METRICAL VERSIONS

OF THE TWO-DISTANCES THEOREM

Pseudo-randomness of a random Kronecker sequence An instance of a dynamical analysis

Brigitte VALLÉE CNRS, Laboratoire GREYC (CNRS et Université of Caen),

Joint work with Eda CESARATTO Universidad de General Sarmiento, Buenos Aires

Outline of the talk

- The Kronecker sequence $n \mapsto n \alpha \mod 1$
 - The two-three distances Theorem.
 - Its relation with Continued Fraction Expansions
- Pseudo-randomness of a random truncated Kronecker sequence
 - Five parameters related to measures of pseudo-randomness.
 - Three types of truncation.
 - Four probabilistic models.
- Statement of some of the (sixty) results.
- A short description of the methods

A – The truncated Kronecker sequences.

Generalities on truncated sequence.

 $\label{eq:consider} \begin{array}{l} \mbox{Consider a sequence } \mathcal{X}:=\{n\mapsto x_n,n\geq 0\}\subset [0,1] \\ \mbox{With a truncation integer } T, \end{array}$

it defines a truncated sequence $\mathcal{X}_{\langle T \rangle} := \{n \mapsto x_n, n < T\}$ We consider – the ordered sequence $\{y_i, i \in [0, T]\}$ on the unit torus. – the distances δ_i 's between two consecutive points

An instance for the Kronecker sequence

$$\mathcal{X} := \mathcal{K}(\alpha) := \{ x_n := \{ n\alpha \}, n \ge 0 \}, \qquad \alpha = 7/17, \qquad T = 4$$

$$x_0 = 0, x_1 = 7/17, \ x_2 = 14/17, \ x_3 = 4/17$$

$$y_0 = 0, \ y_1 = 4/17, \ y_2 = 7/17, \ y_3 = 14/17$$

$$\delta = \frac{1}{17}(4, 3, 7, 3)$$

Example of the Kronecker sequence $\mathcal{K}_{\langle T \rangle}(\alpha)$ for $\alpha = 7/17$.

T = 4T = 3 δ_2 δ_1 δ_1 δ_3 δ_{4} δ_3 δ_2 $\boldsymbol{\delta} = \frac{1}{17}(7,7,3)$ $\boldsymbol{\delta} = \frac{1}{17}(4, 3, 7, 3)$

Example of the Kronecker sequence $\mathcal{K}_{\langle T \rangle}(\alpha)$ for $\alpha = 7/17$.

T = 6T = 5 δ_3 δ_2 δ_1 δ_3 δ δ_6 δ_5 δ_5 δ_4 $\delta = \frac{1}{17}(4, 3, 4, 3, 3)$ $\boldsymbol{\delta} = \frac{1}{17}(1, 3, 3, 4, 3, 3)$

Main facts on the behaviour of the δ_i 's for the truncated Kronecker sequence $\mathcal{K}_{\langle T \rangle}(\alpha)$

The behaviour of the sequence δ_i depends on the Continued Fraction Expansion of the real number α .

The Two–Three Distances Theorem proves that the sequence of δ_i 's takes only TWO or THREE distinct values.

-The number of distinct values (two or three)

- The values themselves only depend on

– the CFE of the real α

- the position of T with respect to the *CFE*.

The Continued Fraction Expansion of α .

uses the family of linear fractional transformations (LFT in shorthand)

$$h_{[m]}: x \mapsto \frac{1}{m+x}$$

and their composition

$$h_{[m_1]} \circ h_{[m_2]} \circ \ldots \circ h_{[m_p]} \circ \ldots$$

Continuants q_k and distances θ_k

When split at depth k, the CFE of the real x produces the beginning rational, the middle digit, and the ending real,

The beginning part defines the $\ensuremath{\textit{LFT}}$

$$g_k := h_{[m_1]} \circ h_{[m_2]} \circ \ldots \circ h_{[m_k]},$$

with $g_k(y) = \frac{p_{k-1}y + p_k}{q_{k-1}y + q_k}$, and the rational $\frac{p_k}{q_k} = g_k(0)$. The real x_k is defined by the equality

$$x = g_k(x_k),$$
 or $x_k = \frac{\theta_{k+1}(x)}{\theta_k(x)}$

which involves the distance

$$\theta_k(x) := |q_{k-1}x - p_{k-1}|.$$

Two-distances phenomenon for the truncated sequence $\mathcal{K}_{\langle T \rangle}(\alpha)$.

Consider the partition of \mathbb{N} by the intervals $[q_{k-1} + q_k, q_{k+1} + q_k]$ $(k \ge 1)$ Any (truncation) integer in the interval $[q_{k-1} + q_k, q_{k+1} + q_k]$ is written as

$$T = mq_k + q_{k-1} + r, \qquad m \in [1..m_{k+1}], \quad r \in [0..q_k - 1].$$

(Remind $q_{k+1} = m_{k+1}q_k + q_{k-1}$)

It gives rise to the two-distances phenomenon iff r = 0.

- Such truncation integers are called two-distances integers.
- They are of the form

$$T = mq_k + q_{k-1}, \qquad m \in [1..m_{k+1}].$$

In the sequel, we only deal with this (particular) case.

B - Five parameters as measures of pseudo-randomness

Truncated Kronecker sequence $\mathcal{K}_{\langle T \rangle}(\alpha)$ with two distances.

I – First parameters of interest for $T = mq_k + q_{k-1}$

- The two distances. the small one and the large one

$$\widehat{\Gamma}_{\langle T \rangle} = \theta_{k+1}, \qquad \widetilde{\Gamma}_{\langle T \rangle} = \theta_k - (m-1)\theta_{k+1}$$

– The number of large distances : q_k

- The number of small distances :

$$T - q_k = (m - 1)q_k + q_{k-1}$$

- The space covered by the large distance:

$$S_{\langle T \rangle} = q_k(\theta_k - (m-1)\theta_{k+1}).$$

Here :
$$S_{\langle 5 \rangle} = \frac{12}{17}$$

 $\delta = \frac{1}{17}(4, 3, 4, 3, 3)$

 $\alpha = \frac{7}{17}, T = 5$

Truncated Kronecker sequence $\mathcal{K}_{\langle T \rangle}(\alpha)$ with two distances. II - Discrepancy

For a general sequence \mathcal{X} , the discrepancy $D_{\langle T \rangle}(\mathcal{X})$ compares the ordered sequence y_j to the sequence j/T.

$$D_{\langle T \rangle}(\mathcal{X}) = \sup_{j \in [1,T]} \left(rac{j}{T} - y_j
ight) + \sup_{j \in [1,T]} \left(y_j - rac{j-1}{T}
ight)$$

For the Kronecker sequence $\mathcal{K}_{\langle T \rangle}(\alpha)$:

 $\Delta_{\langle T \rangle}(\alpha) = T \cdot D_{\langle T \rangle}(\alpha) = 1 + (mq_k + q_{k-1} - 1)(\theta_k - m\theta_{k+1})$

$$\Delta_{\langle T \rangle}(\alpha) \sim 1 + (mq_k + q_{k-1})(\theta_k - m\theta_{k+1}).$$

$$\delta = \frac{1}{17}(4, 3, 4, 3, 3)$$

 $\alpha = \frac{7}{17}, T = 5$

Here:
$$\Delta_{\langle 5 \rangle} = \frac{21}{17}$$

Truncated Kronecker sequence $\mathcal{K}_{\langle T \rangle}(\alpha)$ with two distances. II - Discrepancy

 $\alpha = \frac{7}{17}, T = 5$

For a general sequence \mathcal{X} , the discrepancy $D_{\langle T \rangle}(\mathcal{X})$ compares the ordered sequence y_i to the sequence j/T.

$$D_{\langle T \rangle}(\mathcal{X}) = \sup_{j \in [1,T]} \left(\frac{j}{T} - y_j \right) + \sup_{j \in [1,T]} \left(y_j - \frac{j-1}{T} \right)$$

What is known on $\Delta_{\langle T \rangle}(\mathcal{X}) = TD_{\langle T \rangle}(\mathcal{X})$?

There exist C, C', such that for any \mathcal{X} : - one has $\Delta_{\langle T \rangle}(\mathcal{X}) \geq C$ for any T. - there is T such that $\Delta_{\langle T \rangle}(\mathcal{X}) \geq C' \log T$

We are interested in a better understanding of this logarithmic $\delta = \frac{1}{17}(4,3,4,3,3)$ behaviour in the case of a random Kronecker sequence.

Truncated Kronecker sequence $\mathcal{K}_{\langle T \rangle}(\alpha)$ with two distances. III - Arnold measure

For a general sequence $\mathcal{X}_{\langle T \rangle}$, the Arnold measure $A_{\langle T \rangle}(\mathcal{X})$ is the mean of the squares of the normalized $\hat{\delta}_i = T \delta_i$

$$A_{\langle T\rangle} = \frac{1}{T}\sum_{i=1}^{T} \left(\frac{\delta_i}{\frac{1}{T}}\right)^2 = T\sum_{i=1}^{T} {\delta_i}^2$$

 $\alpha = \frac{7}{17}, T = 5$

For the Kronecker sequence
$$\mathcal{K}_{\langle T
angle}(lpha)$$
:

$$A_{\langle T \rangle}(\alpha) = (mq_k + q_{k-1}) \cdot \\ \left[((m-1)q_k + q_{k-1})\theta_{k+1}^2 + q_k(\theta_k - (m-1)\theta_{k+1})^2 \right]$$

Here:
$$A_{\langle 5 \rangle} = \frac{295}{289}$$

 $\delta = \frac{1}{17}(4, 3, 4, 3, 3)$

Truncated Kronecker sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$ with two distances. III - Arnold measure

For a general sequence $\mathcal{X}_{\langle T \rangle}$, the Arnold measure $A_{\langle T \rangle}(\mathcal{X})$ is the mean of the squares of the normalized $\hat{\delta}_i = T \delta_i$

$$A_{\langle T \rangle} = \frac{1}{T} \sum_{i=1}^{T} \left(\frac{\delta_i}{\frac{1}{T}} \right)^2 = T \sum_{i=1}^{T} {\delta_i}^2$$

Arnold's proposal : The precise value of $A_{\langle T \rangle}(\mathcal{X})$ is a measure for the pseudo-randomness of $\mathcal{X}_{\langle T \rangle}$.

δ_i 's nearly equal	$A_{\langle T \rangle} \sim 1.$
all the δ_i 's small, except one	$A_{\langle T angle} \sim T$.
T large,	27
δ_i 's i.i.d on the circle of length 1	$s_*(T) = \frac{T}{T+1}$
with $\sum_{i=1}^T \delta_i = 1$	$\lim_{T \to \infty} A_{\langle T \rangle} = 2.$

C – Main principles for our study.

Summary : Five parameters of interest

relative to a truncation integer $T = mq_k + q_{k-1}$ with $m \in [1..m_{k+1}]$ Distances $\Gamma_{(T)}$, Covered space $S_{(T)}$, Discrepancy $\Delta_{(T)}$, Arnold measure $A_{(T)}$

$$\begin{array}{l} \widehat{\Gamma}_{\langle T \rangle} & \theta_{k+1} \\ \widetilde{\Gamma}_{\langle T \rangle} & \theta_{k} - (m-1)\theta_{k+1} \\ S_{\langle T \rangle} & q_{k}(\theta_{k} - (m-1)\theta_{k+1}) \\ \Delta_{\langle T \rangle} & 1 + (mq_{k} + q_{k-1})(\theta_{k} - m\theta_{k+1}) \\ A_{\langle T \rangle} & (mq_{k} + q_{k-1})\left[((m-1)q_{k} + q_{k-1})\theta_{k+1}^{2} + q_{k}(\theta_{k} - (m-1)\theta_{k+1})^{2}\right] \end{array}$$

These parameters are linear combinations of elementary costs, of the form $R_k=m^e\,q_{k-1}^a\,q_k^b\,\theta_k^c\,\theta_{k+1}^d$

with $m \in [1..m_{k+1}]$ and a, b, c, d, e some positive integers.

What about the mean value $\mathbb{E}[R_k]$?

Not so easy a priori since R_k is a product of correlated variables.

We are interested by the expectation of these parameters

- in suitable probabilistic models, to be defined;

- for suitable integers $m \in [1..m_{k+1}]$

Some objectives of the work.

Most of the existing works

- deal with a fixed real number $\boldsymbol{\alpha}$
- study the pseudo–randomness of the truncated sequence $\mathcal{K}_{\langle T\rangle}(\alpha)$ mainly with the discrepancy measure.
- ask the question:

For a given α , for which T, the discrepancy is maximal? minimal?

We ask (and answer) the same kind of questions. However, we deal with

– various subsets $A \subset [0,1]$ of real numbers α

- various families ${\cal T}$ of truncations T
- various parameters X for pseudo-randomness

(not only the discrepancy)

And we study the asymptotics of the mean value,

 $\mathbb{E}_{A}[\underline{X}_{\langle T \rangle}] \qquad \text{for } T \in \mathcal{T}, T \to \infty.$

For which triples (A, X, \mathcal{T}) is there a logarithmic behaviour ?

Probabilistic study

of five parameters used as measures for quasi-randomness of the truncated Kronecker sequence

Position for the truncation

How to choose $m \in [1..m_{k+1}]$?

How to choose the truncation $T = mq_k + q_{k-1}$?

Three types of parameters

Unbalanced, Balanced - extremal or non extremal-

Four probabilistic models

Real model versus rational model

Unconstrained versus Constrained

I (a) – Position of truncation integers $T = mq_k + q_{k-1}$ with $m \in [1..m_{k+1}]$.

The parameter m plays an important rôle.

- It may vary in the whole interval $[1..m_{k+1}]$,

- the quotient m_{k+1} has an infinite mean value.

We focus on the value of m with respect to m_{k+1} .

To a real $\mu \in [0, 1]$, called the position:

– We associate the integer $m = \lfloor 1 + \mu(m_{k+1} - 1)
ceil$

– this defines the truncation sequence at position μ ,

 $T = T_k^{\langle \mu \rangle} = \lfloor 1 + \mu (m_{k+1} - 1) \rceil q_k + q_{k-1}$

– For each parameter X of interest, this defines the sequence at position μ $X_k^{\langle \mu\rangle}:=X_{\langle T\rangle} \text{ when } T=T_k^{\langle \mu\rangle}.$

We are interested in the probabilistic behaviour of such a sequence.

We recover the two boundary cases:

m=1 for $\mu=0$ and $m=m_{k+1}$ for $\mu=1$

In these cases, the quotient m_{k+1} does not appear in the expression of $X_{\langle T \rangle}$ (Up to a translation on index k, $m = m_{k+1}$ plays the same rôle as m = 0.)

This explains why the two cases $\mu = 0$ and $\mu = 1$ may be very particular.

I (b) –Expression of the five parameters at boundary positions $\mu = 0$ and $\mu = 1$.

	$m=1$ [$\mu=0$]	$m=m_{k+1}$ [$\mu=1$]
$\widehat{\Gamma}_{\langle T \rangle}$	θ_{k+1}	$ heta_{k+1}$
$\widetilde{\Gamma}_{\langle T \rangle}$	$ heta_k$	$\theta_k + \theta_{k+1}$
$S_{\langle T \rangle}$	$q_k heta_k$	$q_k(\theta_k + \theta_{k+1})$
$\Delta_{\langle T \rangle}$	$1 + (q_k + q_{k-1})(\theta_k - \theta_{k+1})$	$1 + q_k \theta_{k+1}$
$A_{\langle T \rangle}$	$(q_k + q_{k-1}) \left[q_{k-1}\theta_{k+1}^2 + q_k\theta_k^2 \right]$	$q_{k}\left[(q_{k}-q_{k-1})\theta_{k}^{2}+q_{k-1}(\theta_{k}+\theta_{k+1})^{2}\right]$

II(a) – Classification of costs $R_k = m^e \, q_{k-1}^a \, q_k^b \, \theta_k^c \, \theta_{k+1}^d$

A first easy study : $\mathbb{E}[\log R_k]$ when m is any integer in $[1..m_{k+1}]$ and α uniformy chosen in [0,1]

Well known estimates involve the entropy $\mathcal{E} = \pi^2/(6\log 2)$:

$$\mathbb{E}[\log q_k] = \frac{k\mathcal{E}}{2} + O(1) \quad \mathbb{E}[\log \theta_k] = -\frac{k\mathcal{E}}{2} + O(1), \quad \mathbb{E}[\log m_{k+1}] = \Theta(1).$$

Then, two main cases depending on the sum (a + b) wrt the sum (c + d)

Unbalanced	$(a+b) \neq (c+d)$	$\mathbb{E}[\log R_k] \sim k(\mathcal{E}/2) \cdot [(a+b) - (c+d)]$
Balanced	(a+b) = (c+d)	$\mathbb{E}[\log R_k] = O(1)$

The two distances are unbalanced.

The other three costs are balanced with a balance f = a + b = c + d

- equal to f = 1, for the covered space and the discrepancy
- equal to f = 2 for the Arnold measure

II (b) – Balanced cost $R_k = m^e q_{k-1}^a q_k^b \theta_k^c \theta_{k+1}^d$ at position $\mu \in]0, 1[$.

- Balanced cost
$$a + b = c + d = f$$

- At position $\mu \in]0,1[$, one has $m^e \approx \mu^e m^e_{k+1}$.
- Replace q_{k-1} by $q_{k-1} = (1 \theta_k q_k) / \theta_{k+1}$. Remark $\theta_{k+1} / \theta_k \approx 1/m_{k+1}$.

$$\implies \qquad R_k \approx \mu^e (\theta_k q_k)^{f-a} (1 - \theta_k q_k)^a \quad m_{k+1}^{e-(d-a)}$$

Important rôle played by the exponent of m_{k+1} equal to e - (d - a).

We prove :
$$\mathbb{E}[R_k] = \infty \iff (a = 0 \text{ and } e = 1 + d)$$

In this case, the cost is called "extremal".

Extremal part of the three balanced parameters $m \approx \mu m_{k+1}, \ \mu \in]0,1[$

$S_{\langle T \rangle}$	0
$\Delta_{\langle T \rangle}$	$m q_k heta_k - m^2 q_k heta_{k+1}$
$A_{\langle T \rangle}$	$m q_k^2 \theta_k^2 - 2 m^2 q_k^2 \theta_k \theta_{k+1} + m^3 q_k^2 \theta_{k+1}^2$

III(a) –Probabilistic models: Real model versus Rational model

For each parameter X, for μ fixed in [0,1], the sequence at position μ is $X_k^{\langle \mu \rangle} := X_{\langle T \rangle}$ when $T = T_k^{\langle \mu \rangle} = \lfloor 1 + \mu(m_{k+1} - 1) \rceil q_k + q_{k-1}$

This defines a sequence of random variables, which depend on α , α may be a random real – or a random rational It is "natural" to compare the two cases.

Real model. The real α is uniformly drawn in the unit interval \mathcal{I} . We study the behaviour of the mean value $\mathbb{E}[X_k^{\langle \mu \rangle}]$ for $k \to \infty$,

Rational model. For a rational α of depth $P(\alpha)$, the index k satisfies $k \le P(\alpha)$. The index k is chosen as an *admissible* function K of the depth P, i.e., k = K(P)

with $\beta^- P \leq K(P) \leq \beta^+ P$ for two constants $0 < \beta^- < \beta^+ < 1$.

- We consider the (finite) set Ω_N of rationals α with den $(\alpha) \leq N$, endowed with the uniform probability,
- We choose and fix an admissible function K for the index

We study the behaviour of the mean value $\mathbb{E}_N[X_K^{\langle \mu \rangle}]$ for $N \to \infty$.

III(b) – Probabilistic models: Unconstrained model versus constrained model

There is a close connection between the two behaviours

– the truncated Kronecker sequence $\mathcal{K}_{\langle T \rangle}(\alpha)$

– the (boundness) of the sequence of digits (m_k) in the *CFE* of lpha

This is why we wish to deal with the "constrained" models,

where all the digits m_k are bounded by some constant M and then let M tend to ∞ to obtain the unconstrained model.

Two main constrained cases.

- The real case:

the Cantor set $\mathcal{I}^{[M]}$ of real numbers with digits $m_k \leq M$

- The rational case:

the set $\Omega_N^{[M]}$ of rational numbers with den $\leq N$ and digits $m_k \leq M$

Probabilistic study

of five parameters used as measures for quasi-randomness of the truncated Kronecker sequence

Three types of positions for the truncation
Boundary cases $\mu=0$ and $\mu=1$
Generic case $\mu \in]0,1[$

Three types of parameters			
Unbalanced	Balanced	Balanced	
	with a zero extremal part	with a non zero extremal part	
	for a generic position $\mu \in]0,1[$	for a generic position $\mu \in]0,1[$	
Two distances	Covered Space	Discrepancy and Arnold Measure	

Four probabilistic models

Real model versus rational model

Unconstrained versus Constrained

D –Some of our results.

Distances in the *M*-constrained model $[M \leq \infty]$.

Real case: α is uniformy chosen in the set $\mathcal{I}^{[M]}$ of reals with $m_k \leq M$.

The mean value of any distance [small or large] is exponentially decreasing,

$$\mathbb{E}^{[M]}[\Gamma_k] = \Theta(\boldsymbol{\gamma}_M{}^k) \qquad (k \to \infty),$$

The rate γ_M involves the dominant eigenvalue $\lambda_M(s)$ of the operator

$$\mathbf{H}_{M,s}[g](x) := \sum_{m \le M} \frac{1}{(m+x)^{2s}} g\left(\frac{1}{m+x}\right),$$

and the Hausdorff dimension σ_M of $\mathcal{I}^{[M]}$ with the relation $\lambda_M(\sigma_M) = 1$.

The rate γ_M equals $\lambda_M \left(\sigma_M + \frac{1}{2}\right)$. When $M = \infty$, the rate equals $\lambda_\infty \left(\frac{3}{2}\right)$.

This value $\lambda_{\infty}\left(\frac{3}{2}\right) \sim 0.3964$ is "new" in Euclidean probabilistic analyses.

Constrained case \rightarrow Unconstrained case :

$$\gamma_M = \gamma_\infty \left[1 + O\left(\frac{1}{M}\right) \right] \quad (M \to \infty)$$

Distances in the probabilistic *M*-constrained model $[M \leq \infty]$.

Rational case: α is uniformy chosen in $\Omega_N^{[M]}$. The index K is chosen as the δ -fraction of the depth $K = K_{\langle \delta \rangle} = \lfloor \delta P \rfloor$, $\delta \in \mathbb{Q} \cap [0, 1]$

The mean value of any distance [small or large] is exponentially decreasing,

$$\mathbb{E}_{N}^{[M]}[\Gamma_{K_{\langle \delta \rangle}}] = \Theta\left(N^{2[\sigma_{M}(\delta) - \sigma_{M}]}\right) \qquad [N \to \infty].$$

The exponent $\sigma_M(\delta)$ is the unique real solution of the equation

$$\lambda_M^{1-\delta}(\sigma)\,\lambda_M^{\delta}\left(\sigma+\frac{1}{2}\right)=1 \quad \text{with } \sigma_M(0)=\sigma_M, \ \ \sigma_M(1)=\sigma_M-(1/2).$$

Constrained case \rightarrow Unconstrained case :

$$(\forall \delta \in [0,1]) \quad \sigma_M(\delta) = \sigma_\infty(\delta) \left[1 + O\left(\frac{1}{M}\right) \right] \quad (M \to \infty)$$

Study of the balanced parameters – Covered space, Discrepancy, Arnold Measure–. at a boundary position $\mu = 0$ [case -] and $\mu = 1$ [case +]. Case of the random variables $X_k^{\pm} \in \{S_k^{\pm}, \Delta_k^{\pm}, A_k^{\pm}\}$

(i) For each X, the expectations $\mathbb{E}^{[M]}[X_k^{\pm}]$ have the same finite limit χ_M^{\pm} in the real case and the rational case.

(ii) Constrained case \rightarrow Unconstrained case :

$$\chi_M^{\pm} = \chi_\infty^{\pm} \left[1 + O\left(\frac{1}{M}\right) \right] \quad (M \to \infty)$$

(iii) The values χ^{\pm}_{∞} are explicit:

$$s^{-} = \frac{1}{2} + \frac{1}{4\log 2} \sim 0.861, \quad d^{-} = 1 + \frac{1}{2\log 2} \sim 1.721 \quad a^{-} = \frac{2}{3} + \frac{1}{3\log 2} \sim 1.147$$
$$s^{+} = \frac{1}{2} \qquad d^{+} = 1 + \frac{1}{4\log 2} \sim 1.360, \quad a^{+} = \frac{2}{3} + \frac{1}{4\log 2} \sim 1.027.$$

Study of the balanced parameters – Discrepancy and Arnold Measure– at a generic position $\mu \in]0,1[$ Case of the random variables $X_{k}^{\langle \mu \rangle}$ with $X \in \{\Delta, A\}$ (i) The expectations $\mathbb{E}[X_k^{\langle \mu \rangle}]$ in the real unconstrained model are infinite. (*ii*) In the rational unconstrained model, there is a logarithmic behaviour $\mathbb{E}_{N}[\Delta_{K}^{\langle \mu \rangle}] \sim \mu(1-\mu) \log_{2} N, \quad \mathbb{E}_{N}[A_{K}^{\langle \mu \rangle}] \sim \mu(1-\mu)^{2} \log_{2} N, \quad (N \to \infty)$ *(iii)* In the unconstrained models, the expectations have the same finite limit in the real and the rational models $\begin{array}{ll} [\text{Real Case.}] & \text{for } k \to \infty : \quad \mathbb{E}^{[M]}[\Delta_k^{\langle \mu \rangle}] \to d_M^{\langle \mu \rangle}, \quad \mathbb{E}^{[M]}[A_k^{\langle \mu \rangle}] \to a_M^{\langle \mu \rangle} \\ [\text{Rational Case.}] & \text{for } N \to \infty : \quad \mathbb{E}_N^{[M]}[\Delta_k^{\langle \mu \rangle}] \to d_M^{\langle \mu \rangle}, \quad \mathbb{E}_N^{[M]}[A_K^{\langle \mu \rangle}] \to a_M^{\langle \mu \rangle}. \end{array}$ (iv) Constrained \rightarrow Unconstrained : a logarithmic behaviour $d_M^{\langle \mu \rangle} \sim \mu (1-\mu) \log_2 M, \qquad a_M^{\langle \mu \rangle} \sim \mu (1-\mu)^2 \log_2 M, \qquad (M \to \infty)$

(v) Maximum for the mean discrepancy at $\mu = 1/2$. Maximum for the mean Arnold measure at $\mu = 1/3$.

Conclusion.

We try to answer the question:

Is a random Kronecker sequence $\mathcal{K}_{\langle T \rangle}(\alpha)$ pseudo-random?

We describe a model with various possible choices

- Five parameters of pseudo-randomness,
- Families of truncations \boldsymbol{T}
- Specific subsets for α .

where a precise answer can be provided.

We also study the random behaviour of general parameters which are polynomials in q_k, θ_k, m_{k+1}

We limit ourselves to the two-distances framework.

In the three-distances framework,

- similar behaviours can be exhibited for four parameters,

- but, for the discrepancy,

we do not have a close formula as a polynomial function in θ_k, q_k, m_{k+1} .

D) Some hints on the methods.

Dynamical analysis method for the rational setting

The main tool for studying a cost $R\left(\frac{u}{v}\right)$ on each

 $\Omega_N = \{u/v: \ \gcd(u,v) = 1, \ 0 \le u \le v \le N\}$

is the Dirichlet generating function of cost R on the set $\Omega = \bigcup_N \Omega_N$:

$$\begin{split} S_R(s) &:= \sum_{u/v \in \Omega} \frac{1}{v^{2s}} R\left(\frac{u}{v}\right) = \sum_k \frac{c_k}{k^{2s}}, \quad \text{with} \quad c_k := \sum_{\substack{u \le k \\ \gcd(u,k) = 1}} R\left(\frac{u}{k}\right). \\ &\text{Then,} \quad \mathbb{E}_N[R] := \frac{\sum_{k \le N} c_k}{\sum_{k \le N} a_k} \end{split}$$

where a_k is the coefficient of the series $S_{[R]}$ for R = 1.

Three main steps.

Step 1. Look for an alternative form of S_R with dynamical systems.

- Step 2. Study singularities of S_R
- Step 3. Transfer these informations on the asymptotics of $\mathbb{E}_N[R]$.

Euclidean Dynamical System and the continuous world

The Gauss map $T:[0,1]\rightarrow [0,1]$

$$T(x) = \frac{1}{x} - \lfloor \frac{1}{x} \rfloor, \ T(0) = 0.$$

$$\mathcal{H} := \{h : x \mapsto \frac{1}{m+x}, \ m \ge 1\}$$

is the set of inverse branches of \boldsymbol{T}

Density Transformer:

For a density f on $\mathcal{I},\ \mathbf{H}[f]$ is the density on \mathcal{I} after one iteration of shift T

 $\mathbf{H}[f](x) = \sum_{h \in \mathcal{H}} |h'(x)| f \circ h(x)$

$$=\sum_{m\in\mathbb{N}}\frac{1}{(m+x)^2}f(\frac{1}{m+x}).$$

Transfer operator (Ruelle):

$$\mathbf{H}_{s}[f](x) = \sum_{h \in \mathcal{H}} |h'(x)|^{s} f \circ h(x).$$

The k-th iterate satisfies:

$$\mathbf{H}_{s}^{k}[f](x) = \sum_{h \in \mathcal{H}^{k}} |h'(x)|^{s} f \circ h(x)$$

$\label{eq:constraint} \begin{array}{c} \mbox{Discrete world}.\\ \mbox{Generation of } q_k, \theta_k, m_{k+1} \mbox{ via transfer operators} \end{array}$

Main fact. If
$$h: x \mapsto h(x) = \frac{ax+b}{cx+d}$$
, then $h'(x) = \frac{\det h}{(cx+d)^2}$
For coprime (u, v) , if $\frac{u}{v} = h(0)$, then $\frac{1}{v^2} = |h'(0)|$.

Since continuants q_k , distances θ_k , digits m_{k+1} are denominators,

the operators \mathbf{H}_{s}^{k} , with some extensions, are able to generate continuants q_{k} , distances θ_{k} of depth k.

The transfer operators used as generating operators.

$$R_k = (\theta_k q_k)^{f-a} (1 - \theta_k q_k)^a \quad m_{k+1}^e \left(\frac{\theta_{k+1}}{\theta_k}\right)^{d-a}$$

Name	Use	Definition of the component operator
\mathbf{H}_{s+a}	$(heta_{k+1}/ heta_k)^{2a}$	$ h'(x) ^{s+a} \cdot g \circ h(x)$
$\mathbf{H}_{(s+b,-b)}$	$(heta_k q_k)^b$	$ h'(x) ^{s+b} h'(y) ^{-b} \cdot G(h(x),h(y))$
$\underline{\mathbf{H}}_{(s,c)}$	m_{k+1}^{-2c}	$ h'(x) ^s h'(0) ^{-c} \cdot g \circ h(x)$

In the constrained models, we use constrained operators (where the sum is taken over $h_{[m]}$ with $m \leq M$)

Main differences with the usual approach in Dynamical Analysis

A Dirichlet series $S_R(s)$ is associated to each parameter R. Each series is expressed as a sum of powers of previous operators \mathbb{G}_s

The classical setting deals with the usual transfer operator.
 The Dirichlet series involves the quasi-inverse of this operator

$$(I - \mathbf{H}_s)^{-1} = \sum_{p \ge 1} \mathbf{H}_s^p.$$

Here, one deals with the red and blue transfer operators,
 The Dirichlet series involve pseudo-quasi-inverses:

$$\sum_{p=1}^{\infty} \, \mathbf{H}^{p-K(p)}_{s+a} \, \circ \, \mathbf{H}^{K(p)}_{(s+b,-b)} \cdots$$