ such that π⋆ is interpretation of π, where
⊢ Γ is the interpretation of ⊢ Γ. Moreover, if π reduces to ρ by means of cut-
elimination, then π⋆ = ρ⋆.

Full Completeness: (Theorem 10.12) Let ⊢ Γ be the interpretation of a sequent
⊢ Γ, and let D ∈ ⊢ Γ. If D is winning, then D is the interpretation of a cut-free
derivation π of the sequent ⊢ Γ in MELLS.

10.3. Interpretation of formulas, sequents and derivations. The interpretation
〈

F
〉

ξ

of a formula F of MELLS is given by a behaviour F on a chosen name ξ by structural
induction on F as follows:

〈

!⊤
〉

ξ
:= !⊤⊤⊤ξ;

〈

F+(N1, . . . , Nn)
〉

ξ
:= F+(

〈

N1

〉

ξ1
, . . . ,

〈

Nn

〉

ξn
)ξ;

〈

?0
〉

ξ
:= ?0ξ;

〈

F−(P1, . . . , Pn)
〉

ξ
:= F−(

〈

P1

〉

ξ1
, . . . ,

〈

Pn

〉

ξn
)ξ.

In the sequel, we indicate the behaviour
〈

F
〉

ξ
by Fξ (by F(ξ) in case of multiple

subscripts) or just by F. We will always assume that a behaviour is an interpretation of
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a formula of MELLS. Precisely, we will only consider behaviours inductively defined as
follows

P ::= ?0 | F+(N1, . . . ,Nn); N ::= !⊤⊤⊤ | F−(P1, . . . ,Pn);

using the types constructors introduced in Section 9.
A sequent ⊢ F1, . . . , Fn of MELLS is interpreted by the sequent of behaviours ⊢

F1(ξ1), . . . ,Fn(ξn) on a given interface ξ1, . . . , ξn.

In order to interpret derivations of MELLS, we first need the following lemma:

Lemma 10.8 (Contraction).

(1) If D ∈ ⊢ Pξ,Pσ ,Γ then D[ξ/σ] ∈ ⊢ Pξ,Γ.
(2) Moreover, if D is winning in ⊢ Pξ,Pσ,Γ, then D[ξ/σ] is winning in ⊢ Pξ ,Γ.

Proof.

(1) Let Γ = F1, . . . ,Fn. By hypotheses, for arbitrary E1 ∈ F1
⊥, . . . , Ek ∈ Fn

⊥ and
A,B ∈ P⊥

ξ , we have D⊥{A,B[σ/ξ], E1, . . . , En}. In particular, we also have D⊥{A,

A[σ/ξ], E1, . . . , En} which implies D[ξ/σ]⊥{A, E1, . . . , En}, since the interactions of
the cut-nets R = {D,A,A[σ/ξ], E1, . . . , En} and R′ = {D[ξ/σ],A, E1, . . . , En} are
essentially the same (p ∈ I(R) if and only if “p[ξ/σ]” ∈ I(R′), with the obvious
intuitive meaning for p[ξ/σ]). Hence, D[ξ/σ] ∈ ⊢ Pξ,Γ.

(2) For winning conditions, the only one which is not immediate to check is material-
ity. By Lemma 9.4(1), we can choose counter-strategies A,B ∈ [Pξ

⊥]. Materiality
follows by observing that for any part D′ ⊆ D which can be visited by normalizing
D with {A,B[σ/ξ], E1, . . . , En} and {B,A[σ/ξ], E1, . . . , En}, the corresponding part
D′[ξ/σ] ⊆ D[ξ/σ] can be visited by using {A +τ B, E1, . . . , En}, since by Lemma
9.4(2), A +τ B ∈ P⊥

ξ .

Proposition 10.9. Let π be a derivation of a sequent ⊢ Γ in MELLS. There exists a
strategy π⋆ ∈ ⊢ Γ such that π∗ is interpretation of π.

Proof. The proof is given by induction on the depth of π. We have four cases, one for each
rule of MELLS without propositional variables.

!⊤-rule: !⊤
⊢ !⊤,Γ

We take π⋆ = ∅ on the sequent of behaviour ⊢ !⊤⊤⊤,Γ.

Pos-rule:

... π1

⊢ N1, F
+,Γ . . .

... πn

⊢ Nn, F+,Γ
Pos

⊢ F+,Γ
By inductive hypotheses, there are strategies π⋆

i ∈ ⊢ Ni(σi),F+(ξ),Γ (for 1 ≤
i ≤ n). We now take (σ, {1, . . . , n})+.{π⋆

1 , . . . , π
⋆
n} which is by construction in

⊢ F+
σ ,F+

ξ ,Γ. Finally, we consider π⋆ := (σ, {1, . . . , n})+.{π⋆
1 , . . . , π

⋆
n}[ξ/σ]. By

Lemma 10.8 (1), π⋆ ∈ ⊢ F+
ξ ,Γ.

Neg-rule:

... ζ

⊢ P1, . . . , Pn,Γ
Neg

⊢ F−,Γ
By inductive hypotheses, we have a strategy ζ⋆ ∈ ⊢ P1(ξ1), . . . ,Pn(ξn),Γ. We take
π⋆ := (ξ, {1, . . . , n})−.ζ⋆. By construction, π⋆ ∈ ⊢ F−

ξ ,Γ.
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Cut-rule:

... π1

⊢ P,Ξ,Γ

... π2

⊢ P⊥,Γ
Cut

⊢ Ξ,Γ
Let Γ be P1, . . . , Pk. By inductive hypotheses, we can consider two strategies π⋆

1 ∈
⊢ Pξ,Ξϕ,Γ~α, and π⋆

2 ∈ ⊢ P⊥
ξ ,Γ~β

, where Γ~α = P1(α1), . . . ,Pk(αk) and Γ~β
=

P1(β1), . . . ,Pk(βk) with ~α = α1, . . . , αk and ~β = β1, . . . , βk disjoint interfaces. By
composing them, we get the strategy [[π⋆

1 , π
⋆
2]] ∈ ⊢ Ξϕ,Γ~α,Γ~β

. For ~γ = γ1, . . . , γk,

let ϕ−, ~γ be the interface associated to the interpretation of the final sequent ⊢ Ξ,Γ.

We take π⋆ := [[π⋆
1 , π

⋆
2 ]][~γ/~α,~γ/~β], where [[π⋆

1, π
⋆
2 ]][~γ/~α,~γ/~β] is given by replacing any

occurrence of name αi and βi in [[π⋆
1, π

⋆
2 ]] by γi, for any (1 ≤ i ≤ k). Applying several

times Lemma 10.8(1), we have that π⋆ ∈ ⊢ Ξϕ,Γ~γ .

10.4. Soundness. In order to prove Soundness, we first show the following lemma, which
express that our interpretation is invariant under cut-elimination procedure of MELLS.

Lemma 10.10. Let π be a derivation of a sequent ⊢ Ξ,Γ in MELLS ending with a cut-rule.

... π′

⊢ P,Ξ,Γ

... π′′

⊢ P⊥,Γ
Cut

⊢ Ξ,Γ

If π reduces to ρ by a step of cut-elimination, then π, ρ are interpreted by the same strategy
D ∈ ⊢ Ξ,Γ.

The proof is quite technical and lengthy; it can be found in Appendix C.
We now have all the ingredients for proving:

Theorem 10.11 (Soundness). Let π be a derivation of a sequent ⊢ Γ in MELLS. There
exists a winning strategy π⋆ ∈ ⊢ Γ such that π⋆ is interpretation of π, where ⊢ Γ is the
interpretation of ⊢ Γ. Moreover, if π reduces to ρ by means of cut-elimination, then π⋆ = ρ⋆.

Proof. By Proposition 10.9 and Lemma 10.10, it only remains to prove that those strategies
given by Proposition 10.9 are winning in their sequents of behaviours.

!⊤-rule: If π ends with the !⊤-rule, then π⋆ = ∅ is clearly a winning strategy in
⊢ !⊤⊤⊤,Γ.

Pos-rule: If π ends with a positive rule and the premises are interpreted by winning
strategies, π⋆

i ∈ ⊢ Ni(σi),F+(ξ),Γ (for 1 ≤ i ≤ n), then the strategy (σ, {1, . . . , n})+.
{π⋆

1 , . . . , π
⋆
n} is winning in ⊢ F+

σ ,F+
ξ ,Γ. By Lemma 10.8(2), π⋆ = (σ.{1, . . . , n})+.

{π⋆
1 , . . . , π

⋆
n}[ξ/σ] is winning in ⊢ F+

ξ ,Γ.

Neg-rule: If π ends with a negative rule and its premise is interpreted by a winning
strategy ζ⋆ ∈ ⊢ P1(ξ1), . . . ,Pn(ξn),Γ , then it is immediate to check that π⋆ =
(ξ, {1, . . . , n})−.ζ⋆ is winning in ⊢ F−

ξ ,Γ.

Cut-rule: If π ends with a cut-rule, let π⋆
1 ∈ ⊢ Pξ ,Ξϕ,Γ~α and π⋆

2 ∈ ⊢ Pξ
⊥,Γ~β

be the winning strategies which interpret the premises of the cut. We have to
show that [[π⋆

1, π
⋆
2 ]] ∈ ⊢ Ξϕ,Γ~α,Γ~β

is winning. By Lemma 10.10, [[π⋆
1, π

⋆
2 ]] is also

the interpretation of a cut-free derivation ρ of ⊢ Ξ,Γ,Γ obtained by applying cut-
elimination procedure to π. Hence, by the previous steps above, [[π⋆

1, π
⋆
2 ]] is winning
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in ⊢ Ξϕ,Γ~α,Γ~β
. Finally, applying Lemma 10.8(2) several times, we have that

π⋆ = [[π⋆
1, π

⋆
2 ]][~γ/~α,~γ/~β] is winning in ⊢ Ξϕ,Γ~γ .

10.5. Full completeness.

Theorem 10.12 (Full Completeness). Let ⊢ Γ be the interpretation of a sequent ⊢ Γ, and
let D ∈ ⊢ Γ. If D is winning, then D is the interpretation of a cut-free derivation π of the
sequent ⊢ Γ in MELLS.

Proof. Since our strategies are finite, we can reason by induction on the number of actions
of D.

Empty case. We already observed that in a behaviour, all strategies are total. Hence, if D
is empty, it must be a negative strategy. We have D ∈ ⊢ N,P1, . . . ,Pn, and by definition
of sequent of behaviours, for all Ei ∈ Pi

⊥ (1 ≤ i ≤ n), [[D, E1, . . . , En]] ∈ N. By definition
of normalization, we have [[D, E1, . . . , En]] = ∅. We conclude that N = !⊤⊤⊤, and hence that
D ∈ ⊢ !⊤⊤⊤,P1, . . . ,Pn. The empty strategy is therefore the interpretation of the !⊤-rule.

Non empty case. Let ⊢ ∆ be the interpretation of the sequent ⊢ ∆, and D ∈ ⊢ ∆ a
winning strategy. Our purpose is to associate to D a derivation D⋆ of ⊢ ∆ in MELLS, by
progressively decomposing D, i.e., inductively writing “the last rule”. To be able to use
internal completeness, which is defined on behaviours (and not on sequents of behaviours),
we will use — back and forth — the definition of sequent of behaviours and in particular
Proposition 9.1.

The formula on which the last rule is applied is indicated by the name of the root
action. Since D is non-empty, there is a minimal action, which is the root. Such a minimal
action is unique, because D is deterministic and material. For example, let us assume that
the root of D is (ξ, I); then if D ∈ ⊢ Fξ,Cσ, the behaviour which corresponds to the last
rule is the one on ξ, i.e., Fξ.

Without loss of generality, in the following we will consider D ∈ ⊢ F,C; moreover,
we assume F binary. Of course the argument straightforwardly generalizes to the cases
D ∈ ⊢ F,Γ and F n-ary.

Positive case. Let D = (ξ, {1, 2})+.{D1,D2} be a positive winning strategy which belongs
to ⊢ F+

ξ ,Cα, where F+ = F+(N,M) and C are the interpretation of formulas F+(N,M)

and C respectively. By Proposition 9.1, for any E ∈ C⊥, we have:

(1) [[D, E ]] ∈ F+
ξ and the root of [[D, E ]] is still (ξ, {1, 2})+ . This allows us to use internal

completeness.
(2) By internal completeness of positive connectives (Proposition 9.6), we have that

σ([[D, E ]]) can be written as C1 • C2, for some C1 ∈ ⊢ Nσ1,F
+
ξ and C2 ∈ ⊢ Mσ2,F

+
ξ .

(3) By definition of normalization, it is immediate that:

σ([[D, E ]]) = [[σ(D), E ]] = [[(σ, {1, 2})+ .{D′
1,D

′
2}, E ]]

= (σ, {1, 2})+ .{[[D′
1, E ]], [[D′

2, E ]]}
= [[D′

1, E ]] • [[D′
2, E ]].
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From this, we conclude that [[D′
1, E ]] ∈ ⊢ Nσ1,F

+
ξ and [[D′

2, E ]] ∈ ⊢ Mσ2,F
+
ξ .

By applying Proposition 9.1 again, we have that D′
1 ∈ ⊢ Nσ1,F

+
ξ ,Cα and D′

2 ∈ ⊢ Mσ2,F
+
ξ ,Cα

and then we can write the derivation:

... D
′⋆
1

⊢ N1, F
+(N,M), C

... D
′⋆
2

⊢ N2, F
+(N,M), C

⊢ F+(N,M), C
Pos

It is immediate to check that winning conditions are preserved in both D′
1,D

′
2 and the

number of actions decreases. Hence, the inductive hypotheses applies.

Negative case. Let us now consider a negative winning strategy D ∈ ⊢ F−
ξ ,Cα, where

F− = F−(P,Q) and C are the interpretations of formulas F−(P,Q) and C respectively.
All strategies in F−⊥ have essentially only one possible root action x (by Lemma 9.4(3));
x is hence the only root action which can be used by normalization. Since D is material,
it follows that D can only have a single root action: D is of the form x−.D′. Let assume
x = (ξ, {1, 2}).

For any E ∈ C⊥, we have

(1) [[D, E ]] ∈ F−(P,Q), and the root is still x−. This allows us to use internal complete-
ness.

(2) By internal completeness of negative connectives (Proposition 9.3), we conclude that
[[D, E ]] is of the form x−.D′′ with D′′ ∈ ⊢ Pξ1,Qξ2.

(3) By the definition of normalization,

[[D, E ]] = [[x−.D′, E ]] = x−.[[D′, E ]].

From this, we have that D′′ = [[D′, E ]] and hence [[D′, E ]] ∈ ⊢ Pξ1,Qξ2.

By applying Proposition 9.1 again, we have that D′ ∈ ⊢ Pξ1,Qξ2,Cα. Then, we can write
the derivation:

... D
′⋆

⊢ P,Q,C

⊢ F−(P,Q), C
Neg

It is immediate to check that winning conditions are preserved in D′ and the number
of actions decreases. Hence, the inductive hypotheses applies.

11. Conclusion

In this work, we started by recalling the standard notion of HO strategy and we have
shown how ludics strategies can be expressed in term HO strategies by giving an universal
arena. We have revised the main results of the higher-level part of ludics (namely, internal
completeness) giving direct proofs of them using basic properties of the dynamics only. We
have motivated and introduced the notion of non-uniform strategy and shown that we still
have internal completeness when strategies are non-linear and non-uniform. From this, we
finally have shown a full completeness result with respect to the constant-only fragment of
MELLS.
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Related and future work.

Maurel’s exponentials. Maurel [27] has built a sophisticated setting to recover a form of
separation when having repetitions in ludics; however, the complexity of the setting prevent
him from going furthen and studying interpretation and full completeness issues. In this
paper, we ignore separation all together, and in fact we show that we don’t need it in order
to have interactive types and internal completeness. In future work, we hope it may be
possible to refine our setting by using Maurel techniques.

Let us discuss this perspective. In Maurel’s setting, strategies have a quantitative
information carried by probabilistic values (coefficients). The values in the coefficients have
a central role, and must satisfy a set of “quantitative conditions” inspired by measure theory.
This is fundamentally different from our indexed neutral (τ) actions, as the specific natural
number which is chosen as index for a τ action is irrelevant (in particular, all the indexes
can be interchanged, and this does not affect orthogonality), and there are no condition
attached. Our indexed τ have the same role as in [32]. However, in a way, we think that
our use of τ actions could be seen as a simplification — or rather a quotient — on Maurel’s
coefficients; on this grounds, we hope it may be possible to refine our neutral actions by
attaching probabilities to them, without loosing our high-level results.

AJM style exponentials for Ludics. A different solution that uses AJM style exponentials
has been studied by the first of the two authors in [3]: essentially, the strategies which
inhabit a semantical type !A are those of the form (N , 1) ∪ (M, 2) ∪ . . . : an indexed
superimposition of strategies N ,M, . . . of A.

However, the approach we use in this paper, which exploits similar ideas, is considerably
simpler, and we hope more suitable for more applicative uses of ludics [14, 29, 30].

τ -actions and innocent strategies. The n.u. strategies we introduce in this paper rely on
previous work developed by Faggian and Piccolo [15, 13, 14], to bridge between ludics and
process calculus by means of a more general language, that of event structures. The notion
of τ actions and τ -cell are there introduced and motivated, as well as the conditions to
generalize the definition of innocent strategies.

While the setting by Faggian and Piccolo is linear, we show here that the generalized
definition of innocence (with τ actions) extends also to the case with repetition.

A closely related work —where indexed τ actions are first introduced— is [32].

Computational ludics. By using the approach we present in this paper, Basaldella and
Terui [5] have recently extended Terui’s computational ludics [30] in order to accommodate
exponentials.

Their paper is aimed to analyzing the traditional logical duality between proofs and
models from the point of view of ludics and they get an alternative proof of full complete-
ness based on a direct construction of a counter-model. Very interestingly, that work also
enlighten an exciting property of the “interactive types”. Unlike in standard HO game se-
mantics, finiteness does not need to be requested as a condition for strategies to be winning;
it is rather an outcome of the closure by orthogonality. In fact, Basaldella and Terui show
that any material, deterministic strategy in a behaviour which is interpretation of logical
formula is finite. We are confident that this result is also valid our setting, however we still
need to check all the details.
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Non-deterministic innocent strategies. They have been introduced by Harmer in [22], with
the purpose of modeling non-determinism (PCF with erratic choice).

In this paper we introduce non-uniform strategies, which are realized by means of non-
deterministic sums. However, the purpose of our non-deterministic sums is to implement
non uniformity via “formal sums” of strategies, in order to provide enough tests to make
possible the interactive approach of ludics. The different purpose is reflected in the composi-
tion, which is simpler in our setting, where is in fact reduced to deterministic composition.
Our strategies could be seen as a “concrete” implementation of Harmer’s solution, in a
simplified setting. Harmer overcomes the problems with composition moving from naive
non-deterministic strategies S : A → B to an “indirect” definition of strategies of the kind
S : A × N → B. We have instead 3 kinds of actions: Player (+), Opponent (−), and tau
actions (τ). Tau actions carry an index i ∈ N, and have a two-fold role: they guard the
sum (as in [32]), and provide an “index of copy” (as in AJM game semantics, but here the
index is unfold only when needed).

Polarized game semantics. We build on the variant of HO strategies introduced in [26].
Moreover, we are interested in connections with the resource modalities of games semantics
introduced by Melliès and Tabareau in [28].

Abstract machines. Curien and Herbelin in [10] have studied composition of strategies as
sets of views. In particular they have developed the View-Abstract-Machine (VAM) (see
also [7]) which is the device we use in this paper.
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Appendix A. Intuitionistic logic calculus LJ0

MELLS is equivalent to the following calculus LJ0. Formulas of LJ0 are defined by
the following grammar:

F := ⊥ | X | ¬(F ∧ . . . ∧ F ).

Rules of LJ0 are the following. Let F be ¬(F1 ∧ . . . ∧ Fn) :

Γ,X ⊢ X Γ,⊥ ⊢
Γ, F1, . . . , Fn ⊢

Γ ⊢ F

Γ, F ⊢ F1 . . . Γ, F ⊢ Fn

Γ, F ⊢

Γ ⊢ F Γ, F ⊢ Ξ

Γ ⊢ Ξ

where Ξ is either empty or consisting of one formulas. LJ0 is a focalized version of the
fragment ¬,∧ of intuitionistic logic. A translation ( )∗ of formulas and sequent of MELLS
in LJ0 can be given by induction as follows:

?0 ∗ := ⊥; !⊤ ∗ := ¬⊥;
F+(N1, . . . , Nn) ∗ := ¬(N∗

1 ∧ . . . ∧ N∗
n); F−(P1, . . . , Pn) ∗ := ¬(P ∗

1 ∧ . . . ∧ P ∗
n);

⊢ P1, . . . , Pn
∗ := P ∗

1 , . . . , P ∗
n ⊢; ⊢ N,P1, . . . , Pn

∗ := P ∗
1 , . . . , P ∗

n ⊢ N∗.
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Appendix B. Normalization of n.u. strategies : associativity

The aim of this section is to give a proof of associativity of composition [20, 8] in our
setting with repetitions of actions and neutral actions:

Theorem B.1 (Associativity). Let D a strategy and R1 and R2 be cut-nets such that D
and R1 ∪R2 form a cut net. We have:

[[D,R1 ∪R2]] = [[[[D,R1]],R2]].

For the sake of readability, here we will only consider the case R1 = {E} and R2 = {F}
and hence the equation

[[D, E ,F ]] = [[[[D, E ]],F ]]. (B.1)

For deterministic strategies (with repetition of actions), associativity of composition is well-
known result. One could either translate our “strategies as set of views” into “ strategies
as set of plays” and use standard game semantics arguments. Alternatively, one can also
translate our deterministic strategies into abstract Böhm trees [7, 10] (which better fits our
presentation of “strategies as set of views”), for which associativity of composition is proven
[7]. A direct translation of deterministic strategies into of abstract Böhm trees can be found
in [27].

To prove associativity for strategies with neutral action, we define a translation of n.u.
strategies into deterministic one.

To have an intuition, we first observe that by our definition of normalization, a neutral
action τi operationally behaves as it were an ordered pair (b+, b−i ) consisting of a visible
positive action followed by a visible negative action. Our idea is then to replace any neutral
action τi occurring in a view of a strategy by a suitable pair of actions (b+, b−i ).

We recall (Definition 7.2) that a n.u. strategy D on an arena A is a set of views on
the arena A∪ T . In order to formally “replace” a neutral action τi ∈ T occurring in a view
w ∈ D by a pair of action b+.b−i , we introduce the following arena B.

The (two-layered) arena B = (B,⊢B, λB) is given as follows:

• The set of moves B consists of a move b together with a denumerable set of moves
bi i.e., B = {b} ∪ {bi : i ∈ N};

• The enabling relation is given by b ⊢B bi for any bi;
• The polarity is given by λB(b) = + and λB(bi) = − for any bi.

We are now ready to define our translation.

Definition B.2 (Translation into deterministic strategies). Let D be a non deterministic
strategy on an arena A. Let w = w′.a ∈ D a view on A ∪ T . We define the operation d

from views on A ∪ T to views on A ∪ B as follows:

• d(w) := d(w′).a if a is either a positive or negative action;
• d(w) := d(w′).b+.b−i if a = τi and w is not maximal in D;

• d(w) := d(w′).b+.b−i .b+ if a = τi and w is maximal in D.

The pointer structure of d(w) is hereditarily given from w and in addition, any new action b−i
points to the previous occurrence of initial action b+. We define the deterministic strategy
d(D) on A as d(D) := {d(w) : w ∈ D}.
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To see the operation d more graphically, let us consider Figure 9. In the left side (a) we
have pictured a piece of strategy in which a negative action a− is followed by a τ -cell τ1, τ2.
On the right part (b), we have pictured the same piece of strategy after the operation d.

x+ y+

x+ y+ b−1 b−2

τ1 τ2 b+

a− a−

(a)
...

... (b)

Figure 9: Translation into deterministic strategies

Given a strategy of the form d(D) on A, we define the inverse operation, which we call
u which restores the neutral action that were in D. More precisely, given a view w ∈ d(D)
on A ∪ B, we define:

• u(w) := u(w′).a if w = w′.a and a is either a positive or negative action;
• u(w) := u(w′).τi if w = w′.b+.b−i and w is not maximal in D;

• u(w) := u(w′).τi if w = w′.b+.b−i .b+ and w is maximal in D.

It is immediate that u(d(D)) = D.

Is important to notice that our translation works as well for strategy given on interfaces:
given a strategy D : Γ, we obtain a deterministic strategy d(D) : Γ. In particular, if D, E
are n.u. strategies that can be composed together, then also the deterministic strategies
d(D), d(E) can be composed together.

The most important property of our translation is that d commutes with normalization:

d([[D1, . . . ,Dn]]) = [[d(D1), . . . , d(Dn)]] (B.2)

In order to show associativity of composition for n.u. strategies (Equation B.1) we can
now use associativity of composition of of deterministic strategies (noted by AD, below)
together with Equation B.2. We have:

[[D, E,F ]] = u(d([[D, E ,F ]]))
= u([[d(D), d(E), d(F)]]) by Equation B.2
= u([[[[d(D), d(E)]], d(F)]]) by AD
= u([[d([[D, E ]]), d(F)]]) by Equation B.2
= u(d([[[[D, E ]],F ]])) by Equation B.2
= [[[[D, E ]],F ]].
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Appendix C. Proof of Lemma 10.10

To prove Lemma 10.10, we naturally generalize the renaming operator defined in Sec-
tion 6.1. We now allow a simultaneous renamings in arbitrary interfaces.

Let ∆ = α1, . . . , αk, ∆′ = β1, . . . , βk and Γ be non necessarily disjoint interfaces such
that ∆∪Γ and ∆′ ∪Γ are interfaces. Let D be a strategy in ∆∪Γ. By D[∆′/∆] we denote
the strategy on interface ∆′ ∪ Γ obtained from D be renaming, in all occurrences of action,
the prefix αi into βi for any 1 ≤ i ≤ k.

We use the following fact, which is a straightforward generalization of Proposition 8.9.
Let D : ξ+,Γ and E : ξ−,∆ be strategies such that D has a positive action (ξ, I) as

root. Let σ,∆′ be arbitrary fresh names. We have:

[[D, E ]] = [[σ(D), E , E [σ/ξ,∆′/∆]]][∆/∆′] (C.1)

where σ(D) : ξ+, σ+,Γ, E : ξ−,∆ and E [σ/ξ,∆′/∆] : σ−,∆′.
Observe that the renaming [∆′/∆] in E [σ/ξ,∆′/∆] is needed to ensure that {σ(D), E ,

E [σ/ξ,∆′/∆]} is a correct cut-net on interface Γ,∆,∆′. The latest one [∆/∆′] is needed to
have the strategy on the r.h.s. of Equation C.1 on the same interface Γ,∆ of {D, E}.

For the use we make below, one can also assume that D and E above are deterministic
strategies.

Proof of Lemma 10.10. We only consider the most interesting case of cut-elimination. For
the sake of simplicity, we consider: F+ := F+(N,M) and (F+)⊥ := F−(P,Q) with N = P⊥

and M = Q⊥. We only analyze the situation in which F+ is immediately decomposed in
the left premise of the cut. The most general one, which involves some commutations of
rules, can be easily derived from this simpler one. Moreover, for the sake of readability, we
consider the case in which the final sequent consists of a single positive formula C. So, let
π be the following derivation:

... π1

⊢ N,F+, C

... π2

⊢ M,F+, C

⊢ F+, C

... ζ

⊢ P,Q,C

⊢ F−, C
Cut

⊢ C

We consider:

• A1 ∈ ⊢ Nσ1,F
+
ξ ,Cα (the interpretation of π1);

• A2 ∈ ⊢ Mσ2,F
+
ξ ,Cα (the interpretation of π2);

• E ∈ ⊢ Pξ1,Qξ2,Cβ (the interpretation of ζ).

By Proposition 10.9, we have that:

A1 ∈ ⊢ Nσ1,F
+
ξ ,Cα A2 ∈ ⊢ Mσ2,F

+
ξ ,Cα

(σ, {1, 2})+ .{A1.A2}[ξ/σ] ∈ ⊢ F+
ξ ,Cα

E ∈ ⊢ Pξ1,Qξ2,Cβ

(ξ, {1, 2})− .E ∈ ⊢ F−
ξ ,Cβ

[[(σ, {1, 2})+ .{A1,A2}[ξ/σ], (ξ, {1, 2})− .E ]][γ/α, γ/β] ∈ ⊢ Cγ
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Let us write A for the strategy (σ, {1, 2})+.{A1,A2} , B for (ξ, {1, 2})−.E and D for the
interpretation of π respectively. By Equation C.1 and associativity, we have that:

D = [[A[ξ/σ],B]][γ/α, γ/β]
= [[A,B,B[σ/ξ, ν/β]]][β/ν][γ/α, γ/β] (ν fresh name)
= [[A,B,B[σ/ξ, ν/β]]][γ/α, γ/β, γ/ν]
= [[[[A,B]],B[σ/ξ, ν/β]]][γ/α, γ/β, γ/ν]
= [[[[ (σ, {1, 2})+ .{A1,A2},B]],B[σ/ξ, ν/β]]][γ/α, γ/β, γ/ν]
= [[(σ, {1, 2})+ .{[[A,B]][α/β], [[A2,B]][β/α]},B[σ/ξ, ν/β]]][γ/α, γ/β, γ/ν]
= [[[[A1,B]][α/β], [[A2,B]][β/α], E [ν/β, σ1/ξ1, σ2/ξ2]]][γ/α, γ/β, γ/ν]
= [[[[[[A1,B]][α/β], E [ν/β, σ1/ξ1, σ2/ξ2]]], [[A2,B]][β/α]]][γ/α, γ/β, γ/ν]
= [[[[[[A1,B]][α/β], E [ν/β, σ1/ξ1, σ2/ξ2]]][α/ν], [[A2,B]][β/α]]][γ/α, γ/β].

The derivation π reduces by cut-elimination to the following derivation ρ:

... π′
1

⊢ N,F+, [Q], C

... ζ ′

⊢ P,Q, [Q], C

⊢ F−, [Q], C
Cut

⊢ N, [Q], C

... ζ

⊢ P,Q,C
Cut

⊢ Q,C

... π2

⊢ M,F+, C

... ζ

⊢ P,Q,C

⊢ F−, C
Cut

⊢ M,C
Cut

⊢ C

where π′
1 are ζ ′ are respectively obtained by adding an occurrence of formula Q —that we

point out with brackets [ ] — to every sequent of π1 and ζ (implicit weakening). These
occurrences are only needed to make the contexts of the cut-rule matching. Moreover, as
they have been introduced, they do not play any active role (i.e., they are never decomposed)
in π′

1 and ζ ′. Hence, it is immediate to see that even if typed by different sequents of
behaviours, the strategies interpreting π1 and π′

1 (resp. ζ and ζ ′) are the exactly the same.
For ρ, the interpretation of the sub-derivation ending with ⊢ N, [Q], C is given by:

A1 ∈ ⊢ Nσ1,F
+
ξ , [Qδ],Cα

E ∈ ⊢ Pξ1,Qξ2, [Q̺],Cβ

B ∈ ⊢ F−
ξ , [Q̺],Cβ

[[A1,B]][α/β, δ/̺] ∈ ⊢ Nσ1, [Qδ],Cα

the sub-derivation ending with ⊢ Q,C is given by:

[[A1,B]][α/β, δ/̺] ∈ ⊢ Nσ1, [Qδ],Cα E [ν/β, σ1/ξ1, σ2/ξ2] ∈ ⊢ Pσ1,Qσ2,Cν

[[[[A1,B]][α/β, δ/̺], E [ν/β, σ1/ξ1, σ2/ξ2]]][α/ν, σ2/δ] ∈ ⊢ Qσ2,Cα

and finally the sub-derivation ending with ⊢ M,C is so given:

A2 ∈ ⊢ Mσ2,F
+
ξ ,Cα

E ∈ ⊢ Pξ1,Qξ2,Cβ

B ∈ ⊢ F−
ξ ,Cβ

[[A2,B]][β/α] ∈ ⊢ Mσ2,Cβ

Summing up, the interpretation of ρ is given by the following D′ ∈ ⊢ Cγ :

D′ := [[[[[[A1,B]][α/β, δ/̺], E [σ1/ξ1, σ2/ξ2, ν/β]]][α/ν, σ2/δ], [[A2,B]][β/α]]][γ/α, γ/β]
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. Since by construction, no action on names δ and ρ occurs in [[A1,B]], we have that
[[A1,B]][α/β, δ/̺] = [[A1,B]][α/β]. Hence,

D′ = [[[[[[A1,B]][α/β, δ/̺], E [σ1/ξ1, σ2/ξ2, ν/β]]][α/ν, σ2/δ], [[A2,B]][β/α]]][γ/α, γ/β]
= [[[[[[A1,B]][α/β], E [σ1/ξ1, σ2/ξ2, ν/β]]][α/ν], [[A2,B]][β/α]]][γ/α, γ/β] = D.
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