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In two variables: Q(x,y) = ax? + 2bxy + cy?
In n variables:

n
Q(x1,.. ., Xn) = Z qijxixj, qij = qji € R.
ij=1

Coefficient matrix in the case n = 2:

a b

b c)’
We consider only positive definite forms, i.e. g(x) > 0 for all
x € R"and g(x) =0 <= x=0.

The determinant of Q is defined by D(Q) = | det(qgjj)|.
For @ = ax? + 2bxy + cy? we get D(Q) = |b? — ac|.
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We shall be interested in

pHQ = xg]ZI”n\O Q(x).
Theorem (Hermite)

For every n > 2 there exists 7, such that ug < fy,,D(Q)l/” for all
positive definite forms @ in n variables.

Some values: 7o = 2//3,93 =23 4 = V2, ...
In general: ~, < 2n/3.
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The form Q = ax?® + 2bxy + cy? is called reduced if
—a<?2b<a<ec.

For a reduced binary form Q we have pg = a (with x =1,y = 0).

Reduction of quadratic binary form ax? + 2bxy + cy? modulo
SL(2,7).
Loop:

e if a < |2b|, replace x by x — ky with k = [b/a+ 1/2].

o if a > c replace x by —y and y by x.

o if the resulting form is reduced then STOP else goto Loop.
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We reduce the form 13x% + 62xy + 74y>.
e replace x by x — 2y: 13x? + 10xy + 2y°.
e replace x — —y, y — x: 2x% — 10xy + 13y2.
e replace x by x + 3y: 2x% + 2xy + y°.
@ replace x — —y, y — x: x> —2xy + 2y°.
e replace x by x + y: x% + y2.
Concatenation of all substitutions shows:
13(—7x —5y)? +62(—7x —5y)(3x +2y) +74(3x +2y)? = x>+ y2.
Minimum 1 attained when x = 1,y = 0 hence
13- (=7)2+62-(~7)-3+74-32=1.
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Relation with continued fractions

Let & € R. Choose 1 >> t > 0 and consider
Qe(x,y) = (x —ay)* + ty°.
Then D(Q) = t. There exist integers p, g with g > 0 such that
(p— aq)® + tg” < 2Vt/V3.
Hence (because |ab| < (a% + b?)/2):
lp— aql(qVt) < Vit/V3
and so

1
p—aql < —=.

qV3
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Let H be the complex upper half plane. There is a 1-1
correspondence

Positive definite binary quadratic forms modulo scalar factors <— H

given by
—b+ Vb — ac

a

ax® + 2bxy + cy2

In particular,
(x —ay)? + ty? «— a+ iVt
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X=Xty y—=y
corresponds to z — z — 1
X = —y,y =X
corresponds to z — —1/z
invariant metric:

N ds = M
Im(z)
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Hermite's algorithm

a+ivt, t10
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Hermite's algorithm
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Hermite's algorithm
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Hermite's algorithm
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Theorem (Dirichlet)

Let a1,...,aq € R. Then there exist infinitely many
(p1,...,Pd,q) € Z9t1 with g > 0 such that

1
= gltl/d’

Pi
j — —

q

i=1,2,...,d.

Theorem (Schweiger)

There exists 0 > 0 such that for almost all pairs a1, ap the
Jacobi-Perron algorithm gives us

pi 1 -_
ai—g SW, 1—1,2.
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Let & = (a1,...,aq) € RY and t > 0. Consider the quadratic
form

Qe(x,y) = (1 —o1y)® + -+ (xd — agy)® + ty?

Proposition (Hermite, Lagarias)

Suppose thatx =p e Z9and y =g € Z>o minimize the form

Q¢(x,y). Then
vd+1

Ip—adll < Y
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Definition
A positive definite quadratic form @ in xq, ..., x, is called
Minkowski reduced if

e Qe1) < Q(x) for all x € Z", x # 0.

@ Forall j > 1: Q(e;) < Q(x) for all x € Z" such that
ei,...,ej_1,x can be extended to a Z-basis of Z".

Minkoswki reducedness can be characterized by a finite set of
linear conditions on the coefficients of Q.
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Recall: reducedness conditions for Q = ax? + 2bxy + cy?,
—a<2b<a<ec.
Consider the positive definite form
Q(x,y,z) = ax® + 2bxy + 2cxz + dy? + 2eyz + fz°.
Minkowski reducedness conditions:

a<d<f, [2b<al|2c|<a |2 <d
a+d>2(xb+c+e), =zeroor two minus signs.

Unfortunately, the number of conditions grows exponentially in n.
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Let O, be the set of positive definite quadratic forms in n variables.
Consider ¢ : GL(n,R) — Q,, given by

d:M— MTM.

It is surjective and ®(M) = ®(M’) if and only if there exists
orthogonal U such that M’ = UM. Hence ® gives bijection

O(n,R)\GL(n,R) +— Q,.

The group GL(n,R) (and in particular GL(n,Z)) acts via
g:M—Mgandg:Q— g’ Qg.

Space of GL(n,Z) equivalence classes of positive definite quadratic
forms modulo scalars:

R*O(n,R)\GL(n,R)/GL(n,Z).
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GL(n,R)-invariant metric:
ds?® = tr((dY. Y7 1).(dY.Y 7).
Geodesics on the space of quadratic forms:
el (x)2 4 -+ My (x)?, s ER

where /1(x), ..., l,(x) are independent linear forms.
In particular,

(= a1y)? + -+ (xg — aay)’ + ty?

is a geodesic in Q1.
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LLL reduction

Any quadratic form Q in xi,...,x, can be rewritten as

Q(x) = bi(xy+ pioxo +--- + ,ul,,x,,)2
+ba(x2 + f123X3 +  + + + P2nXn)?

+bn—1(Xn—1 + ,un—l,nxn)2 + bnxs-
Example:

Q = ax®+2bxy +2cxz + dy? + 2eyz + fz°
a(x + by/a+ cz/a)*> + d'y? + 2e'yz + f' 22
= a(x+by/a+cz/a)> +d'(y+€z/d') + 22
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Any quadratic form Q in xi,...,x, can be rewritten as

Q(x) = bi(x1 + paxo + - + p1axn)?
+bo(x2 + po3x3 + -+ + Mznxn)2

+bnfl(xnfl + /JJn717an)2 + bnxs-

Let w € (3/4,1] (slack-factor). Then Q is called LLL-reduced if:

o |ujj| <1/2forall i <.

@ bit1+ ,u,?,-Hb,- > wbh; for all i < n.
(Lovasz condition)
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LLL-reduction consists of
@ shifts x; — x; + ax; with j > /i and a € Z
@ swaps x; <> xj11 for some i < n.
LLL-reduction algorithm:

@ Perform shifts so that |y 41| < 1/2 for all i < n. Then enter
the following
e Loop: find i such that wh; > bi1 + p?,, 1 b,
- If such i exists, swap x; <+ xj41 and fix pi_1j, i j+1 and
Wi+1,i+2 by a shift. REPEAT the Loop.
- If no such i exists, EXIT the Loop.
@ Now the Lovasz conditions hold and |y 11| < 1/2 for i < n
(partial LLL-reduction). Perform shifts so that |x;;| < 1/2 for
all i < .
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Theorem (LLL)

Let Q be a form in n variables with coefficients < M. Then the
number of swaps in the LLL-reduction is bounded by

O(n” log(n*M/pq))-

Theorem (LLL)

Let @ be a positive definite form in n variables and suppose Q is
LLL-reduced with w = 3/4. Then

° Q(el) < 2(n71)/2d(Q)1/n.

o For every x € Z" with x # 0 we have Q(e;) < 2" 1Q(x).
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Let a1,...,aq € [-1/2,1/2].
We initialize with the form
QY = (x —ay)’ -+ + (xa — aay) + 0%
When t = 1 it is LLL-reduced. Define P(®) as the
(d + 1) x (d + 1) identity matrix. We enter the following loop.
Loop:
@ Determine the minimum of the set
{t|Q§k) is LLL — reduced} and call it t.
@ Perform an LLL-reduction on ngkze for infinitesimal ¢ > 0 and
let x — Axx be the corresponding substitution of variables.
o Define QU™ (x) = Q™ (Axx) and P(+1) = p() A,
Property: Let (p1, p2. ..., pq.q) be the first column of P(). Then
2d/4
lp — agql| < ql/d
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Explicit formulas

Let (gjj)ij be the matrix of the quadratic form Q.
Defineforall 1 <i<j<n

qir ... dii-1 dqij

a1 ... Qq2i-1 Q2
Bj=1". . .

gir ... Qqiji-1 Gjj

Then
wij = Bij/Bii, bi = Bj/Bi-1,-1.
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The inequality |pujj| < 1/2 translates into
—B; <2Bj < Bj, j=i+1,....n.
The inequality bjy1 + u,?’,-ﬂb,- > whb; translates into
Cii > wB;;

where C; ; is the i,/ subdeterminant of Bj 1 1.
We have
2
Gi,iBii = Bit1,i+1Bi—1i-1+ Bfj}1-
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Observation

Consider the family of forms
Qt:(Xl—aly)2+---+(xd—ady)2+ty2, t > 0.

Let Bj(t) be the corresponding subdeterminants. Then Bj;(t) is
linear in t for all / <.

More precisely, Bjj(t) € Z[t, o, ..., aq]. Itis linear in t with
coefficient in Z and quadratic in the «;.
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Properties of the geodesic LLL-algorithm:

@ The value of t is determined by a finite set of linear
inequalities.

All transformation matrices P(K) are distinct.
If a; ¢ Q for at least one i, then lim,_, t, = 0.
If aj € Q for all i, the algorithm breaks off.

The first column of P(X) only changes when the swap x; <+ x
is made.
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Outlook

@ Literature
@ Experiments

@ Is it useful?

LLL

The end
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