METRICAL VERSIONS

OF THE TWO-DISTANCES THEOREM

Pseudo-randomness of a random Kronecker sequence
An instance of a dynamical analysis

Brigitte Vallée
CNRS, Laboratoire GREYC (CNRS et Université of Caen),

Joint work with Eda Cesaratto
Universidad de General Sarmiento, Buenos Aires

Outline of the talk

- The Kronecker sequence $n \mapsto n \alpha \bmod 1$
- The two-three distances Theorem.
- Its relation with Continued Fraction Expansions
- Pseudo-randomness of a random truncated Kronecker sequence
- Five parameters related to measures of pseudo-randomness.
- Three types of truncation.
- Four probabilistic models.
- Statement of some of the (sixty) results.
- A short description of the methods

A - The truncated Kronecker sequences.

Generalities on truncated sequence.

Consider a sequence $\mathcal{X}:=\left\{n \mapsto x_{n}, n \geq 0\right\} \subset[0,1]$
With a truncation integer T,
it defines a truncated sequence $\mathcal{X}_{\langle T\rangle}:=\left\{n \mapsto x_{n}, n<T\right\}$
We consider - the ordered sequence $\left\{y_{i}, \quad i \in[0, T[\}\right.$ on the unit torus.

- the distances δ_{i} 's between two consecutive points

An instance for the Kronecker sequence

$$
\begin{gathered}
\mathcal{X}:=\mathcal{K}(\alpha):=\left\{x_{n}:=\{n \alpha\}, n \geq 0\right\}, \quad \alpha=7 / 17, \quad T=4 \\
x_{0}=0, x_{1}=7 / 17, x_{2}=14 / 17, x_{3}=4 / 17 \\
y_{0}=0, y_{1}=4 / 17, y_{2}=7 / 17, y_{3}=14 / 17 \\
\delta=\frac{1}{17}(4,3,7,3)
\end{gathered}
$$

Example of the Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$ for $\alpha=7 / 17$.

$$
T=3
$$

$$
\delta=\frac{1}{17}(7,7,3)
$$

$$
\delta=\frac{1}{17}(4,3,7,3)
$$

Example of the Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$ for $\alpha=7 / 17$.

$$
T=5
$$

$$
T=6
$$

$$
\delta=\frac{1}{17}(4,3,4,3,3)
$$

$$
\delta=\frac{1}{17}(1,3,3,4,3,3)
$$

> Main facts on the behaviour of the δ_{i} 's for the truncated Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$

The behaviour of the sequence δ_{i} depends on the Continued Fraction Expansion of the real number α.

The Two-Three Distances Theorem proves that the sequence of δ_{i} 's takes only TWO or THREE distinct values.
-The number of distinct values (two or three)

- The values themselves only depend on
- the CFE of the real α
- the position of T with respect to the CFE.

The Continued Fraction Expansion of α.

$$
\alpha=\frac{1}{m_{1}+\frac{1}{m_{2}+\frac{1}{\ddots}+\frac{1}{m_{p}+\frac{1}{\ddots .}}}}
$$

uses the family of linear fractional transformations (LFT in shorthand)

$$
h_{[m]}: x \mapsto \frac{1}{m+x}
$$

and their composition

$$
h_{\left[m_{1}\right]} \circ h_{\left[m_{2}\right]} \circ \ldots \circ h_{\left[m_{p}\right]} \circ \ldots
$$

Continuants q_{k} and distances θ_{k}
When split at depth k, the CFE of the real x produces the beginning rational, the middle digit, and the ending real,

$$
\frac{p_{k}}{q_{k}}=\frac{1}{m_{1}+\frac{1}{m_{2}+\frac{1}{\ddots}+\frac{1}{m_{k}}}}
$$

The beginning part defines the LFT

$$
g_{k}:=h_{\left[m_{1}\right]} \circ h_{\left[m_{2}\right]} \circ \ldots \circ h_{\left[m_{k}\right]},
$$

with $g_{k}(y)=\frac{p_{k-1} y+p_{k}}{q_{k-1} y+q_{k}}$,
and the rational $\frac{p_{k}}{q_{k}}=g_{k}(0)$.
$x_{k}=\frac{1}{m_{k+1}+\frac{1}{m_{k+2}+\frac{1}{\ddots}}}$

The real x_{k} is defined by the equality

$$
x=g_{k}\left(x_{k}\right), \quad \text { or } \quad x_{k}=\frac{\theta_{k+1}(x)}{\theta_{k}(x)}
$$

which involves the distance

$$
\theta_{k}(x):=\left|q_{k-1} x-p_{k-1}\right| .
$$

Two-distances phenomenon for the truncated sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$.
Consider the partition of \mathbb{N} by the intervals $\left[q_{k-1}+q_{k}, q_{k+1}+q_{k}[(k \geq 1)\right.$
Any (truncation) integer in the interval $\left[q_{k-1}+q_{k}, q_{k+1}+q_{k}[\right.$ is written as

$$
T=m q_{k}+q_{k-1}+r, \quad m \in\left[1 . . m_{k+1}\right], \quad r \in\left[0 . . q_{k}-1\right] .
$$

$\left(\right.$ Remind $\left.q_{k+1}=m_{k+1} q_{k}+q_{k-1}\right)$

It gives rise to the two-distances phenomenon iff $r=0$.

- Such truncation integers are called two-distances integers.
- They are of the form

$$
T=m q_{k}+q_{k-1}, \quad m \in\left[1 . . m_{k+1}\right] .
$$

In the sequel, we only deal with this (particular) case.
B - Five parameters as measures of pseudo-randomness

Truncated Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$ with two distances.
I - First parameters of interest for $T=m q_{k}+q_{k-1}$

- The two distances. the small one and the large one

$$
\alpha=\frac{7}{17}, T=5
$$

$$
\widehat{\Gamma}_{\langle T\rangle}=\theta_{k+1}, \quad \widetilde{\Gamma}_{\langle T\rangle}=\theta_{k}-(m-1) \theta_{k+1}
$$

- The number of large distances : q_{k}
- The number of small distances :

$$
T-q_{k}=(m-1) q_{k}+q_{k-1}
$$

- The space covered by the large distance:

$$
\delta=\frac{1}{17}(4,3,4,3,3)
$$

$$
\begin{gathered}
S_{\langle T\rangle}=q_{k}\left(\theta_{k}-(m-1) \theta_{k+1}\right) . \\
\text { Here : } \quad S_{\langle 5\rangle}=\frac{12}{17}
\end{gathered}
$$

Truncated Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$ with two distances.

II - Discrepancy

For a general sequence \mathcal{X}, the discrepancy $D_{\langle T\rangle}(\mathcal{X})$ compares the ordered sequence y_{j} to the sequence j / T.

$$
\alpha=\frac{7}{17}, T=5
$$

$$
D_{\langle T\rangle}(\mathcal{X})=\sup _{j \in[1, T]}\left(\frac{j}{T}-y_{j}\right)+\sup _{j \in[1, T]}\left(y_{j}-\frac{j-1}{T}\right)
$$

For the Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$:

$$
\begin{gathered}
\Delta_{\langle T\rangle}(\alpha)=T \cdot D_{\langle T\rangle}(\alpha)=1+\left(m q_{k}+q_{k-1}-1\right)\left(\theta_{k}-m \theta_{k+1}\right) \\
\Delta_{\langle T\rangle}(\alpha) \sim 1+\left(m q_{k}+q_{k-1}\right)\left(\theta_{k}-m \theta_{k+1}\right) .
\end{gathered}
$$

$\delta=\frac{1}{17}(4,3,4,3,3)$
Here: $\quad \Delta_{\langle 5\rangle}=\frac{21}{17}$

Truncated Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$ with two distances. II - Discrepancy

$$
\alpha=\frac{7}{17}, T=5
$$

For a general sequence \mathcal{X}, the discrepancy $D_{\langle T\rangle}(\mathcal{X})$ compares the ordered sequence y_{j} to the sequence j / T.

$$
D_{\langle T\rangle}(\mathcal{X})=\sup _{j \in[1, T]}\left(\frac{j}{T}-y_{j}\right)+\sup _{j \in[1, T]}\left(y_{j}-\frac{j-1}{T}\right)
$$

What is known on $\Delta_{\langle T\rangle}(\mathcal{X})=T D_{\langle T\rangle}(\mathcal{X})$?
There exist C, C^{\prime}, such that for any \mathcal{X} :

- one has $\Delta_{\langle T\rangle}(\mathcal{X}) \geq C$ for any T.
- there is T such that $\Delta_{\langle T\rangle}(\mathcal{X}) \geq C^{\prime} \log T$

We are interested in a better understanding of this logarithmic
$\delta=\frac{1}{17}(4,3,4,3,3)$

We are interested in a better understanding of this logarithmic behaviour in the case of a random Kronecker sequence.

Truncated Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$ with two distances.
III - Arnold measure

$$
\alpha=\frac{7}{17}, T=5
$$

$$
A_{\langle T\rangle}=\frac{1}{T} \sum_{i=1}^{T}\left(\frac{\delta_{i}}{\frac{1}{T}}\right)^{2}=T \sum_{i=1}^{T} \delta_{i}{ }^{2}
$$

For the Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$:

$$
\begin{aligned}
& A_{\langle T\rangle}(\alpha)=\left(m q_{k}+q_{k-1}\right) . \\
& \quad\left[\left((m-1) q_{k}+q_{k-1}\right) \theta_{k+1}^{2}+q_{k}\left(\theta_{k}-(m-1) \theta_{k+1}\right)^{2}\right]
\end{aligned}
$$

Here: $\quad A_{\langle 5\rangle}=\frac{295}{289}$
For a general sequence $\mathcal{X}_{\langle T\rangle}$, the Arnold measure $A_{\langle T\rangle}(\mathcal{X})$ is the mean of the squares of the normalized $\hat{\delta}_{i}=T \delta_{i}$

Truncated Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$ with two distances.

III - Arnold measure

For a general sequence $\mathcal{X}_{\langle T\rangle}$, the Arnold measure $A_{\langle T\rangle}(\mathcal{X})$ is the mean of the squares of the normalized $\hat{\delta}_{i}=T \delta_{i}$

$$
A_{\langle T\rangle}=\frac{1}{T} \sum_{i=1}^{T}\left(\frac{\delta_{i}}{\frac{1}{T}}\right)^{2}=T \sum_{i=1}^{T} \delta_{i}{ }^{2}
$$

Arnold's proposal : The precise value of $A_{\langle T\rangle}(\mathcal{X})$ is a measure for the pseudo-randomness of $\mathcal{X}_{\langle T\rangle}$.

δ_{i} 's nearly equal	$A_{\langle T\rangle} \sim 1$.
all the δ_{i} 's small, except one	$A_{\langle T\rangle} \sim T$.
T large,	$s_{*}(T)=\frac{2 T}{T+1}$
δ_{i} 's i.i.d on the circle of length 1	$\lim _{T \rightarrow \infty} A_{\langle T\rangle}=2$.
with $\sum_{i=1}^{T} \delta_{i}=1$	

C - Main principles for our study.

Summary : Five parameters of interest
relative to a truncation integer $T=m q_{k}+q_{k-1}$ with $m \in\left[1 . . m_{k+1}\right]$ Distances $\Gamma_{\langle T\rangle}$, Covered space $S_{\langle T\rangle}$, Discrepancy $\Delta_{\langle T\rangle}$, Arnold measure $A_{\langle T\rangle}$

$\widehat{\Gamma}_{\langle T\rangle}$	θ_{k+1}
$\widetilde{\Gamma}_{\langle T\rangle}$	$\theta_{k}-(m-1) \theta_{k+1}$
$S_{\langle T\rangle}$	$q_{k}\left(\theta_{k}-(m-1) \theta_{k+1}\right)$
$\Delta_{\langle T\rangle}$	$1+\left(m q_{k}+q_{k-1}\right)\left(\theta_{k}-m \theta_{k+1}\right)$
$A_{\langle T\rangle}$	$\left(m q_{k}+q_{k-1}\right)\left[\left((m-1) q_{k}+q_{k-1}\right) \theta_{k+1}^{2}+q_{k}\left(\theta_{k}-(m-1) \theta_{k+1}\right)^{2}\right]$

These parameters are linear combinations of elementary costs, of the form

$$
R_{k}=m^{e} q_{k-1}^{a} q_{k}^{b} \theta_{k}^{c} \theta_{k+1}^{d}
$$

with $m \in\left[1 . . m_{k+1}\right]$ and a, b, c, d, e some positive integers.
What about the mean value $\mathbb{E}\left[R_{k}\right]$?
Not so easy a priori since R_{k} is a product of correlated variables.
We are interested by the expectation of these parameters

- in suitable probabilistic models, to be defined;
- for suitable integers $m \in\left[1 . . m_{k+1}\right]$

Most of the existing works

- deal with a fixed real number α
- study the pseudo-randomness of the truncated sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$ mainly with the discrepancy measure.
- ask the question:

For a given α, for which T, the discrepancy is maximal? minimal?

We ask (and answer) the same kind of questions. However, we deal with

- various subsets $A \subset[0,1]$ of real numbers α
- various families \mathcal{T} of truncations T
- various parameters X for pseudo-randomness (not only the discrepancy)

And we study the asymptotics of the mean value,

$$
\mathbb{E}_{A}\left[X_{\langle T\rangle}\right] \quad \text { for } T \in \mathcal{T}, T \rightarrow \infty
$$

For which triples (A, X, \mathcal{T}) is there a logarithmic behaviour ?

Probabilistic study
 of five parameters used as measures for quasi-randomness of the truncated Kronecker sequence

Position for the truncation
How to choose $m \in\left[1 . . m_{k+1}\right] ?$
How to choose the truncation $T=m q_{k}+q_{k-1} ?$

Three types of parameters
Unbalanced, Balanced - extremal or non extremal-

Four probabilistic models
Real model versus rational model
Unconstrained versus Constrained

I (a)- Position of truncation integers $T=m q_{k}+q_{k-1}$ with $m \in\left[1 . . m_{k+1}\right]$.
The parameter m plays an important rôle.

- It may vary in the whole interval [1.. m_{k+1}],
- the quotient m_{k+1} has an infinite mean value.

We focus on the value of m with respect to m_{k+1}.
To a real $\mu \in[0,1]$, called the position:

- We associate the integer $m=\left\lfloor 1+\mu\left(m_{k+1}-1\right)\right\rceil$
- this defines the truncation sequence at position μ,

$$
T=T_{k}^{\langle\mu\rangle}=\left\lfloor 1+\mu\left(m_{k+1}-1\right)\right\rceil q_{k}+q_{k-1}
$$

- For each parameter X of interest, this defines the sequence at position μ

$$
X_{k}^{\langle\mu\rangle}:=X_{\langle T\rangle} \text { when } T=T_{k}^{\langle\mu\rangle} .
$$

We are interested in the probabilistic behaviour of such a sequence.
We recover the two boundary cases:

$$
m=1 \text { for } \mu=0 \text { and } m=m_{k+1} \text { for } \mu=1
$$

In these cases, the quotient m_{k+1} does not appear in the expression of $X_{\langle T\rangle}$ (Up to a translation on index $k, m=m_{k+1}$ plays the same rôle as $m=0$.)

This explains why the two cases $\mu=0$ and $\mu=1$ may be very particular.

I (b) -Expression of the five parameters at boundary positions $\mu=0$ and $\mu=1$.

	$m=1[\mu=0]$	$m=m_{k+1}[\mu=1]$
$\widehat{\Gamma}_{\langle T\rangle}$	θ_{k+1}	θ_{k+1}
$\widetilde{\Gamma}_{\langle T\rangle}$	θ_{k}	$\theta_{k}+\theta_{k+1}$
$S_{\langle T\rangle}$	$q_{k} \theta_{k}$	$q_{k}\left(\theta_{k}+\theta_{k+1}\right)$
$\Delta_{\langle T\rangle}$	$1+\left(q_{k}+q_{k-1}\right)\left(\theta_{k}-\theta_{k+1}\right)$	$1+q_{k} \theta_{k+1}$
$A_{\langle T\rangle}$	$\left(q_{k}+q_{k-1}\right)\left[q_{k-1} \theta_{k+1}^{2}+q_{k} \theta_{k}^{2}\right]$	$q_{k}\left[\left(q_{k}-q_{k-1}\right) \theta_{k}^{2}+q_{k-1}\left(\theta_{k}+\theta_{k+1}\right)^{2}\right]$

$$
\text { II }(a) \text { - Classification of costs } R_{k}=m^{e} q_{k-1}^{a} q_{k}^{b} \theta_{k}^{c} \theta_{k+1}^{d}
$$

A first easy study: $\mathbb{E}\left[\log R_{k}\right]$

when m is any integer in $\left[1 . . m_{k+1}\right]$ and α uniformy chosen in $[0,1]$

Well known estimates involve the entropy $\mathcal{E}=\pi^{2} /(6 \log 2)$:
$\mathbb{E}\left[\log q_{k}\right]=\frac{k \mathcal{E}}{2}+O(1) \quad \mathbb{E}\left[\log \theta_{k}\right]=-\frac{k \mathcal{E}}{2}+O(1), \quad \mathbb{E}\left[\log m_{k+1}\right]=\Theta(1)$.

Then, two main cases depending on the sum $(a+b)$ wrt the sum $(c+d)$

Unbalanced	$(a+b) \neq(c+d)$	$\mathbb{E}\left[\log R_{k}\right] \sim k(\mathcal{E} / 2) \cdot[(a+b)-(c+d)]$
Balanced	$(a+b)=(c+d)$	$\mathbb{E}\left[\log R_{k}\right]=O(1)$

The two distances are unbalanced.
The other three costs are balanced with a balance $f=a+b=c+d$

- equal to $f=1$, for the covered space and the discrepancy
- equal to $f=2$ for the Arnold measure

II (b) - Balanced cost $R_{k}=m^{e} q_{k-1}^{a} q_{k}^{b} \theta_{k}^{c} \theta_{k+1}^{d}$ at position $\left.\mu \in\right] 0,1[$.

- Balanced cost $a+b=c+d=f$
- At position $\mu \in] 0,1\left[\right.$, one has $m^{e} \approx \mu^{e} m_{k+1}^{e}$.
- Replace q_{k-1} by $q_{k-1}=\left(1-\theta_{k} q_{k}\right) / \theta_{k+1}$. Remark $\theta_{k+1} / \theta_{k} \approx 1 / m_{k+1}$.

$$
\Longrightarrow \quad R_{k} \approx \mu^{e}\left(\theta_{k} q_{k}\right)^{f-a}\left(1-\theta_{k} q_{k}\right)^{a} \quad m_{k+1}^{e-(d-a)}
$$

Important rôle played by the exponent of m_{k+1} equal to $e-(d-a)$.

$$
\text { We prove : } \quad \mathbb{E}\left[R_{k}\right]=\infty \Longleftrightarrow(a=0 \text { and } e=1+d)
$$

In this case, the cost is called "extremal".

Extremal part of the three balanced parameters $\left.m \approx \mu m_{k+1}, \quad \mu \in\right] 0,1[$

$$
\begin{array}{|l|l|}
\hline S_{\langle T\rangle} & 0 \\
\Delta_{\langle T\rangle} & m q_{k} \theta_{k}-m^{2} q_{k} \theta_{k+1} \\
A_{\langle T\rangle} & m q_{k}^{2} \theta_{k}^{2}-2 m^{2} q_{k}^{2} \theta_{k} \theta_{k+1}+m^{3} q_{k}^{2} \theta_{k+1}^{2} \\
\hline
\end{array}
$$

III (a)-Probabilistic models: Real model versus Rational model
For each parameter X, for μ fixed in $[0,1]$, the sequence at position μ is

$$
X_{k}^{\langle\mu\rangle}:=X_{\langle T\rangle} \text { when } T=T_{k}^{\langle\mu\rangle}=\left\lfloor 1+\mu\left(m_{k+1}-1\right)\right\rceil q_{k}+q_{k-1}
$$

This defines a sequence of random variables, which depend on α,

$$
\alpha \text { may be a random real - or a random rational }
$$

It is "natural" to compare the two cases.
Real model. The real α is uniformly drawn in the unit interval \mathcal{I}. We study the behaviour of the mean value $\mathbb{E}\left[X_{k}^{\langle\mu\rangle}\right]$ for $k \rightarrow \infty$,

Rational model. For a rational α of depth $P(\alpha)$, the index k satisfies $k \leq P(\alpha)$.
The index k is chosen as an admissible function K of the depth P, i.e., $k=K(P)$

$$
\text { with } \quad \beta^{-} P \leq K(P) \leq \beta^{+} P \quad \text { for two constants } 0<\beta^{-}<\beta^{+}<1 .
$$

- We consider the (finite) set Ω_{N} of rationals α with $\operatorname{den}(\alpha) \leq N$, endowed with the uniform probability,
- We choose and fix an admissible function K for the index

We study the behaviour of the mean value $\mathbb{E}_{N}\left[X_{K}^{\langle\mu\rangle}\right]$ for $N \rightarrow \infty$.

III(b) - Probabilistic models: Unconstrained model versus constrained model
There is a close connection between the two behaviours

- the truncated Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$
- the (boundness) of the sequence of digits $\left(m_{k}\right)$ in the CFE of α

This is why we wish to deal with the "constrained" models, where all the digits m_{k} are bounded by some constant M and then let M tend to ∞ to obtain the unconstrained model.

Two main constrained cases.

- The real case:
the Cantor set $\mathcal{I}^{[M]}$ of real numbers with digits $m_{k} \leq M$
- The rational case:
the set $\Omega_{N}^{[M]}$ of rational numbers with den $\leq N$ and digits $m_{k} \leq M$

Probabilistic study
of five parameters used as measures for quasi-randomness of the truncated Kronecker sequence

Three types of positions for the truncation
Boundary cases $\mu=0$ and $\mu=1$
Generic case $\mu \in] 0,1[$

Three types of parameters

Unbalanced	Balanced with a zero extremal part for a generic position $\mu \in] 0,1[$	Balanced with a non zero extremal part for a generic position $\mu \in] 0,1[$
Two distances	Covered Space	Discrepancy and Arnold Measure

Four probabilistic models
Real model versus rational model
Unconstrained versus Constrained

D -Some of our results.

Distances in the M-constrained model $[M \leq \infty]$.
Real case: α is uniformy chosen in the set $\mathcal{I}^{[M]}$ of reals with $m_{k} \leq M$.
The mean value of any distance [small or large] is exponentially decreasing,

$$
\mathbb{E}^{[M]}\left[\Gamma_{k}\right]=\Theta\left(\gamma_{M}^{k}\right) \quad(k \rightarrow \infty)
$$

The rate γ_{M} involves the dominant eigenvalue $\lambda_{M}(s)$ of the operator

$$
\mathbf{H}_{M, s}[g](x):=\sum_{m \leq M} \frac{1}{(m+x)^{2 s}} g\left(\frac{1}{m+x}\right)
$$

and the Hausdorff dimension σ_{M} of $\mathcal{I}^{[M]}$ with the relation $\lambda_{M}\left(\sigma_{M}\right)=1$.

> The rate γ_{M} equals $\lambda_{M}\left(\sigma_{M}+\frac{1}{2}\right)$.
> When $M=\infty$, the rate equals $\lambda_{\infty}\left(\frac{3}{2}\right)$.

This value $\lambda_{\infty}\left(\frac{3}{2}\right) \sim 0.3964$ is "new" in Euclidean probabilistic analyses.
Constrained case \rightarrow Unconstrained case :

$$
\gamma_{M}=\gamma_{\infty}\left[1+O\left(\frac{1}{M}\right)\right] \quad(M \rightarrow \infty)
$$

Distances in the probabilistic M-constrained model $[M \leq \infty]$.
Rational case: α is uniformy chosen in $\Omega_{N}^{[M]}$.
The index K is chosen as the δ-fraction of the depth

$$
K=K_{\langle\delta\rangle}=\lfloor\delta P\rfloor, \delta \in \mathbb{Q} \cap[0,1]
$$

The mean value of any distance [small or large] is exponentially decreasing,

$$
\mathbb{E}_{N}^{[M]}\left[\Gamma_{K_{\langle\delta\rangle}}\right]=\Theta\left(N^{2\left[\sigma_{M}(\delta)-\sigma_{M}\right]}\right) \quad[N \rightarrow \infty]
$$

The exponent $\sigma_{M}(\delta)$ is the unique real solution of the equation
$\lambda_{M}^{1-\delta}(\sigma) \lambda_{M}^{\delta}\left(\sigma+\frac{1}{2}\right)=1 \quad$ with $\sigma_{M}(0)=\sigma_{M}, \quad \sigma_{M}(1)=\sigma_{M}-(1 / 2)$.
Constrained case \rightarrow Unconstrained case :

$$
(\forall \delta \in[0,1]) \quad \sigma_{M}(\delta)=\sigma_{\infty}(\delta)\left[1+O\left(\frac{1}{M}\right)\right] \quad(M \rightarrow \infty)
$$

Study of the balanced parameters - Covered space, Discrepancy, Arnold Measure-. at a boundary position $\mu=0$ [case -] and $\mu=1$ [case +].

Case of the random variables $X_{k}^{ \pm} \in\left\{S_{k}^{ \pm}, \Delta_{k}^{ \pm}, A_{k}^{ \pm}\right\}$
(i) For each X, the expectations $\mathbb{E}^{[M]}\left[X_{k}^{ \pm}\right]$have the same finite limit $\chi_{M}^{ \pm}$ in the real case and the rational case.
(ii) Constrained case \rightarrow Unconstrained case :

$$
\chi_{M}^{ \pm}=\chi_{\infty}^{ \pm}\left[1+O\left(\frac{1}{M}\right)\right] \quad(M \rightarrow \infty)
$$

(iii) The values $\chi_{\infty}^{ \pm}$are explicit:

$$
\begin{array}{lll}
s^{-}=\frac{1}{2}+\frac{1}{4 \log 2} \sim 0.861, & d^{-}=1+\frac{1}{2 \log 2} \sim 1.721 & a^{-}=\frac{2}{3}+\frac{1}{3 \log 2} \sim 1.147 \\
s^{+}=\frac{1}{2} & d^{+}=1+\frac{1}{4 \log 2} \sim 1.360, & a^{+}=\frac{2}{3}+\frac{1}{4 \log 2} \sim 1.027 .
\end{array}
$$

Study of the balanced parameters - Discrepancy and Arnold Measureat a generic position $\mu \in] 0,1[$
Case of the random variables $X_{k}^{\langle\mu\rangle}$ with $X \in\{\Delta, A\}$
(i) The expectations $\mathbb{E}\left[X_{k}^{\langle\mu\rangle}\right]$ in the real unconstrained model are infinite.
(ii) In the rational unconstrained model, there is a logarithmic behaviour
$\mathbb{E}_{N}\left[\Delta_{K}^{\langle\mu\rangle}\right] \sim \mu(1-\mu) \log _{2} N, \quad \mathbb{E}_{N}\left[A_{K}^{\langle\mu\rangle}\right] \sim \mu(1-\mu)^{2} \log _{2} N, \quad(N \rightarrow \infty)$
(iii) In the unconstrained models, the expectations have the same finite limit in the real and the rational models
[Real Case.] for $k \rightarrow \infty: \quad \mathbb{E}^{[M]}\left[\Delta_{k}^{\langle\mu\rangle}\right] \rightarrow d_{M}^{\langle\mu\rangle}, \quad \mathbb{E}^{[M]}\left[A_{k}^{\langle\mu\rangle}\right] \rightarrow a_{M}^{\langle\mu\rangle}$
[Rational Case.] for $N \rightarrow \infty: \mathbb{E}_{N}^{[M]}\left[\Delta_{K}^{\langle\mu\rangle}\right] \rightarrow d_{M}^{\langle\mu\rangle}, \quad \mathbb{E}_{N}^{[M]}\left[A_{K}^{\langle\mu\rangle}\right] \rightarrow a_{M}^{\langle\mu\rangle}$.
(iv) Constrained \rightarrow Unconstrained : a logarithmic behaviour

$$
d_{M}^{\langle\mu\rangle} \sim \mu(1-\mu) \log _{2} M, \quad a_{M}^{\langle\mu\rangle} \sim \mu(1-\mu)^{2} \log _{2} M, \quad(M \rightarrow \infty)
$$

(v) Maximum for the mean discrepancy at $\mu=1 / 2$.

Maximum for the mean Arnold measure at $\mu=1 / 3$.

Conclusion.

We try to answer the question:
Is a random Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$ pseudo-random?
We describe a model with various possible choices

- Five parameters of pseudo-randomness,
- Families of truncations T
- Specific subsets for α.
where a precise answer can be provided.
We also study the random behaviour of general parameters which are polynomials in $q_{k}, \theta_{k}, m_{k+1}$

We limit ourselves to the two-distances framework.
In the three-distances framework,

- similar behaviours can be exhibited for four parameters,
- but, for the discrepancy,
we do not have a close formula as a polynomial function in $\theta_{k}, q_{k}, m_{k+1}$.
D) Some hints on the methods.

Dynamical analysis method for the rational setting
The main tool for studying a cost $R\left(\frac{u}{v}\right)$ on each

$$
\Omega_{N}=\{u / v: \operatorname{gcd}(u, v)=1,0 \leq u \leq v \leq N\}
$$

is the Dirichlet generating function of cost R on the set $\Omega=\bigcup_{N} \Omega_{N}$:

$$
\begin{gathered}
S_{R}(s):=\sum_{u / v \in \Omega} \frac{1}{v^{2 s}} R\left(\frac{u}{v}\right)=\sum_{k} \frac{c_{k}}{k^{2 s}}, \quad \text { with } \quad c_{k}:=\sum_{\substack{u \leq k \\
\operatorname{gcd}(u, k)=1}} R\left(\frac{u}{k}\right) . \\
\text { Then, } \quad \mathbb{E}_{N}[R]:=\frac{\sum_{k \leq N} c_{k}}{\sum_{k \leq N} a_{k}}
\end{gathered}
$$

where a_{k} is the coefficient of the series $S_{[R]}$ for $R=1$.
Three main steps.
Step 1. Look for an alternative form of S_{R} with dynamical systems.
Step 2. Study singularities of S_{R}
Step 3. Transfer these informations on the asymptotics of $\mathbb{E}_{N}[R]$.

Euclidean Dynamical System and the continuous world

The Gauss map $T:[0,1] \rightarrow[0,1]$

$$
T(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor, \quad T(0)=0 .
$$

$$
\mathcal{H}:=\left\{h: x \mapsto \frac{1}{m+x}, \quad m \geq 1\right\}
$$

is the set of inverse branches of T

Density Transformer:
For a density f on $\mathcal{I}, \mathbf{H}[f]$ is the density on \mathcal{I} after one iteration of shift T

$$
\begin{aligned}
\mathbf{H}[f](x)=\sum_{h \in \mathcal{H}} & \left|h^{\prime}(x)\right| f \circ h(x) \\
& =\sum_{m \in \mathbb{N}} \frac{1}{(m+x)^{2}} f\left(\frac{1}{m+x}\right) .
\end{aligned}
$$

Transfer operator (Ruelle):

$$
\mathbf{H}_{s}[f](x)=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right|^{s} f \circ h(x) .
$$

The k-th iterate satisfies:

$$
\mathbf{H}_{s}^{k}[f](x)=\sum_{h \in \mathcal{H}^{k}}\left|h^{\prime}(x)\right|^{s} f \circ h(x)
$$

Discrete world.

 Generation of $q_{k}, \theta_{k}, m_{k+1}$ via transfer operatorsMain fact. If $h: x \mapsto h(x)=\frac{a x+b}{c x+d}$, then $\quad h^{\prime}(x)=\frac{\operatorname{det} h}{(c x+d)^{2}}$

$$
\text { For coprime }(u, v) \text {, if } \quad \frac{u}{v}=h(0), \quad \text { then } \frac{1}{v^{2}}=\left|h^{\prime}(0)\right| .
$$

Since continuants q_{k}, distances θ_{k}, digits m_{k+1} are denominators, the operators \mathbf{H}_{s}^{k}, with some extensions, are able to generate continuants q_{k}, distances θ_{k} of depth k.

The transfer operators used as generating operators.

$$
R_{k}=\left(\theta_{k} q_{k}\right)^{f-a}\left(1-\theta_{k} q_{k}\right)^{a} m_{k+1}^{e}\left(\frac{\theta_{k+1}}{\theta_{k}}\right)^{d-a}
$$

Name	Use	Definition of the component operator
\mathbf{H}_{s+a}	$\left(\theta_{k+1} / \theta_{k}\right)^{2 a}$	$\left\|h^{\prime}(x)\right\|^{s+a} \cdot g \circ h(x)$
$\mathbf{H}_{(s+b,-b)}$	$\left(\theta_{k} q_{k}\right)^{b}$	$\left\|h^{\prime}(x)\right\|^{s+b}\left\|h^{\prime}(y)\right\|^{-b} \cdot G(h(x), h(y))$
$\underline{\mathbf{H}}_{(s, c)}$	$m_{k+1}^{-2 c}$	$\left\|h^{\prime}(x)\right\|^{s}\left\|h^{\prime}(0)\right\|^{-c} \cdot g \circ h(x)$

In the constrained models, we use constrained operators (where the sum is taken over $h_{[m]}$ with $m \leq M$)

Main differences with the usual approach in Dynamical Analysis
A Dirichlet series $S_{R}(s)$ is associated to each parameter R.
Each series is expressed as a sum of powers of previous operators \mathbb{G}_{s}

- The classical setting deals with the usual transfer operator.

The Dirichlet series involves the quasi-inverse of this operator

$$
\left(I-\mathbf{H}_{s}\right)^{-1}=\sum_{p \geq 1} \mathbf{H}_{s}^{p} .
$$

- Here, one deals with the red and blue transfer operators,

The Dirichlet series involve pseudo-quasi-inverses:

$$
\sum_{p=1}^{\infty} \mathbf{H}_{s+a}^{p-K(p)} \circ \mathbf{H}_{(s+b,-b)}^{K(p)} \cdots
$$

