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Recall beta expansion :

T'(x) = fx — [Bz].

It is a generalization of binary and decimal expansion.
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Figure 1. Beta expansion



It belongs to both ergodic theory and number theory.

e ACIM is unique and equivalent to the Lebesgue measure.

e |ts density was made explicit
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e Symbolic property is well studied.

e Number theoretical results can be derived.



The orbit 7™ (1) produced so called expansion of one which
Is an infinite sequence

d@(l) — C1C2C3 . ..

of letters in {0,1,...,|5]} satisfying:

C1 C2

l=Z+5m+...

where T™(1) = >>° ¢pti—18". This is used to prove the
explicit shape of h.



Symbolic property of the beta expansion

If the orbit of discontinuity (17(1))n=12.. is finite, the
system is sofic. If 3 is a Pisot number, then the system is sofic,
which is equivalent to say that dg(1) is eventually periodic. If
ds(1) is purely periodic, then the associated symbolic system
is SFT. A lot of open questions remain, see Blanchard [5].

Number theoretical property by its dynamics: return time,
shrinking targets problems, orbits of 1 (J. Wu, B. Wang, Wuhan

group).

Under Pisot condition, a good natural extension
characterizes periodic orbits: Ito-Rao [8], Berthé-Siegel [4].



Ito-Sadahiro [9] introduced the negative beta expansion
T:xw— —fx—|—pPx+B/(1+ )]
acting on [=G/(1+6),1/(1+5)).
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Figure 2: Negative Beta expansion for 5§ = 2.6



The ACIM of T' is unique. Its density is given by:

1
2 (=8)"™

r>T"(—F/(148))

This expression is probably not intuitive. Liao-Steiner [12]
proved that its ACIM is equivalent to the Lebesgue measure
if and only if 3 > (1 ++/5)/2. Symbolic dynamical study is
parallel to the original beta expansion.



Rotational beta expansion

let 1 < 8 € R and M be an element of the orthogonal

group O(m,R). Let £ be a lattice of R™. Fix a fundamental
domain X of L. Then

R™ = | J(X +d)
deLl

Is a disjoint partition of C. Define a map 1T : X — X by
T(z) = BM(z) — d where d = d(z) is the unique element in L
satisfying BM (z) € X + d.



Given a point z in X', we obtain an expansion

M) | M)
5 5
M Yd1) M7(dy) M TA(T?(2))
- T 5 T e T

= M(dy)
_ ; !

with d; = d(T""1(2)). In this case, we write d7(2) = dydo....
We call T' the rotational beta transformation and dp(z) the
expansion of z with respect to 7.



Form =2, 8 >1and M is in SO(2,R), the algorithm is
naturally written in complex plane. Let { € C\ R with (| =1,
£,m,m2 € C with n1/n2 ¢ R. Then

X={{+xm+yn|2z€0,1),y€0,1)}

is a fundamental domain of the lattice £ = Zn; + Zn, in C.
We are interested in the transform T'(z) = 5(z — d and its

expansion:
z = — ¢ C.
2 7c

where d; € L.



Motivations

e Another example of explicit ACIM ?

e Systematic construction of self-similar tilings.



ACIM'’s are not unique !
Example 1.( = v-1,8 = 1039, = 292,n, =
exp(my/—1/3) and £ = 0.

Figure 3: Non ergodic case



(a) First Component
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Figure 4: Non unique ACIM
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(a) E and F° (b) Confirmation of the set
equation

The same situation happens when 3 and n; satisfy

V3 V3 V3 V3, V3
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while other parameters are fixed.

m

Figure 5: Non ergodic parameters



In this case, we have to study the Perron Frobenius operator:

h
P = 2, JaC((;?y)

yeT1(x)

acting on L*(R™,R). Then T is a very special case of piecewise
expanding maps, studied by Keller, Gora-Boyarsky, Tsujii, Buzzi
[10, 11, 7, 13, 14, 6, 15]. The main difficulty arises from the
set of discontinuities. It becomes much more complicated than

those in 1-dim.



We have to find a definition of total variation in higher
dimension. The best one is found by Keller and used by
Saussol [13]. Take a ball B and let

osc(f,B) = esssup,cp f(x) — essinf,ep f(x),

the oscillation around B. Fix an g > 0 and put

Var(f) = sup 1/osc(f,B(:z:,s))dx.

0<e<eq €

Then Var(f) is an analogy of the total variation and and
the subspace V = {f € L' | Var(f) + ||f|| < oo} becomes
relatively compact in £!.



Under some natural assumption on the piecewise expanding
map, we can prove a Lasota-Yorke type inequality:

Var(P"(f)) < nVar(f) + D| f]

with some n € N and 0 < n < 1. Iterating this inequality, from
an infinite sequence

1 N
NZP’(f), N=12...
1=1

we can select a converging subsequence. This lead us to the
unique limit, which satisfies P(h) = h.



We know that there exists an ACIM u whose support
contains a ball of positive density. This implies the number of
ergodic components is finite and bounded by

However, the bound is not practically good since 1 is usually
close to 1. For a bounded set A € R™, define the width w(A)
of A as the minimum distances of two pararell hyperplanes
sandwiches A. The covering radius of a relatively dense



subset P € R™ s

r(P) = Sup inf |z =y

Theorem 2 ([1]). Assume that 2r(L) < fw(X). If B > m +1
then there is a unique ACIM of T equivalent to the m-dim
Lebesgue measure.

We use the result by Bang[3], which solved Tarski's plank
problem. For m = 2 we get more precise results.



Let 6(X) € (0, 7) be the angle between 7; and 7s.

2 if 2 < tan (HTX) < 2
B, ={1+ HSmEQTX)) if sin(6(X)) < V5 —2
\% + <= cot? (QTX)) + tan? (QTX)) otherwise
and
B, — X cos(‘G((:OXS)()ﬂ(—i‘izBl'(—g(lX))—l) if £ <0(X) <%

1 2 otherwise.
T e (TR



Theorem 3.If 6 > B; then (X,T) has a unique ACIM .

Moreover, if 5 > Bs then u is equivalent to the 2-dimensional
Lebesgue measure restricted to X.

This is an improvement of the result in the [2], in particular
if 6 is small.



One can confirm the inequality B; < Bs in Figure 6.

Figure 6: Comparison of By and B>
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Idea of the proof.

Starting from a r-covering of X', inductively we create a finer
one by looking the inverse images of I'. Then we can show
that if 3 is large, then for any € > 0 and any point z € X" that
U, T7"(2) is an e-covering. Assuming two ergodic ACIM,

this fact means two ergodic components have non negligible
communication, which gives a contradiction.



Put A:={d(2) | z € X}. Let AZ (resp. A*) be the set
of all bi-infinite (resp. finite) words over A. We say w € A*
is admissible if w appears in the expansion dr(z) for some

2 € X\ U,ez T7(0(X)). Let
X1 = {w = (w;) € AZ} WiW;41...w; is admissible } :

The symbolic dynamical system associated to 7' is the
topological dynamics (Xp,s) given by the shift operator
s((w;)) = (wiz1). We say (Xp,s) (or simply, (X,T)) is
sofic if there is a finite directed graph GG labeled by A such that
for each w € Xy, there exists a bi-infinite path in G labeled w
and vice versa.



Lemma 4. The system (X,T) is sofic if and only if
U,—, T™(0(X)) is a finite union of segments.

A problem on the definition of soficness

One may define complete soficness by considering all orbits
in X instead of X'\ |J,,c,T"(9(X)). Then the results will be:

Lemma 5. The system (X, T) is completely sofic if and only
if (IT"(0(X)))n=1.2... is eventually periodic as a sequence of
sets.

We are not sure these definitions are the same.



So (X,T) to be sofic, ( must be a root of unity. Assume
that  is a g-th root of unity with ¢ > 2 and &, 11,12 € Q((, B)

with n1/n9 € R.
Theorem 6. Let ( be a ¢-th root of unity (¢ > 2) and 5 be a

Pisot number. Let n1,7m2,€ € Q((,5). If cos(2m/q) € Q(B),
then the system (X', T)) is sofic.

Corollary 7.1f ( is a 3rd, 4th or 6th root of unity, then the
system (X, T') is sofic for any Pisot number S.

Corollary 8. For any positive integer g, there exists a Pisot
number 3 which satisfies above conditions. Thus there is a
self-similer tiling in R? with inflation constant 3 and g¢-fold
rotation action, whose all tiles are polygons.



On the other hand, we can give a family of non-sofic systems

when ¢ + ¢~ € Q(P).

Theorem 9. Let £ =0, 7y =1 and n, = { = exp(2mv/—1/5).
If 3 > 2.90332 such that v/5 &€ Q(B), then (X,T) is not a
sofic system.

For example, 5 = 3,4,5... are not sofic in this setting.



Summary of our results

unique | Lebesgue | density sofic
Beta Yes Yes Yes B: Pisot
Negative Yes B> %5 Yes B: Pisot
Rotation | 8> By | 8> By ? Pisot & cos(27/q) € Q(5)

Open questions

e Improve the constants By and By. They seem not optimal.

e Make explicit the density of ACIM. Possible in sofic cases.



Example 10.Let £ =0, 71 =1 and 12 = ( = exp(27v/—1/3).
Put 3 =1+ /2. We have 9 cylinders.
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Figure 7: 3-fold sofic case



Example 11.Let £ =0, 71 = 1 and 1, = ( = exp(27v/—1/5).
Let 3= (14 +/5)/2. There are 40 cyllnders

Jp |/
[
| Rl

Figure 8: 5-fold sofic case




Example 12. Let £ =0, 5, = 1 and 12 = { = exp(2mv/—1/7).
Llet B = 1 4 2cos(27/7) ~ 2.24698. From r(£) =
1/(2cos(m/7)), w(X) =sin(27/7) we have 8 > By ~ 2.00272
and there is a unique ACIM by Theorem 3, but 8 < By =~
2.41964. From Theorem 6, we know that the corresponding
dynamical system is sofic. Figure 9 shows the sofic dissection
of X' by 224 discontinuity segments. The number of cylinders
is 3292 (1), computed by Euler’s formula.
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Figure 9: Sofic 7-fold rotation
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