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ABSTRACTAn inreasing interest is direted at the extension of the\proof searh as omputation" paradigm, already suess-fully applied to Linear Logi, to a logi that is not onlyresoure-aware but also order-sensitive. This paper is a on-tribution to proof searh in Non-Commutative Logi.Our key result is to give a simple method for propagatingthe order struture during proof searh. Suh a methodis general, in that it an be applied to n-ary onnetives.This enables us to de�ne a luster alulus, whih analyseslusters of synhronous and of asynhronous onnetives ina single step, with a single n-ary rule.
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1. INTRODUCTION\Proof searh as omputation" is a programming paradigm(f. [9℄ ) that an �t features suh as oordinations of entities,interation, non-determinism, features that are all gainingimportane in omputer siene. One an think of operatingsystems, ight shedulers, the Internet... These examplesare all situations where a notion of order or priority arisesin a natural way. For this reason, while the logi program-ming interpretation of formulas-as-instrutions and proofs-as-states has been suessfully applied to Linear Logi, inreent years an inreasing amount of interest has been di-reted to proof searh in a logial system that is not onlyresoure-sensitive but also order-aware (f. [4, 8, 6, 12℄, andreent work by W.O'Hearn and D.Pym).Let us mention some of the di�erent insights motivating re-searh in this diretion: dealing with situations where om-putation is naturally subjet to ordering onstraints (f. [12℄,whih gives program examples dealing with natural language

parsing and sorting), enoding of onurreny problems [5℄,managing oordination with priority, e.g. in the aess toresoures and information (reent work by Andreoli).Most of this researh is arried out in either of two mainframeworks that inorporate in a onservative way the no-tion of order into Linear Logi: Non-Commutative Logi(NL) by Abrusi and Ruet [1, 13℄, and Ordered Linear Logi(OLL) by Polakow and Pfenning [11℄. This paper is a on-tribution to proof searh in Non-Commutative Logi.NL is haraterized by a notion of sequent enrihed witha struture of order, namely an order variety [13℄ (f. Se-tion 3 for a review). Proof searh in this setting has notyet a satisfatory status, in partiular onerning the e�e-tive managing of ontext splitting, but important progresseshave been made reently with the extension of foalizationto NL.Foalization [2℄ is a entral tool for proof searh in (lassial)Linear Logi, for it enables us to redue the non-determinismof the hoies to be performed. Foalization relies on a dis-tintion between two homogeneous families of onnetives:positive, or synhronous (timing is relevant), and negative,or asynhronous (timing is irrelevant). The very meaningof foalization is that onnetives of the same family an begrouped and dealt with as a single onnetive.Dealing with foalization in NL raises several new questions.As developed in [8℄ (f. Setion 3.2), all questions play onthe \bottom-up" appliation of positive rules and may beredued to: (1.) Under whih onditions is a partition of theontext ompatible with the order on the given onlusion(oherene onditions)? (2.) One given a partition, whihorder is assoiated to the premises? (3.) Sine there are,in general, several possible solutions to (2), whih solutionsare optimal? We address these same questions with a newapproah, whih allows us to extend the results.Our key result is to give a simple way to propagate theorder struture when deomposing a non-ommutative on-juntion (Next). Suh a solution is optimal. On the binaryonnetives, our alulus is equivalent to the one by Maieliand Ruet. We then develop the results in two ways:{ we de�ne a luster alulus where paks of all synhronous(Tensor, Next) onnetives or all asynhronous (Par, Se-



quential) onnetives are deomposed \at one", as a singlen-ary rule (Setion 6);{ we are (eventually) able to redue both the spae andthe onditions to be tested in order to build an NL proof(Setion 8).The ability to deal with lusters of homogeneous onne-tives is a neessary step towards the extension to NL ofonstraint based tehniques of proof searh (f. [3℄). Thisis a method that allows us to deal with ontexts splittingin Linear Logi. Implementations will make the objet offuture investigation.
LudicsOur results issue from a study direted at the extension ofLudis [7℄ to enompass Non-Commutative Logi. On oneside, this on�rms the intuition that the dynami underlyingLudis is an interative proof-searh. On the other side,while this work is self-standing, it is an interesting fat thatthe luster alulus omes with a semanti ounterpart.
NoteThis work is arried out in multipliative NL, where all dif-�ulties spei� to the non-ommutative setting are onen-trated. The extension of the framework to the additives(�;&) is immediate, and brings no surprise. As for the ex-ponentials { for whih the foalized approah has never beenas satisfatory as for the multipliative-additive fragment {we prefer to postpone the disussion to future work. This ismotivated by reent disoveries in Ludis ([7℄), based on a�ner deomposition of the exponentials: in ontrast with thetraditional approah, \Bang" turns out to be (essentially)negative, whereas \Why Not" positive.
2. FOCALIZATIONAt the basis of foalization [2℄ is the distintion of LinearLogi onnetives into two families: positives (
;�) andnegatives ( &;&). These two families orrespond to a dis-tintion of the non-determinism involved by the timing ofthe hoies during proof onstrution: the timing may ormay not be relevant.Negative onnetives arry asynhronous non-determinism:their rules are reversible, and in the proof searh they areto be performed as soon as possible.Positive onnetives introdue synhronous (true) non-deter-minism. Suh onnetives enjoy the foalization property:given a sequent of positive formulas whih is the onlusionof a ertain proof, there exists a formula, the \fous," thatmay be seleted as prinipal and entirely deomposed up toits �rst negative subformulas.In a foalized sequent alulus negative rules are appliedimmediately, and positive rules, one hosen a fous, arepersistently applied up to their negative subformulas. Thisis exatly the sense of our luster alulus. Rather thankeeping on applying positive rules on the same fous in athreat, we an do it as a single step.

3. NON-COMMUTATIVE LOGIC AND OR-
DER VARIETIESNon-Commutative Logi is a onservative extension of Li-near Logi that uni�es ommutative and yli linear logi.To the formulas of the sequent is assoiated a struture oforder that is an order variety [13℄.Definition 3.1 (Order variety). Let � be a set. Anorder variety on � is a ternary relation � whih is :yli: 8x; y; z 2 �;�(x; y; z)) �(y; z; x);anti-reexive: 8x; y 2 �;:�(x; x; y);transitive : 8x; y; z; t 2 �;�(x; y; z) and �(y; x; t)) �(x; t; z);spreading: 8x; y; z; t 2 �;�(x; y; z)) 8<: �(t; y; z) or�(x; t; z) or�(x; y; t)The main property of an order variety is that it an bepresented as a (strit) partial order as soon as we take outa point.One an think of a irle, that beomes a segmentas soon as one �x a point (a point of view), and in fat thenotion of order variety orresponds to the notion of partialorder in the same way as the oriented irle orresponds tothe oriented segment. The interest of this operation is thatthere is no privileged point of view. That is, an order varietyis at the same time an order with respet to any of its point.This is what makes the order variety a very syntheti tool.Next two de�nitions express the one-to-one orrespondenebetween order varieties and orders.Definition 3.2. Let � be an order variety on � and x 2�. De�ne the binary relation �x on � r fxg by : �x(y; z)i� �(x; y; z).Proposition 3.3. If � is an order variety on � and x 2�, then �x is a strit partial order on �r fxg. It is alledthe order indued by � and x.Conversely, eah strit partial order de�nes an order varietyon the same domain:Definition 3.4. Let ! = (�; <) be a strit partial orderon �. De�ne the ternary relation ! on � by : !(x; y; z) i�for a yli permutation (x0; y0; z0) of (x; y; z), we have(x0 < y0 < z0) or (x0 < y0 and z0 is omparable with neitherx0 nor y0).Proposition 3.5. If (�;!) is a strit partial order, then! is an order variety on �.The two operations ommute. To make this more preise,we need to use an other essential feature of order varieties,the \gluing". First reall the notion of serial and parallelomposition of orders.



Definition 3.6 (Serial/parallel omposition).Let !1;!2 be partial orders on disjoint sets �1;�2. Theirserial and parallel omposition !1 < !2 and !1 k !2 re-spetively are the two partial orders on �1 [ �2 de�ned by:(!1 < !2)(x; y) i� either !1(x; y) or !2(x; y) or (x 2 �1and y 2 �2);(!1 k !2)(x; y) i� either !1(x; y) or !2(x; y).Given two orders, to build an order variety out of eithertheir serial omposition or their parallel omposition yieldsto the same result:Proposition 3.7. If ! and � are two partial orders ondisjoint sets, then the following order varieties are equal:! < � = ! k � = � < !This naturally leads to the de�nition of a more general ope-ration, named gluing:Definition 3.8 (Gluing). The order variety of the pre-vious Proposition is indiated by ! � � :! � � = ! < � = ! k � = � < !Then we haveProposition 3.9. Let � be an order variety on a set �,x 2 � and ! a (strit) partial order on �r fxg. Then :�x � x = � and (! � x)x = !where by x we mean the unique strit partial order on fxg.In the next Setion we will review the sequent alulus forNL, whih is based on order varieties, and more preisely onseries-parallel order varieties.Definition 3.10 (Series-Parallel Order Variety).Series-parallel order varieties are those order vareties thatan be presented by a series-parallel order.We reall that the lass of series-parallel orders is the leastlass of �nite orders ontaining empty orders on singletonsand losed under serial and parallel omposition (f. [10℄ fora survey on the subjet). A fat that we will use to prove ourmain Theorem is that series-parallel orders admit a negativeharaterization as those orders on �nite sets whose restri-tion to any 4-elements subset fa; b; ; dg is di�erent from theorder P4 = f(a; b); (; b); (; d)g.
3.1 NL calculusA Linear Logi sequent is a struture ` �, where � is amultiset of formula ourrenes. In Non-Commutative Logia sequent has the form ` � h�i, where � is a series-parallelorder variety on the support � (j�j = �). Sine � an bepresented as an order w.r.t. any of its points, it is always

possible to �x a point � 2 � and present � as �� � � (f.Proposition 3.9).All along the paper, when it is not ambiguous we will notexpliitly mention the support, writing simply ` � (resp.` �� � �) for ` � h�i (resp. ` � h�� � �i).The alulus for Non-Commutative Logi (NL) [13℄ is givenin the Appendix. Given the orders � 1; � 2 on the premises,the Tensor rule omposes them in parallel:� = � 1 k � 2;where � is the order on the onlusion. The Next rule in-stead omposes the two orders serially:� = � 2 < � 1:The two speial ases of empty and total order varietiesrespetively orrespond to ommutative and yli linearlogi. What allows the two levels { ommutative and non-ommutative { to interleave is the notion of entropy.Definition 3.11 (Entropy). E is the relation betweenpartial orders on the same set de�ned by :! E � i� ! � � and ! � �Note that entropy does not orrespond to inlusion of orders,but it does orrespond to inlusion of order varieties:Proposition 3.12. Let �;� be order varieties on �, andx 2 �. Then �x E �x i� � � �Intuitively, entropy orresponds to a loss of information onthe order. In the ase of series-parallel orders, it is performedby replaing some serial (<) with parallel ompositions (k).For instane: ((a < b) k ) E ((a < b) < )
3.2 Focalized NLIn the original NL alulus, entropy was given as a stru-tural rule. Read bottom-up, the entropy rule enables toinrease the order underlying a sequent, and suh an oper-ation is highly non-deterministi. For this reason, entropyrepresents the main diÆulty for the de�nition of a foalizedsequent alulus for NL.In the foalized alulus designed by Maieli and Ruet thisproblem is addressed by making entropy impliit and push-ing it to the � rule. The Next rule is therefore expressedas ` � 1 � �1 ` � 2 � �2` � � �1 � �2 �where (Entropy equation) � E (� 2 < � 1)



This is the formulation we will follow from now on.This Next Rule (read bottom-up) brings to the proof searhseveral new ritial points, developed in [8℄:(1.) To split the ontext in suh a way that the equation� E (� 2 < � 1) admits a solution.(2.) To alulate the orders � 1; � 2 assoiated to the premises.Also, in order to ommit ourselves as little as possible in theproof searh, the \quantity" of entropy should be minimized.Hene:(3.) Optimal solutions �1;�2. For any pair of orders � 1, � 2on �1;�2 respetively, suh that � E (� 2 < � 1), we have�i E � i.The solutions given in [8℄ are of ombinatorial nature, andexploit the representation of the orders as speial binarytrees (so, in partiular, they do not easily generalize to n-ary onnetives). In the next setion we intend to addressthe same questions with a more syntheti approah.
3.3 ConventionsAll along the paper, when we speak of orders we alwaysmean strit partial orders.We will indiate by � the fous of a rule (the prinipal for-mula); we indiate by �i its subformulas (the seondary for-mulas). If the ontext of � is �, then �i is the ontext of�i. If a ontext formula is annotated with an index i, thenit belongs to �i, e.g. xi 2 �i.We will always indiate by � an order variety. We willmake frequent use of the operations de�ned in Setion 3. Inpartiular, note that, by De�nition 3.2, �� is a partial order(the order indued by � �xing �). By De�nition 3.8, if �is an order, � � � is an order variety, the one obtained bygluing.Beause of the de�nition of order variety, all the triples aretaken modulo yli permutation. We also adopt the fol-lowing notations: (�1;�2;�3) = f(x1; x2; x3) : xi 2 �ig;�I = Si2If�ig; �[�I=�℄ = Si2I �[�i=�℄.
4. BINARY CALCULUS: THE NEXT RULEWe start our investigation from the binary alulus, and inpartiular from the study of the Next rule, whih gathers alldiÆulties spei� to the non-ommutative setting.A simple example is enough to realize that NL imposes on-straints on the possible ways of splitting the ontext:` a; ? ` b; ?` a? < b? � a
 b 
` a?Ob?; a
 b OIt is not possible to split the ontext of a 
 b, beause theTensor rule would give a? k b? rather than a? < b?. Theompatibility of the ontext splitting with the order is thequestion addressed by the \oherene onditions". To thisquestion is stritly assoiated another one: how to propagatethe order struture from the onlusion to the premises. Ifthis kind of questions are lear for Tensor, it is muh less sofor Next, beause of entropy.

We give a few examples to make lear what we want toahieve, and what the problems are.
4.1 Motivating examplesLet us onsider a generi positive rule, where � an be either�1 � �2 or �1 
 �2, and where j� j = � and j� ij = �i` � 1 � �1 ` � 2 � �2` � � �The rule for Tensor just asks that\�1;�2 is a bi-partition of � suh that � = � 1 k � 2."We would like to have something so lear and simple forNext too.We ould be tempted to ask:\�1;�2 is a bi-partition of � suh thatx1 2 �1; x2 2 �2 ) x2 < x1 in � ."But suh a ondition is too strong. In fat, it does not takeinto aount entropy. Let us see this with an example.Example 1. ` b <  � �1 ` a; �2` (a < b) k  � �1 � �2 �This derivation is sound sine (a < b) k  an be obtained asentropy of the serial omposition of the orders indiated onthe premises, whih is (a) < (b < ) = (a < b) < (), whereby entropy we weaken the most external < into k.The natural ondition to ask for would be:(Coh.1) \x1 2 �1; x2 2 �2 ) x1 6< x2 in � ."But this ondition is not suÆient to guarantee that we anassoiate an opportune order variety on the premises 1. Letus examine the following ase:Example 2. ` �1; y; y0 ` �2; x; x0` (x < y) k (x0 < y0) � � �(Coh.1) is respeted, but studying the various possibilities,one realizes that there is no way of giving an order on thepremises in suh a way that the order on the onlusionis obtained as entropy of the serial omposition. This isexatly the situation that in [8℄ is expliitly prohibited bythe seond ondition of \Admissibility."One more example will illustrate the importane of the pro-pagation of the order.Example 3. ` b k  � �1 ` a; �2` (a < b) k  � �1 � �2 �1We will disuss this issue again in Setion 8, one we havemore tools.



The order on the onlusion satis�es (Coh.1), but we have(a < b) k  6E a < (b k ).Next setion re�nes the ondition of \oherent partition."One hosen a oherent partition, the order assoiated toeah premise is well determined, and we give an immediateway to produe it.
4.2 The Next ruleOur approah is based on the following onstrution. Wewill prove (Theorem 4.5) that the binary relation so de�nedis a partial order in the ases we are interested in.Definition 4.1 (�). Let � be an order variety withsupport j�j = f�; �g. Given �i � �, we de�ne a binaryrelation on �i as:��i(a; b) i� �(a; b; z); for some z 62 �iRemark 4.2. The de�nition of ��i is better understoodas a generalization of De�nition 3.2 (�� orresponding to��). In fat the de�nition of the order �� an be rephrasedas: ��(a; b) i� �(z; a; b); for some z 62 j��j = �We an now de�ne our Next rule (to be read bottom-up) asfollows: ` ��1 � �1 ` ��2 � �2` �1 � �2;� h�i �where:{ j��1 j = �i (when the partition is obvious, we will oftenwrite �i for ��i);{ �1;�2 is a bi-partition of � that respets the followingoherene onditions:Definition 4.3 (Coherene). Let �1;�2 be a bi-parti-tion of �. Suh a partition is oherent on � with respet to� = �1 � �2 if it satis�es the following onditions:(Coh.1) If x1 2 �1; x2 2 �2, then :�(x1; x2; �).(Coh.2) If a; b 2 �i and z; z0 62 �i, then �(a; b; z) ):�(b; a; z0).The above de�nition is better understood when translatedinto the following terms:Remark 4.4. (Coh.1) and (Coh.2) are equivalent to:(Coh.1) x1 6< x2 in ��;(Coh.2) ��i(a; b)) :��i(b; a).

Setion 4.3 will prove thatTheorem 4.5 (Indued orders). Given the above de-�nition of the Next rule, if the partition is oherent then thebinary relations �i indued on the premises are partial or-ders.
4.2.1 ExamplesLet us make this approah work on our previous examples.Example 1. ` b; ; �1 h�1 � �1i ` a; �2` (a < b) k  � �1 � �2 �sine � = f(a; b; ); (a; b; �)g, thus �1 = f(b; )g. That is theorder variety on the �rst premise is (b < ) � �1, as it shouldbe.Example 2. Let us now try the on�guration` y; y0; �1 ` x; x0; �2` (x < y) k (x0 < y0) � �1 � �2 �The order variety assoiated to the onlusion isf(�xy); (x0xy); (y0xy); (�x0y0); (xx0y0); (yx0y0)gTo have (x0xy) and (xx0y0) is enough to rejet the andidatepartition �2 = fx; x0g, �1 = fy; y0g. Any other partition is�ne w.r.t. oherene.
4.2.2 RemarksWe give two other ways to haraterize �i, whih may helpintuition:Remark 4.6. Let � = �1 � �2. The de�nition of �i isequivalent to the following two:(i): �i = Sz 62�i �z��i(ii): �1 = (�1)�1 and �2 = (�2)�2where�1 = ��T(�1;�1; � [ �2)�[�1=� [ �2℄;�2 = ��T(�2;�2; � [ �1)�[�2=� [ �1℄;and where [�i=�℄ indiates that all z 2 � have been renamedas �i.The interest of (i) is to show that �i is in fat a union (oforders), whereas the onstrution by Maieli and Ruet [8℄, onthe ontrary, is based on an intersetion (the wedge).The meaning of (ii) is that in fat we extrat �1 (resp. �2)from � by identifying �2 (resp. �1) with �. We are per-forming a quotient.We onlude this setion with a fat that is of interest inview of the implementation: when heking for oherene,it is enough to hek just one of the i 2 f1; 2g:



Fat 4.7. To hek (Coh.2) it is enough to hek it forone of the i 2 f1; 2g: if one of the �i(i 2 f1; 2g) is anti-symmetri, so is the other one.Proof. Let us �x an i, and assume that �(a; a0; z) and�(a0; a; z0), for a; a0 2 �i and z 6= z0 62 �i. Then it followsby transitivity of � that �(a; z0; z) and �(a0; z; z0).
4.3 Proof of Theorem 4.5We want to prove that if the partition is oherent then any�i is a partial order, and thus �i � �i is an order variety. Itis immediate that (Coh.2) implies the anti-symmetry of �i:Proposition 4.8 (Anti-Symmetry). (Coh.2) implies,for any i 2 f1; 2g: �i(a; b)) :�i(b; a)The deliate point is to prove transitivity. Note that a priorithere is no reason for �i(a; b) and �i(b; ) implying �i(a; ).Typially, �i(a; b) ould ome from �(a; b; z) and �i(b; )from �(b; ; z0), with z 6= z0 and no (a; ; z00) be in �. Wean build an example:Example. Let us take � = a; b; ; z, an order variety � =f(�; a; b); (z; b; ); (�; a; z)(�; ; z)g and as partition �1 = fzg,�2 = fa; b; g. The result is that �2 is f(a; b); (b; )g, whihis not losed under transitivity.But in fat the above example is a bad one, sine we areonly onerned with series-parellel order varieties, and theabove order variety is not. This an be shown to be true ingeneral. It is the objet of the next two propositions.Lemma 4.9. Let � be a series-parallel order variety on�; �; if �1;�2 is a oherent partition of � w.r.t. �, if z 2 �1and a; b;  2 �2, then �(a; b; �) and �(b; ; z) imply either�(a; ; �) or �(a; ; z).Proof. Let us examine the possible spreading (i) of z on�(�; a; b), and (ii) of � on �(b; ; z). (i): Disharging (�; z; b),whih ontradits oherene, we have either �(z; a; b) or�(�; a; z), where the �rst one allows us to onlude �(a; ; z),by transitivity with �(b; ; z). (ii): We have either �(b; ; �)or �(�; ; z), where, again, the �rst one is enough to onlude�(a; ; �).Let us suppose the worst possibility in both ases. Thuswe have f(a; z); (; z); (a; b)g � ��. Our aim is to showthat either we have transitivity, or we are able to reaha ontradition, produing a P4. Let us examine the re-strition ���a; b; ; z. Of the twelve possible ombinations,the pairs of type (z;�2) are disharged by (Coh.1). By(Coh.2) we an also disharge (b; a); (; b) and (; a), thelast one beause �(�; ; a) with �(; �; b) gives �(�; b; a).We are left with (a; ); (b; ); (b; z); (a; b); (a; z); (; z). Anyof the �rst three alone yields to the result: the �rst onediretly, the seond and third ones by transitivity of �. Infat �(a; b; �)�(b; ; �)! �(a; ; �) and �(b; z; �)�(z; b; )!�(b; ; �). If we suppose that :(a; );:(b; ) and :(b; z), we

onlude ���a; b; ; z � f(a; z); (; z); (a; b)g. This gives us aontradition: sine � is series-parallel, the restrition of ��to a; b; ; z annot be f(; z); (a; z); (a; b)g, whih is a P4.This Lemma, with its obvious symmetri forms, allows usto proveProposition 4.10 (Transitivity). Given a oherentpartition of �, ��i(i 2 f1; 2g) is transitive.Proof. Let i 6= j 2 f1; 2g, a; b;  2 �i, z 2 �j . Let ussuppose to have �i(a; b) and �i(b; ). This means that wehave �(a; b; z0) and �(b; ; z00), where z0; z00 62 �i. We wantto show that �i(a; ).If z0 = z00 the result is trivial, by transitivity of �. Other-wise, let us hek the possible spreading of  on �(a; b; z0).Sine (; b; z0) is inoherent, we have either (a; ; z0), henethe result, or (a; b; ). In the same way, the possible spread-ing of a on �(b; ; z00) give us (a; ; z00), hene the result, or(b; ; a). If we have (a; b; ), we an redue the problem tothe ase treated in the previous Lemma. In fat, the spread-ing of � on �(a; b; ) assures us either �(�; b; ) or �(a; b; �),the third ase being exluded by oherene.
4.4 Computation of the order varietiesOne ould expet that�i � �i = f(a; b; �i) : �(a; b; z); for some z 62 �ig[f(a; b; ) : �(a; b; )gNote that this is not true, as the following ounterexampleshows:Counterexample. ` �1 � y ` �2 � �a;b;` �; y; a; b;  h(�; b; ); (�; y; ); (�; a; ); (y; a; ); (�; y; a); (y; a; b)i �where we have that �a;b; = f(a; b); (b; ); (a; )g and thus�a;b; � �2 = f(�; a; b); (�; b; ); (�; a; ); (a; b; )g.Nonetheless, when we alulate �i from � we forget someinformation, whih we then ompute again when gluing with�i. Indeed, it is possible to retrieve �i � �i diretely from �,through the following haraterization:Proposition 4.11 (Charaterization of �i � �i).We have �i � �i = AiSBiS Ci, where:Ai = f(a; b; �i) : �(a; b; z); for some z 62 �ig;Bi = f(a; b; ) : �(a; b; ); a; b;  2 �ig;Ci = f(a; b; ) : �(a; b; z) and �(b; ; z0); a; b;  2 �i; z 6= z0 62�ig.Suh a haraterization relies on the followingProposition 4.12. Let a; b;  2 �i. Then:



(i) (a; b; �i) 2 �i � �i i� �(a; b; z); z 62 �i;(ii) (a; b; ) 2 �i � �i i�{ either �(a; b; ),{ or �(z; a0; b0) and �(u; b0; 0), where (a0; b0; 0) is a ylipermutation of (a; b; ), z 6= u and z; u 62 �i.Proof. (i) By de�nition of �i.(ii) If: We hek that (a; b; ) 2 � implies (a; b; ) 2 �i � �i.The other ase is immediate sine, by onstrution, �i(a; b)and �i(b; ) ) �i � �i(a; b; ). Given �(a; b; ), let us on-sider the spreading of � on it. Let, say, it is �(�; a; b), thus�i(a; b). We now need to study the relation of  with a; bin �i. If �i(; a) or �i(b; ), it is (a; b; ) 2 �i � �i. All theother ases where  is omparable with either a or b redueto these two. If  is �i-inomparable with a; b, again wehave (a; b; ) 2 �i � �i.(ii) Only if: By onstrution, for an opportune yli permu-tation (a0; b0; 0) of (a; b; ), it is either �i(a0; b0) and �i(b0; 0),or �i(a0; b0) and 0 inomparable with a0; b0 in �i. If weare in the last ase, it means in partiular that there is az 62 �i suh that �(a0; b0; z) holds and none of the followingis true: �(z; a0; 0), �(z; 0; a0),�(z; b0; 0), �(z; 0; b0). Thismeans that �z(a0; b0) and 0 is inomparable with a0; b0 in�z. Thus (a0; b0; 0) 2 � = �z � z.In Setion 8 we will show that in fat the information arriedby Ci is \redundant" w.r.t. proof searh. Thus, in pratie,one an work without it.
4.5 Optimality and AdequacyWe have shown that the �i are partial orders, and thusthat the �i � �i are order varieties. What we need now toprove is that we are in fat giving solutions to the Entropyequation of Setion 3, and that our solutions are optimal(i.e. minimal).This will also prove adequay with respet to Non-Commuta-tive Logi, sine as a onsequene of Theorem 4.13, our bi-nary alulus turns out to be equivalent to the one by Maieliand Ruet.Theorem 4.13. With the notation de�ned above, we have:(i) �� E �2 < �1;(ii) Optimality. If �1;�2 are two orders respetively on�1 and �2, suh that �� E (�2 < �1), then �i E �i.Proof of (i). We want to show that � � (�2 < �1) � �.Let t be a triple in �. (1.) If t 2 (�;�i;�i) or t 2 (�;�2;�1),then t 2 (�2 < �1) � �, by de�nition of serial ompositionof the orders �2;�1.(2.) t 2 (�j ;�i;�i). Let us �x a; b;  2 �i and z 2�j . �(z; a; b) implies �i(a; b) and thus (a; b) is in the se-rial omposition of the two orders; the de�nition of serial

omposition of orders also implies (b; z) 2 �i < �j and(z; a) 2 �j < �i, thus in both ases (either i < j or j < i),(a; b; z) 2 (�2 < �1) � �, by onstrution.(3.) t 2 (�i;�i;�i). As in Charaterization 4.11 (ii,\If").To be preise, we have to remark that if we have �i(a; b) and is inomparable with a; b in �i, then  is also inomparablewith respet to the serial omposition of the two orders.Thus we have (a; b; ) 2 (�2 < �1) � �.Before proving (ii) of the Theorem, we note thatLemma 4.14. �(a; b; z), where z 2 �j and a; b 2 �i, im-plies (a; b) 2 �i.Proof. (�2 < �1) � � ontains �, by the hypothesis ofentropy, and (�;�2;�1), by de�nition of serial ompositionof orders. Let say j = 1; i = 2. Sine (a; b; z) and (a; z; �)are in (�2 < �1) � �, then (by transitivity) so is (a; b; �).This entails �2(a; b).Proof of (ii). To prove that �i ��i � �i ��i, let us exa-mine the triples t in �i ��i, following Charaterization 4.11.(Ai). If t = (a; b; �i), then we have �(a; b; z); z 2 f�;�jg.The previous Lemma allows us to onlude �i(a; b).(Bi). t = (a; b; ) and �(a; b; ), thus (a; b; ) 2 (�2 < �1)��,hene the result.(Ci). t = (a; b; ) and, for (a0; b0; 0) a yli permutation of(a; b; ), we have �(a0; b0; z) and �(b0; 0; u), z; u 2 f�j ; �g.This implies (Lemma 4.14) �i(a0; b0) and �i(b0; 0), hene(a0; b0; 0) 2 �i � �i.
5. THE BINARY CALCULUS
5.1 Binary positive rulesFigure 1 sums up the positive binary rules.Looking at the table, we see that the treatment of Tensorand Next may be uni�ed, for both oherene and propaga-tion of the order. To this end we assoiate to eah formula� an order ! = !(�) on its diret subformulas:!(�1 � �2) = (�2 < �1) and !(�1 
 �2) = (�1 k �2)Then any binary positive rule may be expressed as:` ��1 � �1 ` ��2 � �2` �;� h�i �;!where ��i(a; b) i� �(a; b; z); for some z 62 �iand �1;�2 is a bi-partition of � that satis�es the ohereneonditions:Definition 5.1 (Coherene). A partition �1;�2 is o-herent if:



Commutative Non-Commutative` �1 � (����1) ` �2 � (����2)` �1 
 �2;� h�i 
 ` �1 � ��1 ` �2 � ��2` �1 � �2;� h�i �where: where:�1;�2 is a bi-partition of � suh that �1;�2 is a oherent bi-partition of �x1 2 �1; x2 2 �2 ) x1 k x2 in ��Figure 1: Binary positive rules.(Coh.1) For any xi 2 �i, xj 2 �j, where i 6= j 2 f1; 2g:�(�; xi; xj)) !(�i; �j);(Coh.2) For any a; b 2 �i and z; z0 62 �i: �(a; b; z) ):�(b; a; z0).Proposition 5.2. If � = �1 
 �2 we have that{ ��i(a; b) = ����i,{ (Coh.2) is always veri�ed.Proof. (Coh.1) and spreading of � imply that�(a; b; z))�(a; b; �), for a; b 2 �i; z 62 �i. Then, in partiular, (Coh.2)is ensured by the anti-reexivity of �.Remark 5.3. (Coh.1) instantiates for Next and Tensorrespetively to:�: :�(�; x1; x2), i.e. x1 6< x2;
: :�(�; x1; x2)&:�(�; x2; x1), i.e. x1 k x2.Remember that x1 k x2 i� (x1 6< x2 & x2 6< x1).
5.2 Binary negative rulesThe negative rules also an be uni�ed into a single one. Wede�ne again:!(�1O�2) = (�1 < �2) and !(�1 &�2) = (�1 k �2)Then: ` �� � !` �;� h�i �;!The order variety �� � ! admits an expliit harateriza-tion (f. Proposition 6.6), that for Sequential (that for Par,respetively) instantiates toO : �� � (�1 < �2) = �[f�1; �2g=�℄ [ (�; �1; �2);&: �� � (�1 k �2) = �[f�1; �2g=�℄.

5.3 Derivations in the binary calculusFigure 2 gives an example of a derivation using the binaryalulus. All lower-ase letters denote atoms. For onve-niene, the fous is typeset in bold fae.To perform the �rst positive rule (Next, with fous F) withthe given partition, we have to hek (Coh.1) on the triplesin (1). There is only one test: (b; a; F ). Sine b 2 �b?
?and a 2 �a? , we have to hek that we have (b?
 ?) < a?in !(F ), whih is the ase. The derivation fails on the seondpositive rule (Tensor, with fous b? 
 ?), beause of thetest (b? 
 ?; ; b) in (2).
6. THE CLUSTER CALCULUSWe an now generalize our results to lusters of all positiveor all negative onnetives. A luster of all positive (resp. allnegative) onnetives an be performed at one, as a singleonnetive. We stress two points:{ To propagate the order, it is the same onstrution ��ithat we already de�ned to apply.{ For the atual use of the alulus, the haraterizations areimportant results, as, in pratie, are the haraterizationsthat one manipulates.To de�ne the luster alulus, we exploit again the notionof order assoiated to the subformulas of a fous.Definition 6.1. Given a luster � of positive onnetives,let us �x its subformulas �i(i 2 I) as either the �rst negativesubformulas of � or atoms. We indutively de�ne an order! = !(�) on the subformulas �i :!(�0 � �00) = !(�00) < !(�0),!(�0 
 �00) = !(�0) k !(�00),!(�i) = �i.The orresponding de�nition of order assoiated with a neg-ative luster is the obvious one.To allow for ompat de�nitions, it is onvenient to extend Iwith an arbitrary indexF, suh that �F = �. Let I� = I[F.In suh a way, we an speak of the order variety ! � � onf�i; i 2 I�g. As we indiate by �i the ontext of �i, it is alsoonvenient to de�ne �F as � itself.



Let F = a? � (b? 
 ?). As binary formula, its subformulas are a? and b? 
 ?.` a?; a ` b?; b ` ?; ` b? 
 ?; ; b h(b? 
 ?; ; b)i2 b? 
 ?; (b? k ?)` b; a; ;F h(b; a; ); (b; a; F )i1 F; ((b? 
 ?) < a?)` bOa; ; F h;i bOa; (b < a)Figure 2: Binary Derivation.Next two setions disuss the positive and negative lusterrules, whih are then resumed in Figure 3.
6.1 Positive rulesThe positive luster rule is::: ` �i;�i h��i � �ii :::` �;� h�i �;!where:Definition 6.2 (Indued Orders).��i(a; b) i� �(a; b; z); for some z 62 �iand �1; :::�n is a oherent partition of �:Definition 6.3 (Coherene). For i; j; k 2 I�:(Coh.1) �(xi; xj ; xk)) (�i; �j ; �k) in ! � �.(Coh.2) For a; b 2 �i; z; z0 62 �i, �(a; b; z)) :�(b; a; z0).Note thatRemark 6.4. Let �I be a oherent partition of �, anda; b 2 �i. The two following sets are equal:f�(a; b; z) : z = � or z 2 �j ; for j suh that �j > �i or�j < �ig,f�(a; b; z) : z 2 �j ; for j 6= ig.We onlude withProposition 6.5 (Charaterization). ��i � �i ad-mits the same haraterization as in the binary ase.
6.2 Negative rulesThe negative luster rule is` �I ;� h�� � !i` �;� h�i �;!In pratie, it is easy to use the following haraterization,whih is immediate:Proposition 6.6 (Charaterization).�� � ! = �[�I=�℄ [ ! � � [ f(�; �i; �j) : (�i; �j) 2 !g

6.3 Decomposition of a cluster in binary stepsAs one expets, we have:Theorem 6.7. To apply a luster rule or to deomposeit in binary steps give the same result with respet to bothoherene and orders indued on the terminal premises.We only need to onentrate on the positive ase, the nega-tive one being quite immediate. The proof is by indution,with the binary ase as evident basis.Let us �x the setting we need for the indutive step. Let � =�0 Æ �00, where Æ is either � or 
. Let !(�) = ! = !J Æ !K ,where Æ is either < or k, j!j = �I , I = J [ K, j!J j = �J ,and j!K j = �K .Let us onsider the following appliation of positive lusterrule: ::: ` �i � �i :::` �;� h�i �;!where i 2 I. We now �rst perform only a Æ-step, and then(�0;!J ) and (�00;!K) as lusters (the indutive hypothesisapplies):::: ` �j � �j :::` �0;�J h�0i �0;!J ::: ` �k � �k :::` �00;�K h�00i �00;!K` �;� h�i Æwhere j 2 J; k 2 K. We need to prove that (i) the lusterstep is oherent i� all the steps in the binary derivation areoherent and that (ii) �i = �i, for all i 2 I.Let us indiate the oherene hypotheses as:(a.): The partition f�i; i 2 Ig is oherent on � w.r.t. (�;!);(b.): The bi-partition �J ;�K is oherent on � w.r.t. the�rst binary step (�; �0 Æ �00);(.): The partition �J is oherent on �0 w.r.t. (�0;!J); thepartition �K is oherent on �00 w.r.t. (�00;!K).Lemma 6.8. Assuming either of the hypotheses (a.) or(b.)+(.), if j1 6= j2 2 J, z 62 �J , then �(xj1 ; xj2 ; z) entails!J(�j1 ; �j2).Proof. Let z 2 �h; h 2 K�. Assuming (a.) as hypothe-sis, �(xj1 ; xj2 ; z) implies !��(�j1 ; �j2 ; �h). Sine �h is in thesame relation (k, <, or >) with both �ji , the only possibility(f. De�nition 3.4) for the order is !(�j1 ; �j2). Assuming (b.)and (.) as hypotheses, �(xj1 ; xj2 ; z) implies �0(xj1 ; xj2 ; �0),hene !J ��0(�j1 ; �j2 ; �0). This entails !J (�j1 ; �j2 ), and thus!(�j1 ; �j2).



Positive Rule (� positive) Negative Rule (� negative)::: ` �i;�i h��i � �ii :::` �;� h�i �;! ` �I ;� h�� � !i` �;� h�i �;!where i 2 I,�1; :::�n oherent partition of �.j!j = f�1; :::�ng, I = f1; :::ngFigure 3: Cluster Rules.Proposition 6.9 (Coherene). (a.) i� (b.) + (.).Proof. (a:)) (b:). (Coh.1) is immediate. As for (Coh.2),let assume �(xj1 ; xj2 ; z), where j1; j2 2 J and z 62 �J . Ifj1 = j2 the result is immediate by (a.). Otherwise Lemma 6.8implies !(�j1 ; �j2). If we had �(xj2 ; xj1 ; z0), z0 62 �J , wewould also have !(�j2 ; �j1).(a:)) (:). (Coh.1). Assume �0(xl; xm; xn), and use Char-aterization 4.11. If we have l;m; n 2 J and �(xl; xm; xn),then we have ! � �(�l; �m; �n) and hene !J � �0(�l; �m; �n).If we have (modulo a yli permutation) �(xl; xm; z) and�(z0; xm; xn), z; z0 62 �J , it follows !(�l; �m) and !(�m; �n),hene !J(�l; �m), !J(�m; �n) and thus !J � �0(�l; �m; �n). Ifxn = �0, then we have �(xl; xm; z); z 62 �J , hene !(�l; �m),thus !J (�l; �m) and the result. (Coh.2) is immediate.(b:) + (:) ) (a:). (Coh.1). Assume �(xl; xm; xn). Ifl; m; n 2 J , then �0(xl; xm; xn), hene !J ��0(�l; �m; �n) andthus ! � �(�l; �m; �n). If l;m 2 J , and n 2 K�, Lemma 6.8entails !(�l; �m), hene !��(�l; �m; �n). Finally, if l 2 J;m 2K; xn = �, the result follows by the hypothesis (b.).(Coh. 2). Let assume that for a; b 2 �i(i 2 J), we have�(a; b; z) and �(b; a; z0). To have both z; z0 62 �J is against(b). Assume z 2 �j ; j 2 J . Thus we have �0(a; b; z). If j 6=i, the hypothesis (.) fores z0 2 �i. In fat, z0 62 �J entails�0(b; a; �0), ontraditing (.); z0 2 �J entails �0(b; a; z0),whih ontradits (.) unless z0 2 �i.Proposition 6.10 (Orders). �i = �i.Proof. Let a; b 2 j�ij = j�ij = �i.�i � �i. (a; b) 2 �i i� �(a; b; z), where z 2 �h; h 6= i. Ifh 2 J then �0(a; b; z), hene the result. If h 2 K� then�0(a; b; �0), hene the result.�i � �i. A ases analysis shows that �0(a; b; x), wherex 62 �i, means that we have �(a; b; xh), where h 6= i; h 2 I�,hene (a; b) 2 �i.
7. SAMPLE DERIVATIONSIn Figure 4 we give two examples to familiarize ourselveswith the luster alulus. All lower-ase letters denote atoms.

For onveniene, the fous is typeset in bold fae, and therules are annotated with the assoiated order variety ! � �rather than with (�;!).To hek oherene we have to hek the mathing of thetriples in the sequent order variety h�i with those in theorder variety !(�) � � indued by the fous.Example 1: We hek the triples in the order variety (1)against those in the order variety (b? k ?) < a? � F �f(b?; a?; F ); (?; a?; F )g. While (b; a; F ) is mathed with(b?; a?; F ), to (b; a; ) does not orrespond the triple(b?; a?; ?). Thus the derivation fails.Example 2: For the �rst positive rule: (a; y; F ) is mathedwith (a?; x; F ); (a; y; ) is mathed with (a?; x; ?), and(a; y; b) is mathed with (a?; x; b?). Note that we then haveas order variety h(x; y; Z)i beause of (a; y; Z) in (1): y; Z 2�x, and a 62 �x. For the seond positive rule, (x; y;Z) ismathed with (x?; y?; Z).Note that in these examples there is no non-determinism inthe ontexts splitting, beause the hoie is direted by theatoms.
8. FURTHER RESULTS AND IMPLEMEN-

TATION ISSUESThis setion disusses, rather informally, some developmentsthat are oriented towards implementation. The analysis ofthe oherene onditions and of the way of propagating theorders arried out in this paper brings a better understand-ing of what is really essential to NL proof searh. This nowenables us, in partiular, (I) to get rid of (Coh.2) and (II)to redue the spae of the triples we need to test.(I) To use only (Coh.1) as oherene ondition is enough toguarantee the orretness of a NL derivation.Proposition 8.1. If the searh of a (multipliative) NLproof is suessful heking only (Coh.1), then all applia-tions of positive rules also satisfy (Coh.2).We give a hint of the proof. Let us onsider the ase wherewe have �i(a; b) and �i(b; a). Thus the order variety on thepremise ontains (a; b; �i) and (b; a; �i). Whatever rule isapplied afterwards, there will always be at least one pair of



Example 1: Let F = a? � (b? 
 ?). As ternary formula, its subformulas are a?, b?, and ?.` a?; a ` b?; b ` ?; ` b; a; ;F h(b; a; ); (b; a; F )i1 (b? k ?) < a? � F` bOa; ; F h;i (b < a) � bOaExample 2: Let N =  &((aOy) &(b &Z)), Z = (y? � x?), and F = (x� a?)� (b? 
 ?).` y?; y ` x?; x` x; y;Z h(x; y; Z)i2 (x? < y?) � Z ` a?; a ` b?; b ` ?; ` ; a; y; b; Z;F h(a; y; F ); (a; y; ); (a; y; b); (a; y; Z)i1 ((b? k ?) < (a? < x)) � F` F;N h;i  k ((a < y) k (b k Z) �NFigure 4: Sample Derivations.triples f(x; y; z); (y; x; z)g. For a multipliative NL proof tobe orret, eah branh must terminate either with the unitaxiom ` 1, or with an identity axiom ` p; p?. Before reah-ing this, the three points x; y; z must have been separatedby a positive rule suh as:` x1; y ` x2; z` x; y; z h�iSine we have both (x; y; z) and (y; x; z), the above rule anbe neither a Tensor nor a Next, whih auses the proedureto fail.Thus in partiular, the derivation of Example 2 in Setion 4is not deteted as wrong by (Coh.1) just beause we stoppedtoo early.As a onsequene we an state:Proposition 8.2 (Coherene). The following two def-initions of oherene are equivalent w.r.t. the searh of NLproofs:(i) A ontext partition is oherent if it satis�es (Coh.1) and(Coh.2);(ii) A ontext partition is oherent if it satis�es (Coh.1).A alulus based on (i) is more sensitive than a alulusbased on (ii): where (i) fails, the seond alulus will go on,but it will still fail before reahing the axioms. On the otherhand, to adopt (ii) rather than (i) as de�nition of oherenepresents a lear advantage in terms of the ost of testing o-herene. Thus more investigation is neessary to say whihmethod o�ers more advantages for implementations.(II) The alulus we presented builds a proof propagatingorder varieties. A way to look at suh order varieties is as aset of tests, or a sort of \onstraint" that a andidate parti-tion must satisfy. With this perspetive, not all the triplesin the order variety are neessary to build NL derivations:

Proposition 8.3. Given a ternary relation � on the on-lusion of a positive rule, to propagate the two followingternary relations is equivalent w.r.t. soundness and om-pleteness of the proof searh:(i) �i � � as de�ned in Setion 4, i.e. Ai [ Bi [ Ci, with thenotation of Charaterization 4.11;(ii) Ai [ Bi, with the notation of Charaterization 4.11.Note that the ternary relation de�ned in (ii) is not an ordervariety (f. Charaterization 4.11), but if we wish, we anomplete it into an order variety at the end, if the proofsearh sueeds.
8.1 Future work: towards implementationWe expet to use our alulus in onjuntion with onstraintbased tehniques [3℄. To extend suh tehniques to proofonstrution in NL, the ability of dealing with lusters ofonnetives, rather than only binary ones, is essential. Thisis true beause the basi objets of the onstraint tehnique,namely the bipoles, are positive lusters built from (posi-tive) atoms and monopoles, where in turn the monopolesare negative lusters of (negative) atoms. The key fat isthat bipoles, being two-layered lusters of formulas, an bedeomposed in a single step. This makes it possible for theatoms to guide the splitting of the ontexts, leading to theprogressive instantiation of the partitions.The advantage of the onstraint based approah to proofonstrution is to unfold all branhes of a derivation in par-allel, a strategy that suits well the methods of our alulus.We would also be interested in investigating the possibilityof using tehniques of lazy ontext splitting.
9. ACKNOWLEDGEMENTSI am grateful to Paul Ruet for ontinuous disussions andmany useful remarks all along the development of this work.Remarks by Jean-Mar Andreoli are at the origin of the de-velopments in Setion 8, in partiular for Proposition 8.1.I thank for fruitful onversations Roberto Maieli, Mihele



Abrusi, Denis Behet, and Mitsu Okada. This work wasmotivated by an investigation on Non-Commutative Ludissuggested to me by Jean-Yves Girard, to whom I am in-debted for many insights.The presentation has greatly bene�ted from the ommentsof the referees.
10. REFERENCES[1℄ V. M. Abrusi and P. Ruet. Non-ommutative logi I :the multipliative fragment. Annals Pure Appl. Logi,101(1):29{64, 2000.[2℄ J.-M. Andreoli. Logi programming with fousingproofs in linear logi. J. Logi and Comp., 2(3), 1992.[3℄ J.-M. Andreoli. Foussing and proof onstrution. InPro. APAL 2000, 2000.[4℄ J.-M. Andreoli and R. Maieli. Fousing and proof netsin linear and non-ommutative logi. In Pro.LPAR'99. Springer LNAI 1581, 1999.[5℄ R. Baudot and D. Canila. The dining philosophersproblem as a benhmark for the omparison ofonurrent logi languages. draft.[6℄ R. Baudot and C. Fouquer�e. Theorem prover withfousing strategy in non-ommutative logi. Tehnialreport, Laboratoire d'Informatique de Paris Nord,1999.[7℄ J.-Y. Girard. Lous solum. Preprint Institut deMath�ematiques de Luminy, 2000.[8℄ R. Maieli and P. Ruet. Non-ommutative logi III :fousing proofs. Tehnial Report 2020-14, Institut deMath�ematiques de Luminy, 2000. (Availabe on-line at:http://iml.univ-mrs.fr/�ruet/papiers.html).[9℄ D. Miller, G. Nadathur, F. Pfenning, and A. Sedrov.Uniform proofs as a foundation for logi programming.Annals Pure Appl. Logi, 51:125{157, 1991.[10℄ R. Mohring. Computationally tratable lasses ofordered sets. ASI Series 222. NATO, 1989.[11℄ J. Polakow and F. Pfenning. Natural dedution forintuitionisti non-ommutative linear logi. In Pro.TLCA'99, Springer LNCS 1581, 1999.[12℄ J. Polakow and F. Pfenning. Ordered linear logiprogramming. Preprint CMU CS-98-183, 1999.[13℄ P. Ruet. Non-ommutative logi II : sequent alulusand phase semantis. Math. Strut. in Comp. Si.,10(2), 2000.

APPENDIX
A. NL SEQUENT CALCULUSWe only give the multipliative fragment, the one we areworking with along the paper.Definition A.1 (Formulas). The formulas are builtfrom atoms p; q; ::, p?; q?; :::and the following onnetives:ommutative: 
 (Tensor), &(Par);non-ommutative: � (Next), O (Sequential).Definition A.2 (Negation). Negation is de�ned by DeMorgan rules:(p)? = p? (p?)? = p(a� b)? = b?Oa? (aOb)? = b? � a?(a
 b)? = b? &a? (a &b)? = b? 
 a?SEQUENT CALCULUS ([13℄)Identity` a � a?Positive` �1 � � 1 ` �2 � � 2` �1 
 �2 � � 1 k � 2 
 ` �1 � � 1 ` �2 � � 2` �2 � �1 � � 2 < � 1 �Negative` (�1 k �2) � �` �1 &�2 � � & ` (�1 < �2) � �` �1O�2 � � OEntropy` � � �` � 0 � � where � 0 E � (�)(�) \� 0 obtained from � by replaing some < with k"Remark A.3. It is easy to have an intuition of why forNext it is � 2 < � 1, rather than � 1 < � 2, if one remembersthat (a� b)? = b?Oa?. A derivation of ` (a � b)?; (a� b)is: ` a � a? ` b � b?` b? < a? � a� b �` b?Oa?; (a� b) O


