Geodesic continued fractions and LLL

Frits Beukers

Paris, 20 December 2013

Quadratic forms

In two variables: $Q(x, y) = ax^2 + 2bxy + cy^2$ In *n* variables:

$$Q(x_1,\ldots,x_n)=\sum_{i,j=1}^n q_{ij}x_ix_j,\quad q_{ij}=q_{ji}\in\mathbb{R}.$$

Coefficient matrix in the case n = 2:

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

We consider only positive definite forms, i.e. $q(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$ and $q(\mathbf{x}) = 0 \iff \mathbf{x} = \mathbf{0}$.

The determinant of Q is defined by $D(Q) = |\det(q_{ij})|$.

For
$$Q = ax^2 + 2bxy + cy^2$$
 we get $D(Q) = |b^2 - ac|$.

Minima

We shall be interested in

$$\mu_Q := \min_{\mathbf{x} \in \mathbb{Z}^n \setminus \mathbf{0}} Q(\mathbf{x}).$$

Theorem (Hermite)

For every $n \ge 2$ there exists γ_n such that $\mu_Q \le \gamma_n D(Q)^{1/n}$ for all positive definite forms Q in n variables.

Some values: $\gamma_2 = 2/\sqrt{3}$, $\gamma_3 = 2^{1/3}$, $\gamma_4 = \sqrt{2}$, ... In general: $\gamma_n < 2n/3$.

Reduction of forms

The form $Q = ax^2 + 2bxy + cy^2$ is called *reduced* if $-a \le 2b \le a \le c.$

For a reduced binary form Q we have $\mu_Q = a$ (with x = 1, y = 0).

Reduction of quadratic binary form $ax^2 + 2bxy + cy^2$ modulo $SL(2,\mathbb{Z})$.

Loop:

- if a < |2b|, replace x by x ky with $k = \lfloor b/a + 1/2 \rfloor$.
- if a > c replace x by -y and y by x.
- if the resulting form is reduced then STOP else goto **Loop**.

Example

We reduce the form $13x^2 + 62xy + 74y^2$.

- replace x by x 2y: $13x^2 + 10xy + 2y^2$.
- replace $x \to -y$, $y \to x$: $2x^2 10xy + 13y^2$.
- replace x by x + 3y: $2x^2 + 2xy + y^2$.
- replace $x \to -y$, $y \to x$: $x^2 2xy + 2y^2$.
- replace x by x + y: $x^2 + y^2$.

Concatenation of all substitutions shows:

$$13(-7x-5y)^2+62(-7x-5y)(3x+2y)+74(3x+2y)^2=x^2+y^2.$$

Minimum 1 attained when x = 1, y = 0 hence

$$13 \cdot (-7)^2 + 62 \cdot (-7) \cdot 3 + 74 \cdot 3^2 = 1.$$

Relation with continued fractions

Let $\alpha \in \mathbb{R}$. Choose 1 >> t > 0 and consider

$$Q_t(x,y) = (x - \alpha y)^2 + ty^2.$$

Then D(Q) = t. There exist integers p, q with q > 0 such that

$$(p - \alpha q)^2 + tq^2 \le 2\sqrt{t}/\sqrt{3}.$$

Hence (because $|ab| \le (a^2 + b^2)/2$):

$$|p - \alpha q|(q\sqrt{t}) \le \sqrt{t}/\sqrt{3}$$

and so

$$|p - \alpha q| \le \frac{1}{q\sqrt{3}}.$$

The upper half plane

Let ${\mathcal H}$ be the complex upper half plane. There is a 1-1 correspondence

Positive definite binary quadratic forms modulo scalar factors $\longleftrightarrow \mathcal{H}$

given by

$$ax^2 + 2bxy + cy^2 \longleftrightarrow \frac{-b + \sqrt{b^2 - ac}}{a}$$
.

In particular,

$$(x - \alpha y)^2 + ty^2 \longleftrightarrow \alpha + i\sqrt{t}.$$

x o x + y, y o y corresponds to z o z - 1 x o -y, y o x corresponds to z o -1/z invariant metric:

$$ds = \frac{|dz|}{\mathrm{Im}(z)}$$

Simultaneous approximation

Theorem (Dirichlet)

Let $\alpha_1, \ldots, \alpha_d \in \mathbb{R}$. Then there exist infinitely many $(p_1, \ldots, p_d, q) \in \mathbb{Z}^{d+1}$ with q > 0 such that

$$\left|\alpha_i - \frac{p_i}{q}\right| \le \frac{1}{q^{1+1/d}}, \quad i = 1, 2, \dots, d.$$

Theorem (Schweiger)

There exists $\delta > 0$ such that for almost all pairs α_1, α_2 the Jacobi-Perron algorithm gives us

$$\left|\alpha_i - \frac{p_i}{q}\right| \le \frac{1}{q^{1+\delta}}, \quad i = 1, 2.$$

Geodesic approach (J.Lagarias)

Let $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{R}^d$ and t > 0. Consider the quadratic form

$$Q_t(\mathbf{x}, y) = (x_1 - \alpha_1 y)^2 + \dots + (x_d - \alpha_d y)^2 + ty^2$$

.

Proposition (Hermite, Lagarias)

Suppose that $\mathbf{x} = \mathbf{p} \in \mathbb{Z}^d$ and $y = q \in \mathbb{Z}_{\geq 0}$ minimize the form $Q_t(\mathbf{x}, y)$. Then

$$||\mathbf{p} - \alpha q|| \leq rac{\sqrt{d+1}}{q^{1/d}}.$$

Minkowski reduction

Definition

A positive definite quadratic form Q in x_1, \ldots, x_n is called *Minkowski reduced* if

- $Q(\mathbf{e}_1) \leq Q(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{Z}^n, \ \mathbf{x} \neq \mathbf{0}$.
- For all j > 1: $Q(\mathbf{e}_j) \le Q(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{Z}^n$ such that $\mathbf{e}_1, \dots, \mathbf{e}_{j-1}, \mathbf{x}$ can be extended to a \mathbb{Z} -basis of \mathbb{Z}^n .

Minkoswki reducedness can be characterized by a finite set of linear conditions on the coefficients of Q.

Conditions for 3 variables

Recall: reducedness conditions for $Q = ax^2 + 2bxy + cy^2$,

$$-a \le 2b \le a \le c$$
.

Consider the positive definite form

$$Q(x, y, z) = ax^2 + 2bxy + 2cxz + dy^2 + 2eyz + fz^2.$$

Minkowski reducedness conditions:

$$a \le d \le f$$
, $|2b| \le a$, $|2c| \le a$, $|2e| \le d$
 $a + d \ge 2(\pm b \pm c \pm e)$, zero or two minus signs.

Unfortunately, the number of conditions grows exponentially in n.

A symmetric space

Let Q_n be the set of positive definite quadratic forms in n variables. Consider $\Phi: GL(n,\mathbb{R}) \to Q_n$ given by

$$\Phi: M \mapsto M^T M$$
.

It is surjective and $\Phi(M) = \Phi(M')$ if and only if there exists orthogonal U such that M' = UM. Hence Φ gives bijection

$$O(n,\mathbb{R})\backslash GL(n,\mathbb{R})\longleftrightarrow \mathcal{Q}_n.$$

The group $GL(n,\mathbb{R})$ (and in particular $GL(n,\mathbb{Z})$) acts via $g:M\mapsto Mg$ and $g:Q\mapsto g^TQg$. Space of $GL(n,\mathbb{Z})$ equivalence classes of positive definite quadratic forms modulo scalars:

$$\mathbb{R}^{\times} O(n, \mathbb{R}) \backslash GL(n, \mathbb{R}) / GL(n, \mathbb{Z}).$$

Geodesics

 $GL(n,\mathbb{R})$ -invariant metric:

$$ds^2 = \text{tr}((dY.Y^{-1}).(dY.Y^{-1})^T).$$

Geodesics on the space of quadratic forms:

$$e^{\lambda_1 s} I_1(\mathbf{x})^2 + \dots + e^{\lambda_n s} I_n(\mathbf{x})^2, \ s \in \mathbb{R}$$

where $l_1(\mathbf{x}), \dots, l_n(\mathbf{x})$ are independent linear forms. In particular,

$$(x_1 - \alpha_1 y)^2 + \cdots + (x_d - \alpha_d y)^2 + ty^2$$

is a geodesic in Q_{d+1} .

LLL reduction

Any quadratic form Q in x_1, \ldots, x_n can be rewritten as

$$Q(\mathbf{x}) = b_1(x_1 + \mu_{12}x_2 + \dots + \mu_{1n}x_n)^2 + b_2(x_2 + \mu_{23}x_3 + \dots + \mu_{2n}x_n)^2$$

$$\vdots$$

$$+b_{n-1}(x_{n-1} + \mu_{n-1,n}x_n)^2 + b_nx_n^2.$$

Example:

$$Q = ax^{2} + 2bxy + 2cxz + dy^{2} + 2eyz + fz^{2}$$

$$= a(x + by/a + cz/a)^{2} + d'y^{2} + 2e'yz + f'z^{2}$$

$$= a(x + by/a + cz/a)^{2} + d'(y + e'z/d')^{2} + f''z^{2}$$

LLL reducedness

Any quadratic form Q in x_1, \ldots, x_n can be rewritten as

$$Q(\mathbf{x}) = b_1(x_1 + \mu_{12}x_2 + \dots + \mu_{1n}x_n)^2 + b_2(x_2 + \mu_{23}x_3 + \dots + \mu_{2n}x_n)^2$$

$$\vdots$$

$$+b_{n-1}(x_{n-1} + \mu_{n-1,n}x_n)^2 + b_nx_n^2.$$

Let $\omega \in (3/4,1]$ (slack-factor). Then Q is called LLL-reduced if:

- $|\mu_{ij}| \le 1/2$ for all i < j.
- $b_{i+1} + \mu_{i,i+1}^2 b_i \ge \omega b_i$ for all i < n. (Lovasz condition)

LLL reduction

LLL-reduction consists of

- *shifts* $x_i \to x_i + ax_j$ with j > i and $a \in \mathbb{Z}$
- *swaps* $x_i \leftrightarrow x_{i+1}$ for some i < n.

LLL-reduction algorithm:

- Perform shifts so that $|\mu_{i,i+1}| \le 1/2$ for all i < n. Then enter the following
- **Loop**: find *i* such that $\omega b_i > b_{i+1} + \mu_{i,i+1}^2 b_i$,
 - If such i exists, swap $x_i \leftrightarrow x_{i+1}$ and fix $\mu_{i-1,i}, \mu_{i,i+1}$ and $\mu_{i+1,i+2}$ by a shift. REPEAT the **Loop**.
 - If no such *i* exists, EXIT the **Loop**.
- Now the Lovasz conditions hold and $|\mu_{i,i+1}| \le 1/2$ for i < n (partial LLL-reduction). Perform shifts so that $|\mu_{ij}| \le 1/2$ for all i < j.

LLL properties

Theorem (LLL)

Let Q be a form in n variables with coefficients $\leq M$. Then the number of swaps in the LLL-reduction is bounded by $O(n^2 \log(n^2 M/\mu_Q))$.

Theorem (LLL)

Let Q be a positive definite form in n variables and suppose Q is LLL-reduced with $\omega=3/4$. Then

- $Q(\mathbf{e}_1) \leq 2^{(n-1)/2} d(Q)^{1/n}$.
- For every $\mathbf{x} \in \mathbb{Z}^n$ with $\mathbf{x} \neq \mathbf{0}$ we have $Q(\mathbf{e}_1) \leq 2^{n-1}Q(\mathbf{x})$.

A continued fraction algorithm

Let $\alpha_1, \dots, \alpha_d \in [-1/2, 1/2]$.

We initialize with the form

$$Q_t^{(0)} = (x_1 - \alpha_1 y)^2 + \dots + (x_d - \alpha_d y)^2 + ty^2.$$

When t=1 it is LLL-reduced. Define $P^{(0)}$ as the $(d+1)\times (d+1)$ identity matrix. We enter the following loop.

Loop:

- Determine the minimum of the set $\{t | Q_t^{(k)} \text{ is } \text{LLL} \text{reduced}\}$ and call it t_k .
- Perform an LLL-reduction on $Q_{t_k-\epsilon}^{(k)}$ for infinitesimal $\epsilon > 0$ and let $\mathbf{x} \to A_k \mathbf{x}$ be the corresponding substitution of variables.
- Define $Q_t^{(k+1)}(\mathbf{x}) = Q_t^{(k)}(A_k \mathbf{x})$ and $P^{(k+1)} = P^{(k)}A_k$.

Property: Let $(p_1, p_2, \dots, p_d, q)$ be the first column of $P^{(k)}$. Then

$$||\mathbf{p} - \alpha q|| \le \frac{2^{d/4}}{q^{1/d}}.$$

Explicit formulas

Let $(q_{ij})_{i,j}$ be the matrix of the quadratic form Q. Define for all $1 \le i < j \le n$

$$B_{ij} = \begin{vmatrix} q_{11} & \dots & q_{1,i-1} & q_{1j} \\ q_{21} & \dots & q_{2,i-1} & q_{2j} \\ \vdots & & \vdots & \vdots \\ q_{i1} & \dots & q_{i,i-1} & q_{ij} \end{vmatrix}.$$

Then

$$\mu_{ij} = B_{ij}/B_{ii}, \quad b_i = B_{i,i}/B_{i-1,i-1}.$$

Explicit inequalities

The inequality $|\mu_{ij}| \leq 1/2$ translates into

$$-B_{ii} \leq 2B_{ij} \leq B_{ii}, \ j = i+1,\ldots,n.$$

The inequality $b_{i+1} + \mu_{i,i+1}^2 b_i \ge \omega b_i$ translates into

$$C_{i,i} \geq \omega B_{i,i}$$

where $C_{i,i}$ is the i, i subdeterminant of $B_{i+1,i+1}$. We have

$$C_{i,i}B_{i,i} = B_{i+1,i+1}B_{i-1,i-1} + B_{i,i+1}^2.$$

Special forms

Observation

Consider the family of forms

$$Q_t = (x_1 - \alpha_1 y)^2 + \dots + (x_d - \alpha_d y)^2 + ty^2, \quad t > 0.$$

Let $B_{ij}(t)$ be the corresponding subdeterminants. Then $B_{ij}(t)$ is linear in t for all $i \leq j$.

More precisely, $B_{ij}(t) \in \mathbb{Z}[t, \alpha_1, \dots, \alpha_d]$. It is linear in t with coefficient in \mathbb{Z} and quadratic in the α_i .

Properties

Properties of the geodesic LLL-algorithm:

- The value of t_k is determined by a finite set of linear inequalities.
- All transformation matrices $P^{(k)}$ are distinct.
- If $\alpha_i \notin \mathbb{Q}$ for at least one i, then $\lim_{k\to\infty} t_k = 0$.
- If $\alpha_i \in \mathbb{Q}$ for all i, the algorithm breaks off.
- The first column of $P^{(k)}$ only changes when the swap $x_1 \leftrightarrow x_2$ is made.

Outlook

- Literature
- Experiments
- Is it useful?

The end