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Abstract. We provide an alternative proof of the sequentialisation the-
orem for proof nets of multiplicative linear logic. Namely, we show how
a proof net can be transformed into a sequent calculus proof simply by
properly adding to it some special edges, called sequential edges, which
express the sequentiality constraints given by sequent calculus.

Introduction

Proof nets are typed directed acyclic graphs introduced by Girard in [7] as an
abstract representation of linear logic proofs. This representation has two main
interests: to provide a tool for studying normalization, and to give a canonical
representation of proofs.

In a proof net, the rules of sequent calculus are represented by nodes, and
the information about the order on which the rules are performed is reduced
essentially to the one corresponding to subformula trees and to the one providing
the axiom links.

The key result in the theory of proof nets is the sequentialisation theorem,
which states that it is possible to recover a sequent calculus derivation from
a proof net. The standard proof of sequentialization is built on the property
that -at each step- we can find a node (called splitting) which correspons to the
last rule of a sequent calculus derivation; such a derivation -which is a tree of
rule occurrences- is reconstructed by iterated application of this property. To
prove this property is the most delicate part of proving the sequentialisation
theorem. In [7], Girard introduces the notion of empire to prove the existence
of a splitting Tensor , while in [5] Danos derives the existence of a splitting Par
from the section theorem in graph theory.

In this paper, we provide a proof of sequentialisation for multiplicative linear
logic following another approach: from a purely graph theoretical point of view,
we consider the sequentialisation procedure as a way to turn a directed acyclic
graph into a tree, respecting the constraints given by sequent calculus (a similar
approach is also used by Banach in [1]) We prove that this transformation can
be performed simply by properly adding to a proof net edges which express the
sequentiality constraints of sequent calculus: we call such edges sequential edges.

As a tool for sequentialisation we introduce constrainted nets (or C-nets).
C-nets are multiplicative proof nets, enriched with sequential edges; we prove
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that by gradual insertion of edges in a C-net, one can move in a continuum from
C-nets of minimal sequentiality (i.e. without sequential edges) to C-nets of max-
imal sequentiality (i.e., no more sequential edges can be added). The former are
proof nets in the usual sense, the latter directly correspond to sequent calculus
derivations: in this way we obtain a very simple proof of the sequentialisation
theorem.

Our main technical result is the Arborisation Lemma, which provides the way
to add sequential edges to a proof net; we also show that both standard splitting
lemmas are direct consequences of the Arborisation lemma.

The idea of using edges to represent sequentiality constraints underly the
notion of jump, introduced by Girard in [9] and [8] as a part of correctness criteria
for proof nets. Girard then also suggested that it could be possible to retrieve
a sequent calculus proof from a proof net simply by adding jumps. In previous
work [6], following this suggestion and in the spirit of [4, 3], we introduced a
new class of multiplicative focusing proof nets, J-proof-nets, where object with
different degree of parallelism live together, and where sequentiality could be
graduated by adding or removing jumps.

Building on that work, here we generalize the proof of sequentialisation given
in [6] to standard multiplicative proof nets by using sequential edges (which can
be considered as a generalization of jumps).

The paper is divided into the following sections:

– In section 1, after introducing some terminology about directed acyclic graphs
we give some background on the syntax of multiplicative linear logic (MLL)
and proof nets. We revise the notion of proof nets, in order to be able to add
sequential edges.

– In section 2, we give an example of our approach to sequentialisation.
– In section 3, we define constrainted nets (C-nets) as proof nets enriched

with sequential edges, we introduce the key notion of skeleton of a C-net,
and show that if the skeleton is a tree-like, then it corresponds to a sequent
calculus derivation (which is actually a tree of rule occurrences).

– Section 4 is dedicated to the proof of the arborisation lemma.
– In section 5, we give a direct proof standard results, such as the existence of

a splitting Tensor.
– In section 6 we restrict our attention to the class of C-nets whose sequential

edges correspond to standard jumps. This allows us to study the relationship
between our approach and the notion of empires.

1 MLL: sequent calculus and proof nets

1.1 MLL

Let V = {X, Y, Z, . . .} be a numerable set of propositional variables; a formula
F of MLL is defined as follows:

F ::= X | X⊥ | F ` F | F ⊗ F
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Linear negation is defined by :

X⊥⊥ = X

(A⊗B)⊥ = A⊥ `B⊥ (A`B)⊥ = A⊥ ⊗B⊥

The sequent calculus derivation rules of MLL are:

⊢ A, A⊥
(Ax)

⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ, ∆
(Cut)

⊢ Γ, A ⊢ ∆, B

⊢ Γ, A⊗B, ∆
(⊗)

⊢ Γ, A, B

⊢ Γ, A`B
(`)

Finally, we will also consider the Mix rule

⊢ Γ ⊢ ∆

⊢ Γ,∆
(Mix)

.

1.2 D.a.g.’s, paths, ports

Preliminaries on d.a.g.’s. Given a directed acyclic graph (d.a.g.) and an
oriented edge l from a node x to a node y, we denote l by x → y, and we say
that x → y exits from x and enters into y; y is called the target of l and x is
called the source.

When drawing a d.a.g we represent edges oriented up-down; we will say that
a node is above or below another node.

We call predecessor of a node c, a node which immediately precedes c.
A root of a d.a.g. is a node with no predecessors.

Partial order associated to a d.a.g. It is standard to represent a strict partial
order as a d.a.g., where we have an edge b → a whenever a <1 b (i.e. a < b, and
there is no c such that a < c and c < b.) Conversely (the transitive closure of)
a d.a.g. G induces a strict partial order ≺G on the nodes of G.

Skeleton of a d.a.g. Given a d.a.g. G, an edge a → b is said transitive if there
is a node c and a sequence of nodes b1, . . . , bn in R such that a → b1 → b2 →
. . . → bn → c and c → b.

The skeleton of a d.a.g. G (denoted Sk(G)) is the d.a.g. obtained from G by
erasing all the edges which are transitive.

3



Paths and cycles. Given a directed graph G, a path p which starts from a
node b = a1 and reaches a node c = an is a sequence 〈a1, . . . , an〉 of nodes such
that for each ai, ai+1, there is an edge l from ai to ai+1, or from ai+1 and ai; we
say that the edge l is used by p. A cycle is a path 〈a1, . . . , an〉 such that a1 = an.

Ports. Given a d.a.g., we will partition the set of the edges which enter a node
b into subsets which we call ports ; we will denote the ports of b by bx, by, . . . , bz.

We say that an edge l from a node a to a node b enters into b trough the port
bx, written a → bx, if l belongs to bx.

1.3 Proof Structures and Proof Nets

We first give the standard definition of proof structure and proof net, where each
node is labelled by a MLL rule; we then enrich the typing of the nodes with a
partition of the entering edges into ports.

Proof structures. Proof structures are directed acyclic graphs with pending
edges (that is some edges have a source but no target) whose nodes (also called
links) are labelled by one of the symbols ax, cut, `, ⊗ (corresponding to MLL
sequent calculus rules). The edges are typed by formulas of linear logic.

The label of a link imposes some constraints on both the number and the
types of its entering edges (called premises) and exiting edges (called conclu-
sions):

– the ax-link has two conclusions labeled by dual atomic formulas, but no
premises;

– the cut-link has two premises labeled by dual formulas but no conclusions;
– the `-link has two ordered premises and one conclusion. If the left premise

is labeled by the formula A and the right premise is labeled by the formula
B, then the conclusion is labeled by the formula A`B;

– the ⊗-link has two ordered premises and one conclusion. If the left premise
is labeled by the formula A and the right premise is labeled by the formula
B, then the conclusion is labeled by the formula A⊗B.

AxAx

Cut

A B

⊗

A⊗B

A B

`

A`B

A A⊥

A A⊥

Each edge is the conclusion of a unique link and the premise of at most one
link. Edges which are not the premise of any link are the conclusions of the proof
structure.
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Given a sequent calculus proof π of MLL (or MLL + Mix), we can associate
to it a proof structure π∗, by induction on the height h of π, as follows.

If h = 1, then the last rule of π is an axiom with conclusions X,X⊥; π∗ is
an axiom link with conclusions X,X⊥. Otherwise:

– If the last rule r of π is a `-rule, having as premise the subproof π′, then
Sπ is obtained by adding to π′∗ the link corresponding to r.

– If the last rule of r is a ⊗- or a cut rule with premises the subproofs π1

and π2, then π∗ is obtained by connecting π∗
1 and π∗

2 by means of the link
corresponding to r.

– If the last rule of r is a Mix rule with premises the subproofs π1 and π2, then
π∗ is obtained by taking the union of π∗

1 and π∗
2 .

Definition 1 (Sequentialisable). A proof structure R is sequentialisable if
there exists a proof π such that π∗ = R.

Proof nets. Let R be a proof structure; a switching path of R is a path which
does not use any two edges entering on the same ` link (such edges are called
switching edges); a switching cycle is a switching path which is a cycle.

Definition 2 (Proof net). A proof net is a proof structure which does not
contain switching cycles.

The following theorem states that the purely geometrical condition of being
a proof net characterizes exactly all the proof structures with a logical meaning,
that is proof structures which come from a sequent calculus proof.

Theorem 1 (Sequentialisation). A proof structure R is sequentialisable if
and only if is a proof net.

The right to left direction is trivial; the aim of this paper is to provide a
simple proof of the left to right one. To this purpose, we enrich the definition of
proof structure by associating ports to each link.

Definition 3 (Ports associated to a link). To each link of a proof structure
R, we associate a partition of all entering edges into ports, in the following way:

– a ` link of conclusion A`B and premises A,B has only one port, containing
all its premises;

– a ⊗ (resp. cut) link of conclusion A ⊗ B and premises A,B (resp. A,A⊥),
has two ports, one containing the premise typed by A, the other containing
the premise typed by B (resp. A⊥) .

From now on, we represent MLL links in the following way (where each black
spot identifies a port):
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AxAx

Cut

A B

A⊗B

`

A A⊥

A A⊥

A`B

A B

⊗

The definition of switching path can now be reformulated as follows:

Definition 4 (Switching path). Let R be a proof structure ; a switching path
of R is a path which does not use any two edges entering trough the same port
of a link.

2 Proof net, order and sequent calculus

In this section, we give an intuition of our approach to sequentialisation. Consider
the proof net below:

A⊥
B⊥ B

`

A⊥ ⊗B⊥ A` B

Ax

Ax

Ax

Ax

A

(A`B) ⊗ C⊥

CC⊥ D

C ⊗D

D⊥

Now we add one untyped edge between the ` link and the leftmost ⊗ link
and one untyped edge between the middle ⊗ and the rightmost one:
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A⊥ B

Ax

A`B
C⊥

C

`

B⊥ A

A⊥
⊗ B⊥

Ax

Ax

(A`B) ⊗ C⊥

Ax

D D⊥

C ⊗D

Now we consider the partial order induced by the C-net as a directed graph,
which yields the following tree:

AxAx

Ax

Ax

`

Such a tree directly correspond to the following sequent calculus proof:

ax

⊢ A,A⊥
ax

⊢ B,B⊥

⊗

⊢ A⊥ ⊗B⊥, A,B
`

⊢ A⊥ ⊗B⊥, A`B
ax

⊢ C,C⊥

⊗

⊢ A⊥ ⊗B⊥, (A`B)⊗ C⊥, C
ax

⊢ D,D⊥

⊗

⊢ A⊥ ⊗B⊥, (A`B)⊗ C⊥, C ⊗D,D⊥,

We will sequentialize a proof net by adding to it enough untyped edges (that
we call sequential edges) to retrieve a sequent calculus proof.

In order to do that, we must extend our definition of proof structure to
take into account proof structure with sequential edges; we will call such proof
structures constrainted structures.
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As we pointed out above, sequential edges can be considered as a generaliza-
tion of jumps. We introduce ports for the links in order to make all the edges of
a proof structure switching edges.

Remark 1. In this paper we deal only with cut-free proof net, since for sequen-
tialisation a cut link of premises A,A⊥ has the same geometrical properties of a
⊗ link with the same premises and conclusion A⊗A⊥.

3 Constrainted Nets

Definition 5 (Constrainted Structure). A constrainted structure (or C-
structure) Rc is a d.a.g. obtained from a proof structure R (whose links have
been given ports as in Definition 3), by adding untyped edges, called sequential
edges, in such a way that each node n has the same label as in R, and each
sequential edge entering n is added to one of the ports of n.

Definition 6 (Constrainted nets). A C-structure R is called a constrainted-
net, or C-net, if it has no switching cycles (in the sense of Definition 4).

Definition 7 (Sub-nets). Given a C-structure R, a sub-structure is any sub
graph S of R which is a C-structure and such that for any link n if n ∈ S then
all edges entering on n belong to S; a sub-net of R is a sub-structure which is a
C-net.

A proof net is a special case of C-net (without sequential edges). Below we
show that a sequent calculus proof of MLL (or MLL + Mix) can also be seen as
a special case of C-net (where there are enough sequential edges to recover the
tree-like structure of the proof).

Skeleton of a C-net. We adapt the standard definition of skeleton of a d.a.g.
to C-nets. The skeleton of a C-net R (denoted Sk(R)) is the d.a.g. (whose nodes
have the same label as in R) obtained from R by erasing all the edges which are
transitive (as defined in Section 1.2)

Remark 2. In the skeleton Sk(R) of a C-net R, there is at least one edge for
each port of a node m. If it was not the case, given two ports mx,my of m there
would be in R a node n, an edge n → my and a sequence of nodes b1, . . . , bn
such that a → b1 → b2 → . . . → bn → mx; but then there would be a switching
cycle in R.

It is immediate to show that if the skeleton of a C-net is a forest, it (uniquely)
corresponds to a sequent calculus derivation (which has the same tree structure.)

Proposition 1. Let R be a C-net of conclusions A1, . . . , An and such that Sk(R)
is a forest.

We can associate to R a unique sequent calculus proof πR of conclusion
⊢ A1, . . . , An in MLL + Mix.

Moreover, if Sk(R) is a tree where each port has exactly one entering edge,
πR is a sequent calculus proof in MLL (without Mix).
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Proof. The proof is by induction on the number ρ of nodes in Sk(R).

1. ρ = 1. The only node in R is an Axiom link with conclusions X, X⊥, to
which we associate

⊢ X, X⊥
.

2. ρ > 1 and Sk(R) has a single root. We reason by cases, checking the type of
the root m of Sk(R). The type can be:

– m = A ` B. Let Sk(R)′ be the forest obtained by erasing the root; to
this forest corresponds a subnet R′ of R with conclusion Γ,A,B. By
induction we associate a proof πR′

of conclusion Γ,A,B to Sk(R)′. πR

is

πR′

⊢ Γ,A,B

⊢ Γ, A`B
, whose last rule is a ` rule on A,B ;

– m = A⊗B. By erasing m we obtain two forests Sk(R)1, Sk(R)2, one for
each port of m. To each forest correspond two different subnets R1, R2

of R (because Sk(R) is obtained just by erasing transitive edges) of con-
clusion Γ1, A (resp Γ2, B); by induction we associate a proof πRi to each
Sk(R)i.

πR is

πR1

⊢ Γ1, A

πR2

⊢ Γ2, B

⊢ Γ1, Γ2, A⊗B
whose last rule is a ⊗ rule on A,B.

3. ρ > 1 and Sk(R) has more than one root. We apply to each tree the induction
hypothesis, obtaining n proofs , which we compose by using a mix rule.

Given a C-net R, since it is a d.a.g., we can associate to it in the standard
way a strict partial order ≺R on its nodes. Moreover, since Sk(R) is obtained
from R just by erasing transitive edges, the order associated to Sk(R) and the
order associated to R as d.a.g are equal.

We recall that a strict order r on a set A is arborescent when each element
has a unique predecessor. If the order ≺R is arborescent, the skeleton of R is a
forest, which (by Proposition 1 ) corresponds a sequent calculus derivation πR.

4 Arborisation

We say that a C-net is saturated when there is no way to add sequential edges
to increase the order, and still have a C-net: any additional edge either does not
increase the order, or violates the correctness criterion.

Definition 8 (Saturated C-net). A C-net R is saturated if for each pair
of links m and n, adding a sequential edge between m and n either creates a
switching cycle or doesn’t increase the order ≺R.

Given a proof net R, a saturation Sat(R) of R is a saturated C-net obtained
from R by adding sequential edges.

We call saturated a C-net Our sequentialisation argument is as follows:

– Any C-net can be saturated.
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– The order associated to a saturated C-net is arborescent.
– If the order ≺R associated to a C-net R is arborescent, then Sk(R) is a forest

and we can associate to R a proof πR in the sequent calculus.

The following lemma is the key result of this paper.

Lemma 1 (Arborisation). Let R be a C-net. If R is saturated then ≺R is
arborescent.

Proof. We prove that if ≺R is not arborescent, then there exist two links m and
n s.t. adding a sequential edge between m and n (or viceversa) doesn’t create
switching cycles and makes the order increase.

If ≺R is not arborescent, then in R there exists a link l with two immediate
predecessors m and n (they are incomparable). Observe that m and n are im-
mediately below l so that there is an edge l → mx entering m trough a port mx

(resp. an edge l → ny entering n trough a port ny ) in R (see fig. 1).

l

m nx y

Fig. 1.

We show that if the addition of a sequential edge from m to ny creates a cycle,
it is not possible that adding a sequential edge from n to mx creates a cycle too.

If adding to R the edge m → ny creates a cycle, that means that there is in
R a switching path r from m to n which doesn’t enter into n trough the port
ny. Let us suppose that adding the edge n → mx creates a cycle too; then there
is a switching path r′ from n to m which doesn’t enter into m trough the port
mx.

Assume that r and r′ do not use two edges which belong to the same port:
we exhibit a switching cycle in R 〈m, ...n, ...m〉 by concatenation of r and r′.This
contradicts the fact that R is a C-net (see fig. 2 ).

Otherwise, let c be the first link (following r from m to n) whose port cz

contains both an edge of r and an edge of r′; observe that c could be also m or
n. We distinguish two cases ( see fig 3):

– both r and r′ reach c entering on cz; if so, then we build a switching cycle
taking the sub path from m to c of r and the sub path from c to m of r′;

– otherwise only one between r, r′ reaches c entering from cz; suppose it is r′.
In this case, we build a switching cycle by composing the sub path of r from
n to c , the reversed sub path of r′ from c to m and the path 〈m, l, n〉.
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5 Properties

In this section we deal with three standard results one usually has on proof nets.
The novelty here is the argument. When adding sequential edges to a C-net R,
we gradually transform the skeleton of R into a forest. We observe that some
properties are invariant under the transformations we consider: adding sequential
edges and removing transitive edges. Our argument is always reduced to simple
observations on the final tree (the skeleton of Sat(R)), and on the fact that each
elementary graph transformation preserves some properties of the nodes.

In 5.1 we give an immediate proof of a standard result, the splitting ⊗ lemma,
and in 5.2 we prove that the sequentialization we have defined is correct w.r.t.
Definition 1. In 5.3 we restrict our attention to MLL proof nets by getting rid
of the Mix rule.

5.1 Splitting

A graph G is connected if for any pair of nodes a, b of G there exists a path (see
1.2) from a to b. We observe that given a d.a.g., adding edges, or deleting transi-
tive edges, preserves connectedness. The following properties are all immediate
consequences of this remark.

Lemma 2. (i) Two nodes in a d.a.g. G are connected (i.e. there exists a path
between the two nodes) iff they are connected in the skeleton of G.
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Fig. 3.

(ii) Given a proof net R, if two nodes are connected in R, then they are
connected in any C-net Rc obtained from R by adding sequential edges.

(iii) If R is connected as a graph so are Rc and Sk(Rc).

This lemma allows us to give a simple proof of a standard result, the Splitting
Lemma, which we state below.

Definition 9 (Splitting). Let G be a d.a.g., c a root, and b1, . . . , bn the nodes
which are immediately above c. We say that the root c is splitting for G if, when
removing c, the nodes bi are pairwise not connected. I.e. by removing c, the graph
splits into n connected components, each one containing at most one among the
nodes b1, . . . , bn.

Remark 3. It is immediate that if R is a C-net and a root c is splitting, the
removal of c splits R into n disjoint connected components R1, . . . , Rn, and each
component is a C-net.

Lemma 3 (Splitting ⊗). Let R be a C-net whose roots are all of type ⊗, and
let Sat(R) be a saturation (hence, its skeleton is a forest); each node which is a
root in Sk(Sat(R))) is splitting for R.

Proof. Observe that c is obviously splitting in the skeleton of Sat(R), because c
is the root of a tree. Hence it is splitting in Sat(R), as a consequence of Lemma
2, (i). Similarly, c must be splitting in R, as a consequence of Lemma 2, (ii).

5.2 Sequentialisation Is Correct

In this section we show that sequentialization (Proposition 1) is correct. This
also provide a proof that any proof net is sequentialisable.
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c

b1 . . . bnb2

G1 G2 Gn

Fig. 4. The node c is splitting

Proposition 2. Let R be a proof net. For each saturation Sat(R) of R, if π =
πSat(R) then (π)∗ = R.

Proof. The proof is by induction on the number ρ of nodes of R.

1. ρ = 1: then R consists of a single Axiom link of conclusions A,A⊥, and π is
the corresponding Axiom rule

⊢ A, A⊥
..

2. ρ > 1 and Sk(Sat(R)) is a tree. We consider its root k. By Proposition 1,
to k corresponds the last rule of π. Let π1, . . . , πj be its premises (there is a
premiss for each port of k). By removing k from Sat(R) we obtain a set of
subnets Rc

1, . . . , R
c
j (one for each port of k). It is immediate that each Rc

i is
saturated. By definition, each πi is the proof associated to an Rc

i .
– Assume k is a` node of conclusionA`B. We remove k fromR, obtaining

R1. It is immediate that Rc
1 is a saturation of R1. Both have conclusions

Γ,A,B. By induction hypothesis π∗
1 = R1. We then apply a ` rule of

conclusion ⊢ Γ,A`B to the proof
π1

⊢ Γ,A,B
, so to obtain a proof which

is equal to π and such that R = π∗.
– Assume k is a ⊗ node of conclusion A⊗B . By the splitting lemma, k is

splitting in R. Let R1, R2 be the two sub nets (one for each port of k) of
conclusions respectively Γ1, A and Γ2, B, obtained by removing k from
R. It is immediate that Rc

1, R
c
2 (with conclusions respectively Γ1, A and

Γ2, B) are a saturation of, resp. R1, R2. By induction hypothesis π∗
1 = R1

(resp., π∗
2 = R2). We apply a ⊗ rule of conclusion ⊢ Γ1, Γ2, A⊗B to the

proofs
π1

⊢ Γ1, A
and

π2

⊢ Γ2, B
, to obtain a proof which is equal to π and

such that that R = π∗.
3. Otherwise, Sk(R) is a forest with more than one root. By lemma 2 each tree

corresponds to a connected component of R. We apply the above procedure
to each tree, and conclude with a number of Mix rules.
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5.3 MLL proof nets (without Mix rule)

In order to characterize the proof nets which correspond to MLL proofs, i.e. to
get rid of the Mix rule, we now deal with a notion of connectedness, namely
s-connectedness, which is specific to the theory of proof nets.

Definition 10 (Correction graph). Given a d.a.g. R where, for each node,
all entering edges are partitioned into ports, we call switching a function s which
associates to each port of R one of its entering edges (the selected edge may or
may not be typed); a correction graph s(R) is the graph obtained by erasing for
each port of R the edges not chosen by s.

Definition 11 (s-connected). A C-net R is s-connected if given a switching
of R, its correction graph is connected.

Remark 4. We only need to check a single switching. The condition we have
given is equivalent to the condition that all correction graphs are acyclic.

A simple graph argument shows that assuming that all correction graphs are
acyclic, if for a switching s the correction graph s(R) is connected, then for all
other switching s′ we have that s′(R) is connected.

Proposition 3. If a proof net R is s-connected, then Sat(R) is also s-connected,
and Sk(Sat(R)) is a tree where each port has exactly one entering edge.

Proof. First we observe that:

– any switching of R is also a switching of Sat(R), producing the same cor-
rection graph. Hence if R is s-connected, Sat(R) is s-connected.

– Given a C-net G, any switching of its skeleton is also a switching of G,
because the skeleton is obtained by erasing some edges (those which are
transitive).

As a consequence, any switching of Sk(Sat(R)) induces a correction graph
which is a correction graph also for Sat(R) and hence is connected. Moreover,
we observe that there is only one possible switching. In fact, since Sk(Sat(R)) is
a tree, we cannot erase any edge and still obtain a graph which is connected.

We conclude that in Sk(Sat(R)) each port has exactly one entering edge.

From Proposition 1, it follows that

Proposition 4. If R is s-connected, and Sat(R) a saturation, we can associate
to it a proof πSat(R) which does not use the Mix rule.

6 Jumps and Splitting

In this final section, we compare the main tool in our proof of sequentialisation,
that is sequential edges, with the standard techniques usually employed to prove
the same result.
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To analyze such a relation, we will restrict our focus on a particular class of
C-nets, called CJ -nets ; in such C-nets, all switching edges are premises only of
`-links, so that sequential edges correspond to standard jumps.

Empires are a class of subnets which has been introduced by Girard in [7] (and
further studied by Bellin and Van De Wiele in [2]), to prove sequentialisation; in
subsection 6.1 we will study the relation between sequential edges and empires.

The splitting ` lemma is a result, alternative to the splitting ⊗ lemma,
introduced by Vincent Danos in [5] to prove sequentialisation; in subsection 6.2
we give an immediate proof of the splitting ` lemma using sequential edges.

Definition 12. Given a C-net R, a jump is a sequential edge from a link b to
a link c of R, such that c is a `-link; in this case we say that c jumps on b. A
CJ -net is a C-net such that every sequential edge is a jump.

Definition 13 (Jump-saturation). A CJ -net R is jump-saturated if given
a `-link p for each link q of R, jumping p on q yields either a cycle either a
transitive edge; a jump-saturation of R is a jump-saturated CJ -net obtained from
R by adding jumps.

6.1 Jumps and Geography of subnets

In this section, we will consider only s-connected C-nets.

Given a correction graph s(R) of a C-net R, a path r 〈m, .., n〉 which leaves
a link m of conclusion a and reaches a link n is said to go up from m, when it
does not use neither a neither any sequential edge which exits from m; otherwise
r is said to go down from m.

In the following definition 14, we revise the standard definition of empire,
taking into account sequential edges.

Definition 14 (Empire).

Let a be conclusion of a link n in a CJ -net R: the empire of a in R (denoted
empR(a)) is the smallest set of links closed under the following conditions:

– n belong to empR(a);

– if m is a link of R connected with n with a path that goes up from n in all
correction graphs of R, then m ∈ empR(a).

We call border of empR(a) the set of links m1, . . . ,mn such that mi ∈
empR(a) and the conclusion of mi is either a conclusion of R or a premise
of another link which does not belong to empR(a).

Lemma 4. Let R be a CJ -net and p a `-link with conclusion a: then the C-
structure R′ obtained from R by jumping p to another link q is a C-net iff q ∈
empR(a).
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Proof. We first prove the right to left direction: if q ∈ empR(a) this means that
for every correction graph of R (which is a correction graph of R′ too), there
is a path going up from p to q; if in R′ there were a cycle, this means that in
some correction graph of R′ there would be a path from p to q which doesn’t
uses any switching edge of p, so it’s also in a correction graph of R, but then we
have a cycle in some correction graph of R, contradiction. To prove the other
direction, we simply observe that if q doesn’t belong to empR(a) this means that
by s-connectdeness there is at least one correction graph in R such that there is
a path starting down from p to q; but then jumping p on q we get a cycle.

Now we will prove that is possible to characterize jump saturated CJ -net by
the shape of the empires of their `-links:

Definition 15 (Cone). Given a C-net R and a link m of conclusion a, we call
cone of a in R (denoted CR(a)) the set of all the links which are hereditarily
above m.

Proposition 5. A CJ -net R is jump-saturated, iff for any ` link p of conclusion
a, empR(a) = CR(a).

Proof. To prove the left to right direction, let us assume R jump-saturated,
and suppose empR(a) 6= CR(a); obviously CR(a) ⊂ empR(a) . Now consider
a link b of empR(a) which isn’t in CR(a): if there isn’t such an element, then
empR(a) = CR(a); otherwise we make p jump on b , and by lemma 4 this doesn’t
create cycles so R is not jump-saturated.

To prove the other direction, we observe that jumping p on a link which is
in empR(a) yields a transitive jump by definition of CR(a); jumping p on a link
which is outside empR(a) creates a cycle by lemma 4.

6.2 Jumps and `-splitting Lemma

Definition 16 (Splitting `-link). Given a C-net R and a `-link p, we say
that p is splitting for R if there exist two subgraphs G1, G2 of R, such that G1

does not contain the conclusion of p, which is contained by G2, and the only edge
of R connecting a node in G1 with a node in G2 is the conclusion of p.

Lemma 5. Given a jump-saturated CJ -net R and two ` links b, c either CR(b)∩
CR(c) = ∅, either one among CR(b), CR(c) is strictly included into the other.

Proof. Assume that CR(b) ∩ CR(c) 6= ∅, b /∈ CR(c) and c /∈ CR(b); now consider
a node a ∈ CR(b) ∩CR(c).

Every node in CR(b) ∩ CR(c) is hereditary above both b and c, so there is a
a directed path r′ (resp. r′′) from a to b (resp. from a to c)

Since R is jump-saturated , there is a switching path 〈c, . . . , b〉 starting down
from the conclusion of c to b (otherwise we could make c jump on b); now this
path cannot intersect r′′, (otherwise there would be a cycle), and if it meets a
node d of r′, it follows r′ from d to b: we call this path p′. In the same way we
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can build a switching path p′′ 〈b, . . . , c〉 starting down from the conclusion of b
to c.

The rest of the proof is the same as the proof of the arborisation lemma ; p′

and p′′ either do not meet, either they do; in any way, we get a cycle.

Lemma 6. Let R be a saturated CJ -net R and a a `-link of R. If a conclusion
of a node b ∈ CR(a) is a premise of a link c /∈ CR(a), then c is a `-link.

Proof. Suppose c is a ⊗-link; then by saturation, jumping a on c would create
a cycle: but then there is a switching path r from a to c which does not use any
switching edge of a. Since b is hereditary above a and b → c it is straightforward
that the existence of r would induce a switching cycle in R, contradiction.

Lemma 7 (Splitting `-lemma). Given a proof net R with at least one `-link,
there exists a splitting `-link.

Proof. Starting from R, we retrieve a jump saturated CJ -net R′ by adding jumps
on R.

Now, if there is splitting `-links p in R′ by lemma 2 the same link p will be
splitting also for R; then by proving the existence of a splitting `-link for R′,
we provide also a splitting `-link for R

Let us consider a `-link a such that CR′ (a) is maximal with respect to
inclusion among all the cones of the `-links in R′; we prove that a is splitting
for R′.

Suppose that a conclusion of a link in CR′(a) is the premise of a link (different
from a) which does not belong to CR′(a) so it must be a premise of another `-
link b by lemma 6; now, CR′(a) ∩ CR′(b) 6= ∅, and b /∈ CR′(a) so by lemma 5
CR′(a) ⊂ CR′ (b), contradicting the maximality of CR′ (a).

We observe also that if a `-link c different from a jumps on a link d which
belongs to CR′(a), then c ∈ CR′ (a); otherwise (that is if c /∈ CR′(a)), CR′(a) ∩
CR′(c) 6= ∅ and c /∈ CR′(a) and again by lemma 5 CR′(a) ⊂ CR′(c), contradicting
the maximality of CR′ (a).

So, each conclusion of a link in CR′(a) is a premise of a link in CR′(a), or a
premise of a, or a conclusion of R′.

Now, if we consider the subgraph G of R′ which corresponds to CR′(a), by
the above observations, all the paths connecting a node in G with a node in
R′ \G must pass trough the conclusion of a; but then a is splitting for R′.

Conclusions and Future Work

By introducing sequential edges, we provided a purely geometrical way to turn a
proof net into a sequent calculus proof, and we provided alternative proofs for the
standard splitting lemmas of MLL proof nets. As a future research direction we
aim to extend this approach to sequentialisation to proof nets of Multiplicative
Additive Linear Logic, as defined by Hughes and Van Glabbeek in [10].
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