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Recall beta expansion :

T (x) = βx− ⌊βx⌋.

It is a generalization of binary and decimal expansion.
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Figure 1: Beta expansion



It belongs to both ergodic theory and number theory.

• ACIM is unique and equivalent to the Lebesgue measure.

• Its density was made explicit

h(x) =
∑

x<Tn(1)

1

βn

• Symbolic property is well studied.

• Number theoretical results can be derived.



The orbit Tn(1) produced so called expansion of one which

is an infinite sequence

dβ(1) = c1c2c3 . . .

of letters in {0, 1, . . . , ⌊β⌋} satisfying:

1 =
c1
β

+
c2
β2

+ . . .

where Tn(1) =
∑∞

i=1 cn+i−1β
i. This is used to prove the

explicit shape of h.



Symbolic property of the beta expansion

If the orbit of discontinuity (Tn(1))n=1,2,... is finite, the

system is sofic. If β is a Pisot number, then the system is sofic,

which is equivalent to say that dβ(1) is eventually periodic. If

dβ(1) is purely periodic, then the associated symbolic system

is SFT. A lot of open questions remain, see Blanchard [5].

Number theoretical property by its dynamics: return time,

shrinking targets problems, orbits of 1 (J. Wu, B. Wang, Wuhan

group).

Under Pisot condition, a good natural extension

characterizes periodic orbits: Ito-Rao [8], Berthé-Siegel [4].



Ito-Sadahiro [9] introduced the negative beta expansion

T : x 7→ −βx− ⌊−βx+ β/(1 + β)⌋

acting on [−β/(1 + β), 1/(1 + β)).
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Figure 2: Negative Beta expansion for β = 2.6



The ACIM of T is unique. Its density is given by:∑
x>Tn(−β/(1+β))

1

(−β)n
.

This expression is probably not intuitive. Liao-Steiner [12]

proved that its ACIM is equivalent to the Lebesgue measure

if and only if β ≥ (1 +
√
5)/2. Symbolic dynamical study is

parallel to the original beta expansion.



Rotational beta expansion

Let 1 < β ∈ R and M be an element of the orthogonal

group O(m,R). Let L be a lattice of Rm. Fix a fundamental

domain X of L. Then

Rm =
∪
d∈L

(X + d)

is a disjoint partition of C. Define a map T : X → X by

T (z) = βM(z)− d where d = d(z) is the unique element in L
satisfying βM(z) ∈ X + d.



Given a point z in X , we obtain an expansion

z =
M−1(d1)

β
+

M−1(T (z))

β

=
M−1(d1)

β
+

M−2(d2)

β2
+

M−2(T 2(z))

β2

=
∞∑
i=1

M−i(di)

βi

with di = d(T i−1(z)). In this case, we write dT (z) = d1d2....

We call T the rotational beta transformation and dT (z) the

expansion of z with respect to T .



For m = 2, β > 1 and M is in SO(2,R), the algorithm is

naturally written in complex plane. Let ζ ∈ C \R with |ζ| = 1,

ξ, η1, η2 ∈ C with η1/η2 ̸∈ R. Then

X = {ξ + xη1 + yη2 | x ∈ [0, 1), y ∈ [0, 1)}

is a fundamental domain of the lattice L = Zη1 + Zη2 in C.
We are interested in the transform T (z) = βζz − d and its

expansion:

z =

∞∑
i=1

di
βiζi

∈ C.

where di ∈ L.



Motivations

• Another example of explicit ACIM ?

• Systematic construction of self-similar tilings.



ACIM’s are not unique !
Example 1. ζ =

√
−1, β = 1.039, η1 = 2.92, η2 =

exp(π
√
−1/3) and ξ = 0.

Figure 3: Non ergodic case



(a) First Component

(b) Second Component

Figure 4: Non unique ACIM



(a) E and F (b) Confirmation of the set

equation

The same situation happens when β and η1 satisfy

√
3

2
β + 1 +

√
3

β
−

√
3

2β3
≤ η1 ≤

1

2
+

√
3

β
+

√
3

2β3



while other parameters are fixed.

Figure 5: Non ergodic parameters



In this case, we have to study the Perron Frobenius operator:

P (h) =
∑

y∈T−1(x)

h(y)

Jac(T, y)

acting on L1(Rm,R). Then T is a very special case of piecewise

expanding maps, studied by Keller, Gora-Boyarsky, Tsujii, Buzzi

[10, 11, 7, 13, 14, 6, 15]. The main difficulty arises from the

set of discontinuities. It becomes much more complicated than

those in 1-dim.



We have to find a definition of total variation in higher

dimension. The best one is found by Keller and used by

Saussol [13]. Take a ball B and let

osc(f,B) = esssupx∈B f(x)− essinfx∈B f(x),

the oscillation around B. Fix an ε0 > 0 and put

Var(f) = sup
0<ε≤ε0

1

ε

∫
osc(f,B(x, ε))dx.

Then Var(f) is an analogy of the total variation and and

the subspace V = {f ∈ L1 | Var(f) + ∥f∥ < ∞} becomes

relatively compact in L1.



Under some natural assumption on the piecewise expanding

map, we can prove a Lasota-Yorke type inequality:

Var(Pn(f)) < ηVar(f) +D∥f∥

with some n ∈ N and 0 < η < 1. Iterating this inequality, from

an infinite sequence

1

N

N∑
i=1

P i(f), N = 1, 2, . . .

we can select a converging subsequence. This lead us to the

unique limit, which satisfies P (h) = h.



We know that there exists an ACIM µ whose support

contains a ball of positive density. This implies the number of

ergodic components is finite and bounded by

1

π

(
D

1− η

)2

.

However, the bound is not practically good since η is usually

close to 1. For a bounded set A ∈ Rm, define the width w(A)

of A as the minimum distances of two pararell hyperplanes

sandwiches A. The covering radius of a relatively dense



subset P ∈ Rm is

r(P ) := sup
x∈Rm

inf
y∈P

∥x− y∥

Theorem 2 ([1]).Assume that 2r(L) < βw(X ). If β > m+ 1

then there is a unique ACIM of T equivalent to the m-dim

Lebesgue measure.

We use the result by Bang[3], which solved Tarski’s plank

problem. For m = 2 we get more precise results.



Let θ(X ) ∈ (0, π) be the angle between η1 and η2.

B1 =


2 if 1

2 < tan
(
θ(X )
2

)
< 2

1 + 2

1+sin
(
θ(X )
2

) if sin(θ(X )) <
√
5− 2

3
2 +

1
16 cot

2
(
θ(X )
2

)
+ tan2

(
θ(X )
2

)
otherwise

and

B2 :=


| cos(θ(X ))|+1

2(| cos(θ(X ))|+sin(θ(X ))−1) if π
3 < θ(X ) < 2π

3

1 + 2

1+sin
(
θ(X )
2

) otherwise.



Theorem 3. If β > B1 then (X , T ) has a unique ACIM µ.

Moreover, if β > B2 then µ is equivalent to the 2-dimensional

Lebesgue measure restricted to X .

This is an improvement of the result in the [2], in particular

if θ is small.



One can confirm the inequality B1 ≤ B2 in Figure 6.

Figure 6: Comparison of B1 and B2
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Idea of the proof.

Starting from a r-covering of X , inductively we create a finer

one by looking the inverse images of T . Then we can show

that if β is large, then for any ϵ > 0 and any point z ∈ X that∪m
n=1 T

−n(z) is an ϵ-covering. Assuming two ergodic ACIM,

this fact means two ergodic components have non negligible

communication, which gives a contradiction.



Put A := {d(z) | z ∈ X}. Let AZ (resp. A∗) be the set

of all bi-infinite (resp. finite) words over A. We say w ∈ A∗

is admissible if w appears in the expansion dT (z) for some

z ∈ X \
∪

n∈Z T
n(∂(X )). Let

XT :=
{
w = (wi) ∈ AZ∣∣wiwi+1...wj is admissible

}
.

The symbolic dynamical system associated to T is the

topological dynamics (XT , s) given by the shift operator

s((wi)) = (wi+1). We say (XT , s) (or simply, (X , T )) is

sofic if there is a finite directed graph G labeled by A such that

for each w ∈ XT , there exists a bi-infinite path in G labeled w

and vice versa.



Lemma 4. The system (X , T ) is sofic if and only if∪∞
n=1 T

n(∂(X )) is a finite union of segments.

A problem on the definition of soficness

One may define complete soficness by considering all orbits

in X instead of X \
∪

n∈Z T
n(∂(X )). Then the results will be:

Lemma 5. The system (X , T ) is completely sofic if and only

if (Tn(∂(X )))n=1,2,... is eventually periodic as a sequence of

sets.

We are not sure these definitions are the same.



So (X , T ) to be sofic, ζ must be a root of unity. Assume

that ζ is a q-th root of unity with q > 2 and ξ, η1, η2 ∈ Q(ζ, β)

with η1/η2 ̸∈ R.

Theorem 6. Let ζ be a q-th root of unity (q > 2) and β be a

Pisot number. Let η1, η2, ξ ∈ Q(ζ, β). If cos(2π/q) ∈ Q(β),

then the system (X , T ) is sofic.

Corollary 7. If ζ is a 3rd, 4th or 6th root of unity, then the

system (X , T ) is sofic for any Pisot number β.

Corollary 8. For any positive integer q, there exists a Pisot

number β which satisfies above conditions. Thus there is a

self-similer tiling in R2 with inflation constant β and q-fold

rotation action, whose all tiles are polygons.



On the other hand, we can give a family of non-sofic systems

when ζ + ζ−1 ̸∈ Q(β).

Theorem 9. Let ξ = 0, η1 = 1 and η2 = ζ = exp(2π
√
−1/5).

If β > 2.90332 such that
√
5 ̸∈ Q(β), then (X , T ) is not a

sofic system.

For example, β = 3, 4, 5 . . . are not sofic in this setting.



Summary of our results

unique Lebesgue density sofic

Beta Yes Yes Yes β: Pisot

Negative Yes β ≥ 1+
√
5

2 Yes β: Pisot

Rotation β > B1 β > B2 ? Pisot & cos(2π/q) ∈ Q(β)

Open questions

• Improve the constants B1 and B2. They seem not optimal.

• Make explicit the density of ACIM. Possible in sofic cases.



Example 10. Let ξ = 0, η1 = 1 and η2 = ζ = exp(2π
√
−1/3).

Put β = 1 +
√
2. We have 9 cylinders.

Figure 7: 3-fold sofic case



Example 11. Let ξ = 0, η1 = 1 and η2 = ζ = exp(2π
√
−1/5).

Let β = (1 +
√
5)/2. There are 40 cylinders.

Figure 8: 5-fold sofic case



Example 12. Let ξ = 0, η1 = 1 and η2 = ζ = exp(2π
√
−1/7).

Let β = 1 + 2 cos(2π/7) ≈ 2.24698. From r(L) =

1/(2 cos(π/7)), w(X ) = sin(2π/7) we have β > B1 ≈ 2.00272

and there is a unique ACIM by Theorem 3, but β < B2 ≈
2.41964. From Theorem 6, we know that the corresponding

dynamical system is sofic. Figure 9 shows the sofic dissection

of X by 224 discontinuity segments. The number of cylinders

is 3292 (!), computed by Euler’s formula.



Figure 9: Sofic 7-fold rotation



References

[1] S. Akiyama and J. Caalim, Invariant measure of

rotational beta expansion and a problem of Tarski.,

ArXiv:1509.04785.

[2] , Rotational beta expansion: Ergodicity and

Soficness, To appear in Journal of the Mathematical

Society of Japan (2016).

[3] T. Bang, A solution of the “plank problem”, Proc. Amer.

Math. Soc. 2 (1951), 990–993.
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