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Abstract. We introduce a new class of multiplicative proof nets, J-proof
nets, which are a typed version of Faggian and Maurel’s multiplicative
L-nets. In J-proof nets, we can characterize nets with different degrees
of sequentiality, by gradual insertion of sequentiality constraints. As a
byproduct, we obtain a simple proof of the sequentialisation theorem.

Introduction

Proof nets have been introduced by Girard [10] as an abstract representation of
linear logic proofs; this representation has two main interests: to provide a tool
for studying normalization, and to give a canonical representation of proofs.

In proof nets, information about the order in which the rules are performed is
reduced to a minimum, only two kinds of information about sequentiality being
kept: the one corresponding to the subformula trees and the one providing the
axiom links.

To retrieve a sequent calculus derivation from a proof net, we need to re-
cover more information about sequentiality. A sequentialization procedure gives
instructions on how to introduce this sequentiality. Such a procedure usually
relies on splitting lemmas, which are proved introducing the notion of empire.

In [11], Girard, as part of the correctness criterion for proof nets with quan-
tifiers, introduces a more direct way to represent sequentiality constraints in
a proof net, by using jumps : a jump is an untyped edge between two nodes
(rules) a, b, which expresses a dependency relation: a precedes b (bottom-up) in
the sequentialisation. Recently, the idea of using jumps as a way to represent
sequentiality information has been developed by Faggian and Maurel ([8]) in the
abstract context of the L-nets, a parallel variant of Ludics designs.

Here we define a representation of proofs where objects with different degree
of parallelism live together, in the spirit of [6, 5]; for this purpose we introduce
a new class of multiplicative proof nets, J-proof nets, that can be considered as
a typed, concrete, version of multiplicative L-nets.

? This work has been partially supported by MIUR national project FOLLIA and a
grant Ville de Paris, 2005-2006.



We prove that by gradual insertion of jumps in a J-proof net, one can move
in a continuum from J-proof nets of minimal sequentiality to J-proof nets of
maximal sequentiality. The former are proof nets in the usual sense, the latter
directly correspond to sequent calculus proofs.

In this way, we realize, for the multiplicative fragment of Linear Logic, a
proposal put forward by Girard.

Moreover, our technique results into a very simple proof of the sequential-
isation theorem. Our main technical result is the Arborisation Lemma, which
provides the way to add jumps to a J-proof net up to a maximum.

1 Focalization, MLL and HS

In the first part of the paper we consider the multiplicative fragment of the
hypersequentialised calculus HS [12, 13, 9], which is a focussing version of Mul-
tiplicative Linear Logic (MLL), as we explain below.

We define proof nets for HS, and then introduce J-proof nets. The strong
geometrical properties of HS will allow us to uncover a simple sequentialisation
technique for the calculus. We will then be able to apply the same technique to
MLL.

1.1 Focalization and MLL

It has been proved by Andreoli [2] that the sequent calculus of Linear Logic en-
joys a property called focalization: a proof π of a sequent ` Γ can be transformed
into a proof πfoc of the same sequent which satisfies a specific discipline, called
focussing discipline, which we describe below.

Here we stress that πfoc is obtained from π solely by permutation of the rules.
As a consequence, if we restrict our attention to MLL, there is no difference in
the proof net of π and πfoc. In fact, we have that:

1. π and πfoc are equivalent modulo permutation of the rules;
2. the proof net respectively associated to π and πfoc is the same;
3. an MLL proof net has always a focussing proof among its possible sequen-

tialisations.

(2.) is an immediate consequence of (1.), while (3.) is actually the easier way to
prove focalization for MLL (as first observed by Andreoli and Maieli in [1]). We
revise this below.

Focalization relies on a distinction of Linear Logic connectives into two fam-
ilies, which are as follows.
Positive connectives: ⊗,⊕, 1, 0.
Negative connectives: O, &,⊥,>.

From now on, we only consider the multiplicative fragment of Linear logic;
the formulas are hence as follows

F ::= A | A⊥ | FOF | F ⊗ F



where A, A⊥ are atoms.
To understand focalization, it helps to think of MLL proof nets rather than

sequent calculus proofs.
Let us partition the nodes which are respectively typed by ⊗ and O into

maximal trees of nodes with the same type (resp. positive and negative trees).
We assume that there is at most one negative node which is conclusion of the
proof net (otherwise, we put together all negative conclusions by making use of
O).

Consider now sequentialization. That is, we associate a sequent calculus proof
to a proof-net; to do this, essentially one has to “find a last rule”. The key result
in proof-net theory is that this is always possible; a ⊗ rule which can be removed
from the proof net (and taken as the last rule in the sequent calculus derivation)
is called a splitting ⊗. Let us now choose a specific sequentialization strategy,
based on the notion of hereditarely splitting ⊗, whose existence was proved in
([7]).

– It R has a negative conclusion, we choose that conclusion as last rule of the
sequent calculus proof, and remove it from the proof net. We persist until
the whole negative tree has been removed.

– If R has only positive conclusions, we choose an hereditarely splitting ⊗. This
means that we can choose a tree of ⊗, and persistently remove all the ⊗ until
the whole positive tree has been removed.

What we obtain is a sequent calculus derivation whose bottom-up construction
satisfies the focussing discipline below.

Definition 1 (Focussing proofs). A sequent calculus proof is called focussing
if its bottom-up construction satisfies the following discipline:

– First keep decomposing a negative formula (if any) and its subformulas, until
one get to atoms or positive subformulas;

– choose a positive formula, and keep decomposing it up to atoms or negative
subformulas.

1.2 Synthetic Connectives: HS.

Focalization implies that we can consider a maximal tree of connectives of the
same polarity (positive or negative) as a single n-ary connective, called a syn-
thetic connective, which can be introduced by a specific rule.

In [12] Girard has introduced a new calculus, HS, which uses focalization
and synthetic connectives to force a “normal” form for MALL sequent calculus
proofs.

HS introduces a polarization on the atoms. This constraint correspond to a
hidden decomposition of the atoms, and does not introduce essential differences,
while making the geometrical structure strong and clear. For this reason, we will
first work with HS; in Section 7 we will then remove the polarization.



2 From Proof Nets to J-proof Nets

2.1 MHS sequent calculus

We indicate by MHS the multiplicative fragment of HS.

Formulas The formulas of MHS are as follows:

N ::= A⊥ | O(P, . . . , P )
P ::= A | ⊗(N, . . . , N)

where A denotes a positive atom.

Rules. The rules for proving sequents are the following

` A, A⊥ (Ax)
` Γ, F ` ∆, F⊥

` Γ, ∆
(Cut)

` Γ1, N1 . . . ` Γn, Nn

` Γ1, . . . , Γn, ⊗(N1, . . . , Nn)
(+)

` Γ, P1, . . . Pn

` Γ, O(P1, . . . , Pn)
(−)

` Γ ` ∆

` Γ, ∆
(Mix)

where all context Γ, ∆, . . . only contain P formulas.

Remark 1. The calculus admits a unary O (resp.⊗) which is a negative (resp.
positive) polarity inverter [13, 14] This polarity inverter is usually called a neg-
ative (resp. positive) Shift and denoted by ↑ (resp. ↓).

Skeleton of a Sequent Calculus Proof. Let us give a first intuition of our
approach. Consider a cut-free proof π, and type each rule application with its
active formulas. Observe that if we forget everything but the types, we have a
tree, where the nodes are MHS formulas, and the leaves have the form {A, A⊥}.
We can think of this tree as the skeleton of the sequent calculus derivation.

Here we do not push this intuition further, but it is possible to characterizes
the trees which correspond to sequent calculus derivations, in the spirit of [13],
and extend the approach also to the cut rule.

2.2 MHS Proof-nets

In this section we define proof-nets for MHS.
Proof-nets provide a graph representation of proofs. Each node represents a

rule of the sequent calculus, and it is only concerned with the active formulas.

Definition 2 (Typed structure). We call typed structure a directed acyclic
graph where:

– the edges are possibly typed with MHS formulas



– the nodes (also called links) are typed either with a MHS formula or with a
pair of atoms {A, A⊥}.

Given a link, the incoming edges are called the premises of the link, and the
outgoing edges are called conclusions of the link. We call positive (resp. negative)
a link of type ⊗(N1, . . . , Nn) (resp. O(P1, . . . , Pn)).

We admit pending edges. An edge which has no target is called a conclusion
of the structure, and its source is called a terminal link.

Definition 3 (Proof structure). A proof structure is a typed structure where
the nodes are typed as the conclusions, and the typing satisfies the following
constraints:
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Moreover, we ask that there is at most one negative terminal link.

Definition 4 (Switching path and cycle). Given a proof-structure, a switch-
ing path is an unoriented path which never uses two premises of the same neg-
ative link.
A switching cycle is a switching path which is a cycle.

Definition 5 (Proof-nets). A proof structure R is called a proof-net if it has
no switching cycles.

Proposition 1. Given a sequent calculus proof π of MHS, we can associate to
it a proof net π∗.

Proof. We proceed in the standard way.

Definition 6 (Sequentialization). A proof structure R is sequentialisable iff
there exists a proof π of MHS (that we call a sequentialisation of R) s.t. π∗ = R

2.3 J-proof Nets

We enrich proof-nets with jumps, which will allow us to graduate sequentiality.

Definition 7 (J-proof structure).
A J-proof structure (jumped proof structure) is a proof structure added with

untyped edges called jumps, which connect a positive to a negative link (the
orientation is from positive to negative).



Definition 8 (Switching path and cycle). Given a J-proof structure, a switch-
ing path is an unoriented path which never uses two premises of the same nega-
tive link (a jump is also a premise of its target); a switching cycle is a switching
path which is a cycle.

Definition 9 (J-Proof nets). A J-proof structure R is called a J- proof-net if
it has no switching cycles.

In Section A we sketch normalization of J-proof nets.

A proof-net is a special case of J-proof net. In the next section we will show
that a sequent calculus proof (or rather its skeleton) can also be seen as a special
case of J-proof net. This will allow us to define a new technique of sequential-
ization.

Note. From now on, we only consider J-proof structures without cut links.
The cut can be smoothly dealt with essentially by identifying the cut node of
premises F, F⊥ with the node of which the positive formula is conclusion.

2.4 Partial Order Associated to a J-proof net

Since a J-proof net R is a d.a.g., we associate to R in the standard way a strict
partial order ≺R on the typed nodes.

We recall that we can represent a strict partial order as a d.a.g., where we
have an edge a ← b whenever a <1 b (i.e. a < b, and there is no c such that
a < c and c < b.) Conversely (the transitive closure of) a d.a.g. G induces a
strict partial order ≺G on the nodes of G.

We call skeleton of a directed graph G, denoted Sk(G), the minimal graph
whose transitive closure is the same as that of G. An edge a← b is transitive if
there is no node c such that a← c and c← b.

With a slight abuse, we often identify ≺G and the skeleton of G.

Given a J-proof net R, we call minimal (resp. maximal) a link c of R which
is minimal in ≺R, i.e. there is no node b such that b ← c (resp. c ← b). Notice
that, because of jumps, a node can be terminal, without being minimal.

We call predecessor of a node c, a node which immediately precedes c. Oth-
erwise, we speak of hereditary predecessor. Similarly for the successor.

A strict order r on a set A is arborescent when each element has a unique
predecessor.

If the order ≺R associated to a J-proof net R is arborescent, the skeleton of
R is a forest.

Finally, we observe that

Remark 2. Let R be a J-proof net.

– Sk(R) is obtained from R by removing the edges which are transitive.

– Only an edge which goes from positive to negative can be transitive.



3 J-proof nets and Sequent Calculus

In the next section we will induce a sequentialisation of a proof net by adding
jumps. Let us start with an example. Consider the proof-net below. We add a
jump from the positive to the negative link, and consider the order induced on
the links. We obtain a tree, and such a tree is the skeleton of a sequent calculus
proof.
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To sequentialize a J-proof net, we will then consider the order associated to
a proof net as a directed acyclic graph, and add to it enough jumps, to make
the order arborescent, and hence proof-like (Lemma 1).

Let us show that if the order on the nodes of a J-proof net is arborescent, it
corresponds to a sequent calculus derivation. (A proof of this is given, in a more
general setting and with full details, in [5].)

Proposition 2. Let R be a J-proof net such that ≺R is arborescent.
(i) We can associate to R a proof πR in the sequent calculus MHS, possibly

making use of the Mix Rule.
(ii) Moreover, if the order has a minimum and each negative link has a unique

successor (i.e. if the skeleton is a tree which only branches on positive nodes)
then πR does not use the Mix rule.

Proof. The proof is by induction on the number of links. For brevity, we show
directly (ii).

1. n = 1: The only link of R is an Axiom link of conclusions A, A⊥, to which
we associate

` A, A⊥ ;

2. n > 1: we reason by cases, depending on the type of the minimal link c of
R.



– O(P1 . . . Pn) : let ≺R′ be the order obtained by erasing c. By induction we

associate a proof π′ to ≺R′ . π≺R is
π′

` Γ, Oi∈{1...n}(Pi)
, whose last rule is

a − rule on P1, . . . , Pn ( P1, . . . , Pn are conclusions of π′ by construction);

– ⊗(N1, . . . , Nn) : let ≺R1
, . . . ,≺Rn

be the n orders obtained by erasing c.

By induction we associate a proof π′
i to each≺Ri

; π≺R is
π′

1 . . . π′
n

` Γ1, . . . , Γn, ⊗i∈{1...n}Ni

whose last rule is a + rule on N1, . . . , Nn (by construction, N1, . . . , Nn

are respectively among the conclusions of π′
1, . . . , π

′
n ).

4 Sequentialization

Definition 10 (Saturated J-proof net). A J-proof net R is saturated if for
every negative link n and for every positive link p, adding a jump between n and
p creates a switching cycle or doesn’t increase the order ≺R. Given a J-proof net
R, a saturation RJ of R is a saturated J-proof net obtained from R by adding
jumps.

Our sequentialisation argument is as follows:

– If the order ≺R associated to a J-proof net R is arborescent, we can associate
to R a proof πR in the sequent calculus.

– The order associated to a saturated J-proof net is arborescent.

– Any J-proof net can be saturated.

Lemma 1 (Arborisation). Let R be a J-proof net. If R is saturated then ≺R

is arborescent. Any J-proof net can be saturated.

Proof. We prove that if ≺R is not arborescent, then there exists a negative link c
and a positive link b s.t. adding a jump between b and c doesn’t create switching
cycles and makes the order increase.
If ≺R is not arborescent, then in ≺R there exists a link a with two immediate pre-
decessors b and c (they are incomparable). Observe that b and c are immediately
below a in Sk(R) and also in R.

If a is an Axiom link, then necessarily b and c are respectively a positive link
and a negative link; we draw a jump between b and c, this doesn’t create a cycle
and the order increases.

Otherwise, a is a positive link, and b and c are two negative links; we distin-
guish two cases:

1. either b or c is terminal in R. Let assume that b is terminal; then c cannot be
terminal ( by definition of jumped proof structure), and there is a positive
link c′ which immediately precedes c. If we add a jump between b and c′,
this doesn’t create cycles and the order increases.
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2. Neither b or c are terminal in R. Each of them has an immediate positive
predecessor, respectively b′ and c′. Suppose that adding a jump from b′ to
c creates a cycle: we show that adding a jump from c′ to b cannot create a
cycle. If adding to R the jump b′ → c creates a cycle, that means that there
is in R a switching path r = 〈c, c′....b〉; if adding the jump c′ → b creates a
cycle then there is a switching path r′ = 〈b, b′...c〉 . Assume that r and r′ are
disjoint: we exhibit a switching cycle in R 〈c, c′...b, b′...c〉 by concatenation
of r and r′.This contradicts the fact that R is a proof net.
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Assume that r and r′ are not disjoint. Let x be the first node (starting from
b ) where r and r′ meets. Observe that x must be negative (otherwise there
would be a cycle). Each path uses one of the premises, and the conclusion
(hence the path meets also in the node below x). From the fact that x is the
first point starting from b where r and r′ meet it follows that: (i) r′ enters
in x from one of the premises, and exits from the conclusion; (ii) each of r
and r′ must use a different premise of x. Then we distinguish two cases:
- r enters x from one of the premises; we build a switching cycle taking the
sub path 〈b, ...., x〉 of r′ and the sub path 〈x, ...., b〉 of r.
- r enters x from the conclusion; then we build a switching cycle composing
the sub path of r 〈c, ..., x〉 , the reversed sub path of r′ 〈x, ..., b〉 and the path
〈b, a, c〉.
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5 Properties

In this section we deal with three standard results one usually has on proof nets.
In 5.1 we get rid of the Mix rule, in 5.2 we give an immediate proof of the usual
splitting Lemma, in 5.3 we prove that the sequentialization we have defined is
correct w.r.t. Definition 6.

The novelty here is the argument. When adding jumps, we gradually trans-
form the skeleton of a graph into a tree. We observe that some properties are
invariant under the transformation we consider: adding jumps and removing
transitive edges. Our argument is always reduced to simple observations on the
final tree (the skeleton of RJ), and on the fact that each elementary graph
transformation preserves some properties of the nodes.

5.1 Connectness

Lemma 2. (i) Two nodes are connected in a d.a.g. G (i.e. there exists a se-
quence of connected edges between the two nodes) iff they are connected in the
skeleton of G.

(i) If two node are connected in R, then they are connected in RJ .
(iii) If R is connected as a graph so are RJ and Sk(RJ).

Proof. Immediate, because adding edges, or deleting transitive edges, preserves
connectness.

We now deal with a more peculiar notion of connectness, to get rid of the
mix rule, as is standard in the theory of proof-nets.

Definition 11 (Correction graph). Given a typed graph R, we call switching
a function s which associates to every negative node of R one of its premises
(again, jumps also are premises of their target); a correction graph s(R) is the
graph obtained by erasing for every negative node of R the premises not chosen
by s.

Definition 12 (s-connected). A J-proof net R is s-connected if given a switch-
ing of R, its correction graph is connected.

Remark 3. We only need to check a single switching. The condition that a proof
structure has not switching cycles is equivalent to the condition that all correc-
tion graphs are acyclic.

A simple graph argument shows that assuming that all correction graphs are
acyclic, if for a switching s the correction graph s(R) is connected, then for all
other switching s′ s′(R) is connected.



Proposition 3. If R is s-connected, then its skeleton is a tree which only branches
on positive nodes (i.e., each negative link has a unique successor).

Proof. First we observe that:

– any switching of R is a switching of RJ , producing the same correction graph.
Hence if R is s-connected, RJ is s-connected.

– Given a J-proof net G, any switching of its skeleton is also a switching of G,
because the skeleton is obtained by erasing the edges which are transitive.
A transitive edge can be premise only of a negative node.

As a consequence, any switching of Sk(RJ) induce a correction graph which
is connected. However, Sk(RJ) is a tree, so we cannot erase any edge. Hence each
negative link has a unique premise, and the graph has only one switching.

From Proposition 2, it follows that

Proposition 4. If R is s-connected, and RJ a saturation, we can associate to

it a proof πRJ

which does not use the Mix rule.

5.2 Splitting

Observe that a minimal link of S is a root of its skeleton.

Definition 13 (Splitting). Let R be a typed structure, c a positive link, and
b1, . . . , bn the nodes which are immediately above c (the premises of c have the
same type as b1, . . . , bn). We say that c is splitting for R if it is terminal, and
removing c there is no more connection (i.e. no sequence of connected edges)
between any two of the nodes bi.

Remark 4. Assume that R is a connected graph. It is immediate that if R is a
J-proof net whose terminal links are all positive, the removal of c splits R into
n disjoint connected components R1, . . . , Rn, and each component is a J-proof
net.

Lemma 3 (Splitting lemma). Let R be a J-proof net whose terminal nodes
are all positive, and RJ a saturation; the minimal link c of RJ (i.e. the root of
Sk(RJ)) is splitting for R.

Proof. Observe that c is obviously splitting in the skeleton of RJ , because c is
the root of a tree. Hence it is splitting in RJ , as a consequence of Lemma 2, (i).
Similarly, c must be splitting in R, as a consequence of Lemma 2, (ii).

5.3 Sequentialisation Is Correct

Proposition 5. Let R be a J-proof-net. For any saturation RJ of R, if π = πRJ

then (π)∗ = R.



Proof. For brevity, we assume that R is s-connected. Hence, the skeleton of RJ

a tree. The proof is by induction on the number of links of R.

1. n = 1: then R consists of a single Axiom link, and π is the corresponding
Axiom rule.

2. n > 1. We consider the minimal link k of RJ .
Observe that the last rule of π is the rule which correspond to the root k. Let
us call π1, . . . , πn the premises of the rule, and RJ

1 , . . . , RJ
n the subnets ob-

tained from RJ by removing k. By definition, each πi is the proof associated
to an RJ

i .

– Assume k is positive. By the splitting lemma, k is splitting in R.
RJ

1 . . . , RJ
n are obviously saturated (we have not erased any jump) so by

induction hypothesis on R1 . . . , Rn which are the n sub nets obtained by

removing k from R, (πRJ

1 )∗ = R1, . . . , (π
RJ

n)∗ = Rn; by composing all

the πRJ

i with the rule corresponding to k , we get a proof which is equal

to πRJ

and we find that R = (πRJ

)∗.
– Assume k is negative. Similarly, we remove k from R and apply induction

to obtain the conclusion.

6 Partial Sequentialisation and Desequentialization

The approach we have presented is well suited for partially introducing or re-
moving sequentiality, by adding (deleting) a number of jumps.

Actually, it would be straightforward to associate to a sequent calculus proof
π a saturated J-proof net. In this way, to π we could associate either a maximal
sequential or a maximal parallel J-proof net, on the lines of [6, 5].

Given a J-proof net R, let us indicate with Jump(R) (DeJump(R)) a J-proof
net resulting from (non deterministically) introducing (eliminating) a number of
jumps in such a way that every time the order increases (decreases).

The following result apply to a J-proof net of any degree of sequentiality.

Theorem 1 (Partial sequentialisation/desequentialization). Let R, R′ be
J-proof nets.

If R′ = Jump(R) then there exists DeJump(R′) such that DeJump(R′) = R.
If R′ = Dejump(R) then there exists Jump(R′) such that Jump(R′) = R.

Proof. Immediate, since we can reverse any step...

7 MLL

Our sequentialisation proof can now be extended to MLL. It is straightforward
to translate an MLL proof net into MHS, however, here we prefer a more direct
approach (where the translation is implicit). We proceed in two steps, first by
introducing a variant of Andreoli’s focussing calculus based on synthetic connec-
tives, and then working directly with MLL.



7.1 MHS
+

The polarization of HS makes the geometrical structure clean and clear. We now
eliminate the polarization constraints, still keeping the calculus focussing.

We call this calculus MHS+. The grammar of the formulas is the following:

N ::= A | A⊥ | O(P, . . . , P )
P ::= A | A⊥ | ⊗(N, . . . , N)

Remark 5. Observe that now we have all the formulas of MLL, modulo cluster-
ing/declustering into synthetic connectives. For example, AOA⊥ is a formula of
MHS+.

The sequent calculus rules are (formally) the same as those of MHS. Observe
however that now we consider negative atoms also as P-formulas. This means
that the contexts Γ, ∆, . . . may also contain negative atoms. Moreover, a negative
atom can appear in the premises of a negative rule, and a positive atom can
appear in the premises of a positive rule.

Proof nets. We modify the Axiom link, by introducing a (formal) decomposi-
tion of the atoms. Any atom A can be decomposed into A

√
, of opposite polarity

(technically, the A
√

has been introduced by Girard, and is used also by Laurent
in [14]). Hence we have:

Ax

A

p n

(A⊥)
√

A⊥

A
√

A
√

(A⊥)
√

To the identity axiom we associate

Ax

p n

A
√

(A⊥)
√

A A⊥

where the n and p links, respectively negative and positive, can be considered
as steps of decomposition of the atoms: we call these links hidden. They do not
appear in the sequent calculus, but provide space for the jumps.

The definitions of the previous sections can be applied to MHS+, with this
variant: when we associate an order ≺R to a J-proof net of MHS+, we ignore
the hidden links. It is straightforward to check that the results of the previous
sections (and in particular the Arborisation Lemma) still hold in this case.

Remark 6. MHS+ is a variant of MLLFoc: to a proof of MHS+ corresponds a
proof of MLLFoc, and vice-versa.

Similarly, the proof nets closely correspond to focussing proof nets, as defined
by Andreoli [3].



7.2 MLL

It is immediate now that we can

– transform an MLL proof net R into a MHS+ proof net R′;
– transform MHS+ sequent calculus derivation π into an MLL sequent calculus

derivation by “declustering” the rules. The sequent calculus derivation which
we obtain is focussing.

Observe that this transformations can simply be “virtual”. To sequentialize an
MLL proof net R, we expand the axiom links, and treat each maximal tree of
⊗ as a + link, and each maximal tree of O as a − link. Using our procedure,
we obtain again an arborescent order on +, − and axiom links. Observe that we
can substitute each step in Proposition 2 with an expanded version.

8 Conclusions and Future Work

J-proof nets provide a representation of proofs where objects with different de-
grees of parallelism live together; furthermore, by the use of jumps as sequen-
tiality constraints, we can transform any proof net of MLL in a sequent calculus
proof, which seems a very natural way to approach sequentialisation.

Jumps are related with the notion of empire of a formula in a proof net;
we wish to investigate this relationship, in order to understand the differences
between our proof of sequentialisation and the traditional ones.

Also, we would like to understand the relation with work by Banach [4], where
the use of an order on the links of the proof net as a tool for sequentialization
has a precedent.

As a future research direction, we hope to be able to extend this work to
consider a larger fragments of linear logic; recent developements in the theory
of L-nets [6, 5] seem to make plausible an extension to MALL.
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A Normalization of J-proof Nets

We can define cut elimination on J-proof nets in the same way as for L-nets:
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The procedure is confluent and strong normalizing, and preserves correction;
furthermore it preserves the order on the links (if a precedes b before the reduc-
tion, it still precedes b afterwards). Notice that cuts are oriented from negative
to positive: actually, we modify the orientation of the edges of the cut link when
we associate an order to a proof net, so to get the above good properties.


