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Outline of the talk

– The Kronecker sequence n 7→ nα mod 1

– The two–three distances Theorem.

– Its relation with Continued Fraction Expansions

– Pseudo-randomness of a random truncated Kronecker sequence

– Five parameters related to measures of pseudo-randomness.

– Three types of truncation.

– Four probabilistic models.

– Statement of some of the (sixty) results.

– A short description of the methods



A – The truncated Kronecker sequences.



Generalities on truncated sequence.

Consider a sequence X := {n 7→ xn, n ≥ 0} ⊂ [0, 1]

With a truncation integer T ,

it defines a truncated sequence X〈T 〉 := {n 7→ xn, n < T }

We consider – the ordered sequence {yi, i ∈ [0, T [} on the unit torus.

– the distances δi’s between two consecutive points

An instance for the Kronecker sequence

X := K(α) := {xn := {nα}, n ≥ 0}, α = 7/17, T = 4

x0 = 0, x1 = 7/17, x2 = 14/17, x3 = 4/17

y0 = 0, y1 = 4/17, y2 = 7/17, y3 = 14/17

δ =
1

17
(4, 3, 7, 3)

x0 x1 x2x3

δ1

δ3

δ4

δ2



Example of the Kronecker sequence K〈T 〉(α) for α = 7/17.

T = 3

δ1

δ2

δ3

δ =
1

17
(7, 7, 3)

T = 4

δ1

δ3

δ4

δ2

δ =
1

17
(4, 3, 7, 3)



Example of the Kronecker sequence K〈T 〉(α) for α = 7/17.

T = 5

δ1

δ3

δ4

δ5

δ2

δ =
1

17
(4, 3, 4, 3, 3)

T = 6

δ1

δ2

δ4

δ5

δ6

δ3

δ =
1

17
(1, 3, 3, 4, 3, 3)



Main facts on the behaviour of the δi’s

for the truncated Kronecker sequence K〈T 〉(α)

The behaviour of the sequence δi depends on

the Continued Fraction Expansion of the real number α.

The Two–Three Distances Theorem proves that the sequence of δi’s takes

only TWO or THREE distinct values.

–The number of distinct values (two or three)

– The values themselves only depend on

– the CFE of the real α

– the position of T with respect to the CFE.



The Continued Fraction Expansion of α.

α =
1

m1 +
1

m2 +
1

. . . +
1

mp +
1

. . .

uses the family of linear fractional transformations (LFT in shorthand)

h[m] : x 7→
1

m+ x

and their composition

h[m1] ◦ h[m2] ◦ . . . ◦ h[mp] ◦ . . .



Continuants qk and distances θk

When split at depth k, the CFE of the real x produces

the beginning rational, the middle digit, and the ending real,

pk
qk

=
1

m1 +
1

m2 +
1

. . . +
1

mk

xk =
1

mk+1 +
1

mk+2 +
1

. . .

The beginning part defines the LFT

gk := h[m1] ◦ h[m2] ◦ . . . ◦ h[mk],

with gk(y) =
pk−1y + pk
qk−1y + qk

,

and the rational
pk
qk

= gk(0).

The real xk is defined by the equality

x = gk(xk), or xk =
θk+1(x)

θk(x)

which involves the distance

θk(x) := |qk−1x− pk−1| .



Two-distances phenomenon for the truncated sequence K〈T 〉(α).

Consider the partition of N by the intervals [qk−1 + qk, qk+1 + qk[ (k ≥ 1)

Any (truncation) integer in the interval [qk−1 + qk, qk+1+ qk[ is written as

T = mqk + qk−1 + r, m ∈ [1..mk+1], r ∈ [0..qk − 1].

(Remind qk+1 = mk+1qk + qk−1)

It gives rise to the two-distances phenomenon iff r = 0.

– Such truncation integers are called two-distances integers.

– They are of the form

T = mqk + qk−1, m ∈ [1..mk+1].

In the sequel, we only deal with this (particular) case.



B – Five parameters as measures of pseudo-randomness



Truncated Kronecker sequence K〈T 〉(α) with two distances.

I – First parameters of interest for T = mqk + qk−1

α =
7

17
, T = 5

δ1

δ3

δ4

δ5

δ2

δ =
1

17
(4, 3, 4, 3, 3)

– The two distances. the small one and the large one

Γ̂〈T 〉 = θk+1, Γ̃〈T 〉 = θk − (m− 1)θk+1

– The number of large distances : qk

– The number of small distances :

T − qk = (m− 1)qk + qk−1

– The space covered by the large distance:

S〈T 〉 = qk(θk − (m− 1)θk+1).

Here : S〈5〉 =
12

17



Truncated Kronecker sequence K〈T 〉(α) with two distances.

II - Discrepancy

α =
7

17
, T = 5

δ1

δ3

δ4

δ5

δ2

δ =
1

17
(4, 3, 4, 3, 3)

For a general sequence X , the discrepancy D〈T 〉(X ) compares

the ordered sequence yj to the sequence j/T .

D〈T 〉(X ) = sup
j∈[1,T ]

(
j

T
− yj

)
+ sup

j∈[1,T ]

(
yj −

j − 1

T

)

For the Kronecker sequence K〈T 〉(α):

∆〈T 〉(α) = T ·D〈T 〉(α) = 1+ (mqk + qk−1 − 1)(θk −mθk+1)

∆〈T 〉(α) ∼ 1 + (mqk + qk−1)(θk −mθk+1).

Here: ∆〈5〉 =
21

17



Truncated Kronecker sequence K〈T 〉(α) with two distances.

II - Discrepancy

α =
7

17
, T = 5

δ1

δ3

δ4

δ5

δ2

δ =
1

17
(4, 3, 4, 3, 3)

For a general sequence X , the discrepancy D〈T 〉(X ) compares

the ordered sequence yj to the sequence j/T .

D〈T 〉(X ) = sup
j∈[1,T ]

(
j

T
− yj

)
+ sup

j∈[1,T ]

(
yj −

j − 1

T

)

What is known on ∆〈T 〉(X ) = TD〈T 〉(X )?

There exist C,C′, such that for any X :

– one has ∆〈T 〉(X ) ≥ C for any T .

– there is T such that ∆〈T 〉(X ) ≥ C′ logT

We are interested in a better understanding of this logarithmic

behaviour in the case of a random Kronecker sequence.



Truncated Kronecker sequence K〈T 〉(α) with two distances.

III - Arnold measure

α =
7

17
, T = 5

δ1

δ3

δ4

δ5

δ2

δ =
1

17
(4, 3, 4, 3, 3)

For a general sequence X〈T 〉, the Arnold measure A〈T 〉(X )

is the mean of the squares of the normalized δ̂i = Tδi

A〈T 〉 =
1

T

T∑

i=1

(
δi
1
T

)2

= T
T∑

i=1

δi
2

For the Kronecker sequence K〈T 〉(α):

A〈T 〉(α) = (mqk + qk−1)·[
((m− 1)qk + qk−1)θ

2
k+1 + qk(θk − (m− 1)θk+1)

2
]

Here: A〈5〉 =
295

289



Truncated Kronecker sequence K〈T 〉(α) with two distances.

III - Arnold measure

α =
7

17
, T = 5

δ1

δ3

δ4

δ5

δ2

δ =
1

17
(4, 3, 4, 3, 3)

For a general sequence X〈T 〉, the Arnold measure A〈T 〉(X )

is the mean of the squares of the normalized δ̂i = Tδi

A〈T 〉 =
1

T

T∑

i=1

(
δi
1
T

)2

= T
T∑

i=1

δi
2

Arnold’s proposal : The precise value of A〈T 〉(X )

is a measure for the pseudo-randomness of X〈T 〉.

δi’s nearly equal A〈T 〉 ∼ 1.
all the δi’s small, except one A〈T 〉 ∼ T .

T large,

δi’s i.i.d on the circle of length 1

with

T∑

i=1

δi = 1

s∗(T ) =
2T

T + 1

lim
T→∞

A〈T 〉 = 2.



C – Main principles for our study.



Summary : Five parameters of interest

relative to a truncation integer T = mqk + qk−1 with m ∈ [1..mk+1]

Distances Γ〈T 〉, Covered space S〈T 〉, Discrepancy ∆〈T 〉, Arnold measure A〈T 〉

Γ̂〈T 〉 θk+1

Γ̃〈T 〉 θk − (m− 1)θk+1

S〈T 〉 qk(θk − (m− 1)θk+1)

∆〈T 〉 1 + (mqk + qk−1)(θk −mθk+1)

A〈T 〉 (mqk + qk−1)
[
((m− 1)qk + qk−1)θ

2
k+1 + qk(θk − (m− 1)θk+1)

2
]

These parameters are linear combinations of elementary costs, of the form

Rk = me qak−1 q
b
k θ

c
k θ

d
k+1

with m ∈ [1..mk+1] and a, b, c, d, e some positive integers.

What about the mean value E[Rk]?

Not so easy a priori since Rk is a product of correlated variables.

We are interested by the expectation of these parameters

– in suitable probabilistic models, to be defined;

– for suitable integers m ∈ [1..mk+1]



Some objectives of the work.

Most of the existing works

– deal with a fixed real number α

– study the pseudo–randomness of the truncated sequence K〈T 〉(α)

mainly with the discrepancy measure.

– ask the question:

For a given α, for which T , the discrepancy is maximal? minimal?

We ask (and answer) the same kind of questions. However, we deal with

– various subsets A ⊂ [0, 1] of real numbers α

– various families T of truncations T

– various parameters X for pseudo-randomness

(not only the discrepancy)

And we study the asymptotics of the mean value,

EA[X〈T 〉] for T ∈ T , T → ∞.

For which triples (A,X, T ) is there a logarithmic behaviour ?



Probabilistic study

of five parameters used as measures for quasi-randomness

of the truncated Kronecker sequence

Position for the truncation

How to choose m ∈ [1..mk+1] ?

How to choose the truncation T = mqk + qk−1?

Three types of parameters

Unbalanced, Balanced – extremal or non extremal–

Four probabilistic models

Real model versus rational model

Unconstrained versus Constrained



I (a)– Position of truncation integers T = mqk + qk−1 with m ∈ [1..mk+1].

The parameter m plays an important rôle.

– It may vary in the whole interval [1..mk+1],

– the quotient mk+1 has an infinite mean value.

We focus on the value of m with respect to mk+1.

To a real µ ∈ [0, 1], called the position:

– We associate the integer m = ⌊1 + µ(mk+1 − 1)⌉

– this defines the truncation sequence at position µ,

T = T
〈µ〉
k = ⌊1 + µ(mk+1 − 1)⌉qk + qk−1

– For each parameter X of interest, this defines the sequence at position µ

X
〈µ〉
k := X〈T〉 when T = T

〈µ〉
k .

We are interested in the probabilistic behaviour of such a sequence.

We recover the two boundary cases:

m = 1 for µ = 0 and m = mk+1 for µ = 1

In these cases, the quotient mk+1 does not appear in the expression of X〈T〉

(Up to a translation on index k, m = mk+1 plays the same rôle as m = 0.)

This explains why the two cases µ = 0 and µ = 1 may be very particular.



I (b) –Expression of the five parameters at boundary positions µ = 0 and µ = 1.

m = 1 [ µ = 0 ] m = mk+1 [ µ = 1 ]

Γ̂〈T 〉 θk+1 θk+1

Γ̃〈T 〉 θk θk + θk+1

S〈T 〉 qkθk qk(θk + θk+1)

∆〈T 〉 1 + (qk + qk−1)(θk − θk+1) 1 + qkθk+1

A〈T 〉 (qk + qk−1)
[
qk−1θ

2
k+1 + qkθ

2
k

]
qk

[
(qk − qk−1)θ

2
k + qk−1(θk + θk+1)

2
]



II(a) – Classification of costs Rk = me qak−1 q
b
k θ

c
k θ

d
k+1

A first easy study : E[logRk]

when m is any integer in [1..mk+1] and α uniformy chosen in [0, 1]

Well known estimates involve the entropy E = π2/(6 log 2):

E[log qk] =
kE

2
+O(1) E[log θk] = −

kE

2
+O(1), E[logmk+1] = Θ(1).

Then, two main cases depending on the sum (a+ b) wrt the sum (c+ d)

Unbalanced (a+ b) 6= (c+ d) E[logRk] ∼ k(E/2) · [(a+ b)− (c+ d)]

Balanced (a+ b) = (c+ d) E[logRk] = O(1)

The two distances are unbalanced.

The other three costs are balanced with a balance f = a+ b = c+ d

– equal to f = 1, for the covered space and the discrepancy

– equal to f = 2 for the Arnold measure



II (b) – Balanced cost Rk = meqak−1q
b
kθ

c
kθ

d
k+1 at position µ ∈]0, 1[.

– Balanced cost a+ b = c+ d = f

– At position µ ∈]0, 1[, one has me ≈ µeme
k+1.

– Replace qk−1 by qk−1 = (1− θkqk) /θk+1. Remark θk+1/θk ≈ 1/mk+1.

=⇒ Rk ≈ µe(θkqk)
f−a(1− θkqk)

a mk+1
e−(d−a)

Important rôle played by the exponent of mk+1 equal to e− (d− a).

We prove : E[Rk] = ∞ ⇐⇒ (a = 0 and e = 1 + d)

In this case, the cost is called “extremal”.

Extremal part of the three balanced parameters m ≈ µmk+1, µ ∈]0, 1[

S〈T 〉 0

∆〈T 〉 mqkθk −m2 qkθk+1

A〈T 〉 mq2k θ
2
k − 2 m2 q2k θk θk+1 +m3q2k θ

2
k+1



III(a) –Probabilistic models: Real model versus Rational model

For each parameter X , for µ fixed in [0, 1], the sequence at position µ is

X
〈µ〉
k := X〈T 〉 when T = T

〈µ〉
k = ⌊1 + µ(mk+1 − 1)⌉qk + qk−1

This defines a sequence of random variables, which depend on α,

α may be a random real – or a random rational

It is “natural” to compare the two cases.

Real model. The real α is uniformly drawn in the unit interval I.

We study the behaviour of the mean value E[X
〈µ〉
k ] for k → ∞,

Rational model. For a rational α of depth P (α), the index k satisfies k ≤ P (α).

The index k is chosen as an admissible function K of the depth P , i.e., k = K(P )

with β−P ≤ K(P ) ≤ β+P for two constants 0 < β− < β+ < 1.

– We consider the (finite) set ΩN of rationals α with den(α) ≤ N ,

endowed with the uniform probability,

– We choose and fix an admissible function K for the index

We study the behaviour of the mean value EN [X
〈µ〉
K ] for N → ∞.



III(b) – Probabilistic models: Unconstrained model versus constrained model

There is a close connection between the two behaviours

– the truncated Kronecker sequence K〈T 〉(α)

– the (boundness) of the sequence of digits (mk) in the CFE of α

This is why we wish to deal with the “constrained” models,

where all the digits mk are bounded by some constant M

and then let M tend to ∞ to obtain the unconstrained model.

Two main constrained cases.

– The real case:

the Cantor set I [M ] of real numbers with digits mk ≤ M

– The rational case:

the set Ω
[M ]
N of rational numbers with den ≤ N and digits mk ≤ M



Probabilistic study

of five parameters used as measures for quasi-randomness

of the truncated Kronecker sequence

Three types of positions for the truncation

Boundary cases µ = 0 and µ = 1

Generic case µ ∈]0, 1[

Three types of parameters

Unbalanced Balanced Balanced

with a zero extremal part with a non zero extremal part

for a generic position µ ∈]0, 1[ for a generic position µ ∈]0, 1[

Two distances Covered Space Discrepancy and Arnold Measure

Four probabilistic models

Real model versus rational model

Unconstrained versus Constrained



D –Some of our results.



Distances in the M–constrained model [M ≤ ∞].

Real case: α is uniformy chosen in the set I [M ] of reals with mk ≤ M .

The mean value of any distance [small or large] is exponentially decreasing,

E[M ][Γk] = Θ(γM
k) (k → ∞),

The rate γM involves the dominant eigenvalue λM (s) of the operator

HM,s[g](x) :=
∑

m≤M

1

(m+ x)2s
g

(
1

m+ x

)
,

and the Hausdorff dimension σM of I [M ] with the relation λM (σM ) = 1.

The rate γM equals λM

(
σM + 1

2

)
.

When M = ∞, the rate equals λ∞

(
3
2

)
.

This value λ∞

(
3
2

)
∼ 0.3964 is “new” in Euclidean probabilistic analyses.

Constrained case → Unconstrained case :

γM = γ∞

[
1 +O

(
1

M

)]
(M → ∞)



Distances in the probabilistic M–constrained model [M ≤ ∞].

Rational case: α is uniformy chosen in Ω
[M ]
N .

The index K is chosen as the δ–fraction of the depth

K = K〈δ〉 = ⌊δP ⌋, δ ∈ Q ∩ [0, 1]

The mean value of any distance [small or large] is exponentially decreasing,

E
[M ]
N [ΓK〈δ〉

] = Θ
(
N2[σM (δ)−σM ]

)
[N → ∞].

The exponent σM (δ) is the unique real solution of the equation

λ1−δ
M (σ)λδ

M

(
σ +

1

2

)
= 1 with σM (0) = σM , σM (1) = σM − (1/2).

Constrained case → Unconstrained case :

(∀δ ∈ [0, 1]) σM (δ) = σ∞(δ)

[
1 +O

(
1

M

)]
(M → ∞)



Study of the balanced parameters – Covered space, Discrepancy, Arnold Measure–.

at a boundary position µ = 0 [case -] and µ = 1 [case +].

Case of the random variables X±
k ∈ {S±

k ,∆±
k , A

±
k }

(i) For each X , the expectations E[M ][X±
k ] have the same finite limit χ±

M

in the real case and the rational case.

(ii) Constrained case → Unconstrained case :

χ±
M = χ±

∞

[
1 +O

(
1

M

)]
(M → ∞)

(iii) The values χ±
∞ are explicit:

s− =
1

2
+

1

4 log 2
∼ 0.861, d− = 1 +

1

2 log 2
∼ 1.721 a− =

2

3
+

1

3 log 2
∼ 1.147

s+ =
1

2
d+ = 1 +

1

4 log 2
∼ 1.360, a+ =

2

3
+

1

4 log 2
∼ 1.027.



Study of the balanced parameters – Discrepancy and Arnold Measure–

at a generic position µ ∈]0, 1[

Case of the random variables X
〈µ〉
k with X ∈ {∆, A}

(i) The expectations E[X
〈µ〉
k ] in the real unconstrained model are infinite.

(ii) In the rational unconstrained model, there is a logarithmic behaviour

EN [∆
〈µ〉
K ] ∼ µ(1− µ) log2 N, EN [A

〈µ〉
K ] ∼ µ(1 − µ)2 log2 N, (N → ∞)

(iii) In the unconstrained models, the expectations have

the same finite limit in the real and the rational models

[Real Case.] for k → ∞ : E[M ][∆
〈µ〉
k ] → d

〈µ〉
M , E[M ][A

〈µ〉
k ] → a

〈µ〉
M

[Rational Case.] for N → ∞ : E
[M ]
N [∆

〈µ〉
K ] → d

〈µ〉
M , E

[M ]
N [A

〈µ〉
K ] → a

〈µ〉
M .

(iv) Constrained → Unconstrained : a logarithmic behaviour

d
〈µ〉
M ∼ µ(1− µ) log2 M, a

〈µ〉
M ∼ µ(1− µ)2 log2 M, (M → ∞)

(v) Maximum for the mean discrepancy at µ = 1/2.

Maximum for the mean Arnold measure at µ = 1/3.



Conclusion.

We try to answer the question:

Is a random Kronecker sequence K〈T 〉(α) pseudo-random?

We describe a model with various possible choices

– Five parameters of pseudo-randomness,

– Families of truncations T

– Specific subsets for α.

where a precise answer can be provided.

We also study the random behaviour of general parameters

which are polynomials in qk, θk,mk+1

We limit ourselves to the two–distances framework.

In the three-distances framework,

– similar behaviours can be exhibited for four parameters,

– but, for the discrepancy,

we do not have a close formula as a polynomial function in θk, qk,mk+1.



D) Some hints on the methods.



Dynamical analysis method for the rational setting

The main tool for studying a cost R
(
u
v

)
on each

ΩN = {u/v : gcd(u, v) = 1, 0 ≤ u ≤ v ≤ N}

is the Dirichlet generating function of cost R on the set Ω =
⋃

N ΩN :

SR(s) :=
∑

u/v∈Ω

1

v2s
R
(u
v

)
=

∑

k

ck
k2s

, with ck :=
∑

u≤k

gcd(u,k)=1

R
(u
k

)
.

Then, EN [R] :=

∑
k≤N ck∑
k≤N ak

where ak is the coefficient of the series S[R] for R = 1.

Three main steps.

Step 1. Look for an alternative form of SR with dynamical systems.

Step 2. Study singularities of SR

Step 3. Transfer these informations on the asymptotics of EN [R].



Euclidean Dynamical System and the continuous world

The Gauss map T : [0, 1] → [0, 1]

T (x) =
1

x
− ⌊

1

x
⌋, T (0) = 0.

H := {h : x 7→
1

m+ x
, m ≥ 1}

is the set of inverse branches of T

Density Transformer:

For a density f on I, H[f ] is the density on I

after one iteration of shift T

H[f ](x) =
∑

h∈H

|h′(x)|f ◦ h(x)

=
∑

m∈N

1

(m+ x)2
f(

1

m+ x
).

Transfer operator (Ruelle):

Hs[f ](x) =
∑

h∈H

|h′(x)|sf ◦ h(x).

The k-th iterate satisfies:

H
k
s [f ](x) =

∑

h∈Hk

|h′(x)|sf ◦ h(x)



Discrete world.

Generation of qk, θk,mk+1 via transfer operators

Main fact. If h : x 7→ h(x) =
ax+ b

cx+ d
, then h′(x) =

deth

(cx+ d)2

For coprime (u, v), if
u

v
= h(0), then

1

v2
= |h′(0)|.

Since continuants qk, distances θk, digits mk+1 are denominators,

the operators Hk
s , with some extensions, are able to generate

continuants qk, distances θk of depth k.



The transfer operators used as generating operators.

Rk = (θkqk)
f−a(1 − θkqk)

a mk+1
e

(
θk+1

θk

)d−a

Name Use
Definition

of the component operator

Hs+a (θk+1/θk)
2a |h′(x)|s+a · g ◦ h(x)

H(s+b,−b) (θkqk)
b |h′(x)|s+b|h′(y)|−b ·G(h(x), h(y))

H(s,c) m−2c
k+1 |h′(x)|s |h′(0)|−c · g ◦ h(x)

In the constrained models, we use constrained operators

(where the sum is taken over h[m] with m ≤ M)



Main differences with the usual approach in Dynamical Analysis

A Dirichlet series SR(s) is associated to each parameter R.

Each series is expressed as a sum of powers of previous operators Gs

— The classical setting deals with the usual transfer operator.

The Dirichlet series involves the quasi-inverse of this operator

(I −Hs)
−1 =

∑

p≥1

H
p
s.

— Here, one deals with the red and blue transfer operators,

The Dirichlet series involve pseudo-quasi-inverses:

∞∑

p=1

H
p−K(p)
s+a ◦ H

K(p)
(s+b,−b)...


