Geodesic continued fractions and LLL

Frits Beukers

Paris, 20 December 2013

Quadratic forms

In two variables: $Q(x, y)=a x^{2}+2 b x y+c y^{2}$
In n variables:

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} q_{i j} x_{i} x_{j}, \quad q_{i j}=q_{j i} \in \mathbb{R}
$$

Coefficient matrix in the case $n=2$:

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

We consider only positive definite forms, i.e. $q(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$ and $q(\mathbf{x})=0 \Longleftrightarrow \mathbf{x}=\mathbf{0}$.
The determinant of Q is defined by $D(Q)=\left|\operatorname{det}\left(q_{i j}\right)\right|$.
For $Q=a x^{2}+2 b x y+c y^{2}$ we get $D(Q)=\left|b^{2}-a c\right|$.

Minima

We shall be interested in

$$
\mu_{Q}:=\min _{\mathbf{x} \in \mathbb{Z}^{n} \backslash \mathbf{0}} Q(\mathbf{x}) .
$$

Theorem (Hermite)

For every $n \geq 2$ there exists γ_{n} such that $\mu_{Q} \leq \gamma_{n} D(Q)^{1 / n}$ for all positive definite forms Q in n variables.

Some values: $\gamma_{2}=2 / \sqrt{3}, \gamma_{3}=2^{1 / 3}, \gamma_{4}=\sqrt{2}, \ldots$
In general: $\gamma_{n} \leq 2 n / 3$.

Reduction of forms

The form $Q=a x^{2}+2 b x y+c y^{2}$ is called reduced if

$$
-a \leq 2 b \leq a \leq c
$$

For a reduced binary form Q we have $\mu_{Q}=a$ (with $x=1, y=0$).
Reduction of quadratic binary form $a x^{2}+2 b x y+c y^{2}$ modulo $S L(2, \mathbb{Z})$.
Loop:

- if $a<|2 b|$, replace x by $x-k y$ with $k=\lfloor b / a+1 / 2\rfloor$.
- if $a>c$ replace x by $-y$ and y by x.
- if the resulting form is reduced then STOP else goto Loop.

Example

We reduce the form $13 x^{2}+62 x y+74 y^{2}$.

- replace x by $x-2 y: 13 x^{2}+10 x y+2 y^{2}$.
- replace $x \rightarrow-y, y \rightarrow x: 2 x^{2}-10 x y+13 y^{2}$.
- replace x by $x+3 y: 2 x^{2}+2 x y+y^{2}$.
- replace $x \rightarrow-y, y \rightarrow x: x^{2}-2 x y+2 y^{2}$.
- replace x by $x+y: x^{2}+y^{2}$.

Concatenation of all substitutions shows:
$13(-7 x-5 y)^{2}+62(-7 x-5 y)(3 x+2 y)+74(3 x+2 y)^{2}=x^{2}+y^{2}$.
Minimum 1 attained when $x=1, y=0$ hence
$13 \cdot(-7)^{2}+62 \cdot(-7) \cdot 3+74 \cdot 3^{2}=1$.

Relation with continued fractions

Let $\alpha \in \mathbb{R}$. Choose $1 \gg t>0$ and consider

$$
Q_{t}(x, y)=(x-\alpha y)^{2}+t y^{2}
$$

Then $D(Q)=t$. There exist integers p, q with $q>0$ such that

$$
(p-\alpha q)^{2}+t q^{2} \leq 2 \sqrt{t} / \sqrt{3}
$$

Hence (because $\left.|a b| \leq\left(a^{2}+b^{2}\right) / 2\right)$:

$$
|p-\alpha q|(q \sqrt{t}) \leq \sqrt{t} / \sqrt{3}
$$

and so

$$
|p-\alpha q| \leq \frac{1}{q \sqrt{3}}
$$

The upper half plane

Let \mathcal{H} be the complex upper half plane. There is a 1-1 correspondence

Positive definite binary quadratic forms modulo scalar factors $\longleftrightarrow \mathcal{H}$ given by

$$
a x^{2}+2 b x y+c y^{2} \longleftrightarrow \frac{-b+\sqrt{b^{2}-a c}}{a}
$$

In particular,

$$
(x-\alpha y)^{2}+t y^{2} \longleftrightarrow \alpha+i \sqrt{t}
$$

Hermite's algorithm

$$
d s=\frac{|d z|}{\operatorname{Im}(z)}
$$

Hermite's algorithm

Simultaneous approximation

Theorem (Dirichlet)

Let $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}$. Then there exist infinitely many $\left(p_{1}, \ldots, p_{d}, q\right) \in \mathbb{Z}^{d+1}$ with $q>0$ such that

$$
\left|\alpha_{i}-\frac{p_{i}}{q}\right| \leq \frac{1}{q^{1+1 / d}}, \quad i=1,2, \ldots, d
$$

Theorem (Schweiger)

There exists $\delta>0$ such that for almost all pairs α_{1}, α_{2} the Jacobi-Perron algorithm gives us

$$
\left|\alpha_{i}-\frac{p_{i}}{q}\right| \leq \frac{1}{q^{1+\delta}}, \quad i=1,2
$$

Geodesic approach (J.Lagarias)

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$ and $t>0$. Consider the quadratic form

$$
Q_{t}(\mathbf{x}, y)=\left(x_{1}-\alpha_{1} y\right)^{2}+\cdots+\left(x_{d}-\alpha_{d} y\right)^{2}+t y^{2}
$$

Proposition (Hermite, Lagarias)

Suppose that $\mathbf{x}=\mathbf{p} \in \mathbb{Z}^{d}$ and $y=q \in \mathbb{Z}_{\geq 0}$ minimize the form $Q_{t}(\mathbf{x}, y)$. Then

$$
\|\mathbf{p}-\alpha q\| \leq \frac{\sqrt{d+1}}{q^{1 / d}} .
$$

Minkowski reduction

Definition

A positive definite quadratic form Q in x_{1}, \ldots, x_{n} is called Minkowski reduced if

- $Q\left(\mathbf{e}_{1}\right) \leq Q(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{Z}^{n}, \mathbf{x} \neq \mathbf{0}$.
- For all $j>1: Q\left(\mathbf{e}_{j}\right) \leq Q(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{Z}^{n}$ such that $\mathbf{e}_{1}, \ldots, \mathbf{e}_{j-1}, \mathbf{x}$ can be extended to a \mathbb{Z}-basis of \mathbb{Z}^{n}.

Minkoswki reducedness can be characterized by a finite set of linear conditions on the coefficients of Q.

Conditions for 3 variables

Recall: reducedness conditions for $Q=a x^{2}+2 b x y+c y^{2}$,

$$
-a \leq 2 b \leq a \leq c
$$

Consider the positive definite form

$$
Q(x, y, z)=a x^{2}+2 b x y+2 c x z+d y^{2}+2 e y z+f z^{2}
$$

Minkowski reducedness conditions:

$$
\begin{aligned}
& a \leq d \leq f, \quad|2 b| \leq a,|2 c| \leq a,|2 e| \leq d \\
& a+d \geq 2(\pm b \pm c \pm e), \quad \text { zero or two minus signs. }
\end{aligned}
$$

Unfortunately, the number of conditions grows exponentially in n.

A symmetric space

Let \mathcal{Q}_{n} be the set of positive definite quadratic forms in n variables. Consider $\Phi: G L(n, \mathbb{R}) \rightarrow \mathcal{Q}_{n}$ given by

$$
\Phi: M \mapsto M^{T} M
$$

It is surjective and $\Phi(M)=\Phi\left(M^{\prime}\right)$ if and only if there exists orthogonal U such that $M^{\prime}=U M$. Hence Φ gives bijection

$$
O(n, \mathbb{R}) \backslash G L(n, \mathbb{R}) \longleftrightarrow \mathcal{Q}_{n}
$$

The group $G L(n, \mathbb{R})$ (and in particular $G L(n, \mathbb{Z})$) acts via $g: M \mapsto M g$ and $g: Q \mapsto g^{T} Q g$.
Space of $G L(n, \mathbb{Z})$ equivalence classes of positive definite quadratic forms modulo scalars:

$$
\mathbb{R}^{\times} O(n, \mathbb{R}) \backslash G L(n, \mathbb{R}) / G L(n, \mathbb{Z})
$$

Geodesics

$G L(n, \mathbb{R})$-invariant metric:

$$
d s^{2}=\operatorname{tr}\left(\left(d Y \cdot Y^{-1}\right) \cdot\left(d Y \cdot Y^{-1}\right)^{T}\right)
$$

Geodesics on the space of quadratic forms:

$$
e^{\lambda_{1} s} I_{1}(\mathbf{x})^{2}+\cdots+e^{\lambda_{n} s} I_{n}(\mathbf{x})^{2}, s \in \mathbb{R}
$$

where $I_{1}(\mathbf{x}), \ldots, I_{n}(\mathbf{x})$ are independent linear forms.
In particular,

$$
\left(x_{1}-\alpha_{1} y\right)^{2}+\cdots+\left(x_{d}-\alpha_{d} y\right)^{2}+t y^{2}
$$

is a geodesic in \mathcal{Q}_{d+1}.

Any quadratic form Q in x_{1}, \ldots, x_{n} can be rewritten as

$$
\begin{aligned}
Q(\mathbf{x})= & b_{1}\left(x_{1}+\mu_{12} x_{2}+\cdots+\mu_{1 n} x_{n}\right)^{2} \\
& +b_{2}\left(x_{2}+\mu_{23} x_{3}+\cdots+\mu_{2 n} x_{n}\right)^{2} \\
& \vdots \\
& +b_{n-1}\left(x_{n-1}+\mu_{n-1, n} x_{n}\right)^{2}+b_{n} x_{n}^{2} .
\end{aligned}
$$

Example:

$$
\begin{aligned}
Q & =a x^{2}+2 b x y+2 c x z+d y^{2}+2 e y z+f z^{2} \\
& =a(x+b y / a+c z / a)^{2}+d^{\prime} y^{2}+2 e^{\prime} y z+f^{\prime} z^{2} \\
& =a(x+b y / a+c z / a)^{2}+d^{\prime}\left(y+e^{\prime} z / d^{\prime}\right)^{2}+f^{\prime \prime} z^{2}
\end{aligned}
$$

LLL reducedness

Any quadratic form Q in x_{1}, \ldots, x_{n} can be rewritten as

$$
\begin{aligned}
Q(\mathbf{x})= & b_{1}\left(x_{1}+\mu_{12} x_{2}+\cdots+\mu_{1 n} x_{n}\right)^{2} \\
& +b_{2}\left(x_{2}+\mu_{23} x_{3}+\cdots+\mu_{2 n} x_{n}\right)^{2} \\
& \vdots \\
& +b_{n-1}\left(x_{n-1}+\mu_{n-1, n} x_{n}\right)^{2}+b_{n} x_{n}^{2} .
\end{aligned}
$$

Let $\omega \in(3 / 4,1]$ (slack-factor). Then Q is called LLL-reduced if:

- $\left|\mu_{i j}\right| \leq 1 / 2$ for all $i<j$.
- $b_{i+1}+\mu_{i, i+1}^{2} b_{i} \geq \omega b_{i}$ for all $i<n$.
(Lovasz condition)

LLL reduction

LLL-reduction consists of

- shifts $x_{i} \rightarrow x_{i}+a x_{j}$ with $j>i$ and $a \in \mathbb{Z}$
- swaps $x_{i} \leftrightarrow x_{i+1}$ for some $i<n$.

LLL-reduction algorithm:

- Perform shifts so that $\left|\mu_{i, i+1}\right| \leq 1 / 2$ for all $i<n$. Then enter the following
- Loop: find i such that $\omega b_{i}>b_{i+1}+\mu_{i, i+1}^{2} b_{i}$,
- If such i exists, swap $x_{i} \leftrightarrow x_{i+1}$ and fix $\mu_{i-1, i}, \mu_{i, i+1}$ and $\mu_{i+1, i+2}$ by a shift. REPEAT the Loop.
- If no such i exists, EXIT the Loop.
- Now the Lovasz conditions hold and $\left|\mu_{i, i+1}\right| \leq 1 / 2$ for $i<n$ (partial LLL-reduction). Perform shifts so that $\left|\mu_{i j}\right| \leq 1 / 2$ for all $i<j$.

LLL properties

Theorem (LLL)

Let Q be a form in n variables with coefficients $\leq M$. Then the number of swaps in the LLL-reduction is bounded by $O\left(n^{2} \log \left(n^{2} M / \mu_{Q}\right)\right)$.

Theorem (LLL)

Let Q be a positive definite form in n variables and suppose Q is LLL-reduced with $\omega=3 / 4$. Then

- $Q\left(\mathbf{e}_{1}\right) \leq 2^{(n-1) / 2} d(Q)^{1 / n}$.
- For every $\mathbf{x} \in \mathbb{Z}^{n}$ with $\mathbf{x} \neq \mathbf{0}$ we have $Q\left(\mathbf{e}_{1}\right) \leq 2^{n-1} Q(\mathbf{x})$.

A continued fraction algorithm

Let $\alpha_{1}, \ldots, \alpha_{d} \in[-1 / 2,1 / 2]$.
We initialize with the form

$$
Q_{t}^{(0)}=\left(x_{1}-\alpha_{1} y\right)^{2}+\cdots+\left(x_{d}-\alpha_{d} y\right)^{2}+t y^{2} .
$$

When $t=1$ it is LLL-reduced. Define $P^{(0)}$ as the $(d+1) \times(d+1)$ identity matrix. We enter the following loop.

Loop:

- Determine the minimum of the set $\left\{t \mid Q_{t}^{(k)}\right.$ is LLL - reduced $\}$ and call it t_{k}.
- Perform an LLL-reduction on $Q_{t_{k}-\epsilon}^{(k)}$ for infinitesimal $\epsilon>0$ and let $\mathrm{x} \rightarrow A_{k} \mathrm{x}$ be the corresponding substitution of variables.
- Define $Q_{t}^{(k+1)}(\mathbf{x})=Q_{t}^{(k)}\left(A_{k} \mathbf{x}\right)$ and $P^{(k+1)}=P^{(k)} A_{k}$.

Property: Let $\left(p_{1}, p_{2}, \ldots, p_{d}, q\right)$ be the first column of $P^{(k)}$. Then

$$
\|\mathbf{p}-\boldsymbol{\alpha} q\| \leq \frac{2^{d / 4}}{q^{1 / d}}
$$

Explicit formulas

Let $\left(q_{i j}\right)_{i, j}$ be the matrix of the quadratic form Q. Define for all $1 \leq i<j \leq n$

$$
B_{i j}=\left|\begin{array}{cccc}
q_{11} & \ldots & q_{1, i-1} & q_{1 j} \\
q_{21} & \ldots & q_{2, i-1} & q_{2 j} \\
\vdots & & \vdots & \vdots \\
q_{i 1} & \ldots & q_{i, i-1} & q_{i j}
\end{array}\right|
$$

Then

$$
\mu_{i j}=B_{i j} / B_{i i}, \quad b_{i}=B_{i, i} / B_{i-1, i-1} .
$$

Explicit inequalities

The inequality $\left|\mu_{i j}\right| \leq 1 / 2$ translates into

$$
-B_{i i} \leq 2 B_{i j} \leq B_{i i}, j=i+1, \ldots, n
$$

The inequality $b_{i+1}+\mu_{i, i+1}^{2} b_{i} \geq \omega b_{i}$ translates into

$$
C_{i, i} \geq \omega B_{i, i}
$$

where $C_{i, i}$ is the i, i subdeterminant of $B_{i+1, i+1}$.
We have

$$
C_{i, i} B_{i, i}=B_{i+1, i+1} B_{i-1, i-1}+B_{i, i+1}^{2}
$$

Special forms

Observation

Consider the family of forms

$$
Q_{t}=\left(x_{1}-\alpha_{1} y\right)^{2}+\cdots+\left(x_{d}-\alpha_{d} y\right)^{2}+t y^{2}, \quad t>0
$$

Let $B_{i j}(t)$ be the corresponding subdeterminants. Then $B_{i j}(t)$ is linear in t for all $i \leq j$.

More precisely, $B_{i j}(t) \in \mathbb{Z}\left[t, \alpha_{1}, \ldots, \alpha_{d}\right]$. It is linear in t with coefficient in \mathbb{Z} and quadratic in the α_{i}.

Properties

Properties of the geodesic LLL-algorithm:

- The value of t_{k} is determined by a finite set of linear inequalities.
- All transformation matrices $P^{(k)}$ are distinct.
- If $\alpha_{i} \notin \mathbb{Q}$ for at least one i, then $\lim _{k \rightarrow \infty} t_{k}=0$.
- If $\alpha_{i} \in \mathbb{Q}$ for all i, the algorithm breaks off.
- The first column of $P^{(k)}$ only changes when the swap $x_{1} \leftrightarrow x_{2}$ is made.

Outlook

- Literature
- Experiments
- Is it useful?

The end

