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Abstract—We prove that is possible to extend Ludics [12]
so as to have repetitions (hence exponentials), and still have
the results on semantical types which characterize Ludics in
the panorama of Game Semantics. The results are obtained
by using less structure than in the original paper; this has an
interest on its own, and we hope that it will open the way to
applying the approach of Ludics to a larger domain.
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I. I NTRODUCTION

Ludics is a research program introduced by Girard
[12] with the aim of providing a foundation for logic
based on interaction. It can be seen as a form of Game
Semantics wherefirst we have the definition ofinteraction
(composition, normalization), andthen we have semantical
types, as sets of strategies which ”behave well” w.r.t.
composition. This role of interaction in the definition of
types is where lies the specificity of Ludics in the panorama
of Game Semantics.

Recently, a growing body of work is starting to explore
and to develop the potential of this specific approach, and
to put at work the more general notion of type offered by
Ludics: the notion of type defined through interaction. We
mention in particular work by Saurin on interactive proof-
search as a logic programming paradigm [18], and work
by Terui on computability [20]. Terui gives an especially
interesting use of the notion of orthogonality (“to interact
well”): if the strategyD describes an automata,D⊥ (the set
of all strategies which “interact well” with it) consists of
the languages accepted by that automata. Moreover, inter-
active types seem natural in a process calculus setting, and
Faggian-Piccolo ([9]) have shown a close correspondence of
Ludics with the Linear Pi-calculus [19].

Interactive types:The computational objects of Ludics
— designs— can be seen as a linear form of Hyland-
Ong (HO) innocent strategies (as pointed out in [8]) or as
Curien’s Abstract Böhm Trees.

However, in Game Semantics, we first define the types
(arenas), and then the composition of strategies; the type (the
arena) guarantees that strategies compose well. In Ludics,
strategies are untyped, in the sense that all strategies are
given on a universal arena (the arena of all possible moves);
strategies can always interact with each other, and the

interaction mayterminate well(the two strategies “accept
each other”, and are saidorthogonal) or not (theydeadlock).
An interactive typeis a set of strategies which “compose
well”, and react in the same way to a set of tests (see Section
IV). A semantical typeG is any set of strategies which
react well to the same set of testsE, which are themselves
strategies (counter-strategies),i.e.G = E

⊥.
Internal completeness:With Ludics, Girard introduces

a new notion of completeness, which is calledinternal
completeness(see Section V). This is a key, characteriz-
ing element of Ludics. We have already mentioned that a
semantical type is a set of strategy closed by biorthogonal
(G = G

⊥⊥). Internal completeness is the property thatthe
constructions on semantical types do not require any closure,
i.e. are already closed by biorthogonal. While it is standard
in realizability that a semantical type is a setS of terms
closed by biorthogonal (S = S

⊥⊥), when interpreting types
one has to perform some kind of closure, and this operation
can introduce new terms. For example, the interpretation of
A⊕B is (A∪B)⊥⊥. This set of terms could be in general
strictly greater thanA ∪ B. We have internal completeness
if A ∪ B is proven to be equal to(A ∪ B)⊥⊥). Since the
closure by biorthogonal does not introduce new terms, we
have acomplete description of what inhabits the semantical
type.

In Girard’s paper [12], the semantical types which are
interpretation of formulas enjoy internal completeness. This
is really the key property (and the one used in [18], [20]).
Full completeness (for Multiplicative Additive Linear Logic
MALL, in the case of [12])follows from it.

A. Contributions of the paper

The purpose of this paper is two-fold. On the one hand,
we show that it is possible to overcome the main limitation
of Ludics, namely the constraint of linearity, hence the lack
of exponentials, in the sense that internal completeness (and
from that full completeness) can be obtained also when
having repetitions, if one extends in a rather natural way
the setting of Ludics. On the other hand, we provide proofs
which use less structure than the original ones by Girard.
Not only we believe this improve the understanding of the
results, but — more fundamentally — we hope this opens
the way to the application of the approach of Ludics to a



larger domain. We now give more details on the content of
the paper.

Ludics Architecture:A difficulty in [12] is that there is
a huge amount of structure. Strategies are an abstraction of
MALL proofs, and enjoy many good properties (analytical
theorems). In [12], all proofs of the high level structure
of Ludics make essential use of these properties. Since
the properties are very specific to the particular nature of
the objects, this makes it difficult to extend the — very
interesting — approach of Ludics to a different setting, or
build the interactive types on different computational objects.

Ludics is introduced in [12] as a construction in several
layers.

• At the low level, there is the definition of theun-
typed computational structures(strategies, there called
designs) and their dynamics(interaction). Interaction
allows the definition oforthogonality.

• The computational objects satisfy certain remarkable
properties, calledanalytical theorems,in particularsep-
aration: two strategiesA, B are syntactically equal
if and only if they are observationally equal (i.e., for
each counter-strategyC, the strategiesA, B react in
the same way toC).

• At the high level, there is the definition ofinteractive
types, which satisfyinternal completeness.

By relying on less structure, we show that the high level
architecture of Ludics is somehow independent from the low
level entities (strategies), and in fact could be built on other
computational objects.

In particular, separation is a strong property. This makes
it a great property to have, but also a property which is not
common to have in other settings. However, the fact that
computational objects do not enjoy separation does not mean
that it is not possible to build the “high level architecture”
of Ludics. We show (Section V) in fact that the proofs of
internal and full completeness rely on much less structure,
namely operational properties of the interaction.

We believe that discriminating between internal complete-
ness and the properties which are specific to the objects
is important both to improve understanding of the results,
and to make it possible to build the same construction on
different entities.

In particular, strategies with repetitions have weaker prop-
erties than in the original version. We show that it is still
possible to have interactive types, internal completeness, and
from this full completeness for polarizedMELL (Multi-
plicative — Exponentials — Linear Logic). The extension
to full polarized Linear Logic [15] is straightforward.

Exponentials in Ludics:Exponentials have been the
main open problem in Ludics since [12]. Maurel in [16]
proposes a first solution based on the use of probabilistic
strategies. This solution is limited by its technical complex-
ity. Therefore, it is not developed till a result of full com-
pleteness. Maurel explores also a simpler solution, but does

not pursue it further because of the failure of the Separation
Theorem. Our work builds on his simpler solution.

B. Our approach

There are two standard branches of Game Semantics:
AJM style Game Semantics [1] which is based on Girard’s
Geometry of Interaction and HO style Game Semantics [14],
introducinginnocent strategies.Strategies in [8] are a linear
form of innocent strategies.

The most natural solution to extend Ludics with expo-
nentials is hence to have as strategies standard HO innocent
strategies (on an universal arena). To do so, there are two
kind of difficulties, which we deal with in this paper.

The first difficulty in extending Ludics with repetitions, is
that using HO-style style strategies, separation fails. Wedeal
with this by showing that the proofs of internal completeness
and full completeness can be given in a direct way, without
relying on Separation (Section 4).

The second difficulty is that one needs to have enough
tests. This problem is analogous to the one which has led
Girard to the introduction of thedaimon rule: in Ludics, one
typically opposes to an abstract “proof ofA” an abstract
“counter-proof ofA”. To have enough tests (that is, to have
both proofs ofA and proofs ofA⊥) there is a new rule
which allow us to justify any premise. Similarly, when we
oppose to a proof of?A a proof of !A⊥ (= (?A)⊥), we
need enough counter-strategies. As we illustrate in Section
5, we need non-uniform counter-strategies. We realize this
by introducing anon-deterministic sumof strategies. Moti-
vations and a sketch of the solution are better detailed in
Section VI-C.

C. Related work

AJM style exponentials:A different solution that uses
AJM style exponentials is developed by the first author in
[3]: !A is interpreted as an infinite tensor product of the
interpretation ofA, where each copy of the interpretation
of A receives a different index. However, the approach we
use in this paper is considerably simpler, and we hope more
suitable for more applicative uses of Ludics [9], [18], [20].

Game Semantics:We build on the variant of HO
strategies introduced in [15]. Moreover, we are interested
in connections with the resource modalities of Games Se-
mantics [17].

Abstract Machines:Curien and Herbelin in [6] have
studied composition of strategies as sets of views. In partic-
ular they have developed the View Abstract Machine (VAM)
which is the device we use in this paper.

Non-deterministic innocent strategies:were introduced
by Harmer in [13], with the purpose of modeling non-
determinism (PCF with erratic choice). In this paper we
introduce non-uniform strategies, which are realized by
means ofnon-deterministic sumsrelying on work developed
by Faggian and Piccolo [10]. Our purpose here is not to



model non-determinism, but to implementnon uniformity
via “formal sums” of strategies, in order to provide enough
tests to make possible the interactive approach of Ludics
(inside the model), similarly to Girard’s introduction of
strategies corresponding to ”incomplete” proofs. The dif-
ferent purpose is reflected in the composition, which in
our setting is reduced to deterministic composition. Our
strategies could be seen as a ”concrete” implementation of
Harmer’s solution, in a simplified setting (see [4] for further
details).

II. CALCULUS

In this section, we introduce a calculus that we call
MELLS, which is a variant of polarizedMELL based
on synthetic connectives. In section VIII-B, we prove that
our model is fully complete forMELLS.

A. MELL

Formulas of propositional Multiplicative Exponential Lin-
ear LogicMELL [11] are finitely generated by the follow-
ing grammar:

F ::= X | X⊥ | 0 | ⊤ | 1 | ⊥ | F ⊗ F | F � F | !F | ?F

whereX, X⊥ are propositional variables (also calledatoms).
Linear logic distinguishes formulas into:

- linear formulas: 0,1,⊤,⊥, F ⊗ F, F � F ;
- exponential formulas: ?F, !F .

Linear formulas can only be used once, while the modal-
ities !, ? allow formulas to be repeated. The possibility of
repeating formulas is expressed by thecontractionrule on
?F formulas:

⊢ ?F, ?F, Γ

⊢ ?F, Γ

Dually, the modality! allows proofs to be used several times
during Cut-Elimination procedure, once for each duplication
of ?F .

Connectives and constants ofMELL are also split into
two classes, according to theirpolarity

Positive: 0,1,⊗, ? Negative: ⊤,⊥,�, !

Remark II.1 (Modalities). Following [19], we write ! for
the negativemodality, and? for the positive one, because
these symbols are more familiar. However in a polarized
setting such as in [15], it is more common to write, resp.,
♯(negative) and ♭ (positive).

B. MELLS

We now introduce the calculusMELLS. Formulas are
here built bysynthetic connectives[12] i.e. maximal clusters
of connectives of the same polarity. The key ingredient
that allows for the definition of synthetic connectives is
focalization [2]. Andreoli has proven that if a sequent is
provable, then it is provable with a focusing proof. By using
synthetic connectives, formulas are in a canonical form,

where immediate subformulas have opposite polarity. Hence
in a (cut-free) proof ofMELLS, there is a positive/negative
alternation of rules, which matches the standard Player
(positive)/ Opponent (negative) alternation of moves in a
strategy (see Section III).
Formulas ofMELLS split into positive (P ) and negative
(N ) as follows:

P ::= ?0 | ?X | ?(N ⊗ · · · ⊗ N)
N ::= !T | !X⊥ | !(P � · · ·� P )

whereX andX⊥ are propositional variables.
We useF as a variable for formulas, and indicate the polarity
also by writingF+ or F−. We often writeF+(N1, . . . , Nn)
andF−(P1, . . . , Pn).

Linear negation⊥ is defined as usual:F⊥⊥ := F ,
(?0)⊥ := !⊤, (?X)⊥ := !X⊥, (?(N1 ⊗ · · · ⊗ Nn))⊥ :=
!(N1

⊥ � · · ·�Nn
⊥).

A sequent ofMELLS is a multi-set of formulas written
⊢ F1, . . . , Fn such that it contains at most one negative
formula.
For Γ multi-set of positive formulas, we have the following
rules:

⊢ N1, F
+, Γ . . . ⊢ Nn, F+, Γ

Pos
⊢ F+, Γ

⊢ P1, . . . , Pn, Γ
Neg

⊢ F−, Γ

Ax
⊢ ?X, !X⊥, Γ

!⊤
⊢ !⊤, Γ

⊢ P, Ξ, Γ ⊢ P⊥, Γ
Cut

⊢ Ξ, Γ

where in the last ruleΞ is either empty or negative.
Notice that usual Linear Logic structural rules (weak-

ening, contraction, promotion and dereliction) are always
implicit in our calculus.

Proposition II.2. Cut-Elimination holds forMELLS.

Remark II.3 (Intuitionistic Logic). It is easy to check that
this calculus is a focalized version of the¬,∧ fragment of
intuitionistic calculusLJ ( The reader can refer to [4] for
more details).

III. HO STYLE GAME SEMANTICS

An innocent strategy[14] can be described either in terms
of all possible interactions for the player (strategy as set
of plays), or in a compact way, which provides only the
minimal information for Player to move (strategy as set
of views) [13]. It is standard that the two presentations
are equivalent. Here we use the “strategy as set of views”
description. We revise the definitions, following Harmer’s
and Laurent’s presentation.

Let Pol = {+,−} be the set of thepolarities (here,
positive and negative). We useǫ ∈ Pol as a variable.

Definition III.1 (Arena). An arena (A,⊢A, λA) is given by:



• a directed acyclic graph, d.a.g. for short,(A,⊢A)
where:

– A (elements of the d.a.g.) is the set ofmoves.
– ⊢A (edges of the d.a.g.) is a well foundedenabling

relation on A. If there is an edge fromm to n, we
write m ⊢ n. If no move enablesm we write⊢ m,
and call m initial .

• a function λA : A → Pol which labels each element
with a polarity.

Enabling relation and polarity satisfy the following:

if n ⊢ m, they have opposite polarity.

If all the initial moves have the same polarityǫ, we say
that ǫ is the polarity of the arena. In this case we say that
A is a polarized arena (of polarity ǫ).

Definition III.2 (Strategy). Let A be an arena.

• A justified sequences = s0.s1. . . . sn on A is a string
s ∈ A∗ with pointers between the elements in the string
which satisfies:

– Justification.For each non-initial movesi of s,
there is a unique pointer to an earlier occurrence
of movesj of s (j < i), called the justifier ofsi,
such thatsj ⊢A si.

– Alternation. No two consecutive moves have the
same polarity.

• A view (calledchroniclein [12]) is a justified sequence
on A, which satisfies:

– View. For each non-initial negative (Opponent)
movesi, its justifier is the immediate predecessor
si−1.

• A strategyD onA, denoted byD : A is a prefix-closed
set of views, such that:

– Coherence.If s.m, s.n ∈ D and s.m 6= s.n then
m, n are negative.

– Maximality. If s.m is maximal inD (i.e. no other
view extends it), thenm is positive.

We call positive(resp.negative) a strategy on a positive
(resp. negative) arena.

The polarity of a move in a strategy (i.e. positive/Player
or negative/Opponent) is given by the arena. We sometimes
put in evidence the polarity of a movex by writing x+ or
x−, but we omit it when clear from the context. In the same
way, we annotate strategies with their polarity, hence writing
D+, D−.

Tree notation:Emphasizing the tree structure, we also
write a strategy whose first move isa as D = a.D′. More
precisely, if D is a positive strategy, we write it asD =
a.{E1, . . . , En}, instead of{a.s : s ∈ Ei, i ∈ I}, whereEi

are negative strategies; similarly ifE is a negative strategy.of
root a.

Composition of strategies:Composition of strategies as
sets of views is well studied by Curien and Herbelin, who
introduce the View — Abstract — Machine (VAM) [6] by
elaborating on Coquand’s Debates machine [5].

IV. L UDICS

In this and the next section we give a compact but
complete presentation of Ludics, in a language which fits
that of Game Semantics.

Let us first stress the peculiarity of Ludics in the panorama
of Game Semantics. In Game Semantics, one defines con-
structions on arenas which correspond to the interpretation
of types. A strategy is always “typed”, in the sense that it isa
strategy on a specific arena. When strategies are opportunely
typed, they interact (compose) well.

In the approach of Ludics, strategies are “untyped”, in the
sense that all strategies are defined on the universal arena.
Strategies then interact with each other, and the interaction
can terminate well(the two strategies “accept” each other)
or not (deadlock).

Daimon: Ludics provides a homogeneous setting in
which live both proofs and tests: proofs ofA interact with
proofs ofA⊥; to this end, it generalizes the notion of proof.
To this purpose, a new rule is introduced, calleddaimon:

⊢ Γ
†
. Such a rule allow us to assume any conclusion.

In the semantics, the daimon is a special action which
acts as atermination signal.

A. Strategies on a Universal Arena

Strategies communicate on names. We can think of
names as channels, which can be used to send outputs (if
positive) or to receive inputs (if negative). Each strategy
D has an interface, which provides the names on whichD

can communicate with the rest of the world, and the use
(input/output) of each name.

A name (called locus in [12]) is a string of natural
numbers. We use the variablesξ, σ, τ, . . . to range over
names. Two names aredisjoint if neither of them is the
prefix of the other one.

An interface Γ (called base in [12]) is a finite set of
pairwise disjoint names, together with a polarity for each
name, such that at most one name is negative. If a nameξ
has polarityǫ, we write ξǫ ∈ Γ. We say that an interfaceΓ
is negative if it contains a negative name, positive otherwise.

An action x is either the symbol† (calleddaimon) or a
pair (ξ, I), whereξ is a name, andI is a finite subset ofN.

Given an action(ξ, I) on the nameξ, the setI indicates
the names{ξi : i ∈ I} which are generated fromξ by
this action. The prefix relation (writtenξ ⊑ σ) induces a
natural relation of dependency on names, which generates
an arena.We callroots the action† and any action(ξ, I)
such thatξ ∈ Γ.



Definition IV.1 (Universal Arena on an interface.). Given
an interfaceΓ, the universal arena U(Γ) on Γ is the tuple
(U(Γ),⊢, λ) where:

• Theset of movesis the special action† together with
the set of all actions of the form(ξ′, I).

• The polarity of the initial actions(ξ, I) is that indi-
cated by the interface forξ; the polarity of each other
action is the one induced by alternation.

• Theenabling relation is defined as follows:

(ξ, I) ⊢ x, where:

(i) either x = (ξi, J) (with i ∈ I);
(ii) or x is a positive root action and(ξ, I) is a

negative root action.

Definition IV.2 (Strategy on a Universal Arena). Let Γ be
an interface. Astrategy D on Γ, also writtenD : Γ is a
strategy (in the sense of Definition III.2) on the universal
arenaU(Γ).

A strategy which plays a key role is the strategydaimon
{†}, which (with a slight abuse of notation) we denote also
by †.

Dynamics: Composition of strategies is described via
the VAM machine. All we need in this paper is Proposition
VI.1 in Section VI-A.

B. Designs (linear strategies)

Definition IV.3 (Linear strategy). We say that a strategy
D : Γ is linear if in D there is no repetition of actions on
the same name.

Linear strategies are essentially the strategies introduced
in [12] (there calleddesigns). The linearity condition ex-
pressed there is actually slightly more complex, because
it takes into account also the additive structures (additive
duplication is allowed). Since in this paper we do not
consider additives, for our discussion it is enough to say that
in a strategyeach name is only used once.Linearity has as
consequence that that all pointers are trivial (each move has
only one possible justifier), and then can be forgotten.

Composition of linear strategies (see [12], [7]):We
can compose two strategiesD1, D2 when they have com-
patible interfaces, that is they have a common name, with
opposite polarity. For example,D1 : σ+, Γ can communicate
with D2 : σ−, ∆ through the nameσ. The shared nameσ,
and all names hereditarily generated fromσ, are said to be
internal.

If R = {D1, . . . , Dn} is a finite set of strategies which
have pairwise compatible interfaces, we denote by [[R]] the
result of the composition, also callednormal form.

Composition (also called normalization)follows the stan-
dard paradigm ofparallel composition (the interaction) plus
hiding of internal communication: [[R]] is obtained from the
result of the interaction by hiding all actions on internal
names.

The most important case in Ludics is the closed one,
when all names inR are internal (for example we have
D : ξ+ and E : ξ−). In this case, normal form can be
obtained step by step by applying the following rewriting
rules:
a) [[x+.{E1, . . . , En}, x

−.D, R′]]  [[E1, . . . , En, D, R′]];
b) [[†, R′]]  †;
c) If none of the case above applies, we have a deadlock
(the output is empty).

Since each action only appears once, the dynamics is
extremely simple: we match actions of opposite polarity. Let
us give an example of how interaction works.

Example IV.4. Let us consider the following small
strategies (thinkx = (ξ, I) and x1 = (ξ1, K)).

x x

x1

†

x

x1

D
′
:= x

+
D := x

+
.x

−

1 .† E := x
−

.x
+

1

Let us haveD interact with E. D starts by playing the
movex+, E checks its answer to that move, which isx+

1 . If
D receives inputx1, its answer is†, which terminates the
interaction. Summing up, the interaction producesx.x1.†. If
we hide the internal communication,† is the output.

If we haveE interacting withD′, we again matchx+ with
x−. ThenE plays x1, but D′ has no answer to the action
x1. Here we have a deadlock.

C. Orthogonality and Interactive types

In the closed case, we only have two possible outcomes:
either composition fails (deadlock), or it succeeds by reach-
ing the action†, which signals termination.

Definition IV.5 (Orthogonality). Given two strategies of
opposite polarityD : ξ+, E : ξ−, they are orthogonal,
written D⊥E, if [[D, E]] = †.
If D : ξǫ is a strategy, itsorthogonal is defined as
D⊥ := {E : ξǫ, E⊥D} (where ǫ is the polarity opposite
to ǫ). The definition of orthogonality extends to sets of
strategies.

Two strategies areorthogonalif at each step any positive
actionx+ finds its negative dual actionx−, and the compu-
tation terminates, that is we eventually meet a† action.

Example IV.6. In the Example IV.4,E⊥D, while E andD′

are not orthogonal.

Orthogonality allows the players to agree (or not), without
this being guaranteed in advance by the type:D⊥ is the set
of the counter-strategies which are consensual withD.



Remark IV.7. Orthogonality naturally extends to strate-
gies on arbitrary interface. Instead of considering a single
counter-strategy, one has to consider a family of counter-
strategies (e.g., forD : ξ+, σ+, one has to consider
E : ξ−, F : σ− and the family{E, F} is orthogonal toD if
[[D, E, F]] = †). Details on this generalization are given in
[12].

Definition IV.8. A behaviour (or interactive type) on the
interfaceΓ, is a setG of strategiesD : Γ such thatG⊥⊥ =
G (it is closed by bi-orthogonal).

We say that a behaviourG is positive or negative
according to its interface.

We now give constructions on behaviours which will
interpret linear formulas.

If D1 : ξ1−, . . . , Dn : ξn− (i ∈ I) are negative strategies,
we define a new positive strategy onξ+:

D1 • · · · • Dn := (ξ, I).{D1, . . . , Dn}.

It is immediate to generalize the construction to strategies
Di : ξi−, Γ, to obtainD : ξ+, Γ.

Conversely, given any strategyD : ξ+, such that the root
is linear (i.e. the action which labels the root occurs only
once inD), we can write it asD = x.{D1, . . . Dn}. By the
View condition, we have that each subtreeDi is a strategy
on ξi. Given a strategyD as just described, we will write
D↾i for the operation which returns usDi.

Let A1,A2 be negativebehaviours, respectively onξ1−

andξ2−. We denote byA1 • A2 the set

{D1 • D2, Di ∈ Ai} ∪ {†}.

We define:
A1 ⊗ A2 := (A1 • A2)

⊥⊥, positive behaviour onξ+;
A1

⊥ �A2
⊥ := (A1 • A2)

⊥, negative behaviour onξ−.
In the sequel,P will always denote a positive behaviour,

N a negative one.
The interpretationG of a formulaG will be a behaviour,

i.e. a set of strategies closed by biorthogonal:D ∈ G if
and only if D⊥E, for eachE ∈ G

⊥. The interpretation of
a sequent⊢ G1, . . . , Gn naturally extends this definition:

Definition IV.9. A sequent of behavioursis a sequence of
behaviours, noted by⊢ G1, . . . ,Gn, that satisfies:D ∈ ⊢
G1, . . . ,Gn if and only if [[D, E1, . . . , En]] = †, for each
E1 ∈ G1

⊥, . . . , En ∈ Gn
⊥.

It is clear that a sequent of behaviours is itself a behaviour,
i.e, a set of strategies closed by orthogonal.

V. L INEAR SETTING: INTERNAL AND FULL

COMPLETENESS

In this section we restrict our attention to linear strategies.
We introduce internal completeness, as well as full com-
pleteness. All these results can be proven without relying
on separation.

In [12], the set of strategies which interpretMALL

formulas satisfies a remarkable closure property, calledin-
ternal completeness: the setS of strategies produced by
the construction is (essentially) equal to its biorthogonal
(S = S

⊥⊥). This means that we have a complete description
of all strategies in the behaviour.

The best example is the interpretationA1 ⊗A2 := (A1 •
A2)

⊥⊥ of a Tensor formula. One proves that(A1 •A2) =
(A1 •A2)

⊥⊥, i.e. we do not add new objects when closing
by biorthogonal.

From this, full completeness follows. In fact, because of
internal completeness, ifD ∈ A1 ⊗ A2 we know we can
decompose it asD1 • D2, with D1 ∈ A1 and D2 ∈ A2.
This corresponds to writing the rule:

...
⊢ A1

...
⊢ A2

A1 ⊗ A2

⊢ A1 ⊗ A2

i.e., if eachDi corresponds to a proof ofAi, D corre-
sponds to a proof ofA1 ⊗ A2.

For the rest of this section, we assume thatA,B are
negative behaviours respectively onξ1− andξ2−.

Let us considerA•B. By construction, each strategy has
x+ = (ξ, {1, 2})+ as root. By definition of linear normal-
ization, each strategy in(A • B)⊥ has as root the action
x− (otherwise, normalization would fail immediately). All
strategies in(A • B)⊥⊥ have a positive root, which, to
normalize against(A • B)⊥, must be either the action†,
or x+. Hence, we know that a strategyD ∈ A ⊗ B has
the form x+.{D1 : ξ1, D2 : ξ2}. We now prove that if
D ∈ (A • B)⊥⊥ thenD1 ∈ A andD2 ∈ B.

Proposition V.1 (Internal completeness of Tensor). Let
A,B be negative behaviours, respectively onξ1− and ξ2−.
We have thatA ⊗ B = A • B.

Proof: Given any F : ξ1+ ∈ A
⊥, we obtain the

strategyF′ : ξ− = x−.F by adding the rootx−. For any
D : ξ+ = x+.{D1, D2}, we have the following equation:
[[x−.F, D]] = [[F, D1]], by definition of normalization, and
by the fact that since inF there are only names generated
by ξ1, F : ξ1+ only interact with the subtreeD1 : ξ1−.
F′ ∈ (A • B)⊥, because by using the equation we deduce
that F′⊥D, for anyD ∈ (A • B).
GivenD ∈ A⊗B, it must beD⊥E for eachE ∈ (A•B)⊥.
Hence in particular, for eachF ∈ A

⊥, we haveD⊥F′ (F′

defined as above), and hence, again because of that equation,
D1⊥F, i.e., D1 ∈ (A⊥)⊥ = A.

Remark V.2 (Important). Observe that here we only use two
properties of the strategies: the dynamics (normalization),
and the fact thatthe root is linear, i.e. it is the only action
on the nameξ (to say that occurrences ofξ1 only appear
insideD1).



Internal completeness for the connective par� is imme-
diate, just spelling out Definition IV.9.

Full completeness for Multiplicative Linear LogicMLL

follows from what we have seen in this section, by using
the proof of internal completeness of Tensor and Par, and
Corollary V.3.

Corollary V.3. If D ∈ ⊢ Γ,P if and only if for eachE ∈
P

⊥, [[D, E]] ∈ ⊢ Γ.

VI. L UDICS WITH REPETITIONS: WHAT, HOW, WHY

From this section on, we abandon the hypothesis of linear-
ity. Here we discuss the difficulties in extending the approach
of Ludics to this setting, and introduce our solution, which
will be technically developed in Section VII. First, let us
introduce some operations which we will use to deal with
repeated actions, and describe composition.

Renaming: Given a strategyE : ξ, let us indicate
by σ(E) the strategy obtained fromE by renaming, in all
occurrences of action, the prefixξ into σ. I.e., each name
ξ′ = ξ.τ becomesσ.τ . Obviously, if E : ξ, thenσ(E) : σ.

Renaming of the root:Given a positive strategy
D : ξ+, let us indicate byσ(D) the strategy obtained by
renaming the prefixξ into σ in the root, and in all actions
which are hereditarily justified by the root. IfD : ξ+, we
obtain a new strategyσ(D) : σ+, ξ+.

We picture this in Figure 1, where we indicate an action
on ξ simply with the nameξ.

σ+

ξ+

ξ+

D : ξ+ σ(D) : ξ+, σ+

ξ+

ξ+

ξ+

ξ1 ξ1

ξ1 ξ1

ξ1 σ1

Figure 1. Renaming of the root

Copies of a behaviour:To emphasize thatA is a set
of strategies onξ, we annotate the nameξ as a subscript:
Aξ. If Aξ is a set of strategies on the nameξ, we writeAσ

for {σ(D), D ∈ Aξ}. Aσ is a copy ofAξ: they are equal
up to renaming.

A. Composition (normalization)

In strategies, actions can be repeated. Composition of
strategies as sets of views can be described via the VAM
abstract machines introduced in [6]. In this paper, what
we use is that composition has a fundamental property,
expressed by Proposition VI.1, where we use the operations
of renaming and renaming of the root described above:

Proposition VI.1 (Copies). [[D, E]] = [[σ(D), E, σ(E)]] .

D : ξ+

ξ+

ξ+

ξ+

ξ1

ξ1

ξ1

σ−

σ(E) : σ−

ξ−

E : ξ−

ξ−

E : ξ−

(a)

(b)

σ+

ξ+

ξ+

ξ1

ξ1

σ1
D

′ : ξ+, σ+

Figure 2. Composition (with repeated actions)

Let us motivate this property, which actually gives a
description of the composition.

Let D : ξ+ and E : ξ− be two strategies, which we
represent in Figure 2 (a) (again, we indicate an actionx on
ξ simply with the nameξ). The idea behind the abstract
machine in [6] is that, when the two strategiesD and E

interact, every timeD plays an actionx on ξ, a copy ofE
is created; i.e., composition works as if we had a copy ofE

for each occurrence ofx in D. It is rather intuitive that the
result of normalization is the same if we make this explicit,
by renaming one occurrence ofx (namely the root), and
making an explicit copy ofE, as illustrated in Figure 2 (b).

B. What are the difficulties

We are ready to discuss which are the difficulties in ex-
tending the approach of Ludics to a setting where strategies
are non linear.

Problem 1: Separation:The first problem is the failure
of separation (we discuss an example of this in [4]). A main
reason why previous attempts at the extension of Ludics
with exponentials blocked on that, is because all proofs
in [12] make essential use of a property built on it. Our
key observation is that, even if separation is an important
property, its failure is a relative problem, in the sense that
we can still have interactive types and internal completeness.

Problem 2: Enough tests (counter-strategies):The sec-
ond problem has to do with having enough tests, i.e. enough
counter-strategies. Let us explain this.
As in [12], we define an interactive type to be any set of
strategies closed by biorthogonal. Assume we have defined
how to interpret formulas, and in particular?A and !A⊥.
We would like to associate to each “good” strategy in the
interpretation of a formula, for example?A, a syntactic
proof of ?A (full completeness).

If D : ξ+ ∈ ?Aξ, we would like to transform it into a
strategyD′ ∈ ⊢ ?Aξ, ?Aσ (where distinct names indicate



distinct copies). This corresponds to a contraction rule (in
its upwards reading).

A natural idea is to rename the root, and all the actions
which are hereditarily justified by it. We have already
illustrated this operation Figure 1. FromD : ξ+, we obtain
a new strategyD′ : ξ+, σ+, whereD′ = σ(D).
We would like to prove that:

(∗) D ∈ ⊢ ?Aξ ⇒ (∗∗) σ(D) ∈ ⊢ ?Aξ, ?Aσ

To have (∗∗), we need (see Definition IV.9) to know
that [[σ(D), E, F]] = † for each E ∈ (?Aξ)

⊥ and
each F ∈ (?Aσ)⊥ . Since (?Aσ)⊥ is a copy (renamed
in σ) of (?Aξ)

⊥, we can also write this condition as:
[[σ(D), E, σ(F)]] = †, where bothF andE vary in (?Aξ)

⊥.
Unfortunately Proposition VI.1 only gives us that

[[σ(D), E, σ(E)]] = †, where we have two copies of thesame
(up to renaming) strategyE. This correspond to the fact that
in the HO-style setting, strategies in!C areuniform: every
time we find a repeated action of ”type”?C⊥, Opponent
(!C) reacts in the same way.

C. A solution: non-uniform tests

The need of having enough tests is similar to the one
which has led Girard to the introduction of thedaimon rule.
In our case, this need leads us to enlarge the universe of
tests by introducingnon-uniform counter-strategies. This is
extremely natural to realize in an AJM-style setting [1], [3],
where a strategy of type!C is a sort of infinite tensor of
strategies onC, each one with itsindex of copy. To have HO-
style non-uniform counter-strategies, we introduce a non-
deterministic sum of strategies. Let us illustrate the idea,
which we will formalize in the next section.

Non-uniform counter-strategies:The idea is to allow a
“non-deterministic sum”of negativestrategies. Let us, for
now, informally write the sum ofE andF this way:

τ.E + τ.F

Normalization may have to use several times this strat-
egy, hence entering the strategy several times. Every time
it is presented with this choice, normalization will non-
deterministically choose one of the two possible continu-
ations. The choice can be different at each repetition.

Let us defineorthogonality, by settingD⊥(τ.E + τ.F)
iff [[ D, τ.E + τ.F]] = † for each possible choice.
It is immediate that

(***) D⊥(τ.E + τ.F) ⇒ D⊥E and D⊥F.

As we will see, ifE ∈ G and F ∈ G for G interpretation
of a formula, we have that(τ.E + τ.F) ∈ G, and vice-
versa. Hence, ifD ∈ ?A, for eachE, F ∈ (?A)⊥ we have
[[D, τ.E + τ.F]] = †. Using Proposition VI.1 we have that
[[σ(D), (τ.E + τ.F), σ(τ.E + τ.F)]] = †. Using (***), we
deduce that [[σ(D), E, σ(F)]] = †, as we wanted.

D. Linearity of the root

Observe that, by construction, inσ(D) the action at the
root is positive and it is the only action on the nameσ.
We can hence apply the argument we have already given in
Section V.1 for the internal completeness of Tensor.

As a consequence, ifA = A1 ⊗ A2, given D ∈ ⊢?A,
we have thatσ(D) actually belongs to⊢A, ?A, and can be
decomposed in strategiesσ(D)i ∈ ⊢ Ai, ?A.

This allows us to associate toD ∈ ⊢?A,Γ a proof which
essentially has this form:

...
⊢ A1, ?(A1 ⊗ A2), Γ

...
⊢ A2, ?(A1 ⊗ A2), Γ

⊗ + contr
⊢ A1 ⊗ A2, ?(A1 ⊗ A2), Γ

dereliction + contr
⊢ ?(A1 ⊗ A2), Γ

VII. L UDICS WITH REPETITIONS: NON-UNIFORM

STRATEGIES

In this Section, we implement technically the ideas pre-
sented in the Section VI-C. In particular, we revise the
definition of arena and strategy so to accommodate neutral
actions, which correspond to theτ action we have just seen.

We extend the set of thepolarities with a neutral polarity,
hence we have now three possibilities: positive, negative and
neutral.
We extend the set ofactions with a setT = {τi, i ∈ N} of
indexed tau actions, whose polarity is defined to be neutral.
We denote byT also the neutral arena, where the set of
moves isT , the enabling relation is empty, and the polarity
is neutral. We revise strategies (Definition III.2) giving the
following definitions.

Definition VII.1 (N.U. Strategies). Let A be a (positive or
negative) arena.

• A Non-Uniform justified sequences onA is a justified
sequence (in the sense of Definition III.2) onA ∪ T ,
which moreover satisfies the following property:

– Neutral actions.If si is a tau action, thensi−1 is
negative andsi+1 is positive.

• A Non-Uniform view on A is a view onA ∪ T .
• A Non-Uniform strategy (or N.U. strategy) onA is

a strategy onA ∪ T , with the following modified
coherence condition:

– Coherence.If s.m, s.n ∈ D and s.m 6= s.n
thenm, n are either both negative or both neutral
actions.

• A Non-Uniform strategy D on Γ, written D : Γ, is a
Non-Uniform strategy on the arenaU(Γ) ∪ T .

From now on, we only consider N.U. strategies (the usual
ones being a special case). Figure 3 below shows an example
of N.U. strategy.



A. Sum of strategies

As anticipated in Section VI-C, our N.U. strategies can
be seen as a non deterministic sum of standard strategies.
We use N.U. strategies to capture the idea of “non uniform”
tests. Let us make precise what does it mean for a strategy
to be uniform or not.

Definition VII.2 (Uniform actions). Given an N.U. strat-
egy D, we say that anegativeoccurrence of actionx−

is uniform if x− is immediately followed by a positive
occurrence of action (and not by tau actions). IfN is a
set of negative strategies, we define:Unif N := {D ∈ N :
the rootx− of D is uniform}.

x

u

x

u

D

F =
x

τ1

u

τ2

u

D

F1 := x
−

.u
+

F2 := x
−

.u
+

.D F := x
−

.{τ1.u
+

, τ2.u
+

.D}

Figure 3. N.U. strategies

In Figure 3,F1 andF2 have uniform root, while the root
of F is not.F can be seen as a non-deterministic sum ofF1

andF2.
It is immediate that a strategy whose root is non uniform

can always be written as a sum of strategies whose root is
uniform. We formalize this in the following:

Definition VII.3 (τ -sum). Let {Di : Γ}i∈S be a family
of negative N.U. strategies such that allDi = x−.Ei have
the same uniform root. We define theirsum:

∑τ
i∈S Di :=⋃

i∈S x−.{τi.Ei}. WhenS is a finite set, say{1, . . . , k}, we
write D1 +τ . . . +τ Dk.

A τ -sum of strategies can be seen as asuperposition
of negative strategies in a such way that they do not
overlap (except for the first negative action). The following
proposition is an immediate consequence of the definitions:

Proposition VII.4. If x−.F is a negative N.U. strategy,
either its root is uniform orx−.F =

∑τ
x−.Fi, where the

root of eachx−.Fi is uniform.

B. Orthogonality

We have sketched the definition ofcompositionfor N.U.
strategies in Section VI-B1.The reader here does not need the
details of composition. All results use Corollary VII.6 and
the fundamental property expressed by Proposition VIII.1.

The result of normalizing N.U. strategies will depend on
the choice performed at theτ -sums, in other words there

1The details are given in the full paper [4].

are several normal forms: there is a result for each possible
choice. We say that two strategies are orthogonal if, for each
possible choice, the result is always†.

Definition VII.5 (Orthogonality). Let F : ξ−, E : ξ+ be
N.U. strategies.E⊥F if and only if [[E, F]] = †, for each
possible result.

The following is an immediate consequence:

Corollary VII.6. Let F be a negative strategy such that
F =

∑τ
Fi. We have that:C⊥F ⇒ ∀i, C⊥Fi.

VIII. L UDICS WITH REPETITIONS: INTERNAL (AND

FULL) COMPLETENESS

We give constructions on behaviours, and prove that they
enjoy internal completeness. Since these constructions will
be used to interpret formulas, full completeness will be a
consequence.

Constant types:We define the positive (resp. negative)
constant behaviour onξ as follows:

?0 := {†}⊥⊥ !⊤⊤⊤ := {†}⊥

It is immediate that{†}⊥⊥ = {†} and that!⊤⊤⊤ is the set of
all negative strategies onξ.

Compound types:In this section, we use the same
constructions on strategies and operations on sets of strate-
gies as in Section IV-C (observe that since strategies have
repetitions, even when starting from the same set, the closure
by bi-orthogonal introduces many more strategies than in the
linear case).

Let N1, . . . ,Nn be negative behaviours respectively on
ξ1, . . . , ξn. We define a new positive (resp. negative) be-
haviour onξ as follows:

F
+(N1, . . . ,Nn) := (N1 • · · · • Nn)⊥⊥

F
−(N1

⊥, . . . ,Nn
⊥) := (N1 • · · · • Nn)⊥

From now on, we writeN for negative andP for positive
behaviours given by the constructions above.

A. Internal completeness

We have the following property which characterizes the
relation of orthogonality forτ -sums of strategies that belong
to negative behaviours.

Proposition VIII.1. LetN = (N1•· · ·•Nn)⊥ be a negative
behaviour. If{Ei} ⊆ Unif N is a non empty denumerable
set of negative strategies of the formEi = x−.Fi, we have
that

∑τ
x−.Fi ∈ N.

Together with Corollary VII.6, this gives the following.

Lemma VIII.2. (Unif N)⊥ = N
⊥. Hence N =

Unif N)⊥⊥.



This lemma expresses the fact that the study of a negative
behaviourN can be reduced to the study ofUnif N. We will
exploit this property both in internal and full completeness.

Proposition VIII.3 (Internal completeness ofF−). If
x−.F ∈ Unif F

−(P1, . . . ,Pn) thenF ∈ ⊢ P1, . . . ,Pn.

Proof: The proof is as in the linear case.

Lemma VIII.4. If D ∈ Pξ then σ(D) ∈ ⊢ Pξ,Pσ.
Moreover, the only occurrence of action onσ is the root.

Proof: If D ∈ Pξ, then for all pairsE, F ∈ Pξ
⊥,

D⊥E and D⊥F. By Proposition VIII.1, we have that
D⊥E +τ F, that is [[D, E +τ F]] = †. Using Proposition
VI.1, we have that [[σ(D), E +τ F, σ(E +τ F)]] = † and by
definition of non-deterministic normalization, we have that
[[σ(D), E, σ(F)]] = †, that isσ(D) ∈ ⊢ Pξ,Pσ.

Remark VIII.5. Non-uniform strategies allow us tosu-
perposetwo negative strategies (with the same root). The
capability of defining such a kind of superposition is the
coreof our solution to interpret contraction rule.

Theorem VIII.6 (Internal completeness ofF+). If D ∈
F

+(N1, . . . ,Nn), then: eitherD = † or σ(D) = D′
1 • · · · •

D′
n whereD′

i ∈ ⊢ Ni,F
+.

Proof: Let F+ = F
+(N1, . . . ,Nn). By Lemma VIII.4,

we have that ifD ∈ F
+
ξ , thenσ(D) ∈ ⊢ F

+
ξ ,F+

σ . Moreover,
the root is an action on the nameσ, and it is the only
occurrence of action onσ. By using the same argument as
in Proposition V.1, we have thatσ(D) = D′

1 • · · · •D′
n and

D′
i ∈ ⊢ Ni,F

+, i.e. σ(D)↾i ∈ ⊢ Ni,F
+(N1, . . . ,Nn).

B. Full completeness

In this paper we have chosen to give enough details
on internal completeness, because it is the more peculiar,
and hence the more interesting, property. Once established
internal completeness, one can also obtain full completeness.
Our model is fully complete with respect toMELLS

(section II). The details are given in [4]
The interpretation‖ F ‖ξ of a formula F is given the

corresponding behaviourF, once chosen a nameξ:

‖ !⊤‖ξ := !⊤⊤⊤ξ ‖?0‖ξ := ?0ξ

‖F+(N1, . . . , Nn)‖ξ := F
+(‖N1 ‖ξ1, . . . , ‖Nn ‖ξn)ξ

‖F−(P1, . . . , Pn)‖ξ := F
−(‖P1 ‖ξ1, . . . , ‖Pn ‖ξn)ξ

A sequent ⊢ F1, . . . , Fn is interpreted by the sequent of
behaviours⊢ F1, . . . ,Fn.

The interpretation of a proof is a strategy which isuniform
and winning according to the definition given in [12] (i.e.
daimon-free, finite andmaterial in its behaviour). We have
the following results, whose proof can be found in [4].

Theorem VIII.7 (Interpretation). Let π be a proof of a
sequent⊢ Γ in MELLS. There exists a winning strategy
D ∈ ⊢ Γ such thatD is interpretation ofπ.

Theorem VIII.8 (Correctness of the interpretation). If π is
a proof of⊢ Γ in MELLS which reduces toπ′, then if D
is the interpretation ofπ andD′ is the interpretation ofπ′,
we have thatD = D′.

Theorem VIII.9 (Full Completeness). If D is a winning
strategy in a sequent of behaviours⊢ Γ then D is the
interpretation of a cut-free proofπ of the sequent⊢ Γ in
MELLS.
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