
GT-VC 2006

A Graph Abstract Machine Describing Event
Structure Composition

Claudia Faggian and Mauro Piccolo 1 ,2 ,3

Dipartimento di Matematica Pura e Applicata – PPS
Universitá di Padova – Paris7-CNRS

Abstract

Event structures, Game Semantics strategies and Linear Logic proof-nets arise in different domains (con-
currency, semantics, proof-theory) but can all be described by means of directed acyclic graphs (dag’s).
They are all equipped with a specific notion of composition, interaction or normalization.
We report on-going work, aiming to investigate the common dynamics which seems to underly these different
structures.
In this paper we focus on confusion free event structures on one side, and linear strategies [Gir01,FM05] on
the other side. We introduce an abstract machine which is based on (and generalizes) strategies interaction;
it processes labelled dag’s, and provides a common presentation of the composition at work in these different
settings.

1 Introduction

Event structures [NPW81], Game Semantics strategies and Linear Logic proof-nets
[Gir87] arise in different domains (concurrency, semantics, proof-theory) but can all
be described by means of directed acyclic graphs (dag’s). They are all equipped
with a specific notion of composition, interaction or normalization. In this paper
we report ongoing work whose first aim is to investigate the common dynamics
which appears to underly all these different structures, and eventually to transfer
technologies between these settings.

As a first step in this direction, we present an abstract machine which processes
labelled dag’s. The machine is based on the dynamics at work when composing
Game Semantics strategies. When applied to linear strategies (in the form intro-
duced in [Gir01] or [FM05]) the machine implements strategies composition. When

1 This work has been motivated from discussion with Nobuko Yoshida and Daniele Varacca.
We are in debt with Daniele Varacca for many explanations, comments, and suggestions.
We are grateful to Martin Hyland, Emmanuel Beffara, and Pierre-Louis Curien for interesting discussions.
We also wish to thank the referees for many usefull remarks and suggestions.
2 Email: claudia@math.unipd.it
3 Email: piccolo@di.unito.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Faggian-Piccolo

applied to event structures, the result is the same as the paralle composition of event
structures defined by Varacca and Yoshida in [VY06].

Event structures are a causal model of concurrency (also called true concurrency
models), i.e. causality, concurrency and conflict are directly represented, as opposite
to interleaving models, which describe the system by means of all possible scheduling
of concurrent actions.

An event structure models parallel computation by means of occurrence of
events, and a partial order expressing causal dependency. Non-determinism is mod-
elled by means of a conflict relation, which expresses how the occurrence of certain
events rules out the occurrence of others.

Two events are concurrent if they are neither causally related, nor in conflict.
Events which are in conflict live in different possible evolutions of the system.

In this paper we will consider two classes of event structures: confusion free event
structure (where conflict, and hence non-determinism, is well behaving), and conflict
free event structures (where there is no conflict, and hence no non-determinism).

Confusion free event structure, are an important class of event structures because
the choices which a process can do are “local” and not influenced by independent
actions. In this sense, confusion freeness generalizes confluence to systems that
allow nondeterminism.

A point which is central to our approach is that a confusion free event structure
E can be seen as a superposition of conflict-free event structures (which we will call
the slices of E): each slice represents a possible and independent evolution of the
system. Because of this, if E is confusion free, the study of several properties can
be reduced to the study of such properties in conflict free event structures.

Games and strategies provide denotational models for programming lan-
guages and logical systems; games correspond to types (formulas), and strategies to
programs (proofs). The central notion is that of interaction, which models program
composition (normalization of proofs).

A distinction between causal and interleaving models is appearing also in Game
Semantics. In this setting, a strategy describes in an abstract way the operational
behaviour of a term. In the standard approach, a strategy is described by sequences
of actions (plays), which represent the traces of the computation. However, there is
an active line of research in Game Semantics aiming at relaxing sequentiality, either
with the purpose to have “partial order” models of programming languages or to
capture concurrency [AM99,Mel04,HS02,MW05,SPP05,FM05,CF05,Lai05,GM04].
The underlying idea is to not completely specify the order in which the actions
should be performed, while still being able to express constraints. Certain tasks
may have to be performed before other tasks; other actions can be performed in
parallel, or scheduled in any order. A strategy of this kind can be presented as a
directed acyclic graph.

Content. An idea which underlies the work on typed π-calulus by Honda and
Yoshida is that typed processes should be seen as a sort of Hyland-Ong strategies
(see for example [NYB01]); this approach is implicit also in [VY06], on which our
work builds. Varacca and Yoshida provide a typing system which guarantees that
the composition of confusion free event structures is confusion free. The typing is

2

Faggian-Piccolo

inspired by Linear logic and Hyland-Ong strategies, and allows the authors to give
an event structure semantics for (a variant of) Sangiorgi’s πI-calculus.

In this paper we define composition “operationally”, in such a way that when
restricted to strategies the machine implements strategies composition. Applied
to confusion free event structures, the result is the same as the composition
obtained in a more standard way. In particular, we prove the equivalence with the
composition in [VY06]. We believe that the machine provides a simple and direct
implementation of event structures composition.

Perspective. This work is part of a larger project, aiming at relating event
structures in concurrency theory and strategies in game semantics.

The connection between event structures and strategies is especially striking if
we focus on linear strategies, i.e. strategies which correspond to the multiplicative-
additive structure of Linear Logic. Linear strategies (as defined in [Gir01] and then
[FM05]) can be described as partial orders with a conflict relation, i.e. as a sort
of event structures, which satisfy a number of conditions. In particular, they are
confusion free. Many of the properties which make the composition work appear to
depend only on confusion freeness.

Our aim on the long term is to see confusion free event structures as a gen-
eralization of strategies (i.e. as morphisms), and the composition of such event
structures as strategies composition. The machine we introduce in this paper al-
lows us a common presentation of composition. In further work [FP] we develop
the game semantical structures.

2 Background

2.1 A sketch of strategies composition

In Game Semantics, the execution of a program is modelled as interaction between
two players; let us call them P (Proponent) and O (Opponent). The role of a
strategy is to tell the player how to respond to a counter-player move. The dialogue
between the two players will produce an interaction (a play).

Figure 1 presents a simplified example of two (sequential) strategies. A specific
move is played by (belongs to) only one of the players, so there are P-moves and
O-moves. The active (positive) move of P are those that P plays, while its passive
(negative) moves are those played by O, and to which P has to respond. In the
picture, for each player strategy we distinguish the actives (positive) moves, i.e.
those which belong to that player, with circles.

Let us look at the strategies (1). According to the P-player strategy, it will
start with b0, then respond with a0 to Opponent move b1, and with † (termination)
to Opponent move b2. Let us make it interact with the O-player strategy. The
interaction goes as follows: O answer to b0 is b1, P answer to b1 is a0, O answer to
a0 is a1, and so on.

The algorithm to calculate the interaction is simple. (i.) Start from P-player
initial move, (ii.) Check counter-player answer to that move, that is, go to the
corresponding opposite action, and take the following move. (iii.) Repeat step (ii.)

3

Faggian-Piccolo

Tree strategies (1):

P-player: O-player:

b0

b1

a0

a1

b3

b2

†

a0

a1

b0

b1

b3

...

b2

Interaction (1):

b0b1a0a1b3 . . . b2†

Tree strategies (2):

P-player: O-player:

a0

a1

b0

b1

b3

b2

†

a0

a1

b0

...

b1

b3

b2

Interaction (2):

a0a1b0 . . . b1b3b2†
Fig. 1. Tree strategies

until terminating on †.
Figure 2 illustrates the same ideas for more parallel strategies [FM05].

Strategies :

b1

b0

b2

†b3

a1

a0

b1

b3

b2

...

b0a0

a1

Opponent:Player:

Interaction :

b1a1

a0

b3

b2

†

...

b0

Fig. 2. Graph strategies

The strategies are here graphs. The way to make them interact is similar to the
previous one, but (1.) there are several threads running in parallel, (2.) on certain
moves we need to synchronize.

2.2 Event structures

Let (E,≤) be a partially ordered set. Elements of E are called events; we assume
that E is at most countable. The order relation is called causality relation. The
downward closure of a subset S ⊆ E is defined by dSe = {e′ : e′ ≤ e, e ∈ S}. For a
singleton, we write dee.
An event structure 4 is a triple (E,≤, ^) such that

• (E,≤) is a partial order, as above;
• For every e ∈ E, dee is finite.
• ^ is an irreflexive and symmetric relation, called conflict relation, which satisfies

the following:

4 In this paper we say event structures always meaning prime event structures.

4

Faggian-Piccolo

for every e1, e2, e3 ∈ E, if e1 ≤ e2 and e1 ^ e3 then e2 ^ e3.

If e1 ≤ e2 we say that the conflict e2 ^ e3 is inherited from the conflict e1 ^ e3.
If a conflict is not inherited, we say that it is immediate, written ^µ

Causal order and conflict are mutually exclusive.

With a slight abuse of notations, we identify an event structure (E,≤,^) and
its set E of events.

[e) = dee\{e} is the enabling set of e; Parents(e) will denotes the set of immediate
predecessors of e (the preconditions of that event).

A labelled event structure is an event structure E together with a labelling
function λ : E → L, where L is a set of labels.

A set S ⊆ E is conflict free if it does not contain any two elements in conflict;
in particular, an event structure E is conflict free if its conflict relation is empty.
Hence, a conflict free event structure is simply a partial order. Observe that, if
e ∈ E, then dee is conflict free.

2.3 Confusion free event structures

Confusion free event structures are a class of event structures where every choice
is localized to cells, where a cell is a set of events that are pairwise in immediate
conflict, and have the same enabling set.

Definition 2.1 A cell c is a maximal set of events such that e, e′ ∈ c implies
e ^m e′ and [e) = [e′).

Definition 2.2 E is confusion free if the following holds:

(a.) for all distinct e, e′, e′′ ∈ E, e ^µ e′ and e′ ^µ e′′ implies e ^µ e′′

(b.) for all e, e′ ∈ E, e ^µ e′ implies [e) = [e′)

The notion of cell express the idea that choices are local.

2.3.1 Example.
Below, we give an example (1.) of event structure which is confusion free, and an
example (2.) of an event structure which is not. Waved lines denote conflict. The
event structure in (2.) is not confusion free because t4 is in conflict with t2, t3, but
fails to have the same parents.

(1.) Confusion free: (2.) Confused state:

t1

t2

t3 t4 t5

t1

t2

t3 t4 t5

5

Faggian-Piccolo

3 Well-labelled event structures

In this section we introduce a notion of well-labelled event structure, where the
labelling guarantees that the composition of confusion free event structures is a
confusion free event structure.

Our labelling can be seen as a minimalist variant of the typing in [VY06], without
the whole setting of linear types and morphisms; this because here we are only
interested in the preservation of confusion freeness via composition. The labelling
we use is also a straightforward generalization of the technique developed in [Gir01]
to deal with additive strategies.

A key features of the labelling is that a name identifies a cell (rather than a
single event).

3.1 Names and actions.

We assume a countable set of names N , ranged over by α, β, We are going to
label a confusion free event structure with actions on these names. Let S be an
index set. We define the alphabet N as follows:

N =
∑

i∈S

Ni = {(α, i) : α ∈ Nand i ∈ S}

We say that a = (α, i) uses the name α, and write name(a) = α.
A (polarized) action is given by an element a ∈ N and a polarity, which can be

positive (a+), negative (a−), or neutral (a±). Polarities correspond to one of the
three main capabilities which a name (channel) can have: input (−), output (+), or
match (±).

Remark 3.1 Actions of opposite polarity (a+, a−) denote matching dual actions,
such as c and c in CCS, or Player/Opponent moves in Game Semantics.

We think of a± as a pair of matching actions a+, a− which have synchronized.
A more traditional and suggestive denotation for a± would be τa.

We use the variable ε to vary over polarities: ε ∈ {+,−,±}. When clear from
the context, or not relevant, we omit the explicit indication of the polarity. The
polarities + and − are said opposite. If a is a positive or negative action, a will
denote its opposite action.

3.2 Interfaces.

We are going to type event structures with an interface. The interface provides in
particular the set of names on which the event structure communicate, and their
polarity.

An interface (A, πA) is given by a finite set of names A, and a polarity (positive,
negative, neutral) for each name. The polarization partitions A into three disjoint
sets: positive, negative and neutral names.

Remark 3.2 The positive names can be thought of as sending, the negative name
as receiving, and the neutral names as private.

6

Faggian-Piccolo

The interface (A, π) generates the set of actions A =
∑

i∈S Ai = {(α, i) : α ∈ A}.
The polarization of the names extends to the actions with that name.

3.3 Well-Labelled event structures.

An event structure of interface A is a tuple (E, A, λ, π) where

• E is an event structure;
• A = (A, πA) is an interface;
• λ : E → {(α, i) : α ∈ A, i ∈ S} is a labelling function;
• π : E → {+,−,±} is the polarization induced on the actions by πA.

If λ(e) = (α, i), we say that the event e uses the name α, and write name(e) = α.

Remark 3.3 If λ(e) = a, with a = (α, i), and πA(α) = ε, then e is labelled by the
action aε.

A well-labelled event structure is guaranteed to be confusion free. We ask that:
(i) all the events in the same cell use the same name (and hence also have the same
polarity); (ii) two events which use the same name (and the same polarity) are in
conflict.

Definition 3.4 An event structure E of interface A is well-labelled, written E : A

if it satisfies the following, for all distinct e1, e2 ∈ E.

(i) if e1 ^µ e2 and λ(e1) = (α, i), then λ(e2) = (α, j), with i 6= j.

(ii) if name(e1) = name(e2)then e1 ^ e2.

(iii) e1 ^µ e2 ⇒ Parents(e1) = Parents(e2)

3.4 Properties of the labelling

E is well-labelled iff and only if it is confusion free.
Each event e ∈ E is uniquely identified by the set of labels λdee = {λe′, e′ ≤ e}.

Proposition 3.5 Given e1 6= e2 ∈ E, we have that λde1e 6= λde2e
The conflict relation in well-labelled event structures can be inferred from the

labels:

Proposition 3.6 Let E : A a well-labelled event structure and let e1, e2 ∈ E. Then
the following holds:

(∗∗) e1 ^ e2 ⇐⇒ ∃e′1 ≤ e1, e
′
2 ≤ e2 : name(e′1) = name(e′2)

Since in a well-labelled event structure the labels carry all the information on
the conflict relation, from now on, we deal with the conflict implicitly: two distinct
events e1 and e2 are in conflict iff (**) holds.

This allows us to focus only on the partial order.
It is easy to see that

Proposition 3.7 Given e1 6= e2 ∈ E : A, we have that e1 ^µ e2 iff

• e1, e2 use the same name

7

Faggian-Piccolo

• [e1) = [e2)

3.4.1 Well-Labelled event structures as dag’s
As seen in the previous section, given a well-labelled event structure, we can deal
with the conflict implicitly; we are left to deal only with the partial order E,≤.

In the following, it will be convenient to identify the partial order on E : A with
the associated dag. This in particular allows us to describe composition in terms of
graph rewriting.

A directed acyclic graph (dag) G is an oriented graph without (oriented) cycles.
We will write c ← b if there is an edge from b to c. It is standard to represent a
strict partial order as a dag, where we have a (non transitive) edge a ← b whenever
there is no c such that a < c and c < b. Conversely (the transitive closure of) a dag
is a strict partial order on the nodes.

In the following, we will identify the partial order on E : A with the associated
dag. We take as canonical representative of E its skeleton (the minimal graph whose
transitive closure is the same as that of E).

Remark 3.8 Observe that, by construction, the skeleton is always defined, even if
E can have a countable number of events (in particular, a cell can have a countable
number of events). In fact, for each event e ∈ E, dee does not contain any conflict,
and it is finite.

4 Composition

We define composition “operationally”, in such a way that when restricted to strate-
gies this procedure produces strategies composition.

Composition between event structures relies on two notions: synchronization
and enabling (reachability). Intuitively, to compose, we synchronize (match) events
which are labelled by the same action, and opposite polarity. The synchronization is
possible only between events which have been enabled. We enable (reach) an action
only if all the actions before it have been enabled (reached). We better illustrate
this in Section 4.2.

4.1 Compatible interfaces

We compose two event structures when their interfaces are able to communicate.

Definition 4.1 [Compatible interfaces] Let (A, πA) and (C, πC) be two interfaces.
The interfaces A and C are compatible if

for all b ∈ A ∩ C, the polarity of b in A is opposite to the polarity of b in C.

If the interfaces are compatible, we define their composition A¯C = (A∪C, π)
where π(α) is ± if α ∈ A ∩ C, and otherwise as originally in A or C.

Definition 4.2 Given two compatible interfaces A, C, we say that the name α is
private if α ∈ A ∩ C, public otherwise.

Example. If A = {a−, b+} and C = {b−, c+}, then A¯ C = {a−, c+, b±}. The
name b is private, while the names a, c are public.

8

Faggian-Piccolo

Composition is only defined on event structures which have compatible inter-
faces.

4.2 Conflict free composition

Let us first analyze composition in the case of conflict free event structures, i.e.
when no two events are in conflict. This case is very simple and clear, but contains
all the dynamics of the general case.

The key property of this case is the following

If E : A is conflict free, no two events use the same name.

Through this section, let us assume that E1 : A and E2 : C are conflict free
and have compatible interfaces. Their composition E1‖E2 is a conflict free event
structure of interface A¯ C.

Let us describe the composition by means of a wave of tokens travelling up on
E1]E2. When a private action is reached, to continue, it is necessary to synchronize
it with an action of opposite polarity. Observe that, by construction, there is at
most one such action.

Remark 4.3 In E1] E2 there is only one occurrence of each polarized action. For
this reason, in this section, we can identify each event with the polarized action
which labels it.

1. If a is public, and its parents have been enabled, then a is enabled. We illustrate
this in the picture below, where the squares mark the enabled nodes.

Ãa a

2. If a is private, a+, a− are both present, and their parents have been enabled,
then a is enabled, and the graph is transformed as follows:

Ãa τaa

end: The actions which have not been enabled are deleted (garbage collection).

The process above generates a new conflict free event structure (E,≤), where E

is a set of events labelled by the actions which have been enabled; the actions have
the polarity induced by the new interface A¯ C.

4.3 Local rewriting rules

The process described in Section 4.2 can be expressed by means of a set of local
graph rewriting rules on E, which we describe in Figure4.3.

It is straightforward to show these rules are confluent. By using this fact, one

9

Faggian-Piccolo

Ã τaa

Ã

1. There are a, a, parallel

2. Otherwise:

a

a

Private a:

Fig. 3. Graph Rewriting Rules

can prove associativity for the composition.

Proposition 4.4 (Associativity) Let E1 : A,E2 : C, E3 : D be conflict free event
structures. If the interfaces allow the composition, we have that

(E1‖E2)‖E3 = E1‖(E2‖E3)

4.4 Reducing composition to conflict free composition

A confusion free event structures E can be seen as a superposition of conflict-free
event structures (which we call the slices of E). The study of confusion free event
structures can be reduced to the study of conflict free event structures. In particular,
composition of confusion free event structure can be reduced to the composition of
its slices.

4.4.1 Slices
A slice S of E is a downward closed, conflict free subset of E, with the order induced
by E. To choose a (maximal) slice of E corresponds to the selection of a single
element in each cell of E.

4.4.2 Studying composition by slices
A key feature of the composition is that it takes place independently inside each
single slices (Proposition 4.10) .

Several interesting properties of the composition of two event structures (such
as confluence, or deadlocks) can be analyzed as properties of their slices (see 4.9).

Actually, following an approach which is well studied for proof nets and linear
strategies, the process of composition itself could be reduced purely to conflict free
composition:

• decompose E into its slices
• compose all slices pairwise

10

Faggian-Piccolo

• superpose the composed slices

Proposition 3.6 allows us to perform the superposition, by using the same technique
developed in [Gir01,FM05].

We do not give details here; however, after providing a direct description of
composition in the general case, we show that the study of the composition can be
reduced to the study of conflict free composition (Proposition 4.10).

4.5 Global composition

In this section, we provide a direct description of composition of well-labelled event
structures, in the general case. The machine generates E = E1‖E2 step by step;
each time we add to E an event v which refers to [comes from] an event (or a pair
of matching events) x in E1] E2. We add v to E only if:

• the enabling set of x has already an “image” in E;
• this image is conflict free.

Given a labelled event structure E, and a set of events S ⊆ E, we use the notation
λS = {λ(s)|s ∈ S}.

Let E1 : A and E2 : C be well-labelled event structures with compatible inter-
faces. E1‖E2 is an event structure of interface A¯ C, obtained as follows.

Case 1. Let e ∈ Ei such that λ(e) = a and name(a) is public.
If S ⊆ E satisfies the following conditions:
parent condition: λS = λ[e).
conflict condition: the set S is conflict free

add to E an event v such that
label: λ(v) = a

edges: for all vi ∈ dSe we have vi ← v

Case 2. Let e1 ∈ E1 and e2 ∈ E2 such that λ(e1) = λ(e2) = b and name(b) is
private.

If S = S1 ∪ S2 where S1, S2 ⊆ E satisfy the following conditions
parent condition: λS1 = λ[e1), λS2 = λ[e2).
conflict condition: the set S is conflict free

add to E an event v such that
label: λ(v) = b (this should be thought as τb, since π(b) = ±)
edges: for all vi ∈ dSe we have vi ← v

The parent condition checks that the enabling set of e ∈ Ei has been considered,
and relies on Proposition 3.6.

The conflict condition says that in dSe there are no two events using the same
names (we are using Proposition 3.7.) To understand the conflict condition,
remember that events in conflict are events which are mutually exclusive. If we
need a set of precondition to occur together, they must live in a conflict free event
structure S ⊆ E.

The conflict condition, essentially guarantees that we are working slice by slice,
i.e. independently in each slice (see Proposition 4.10)

11

Faggian-Piccolo

4.5.1 Example of composition
Consider the following event structures

E1 E2

a1 a2

b1 b1

b1

c1

e2

e3 e4

e5

e6

e1

Here we run the machine:

v1

name(λ(v1) = name(λ(v2))

e3 ∈ E1 e5 ∈ E2
λ(e3) = λ(e5) = b1
S1 = {v1} S2 = ∅

v1

τb

v3

v2v1

v3 v4

e6 ∈ E1
name(λ(e6)) ∈ C
S = {v3, v1}

v2v1

τbv3 v4

v5 c1

e6 ∈ E1
name(λ(e6)) ∈ C
S = {v2, v4}

v4v3

v5 c1 v6

E1‖E2

e1 ∈ E1
name(λ(e1)) ∈ A
S = ∅

v1

e2 ∈ E1
name(λ(e2)) ∈ A
S = ∅

S1 = {v2} S2 = ∅
λ(e4) = λ(e5) = b1

e4 ∈ E1 e5 ∈ E2

a1

a1

τb τb

a2

a2

τb

a2
v2

v1 a1

τb τb

c1

a1
v2

a2

v2
a2a1

a1

∅

4.5.2 Composition is well defined and associative
Composition of well-labelled event structures produces a well-labelled event
structure. Moreover, composition is associative.

Theorem 4.5 E1‖E2 : A¯ C

Proof. W.r.t. definition 3.4, conditions 1. and 2. (the properties of the labelling)
hold by construction. We have to verify 3., i.e. that u ^µ v implies [v) = [v).
Let Su, Sv the two subset of the labelled parent condition. [u) = [v) if and only if
Su = Sv. By labelling we have that name(λ(u)) = name(λ(v)) public or private.
We develop the public case: the other is analogous. Without loss of generality we
can assume name(λ(u)) ∈ A. Hence there exists e, d ∈ E1 such that λSu = λ[e)
and λSv = λ[e). We have that e ^µ d: this holds (by 1. and 2.) and this conflict
cannot be inherited because otherwise also u ^ v should be inherited. Hence
we have λSu = λSv by confusion freeness of E1 and as immediate consequence of
Proposition 3.6, we have Su = Sv, as required. 2

12

Faggian-Piccolo

Remark 4.6 As a consequence, composition of confusion free event structures is
confusion free.

Proposition 4.7 (Associativity) Given E1 : A, E2 : C, E3 : D, if the interfaces
allow the composition, we have that

(E1‖E2)‖E3 = E1‖(E2‖E3) =

Proof. The result follows from Proposition 4.4 and Proposition 4.10. 2

4.5.3 Working by slices
Proposition 4.8 (Slices) Let E = E1 : A‖E2 : C. We have the following.

• If S ⊆ E is a slice of E, then there exist two slices S1 ⊆ E1 and S2 ⊆ E2 such that
S = S1 : A‖S2 : C.

• If S1 ⊆ E1 and S2 ⊆ E2 are slices, then S = S1‖S2 is a slice of E.

By reducing composition to composition of conflict free event structures, we can
easily prove associativity.

5 Discussion

5.1 Relating with standard event structure composition

The abstract machine we have defined produces the same result as a “standard”
approach to event structure composition. To do this, we choose a specific synchro-
nization algebra, which is that defined in [VY06].

The typing defined by Varacca and Yoshida guarantees that the composition
preserves confusion freeness, and allows the interpretation of a linear fragment of
the π calculus.

The labelling induced by their typing is easily seen as a case of the labelling we
define here, hence in particular we can apply our machine.

We have that

Proposition 5.1 If E1,E2 are confusion free event structures which are typed in
the sense of [VY06], they are also well-labelled in the sense defined here, and their
composition E1‖E2 as defined here is isomorph to the parallel composition as defined
in [VY06].

The details are given in [Pic06].
Let as briefly resume the “standard approach”.

5.1.1 Parallel composition of event structures
A more standard definition for the parallel composition of event structures is that
used [VY06], based on the following ingredients:

(i) fix through a synchronization algebra the events which will synchronize and
those which will not. Two events synchronize if they have dual labels (for
example one event has label a and the other a);

(ii) build the categorical product of the event structures

13

Faggian-Piccolo

(iii) discard some events, and everything above them:
(a) discard all the events of the product which are generated from pair which

are not able to synchronize because they do not have matching labels
(b) discard all the events of the product which are generated from a single

private event: these are events which are private but not “consumed”.

5.2 Linear strategies with parallel composition are a sub-class of well-labelled event
structures

Linear strategies as introduced in [Gir01] and extended to dag’s in [FM05] are
labelled dag’s. The labels are taken in

∑

i∈Pfin(N)

Ni = {(α, i) : α ∈ Nand i ∈ Pfin(N)}

where N are the strings of natural numbers.
The labelling satisfies a certain discipline, which in particular satisfies all the

constraints in Definition 3.4.
As for composition, the machine introduced here extends the LAM machine

defined in [Fag02,FM05] to implement the composition of linear strategies. The
new machine has the same behaviour of the LAM when restricted to strategies.
This in particular means that there is a morphism from strategies to well-labelled
event structures, which preserves the parallel composition.

More precisely, strategies composition decomposes into parallel composition plus
hiding, where parallel composition is the operation we have described here, and the
hiding concerns the τ actions.

5.3 Bridging Game Semantics and event structures.

Our aim is to use event structure as a guide to generalize the definition of strategies.
First results in this directions are presented in [FP], which builds on the machine
we introduce here, and extends it to a typed setting.

On the long term, we hope to build on the body of work on event structures to
extend the approach of Game Semantics to concurrency, and in particular to deal
with non determinism and process calculi.

5.4 The dynamics

The machine we have presented makes it immediate what is going on when compos-
ing two labelled event structures E1, E2: we merge together the structure (events,
order and conflicts) of E1, E2 to create a new event structure E. The dynamics
appears the same as that which takes place when composing strategies, λ-terms or
Linear Logic proof-nets.

14

Faggian-Piccolo

5.5 Event structures and proof-nets

This work meet also another line of research, which is bringing together graph
strategies and proof-nets. Proof-nets are a graph representation of proofs introduced
by Girard in Linear Logic [Gir87] and which are powerful tool for the analysis of
normalization. In particular, they have been a fertile tool in the study of functional
programming, in particular for optimization. Observe that proof-net normalization
is performed via local rewriting rules.

We see event structures as a form of multiplicative-additive proof-nets, and hope
to be able to apply some of the technology developed for proof-nets. For example,
a key notion in proof-nets is that of correctness criterion, which states that there
are no cyclic path, for a certain definition of path which is sensitive to the polarity
of the nodes. The correctness criterion has a crucial role in guaranteeing that
the normalization (composition) works, and in fact it guarantees that there are
no deadlocks. We intend to investigate if a similar notion could be used on event
structure, for an opportune typing, to guarantee that there are no deadlocks.

References

[AM99] S. Abramsky and P.-A. Mellies. Concurrent games and full completeness. In Proceedings 15th
Annual Symposium on Logic in Computer Science, 1999.

[CF05] P.-L. Curien and C. Faggian. L-nets, strategies and proof-nets. In CSL 05 (Computer Science
Logic), LNCS. Springer, 2005.

[Fag02] C. Faggian. Travelling on designs: ludics dynamics. In CSL’02 (Computer Science Logic), volume
2471 of LNCS. Springer Verlag, 2002.

[FM05] C. Faggian and F. Maurel. Ludics nets, a game model of concurrent interaction. In Proc. of
LICS’05 (Logic in Computer Science). IEEE Computer Society Press, 2005.

[FP] C. Faggian and M. Piccolo. Event structures and linear strategies. submitted.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Gir01] Jean-Yves Girard. Locus solum. Mathematical Structures in Computer Science, 11:301–506,
2001.

[GM04] Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained concurrency. In
FOSSACS, 2004.

[HS02] M. Hyland and A. Schalk. Games on graphs and sequentially realizable functionals. In LICS 02,
pages 257–264. IEEE, 2002.

[Lai05] J. Laird. A game semantics of the asynchronous pi-calculus. In Concur 05, volume 3653 of LNCS,
2005.

[Mel04] P.-A. Mellies. Asynchronous games 2 : The true concurrency of innocence. In CONCUR 04,
volume 3170 of LNCS. Springer Verlag, 2004.

[MW05] G. McCusker and M. Wall. Categorical and game semantics for scir. In Galop 2005, pages
157–178, 2005.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Event structures and domains 1. Theoretical Computer
Science, 13:85–108, 1981.

[NYB01] K. Honda N. Yoshida and M. Berger. Sequentiality and the pi-calculus. In Proc. of TLCA 2001,
the 5th International Conference on Typed Lambda Calculi and Applications, LNCS. Springer,
2001. Extended abstract.

[Pic06] M. Piccolo. Event structures and strategies. Master’s thesis, Dip. Matematica Pura e Applicata,
Universitá di Padova, 2006.

[SPP05] A. Schalk and J.J. Palacios-Perez. Concrete data structures as games. In CTCS 04, volume 122
of Electr. Notes Theor. Comput. Sci., 2005.

[VY06] D. Varacca and N. Yoshida. Typed event structures and the pi-calculus. In MFPS, 2006.

15

